Nuclear Test-Experimental Science: Annual report, fiscal year 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, G.L.; Donohue, M.L.; Bucciarelli, G.
1988-01-01
Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challengesmore » and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.« less
NASA Astrophysics Data System (ADS)
Koksal, Ela Ayse; Berberoglu, Giray
2014-01-01
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.
TEST BOOKLET FOR HIGH SCHOOL BIOLOGY, EXPERIMENTAL MATERIALS FOR USE 1966-1968.
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Boulder, CO.
SUPPLEMENTARY TEST QUESTIONS FOR USE BY SECONDARY BIOLOGICAL SCIENCES CURRICULUM STUDY GREEN VERSION BIOLOGY TEACHERS IN THE CONSTRUCTION OF EXAMINATIONS ARE CONTAINED IN THIS EXPERIMENTAL MANUAL. THE ITEMS WERE PREPARED BY THE BIOLOGICAL SCIENCES CURRICULUM STUDY TEST CONSTRUCTION COMMITTEE IN RESPONSE TO TEACHER REQUESTS FOR SHORT-RANGE TESTS.…
The effect of constructivist teaching strategies on science test scores of middle school students
NASA Astrophysics Data System (ADS)
Vaca, James L., Jr.
International studies show that the United States is lagging behind other industrialized countries in science proficiency. The studies revealed how American students showed little significant gain on standardized tests in science between 1995 and 2005. Little information is available regarding how reform in American teaching strategies in science could improve student performance on standardized testing. The purpose of this quasi-experimental quantitative study using a pretest/posttest control group design was to examine how the use of a hands-on, constructivist teaching approach with low achieving eighth grade science students affected student achievement on the 2007 Ohio Eighth Grade Science Achievement Test posttest (N = 76). The research question asked how using constructivist teaching strategies in the science classroom affected student performance on standardized tests. Two independent samples of 38 students each consisting of low achieving science students as identified by seventh grade science scores and scores on the Ohio Eighth Grade Science Half-Length Practice Test pretest were used. Four comparisons were made between the control group receiving traditional classroom instruction and the experimental group receiving constructivist instruction including: (a) pretest/posttest standard comparison, (b) comparison of the number of students who passed the posttest, (c) comparison of the six standards covered on the posttest, (d) posttest's sample means comparison. A Mann-Whitney U Test revealed that there was no significant difference between the independent sample distributions for the control group and the experimental group. These findings contribute to positive social change by investigating science teaching strategies that could be used in eighth grade science classes to improve student achievement in science.
Effectiveness of Constructivist Approach on Academic Achievement in Science at Secondary Level
ERIC Educational Resources Information Center
Adak, Samaresh
2017-01-01
The present study investigated the effectiveness of constructivist approach on academic achievement in science at secondary level using pre-test, post-test, experimental and control group design, with 58 samples grouped as experimental group (29) and control group (29) on the basis of matching by intelligence test. The investigators conducted this…
NASA Astrophysics Data System (ADS)
Heron, Lory Elen
This study investigated the premise that the use of constructivist teaching strategies (independent variable) in high school science classrooms can cultivate positive attitudes toward science (dependent variable) in high school students. Data regarding the relationship between the use of constructivist strategies and change in student attitude toward science were collected using the Science Attitude Assessment Tool (SAAT) (Heron & Beauchamp, 1996). The format of this study used the pre-test, post-test, control group-experimental group design. The subjects in the study were high school students enrolled in biology, chemistry, or environmental science courses in two high schools in the western United States. Ten teachers and twenty-eight classes, involving a total of 249 students participated in the study. Six experimental group teachers and four control group teachers were each observed an average of six times using the Science Observation Guide (Chapman, 1995) to measure the frequency of observed constructivist behaviors. The mean for the control group teachers was 12.89 and the mean for experimental group teachers was 20.67; F(1, 8) = 16.2, p =.004, revealing teaching behaviors differed significantly between the two groups. After a four month experimental period, the pre-test and post-test SAAT scores were analyzed. Students received a score for their difference in positive attitude toward science. The null hypothesis stating there would be no change in attitude toward science as a subject, between students exposed to constructivist strategies, and students not exposed to constructivist strategies was rejected F(1, 247) = 8.04, p =.005. The control group had a generally higher reported grade in their last science class than the experimental group, yet the control group attitude toward science became more negative (-1.18) while attitude toward science in the experimental group became more positive (+1.34) after the four-month period. An analysis of positive attitude toward science vs. gender was undertaken. An initial significant difference in positive attitude toward science between females and males in the experimental group was established (p =.05). There was no significant difference in positive attitude toward science between those same females and males after the experimental period. Consistent with other results, attitudes toward science for both males and females in the control group became less positive after the study, while males and females in the experimental group had a more positive attitude toward science after four months of using constructivist strategies. Looking at females only, the control group started out with a significantly more positive attitude toward science (mean = 43.40) compared to the experimental group (mean = 39.26, p =.0261). Although a significant difference in positive attitude between females in both groups was not found after the treatment period, the mean attitude score for females in the experimental group increased 2.044, while the mean attitude score for females in the control group decreased by 1.750. Constructivist strategies and their relationship with fostering positive attitudes toward science, might prove a viable solution for addressing the major concern of gender equity and enrollment in higher level science and mathematics courses.
ERIC Educational Resources Information Center
Tekerci, Hacer; Kandir, Adalet
2017-01-01
Purpose: This study aimed to examine the effects of the Sense-Based Science Education Program on 60-66 months old children's scientific process skills. Research Methods: In this study, which carries experimental attribute features, the pre-test/final-test/observing-test control grouped experimental pattern, and qualitative research were used.…
Investigation of Effective Strategies for Developing Creative Science Thinking
ERIC Educational Resources Information Center
Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R; Lin, Huann-shyang
2016-01-01
The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the…
Pathway Towards Fluency: Using 'disaggregate instruction' to promote science literacy
NASA Astrophysics Data System (ADS)
Brown, Bryan A.; Ryoo, Kihyun; Rodriguez, Jamie
2010-07-01
This study examines the impact of Disaggregate Instruction on students' science learning. Disaggregate Instruction is the idea that science teaching and learning can be separated into conceptual and discursive components. Using randomly assigned experimental and control groups, 49 fifth-grade students received web-based science lessons on photosynthesis using our experimental approach. We supplemented quantitative statistical comparisons of students' performance on pre- and post-test questions (multiple choice and short answer) with a qualitative analysis of students' post-test interviews. The results revealed that students in the experimental group outscored their control group counterparts across all measures. In addition, students taught using the experimental method demonstrated an improved ability to write using scientific language as well as an improved ability to provide oral explanations using scientific language. This study has important implications for how science educators can prepare teachers to teach diverse student populations.
ERIC Educational Resources Information Center
Sen, Ceylan; Sezen Vekli, Gülsah
2016-01-01
The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…
NASA Astrophysics Data System (ADS)
Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.
2012-02-01
The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.
How scientific experiments are designed: Problem solving in a knowledge-rich, error-rich environment
NASA Astrophysics Data System (ADS)
Baker, Lisa M.
While theory formation and the relation between theory and data has been investigated in many studies of scientific reasoning, researchers have focused less attention on reasoning about experimental design, even though the experimental design process makes up a large part of real-world scientists' reasoning. The goal of this thesis was to provide a cognitive account of the scientific experimental design process by analyzing experimental design as problem-solving behavior (Newell & Simon, 1972). Three specific issues were addressed: the effect of potential error on experimental design strategies, the role of prior knowledge in experimental design, and the effect of characteristics of the space of alternate hypotheses on alternate hypothesis testing. A two-pronged in vivo/in vitro research methodology was employed, in which transcripts of real-world scientific laboratory meetings were analyzed as well as undergraduate science and non-science majors' design of biology experiments in the psychology laboratory. It was found that scientists use a specific strategy to deal with the possibility of error in experimental findings: they include "known" control conditions in their experimental designs both to determine whether error is occurring and to identify sources of error. The known controls strategy had not been reported in earlier studies with science-like tasks, in which participants' responses to error had consisted of replicating experiments and discounting results. With respect to prior knowledge: scientists and undergraduate students drew on several types of knowledge when designing experiments, including theoretical knowledge, domain-specific knowledge of experimental techniques, and domain-general knowledge of experimental design strategies. Finally, undergraduate science students generated and tested alternates to their favored hypotheses when the space of alternate hypotheses was constrained and searchable. This result may help explain findings of confirmation bias in earlier studies using science-like tasks, in which characteristics of the alternate hypothesis space may have made it unfeasible for participants to generate and test alternate hypotheses. In general, scientists and science undergraduates were found to engage in a systematic experimental design process that responded to salient features of the problem environment, including the constant potential for experimental error, availability of alternate hypotheses, and access to both theoretical knowledge and knowledge of experimental techniques.
NASA Astrophysics Data System (ADS)
Alboruto, Venus M.
2017-05-01
The study aimed to find out the effectiveness of using Strategic Intervention Materials (SIMs) as an innovative teaching practice in managing large Grade Eight Science classes to raise the performance of the students in terms of science process skills development and mastery of science concepts. Utilizing experimental research design with two groups of participants, which were purposefully chosen, it was obtained that there existed a significant difference in the performance of the experimental and control groups based on actual class observation and written tests on science process skills with a p-value of 0.0360 in favor of the experimental class. Further, results of written pre-test and post-test on science concepts showed that the experimental group with the mean of 24.325 (SD =3.82) performed better than the control group with the mean of 20.58 (SD =4.94), with a registered p-value of 0.00039. Therefore, the use of SIMs significantly contributed to the mastery of science concepts and the development of science process skills. Based on the findings, the following recommendations are offered: 1. that grade eight science teachers should use or adopt the SIMs used in this study to improve their students' performance; 2. training-workshop on developing SIMs must be conducted to help teachers develop SIMs to be used in their classes; 3. school administrators must allocate funds for the development and reproduction of SIMs to be used by the students in their school; and 4. every division should have a repository of SIMs for easy access of the teachers in the entire division.
NASA Astrophysics Data System (ADS)
Whitcher, Carrie Lynn
2005-08-01
Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0.0033). Students who were more actively involved in hands-on projects had higher attitude scores compared to students who were taught traditional methods alone. In demographic comparisons, females had more positive attitudes toward horticulture science than males; and students from varying ethnic backgrounds had statistically different achievement (p=0.0001). Ethnicity was determined with few students in each background, 8 in one ethnicity and 10 students in another. Youth organization membership such as FFA or 4-H had no significant bearing on achievement or attitude.
NASA Technical Reports Server (NTRS)
House, G.
1980-01-01
Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.
NASA Astrophysics Data System (ADS)
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-06-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in this particular field. In a quasi-experimental design (experimental-, control groups, and pre- and post-tests), secondary school students' attitudes (N = 365) towards modern biotechnology were measured by a questionnaire. Data were analysed using Chi-square tests. Significant differences were obtained between the control and experimental conditions. Results showed that the science module had a significant effect on attitudes, although predominantly towards a more supportive and not towards a more critical stance. It is discussed that offering a science module of this kind can indeed encourage students to become more aware of modern biotechnology, although promoting a more critical attitude towards modern biotechnology should receive more attention.
The effect of inquiry based science instruction on student understanding
NASA Astrophysics Data System (ADS)
Nail, Jessica Lynette
According to the TIMSS Study (2007), the United States is falling behind in the subjects of math and science. In order for the students in the United States to develop scientific literacy and remain competitive globally, inquiry must be the priority when teaching science (NRC, 1996; AAAS, 1990). The main purpose of this research was to see if inquiry-based instruction in the science classroom had a significant effect on student understanding and retention of information in a rural school in Virginia. The effect of inquiry-based science instruction on gender was also examined. The researcher implemented a four-week, inquiry-based unit on Virginia Sol 6.7, written in the 5 E learning style to 358 sixth-grade students and compared their posttest gains and delayed posttest scores to a control group consisting of 268 students. The control group received traditional teaching methods. The results for the posttest gains produced a p = 0.01. Therefore, there was a significant difference in the experimental group, which received the treatment, when compared to the control group, which did not receive treatment. A t test was also used to compare the delayed test scores of the experimental group to the control group. The results showed a p < 0.0001 when comparing the experimental group, which received the four-week inquiry-based science instruction treatment, to the control, which did not receive the treatment. This t test showed a very highly significant difference between the experimental group and the control group. Based on these results, it is imperative that Virginia begin implementing inquiry-based instruction in the science classroom.
Impact of Jigsaw on the Achievement and Attitudes of Saudi Arabian Male High School Science Students
NASA Astrophysics Data System (ADS)
Alghamdi, Abdulmonem
The aim of the study is to investigate the impact of cooperative learning instruction, specifically by using the Jigsaw instructional strategy on science achievement and attitudes towards science among 11th grade students. Based upon previous research literature, it was hypothesized that significant differences existed on gains between general science achievement of experimental group and control group. The quasi-experimental design was chosen for this study. The study sample consisted of 50 students of 11th grade class who were equally distributed among experimental group and control group, matched on the basic of their annual examination at general science scores. The students' achievement was measured through the implementation of 30-item achievement test used as a pretest, as well as a posttest and deferred (follow-up) test. The experiment group was taught through cooperative learning while control group was taught through the instructions of "traditional teaching". The material was used such as lesson plans, worksheets and quizzes, designed to implement Jigsaw as a cooperative learning methodology. For the attitude scale towards science, a published 30-item Likert scale called Test of Science Related Attitudes (TOSRA) has been translated to Arabic in order to determine the students' attitudes ranging between strongly agree to strongly disagree. The data were analyzed through repeated measure analysis and multivariate analysis of variance with a .05 selected level of significance. The results of this study showed that using Jigsaw as a cooperative learning strategy has improved the students' achievement for the benefit of the experimental group. However, there was no significant change on the students' attitudes towards science for both groups, where the scores of all the attitude subscales were at or near the neutral level.
The Effect of Modeling Based Science Education on Critical Thinking
ERIC Educational Resources Information Center
Bati, Kaan; Kaptan, Fitnat
2015-01-01
In this study to what degree the modeling based science education can influence the development of the critical thinking skills of the students was investigated. The research was based on pre-test-post-test quasi-experimental design with control group. The Modeling Based Science Education Program which was prepared with the purpose of exploring…
NASA Astrophysics Data System (ADS)
Reeves, Carolyn T.
This research attempted to test the effectiveness of strategies designed for teaching the nature of science to Biology I students and to examine the effects of frequency of use of the strategies. Some strategies were designed to identify misconceptions about the nature of science; others were designed to correct misconceptions or provide correct concepts about the nature of science. This research commenced during the 3rd week of the 2001--2002 school year after obtaining IRB approval and permissions from school officials. The study ended after the 15th week. All participating students were given a pretest and a posttest of the Nature of Scientific Knowledge Scale Enhanced (NSKSE) test. Part I, 48 items, consisted of the NSKS test by Rubba & Anderson (1978). Part II, 10 items, consisted of a test constructed by the researcher. Part I contained questions about 6 tenets of the nature of science. Part II contained questions about how science works. The strategies were tested in two Biology I experimental classes, n = 41, and compared with two Biology I control classes, n = 34, by means of an analysis of covariance with the pretest scores used as the covariate. The overall mean posttest scores of the experimental and the control group were not found to be significantly different on either Part I, F(1,72) = 1.059, p = .307, or Part II, F(1,72) = 3.136, p = .081, of the test instrument. The number of times a strategy was used in each experimental classroom was determined. It was found that strategies were used almost twice as often in one classroom than in the other. A second set of ANCOVA analyses compared mean scores between Experimental Class A, Experimental Class B, and the control group. There was no significant difference between the groups on Part I, F(2,71) = .921, p = .403, but the difference between groups on Part II, F(2,71) = 5.769, p = .005, was significant. A post hoc Scheffe analysis showed that the class using strategies most often differed significantly with the control group, p = .009, but the other class did not, p = .929. This study suggests that frequent use of the designed strategies was effective in helping Biology I students understand some aspects of the nature of science. It also suggests that minimal use of the strategies was not effective.
NASA Astrophysics Data System (ADS)
Ledger, Antoinette Frances
This study sought to examine whether collaborative concept mapping would affect the achievement, science self-efficacy and attitude toward science of female eighth grade science students. The research questions are: (1) Will the use of collaborative concept mapping affect the achievement of female students in science? (2) Will the use of collaborative concept mapping affect the science self-efficacy of female students? (3) Will the use of collaborative concept mapping affect the attitudes of females toward science? The study was quasi-experimental and utilized a pretest-posttest design for both experimental and control groups. Eighth grade female and male students from three schools in a large northeastern school district participated in this study. The achievement test consisted of 10 multiple choice and two open-response questions and used questions from state-wide and national assessments as well as teacher-constructed items. A 29 item Likert type instrument (McMillan, 1992) was administered to measure science self-efficacy and attitude toward science. The study was of 12 weeks duration. During the study, experimental group students were asked to perform collaborative concept map construction in single sex dyads using specific terms designated by the classroom teacher and the researcher. During classroom visitations, student perceptions of collaborative concept mapping were collected and were used to provide insight into the results of the quantitative data analysis. Data from the pre and posttest instruments were analyzed for both experimental and control groups using t-tests. Additionally, the three teachers were interviewed and their perceptions of the study were also used to gain insight into the results of the study. The analysis of data showed that experimental group females showed significantly higher gains in achievement than control group females. An additional analysis of data showed experimental group males showed significantly greater gains in achievement than experimental group females. The analysis of science self-efficacy data showed that neither experimental nor control group females increased their scores pre to posttest, both showed small decreases in scores. However, the posttest scores of the experimental group females were significantly higher than the posttest scores of the control group females. The analysis of the attitude toward science survey data showed that the scores of the experimental group females did not change from pre to posttest. However, scores of the control group females declined from pre to posttest. (Abstract shortened by UMI.)
ERIC Educational Resources Information Center
Turner, Matthew J.; Rios, Jose M.
2008-01-01
Recent education reform efforts are at the forefront of educators' minds across the nation, science teachers notwithstanding. At least 48 states have developed a mandated standardized test, the majority of which also publish an individual school proficiency report. Washington State's new standardized science test is an example of such reforms…
Using inquiry-based instructional strategies in third-grade science
NASA Astrophysics Data System (ADS)
Harris, Fanicia D.
The purpose of the study was to determine if the use of inquiry-based instructional strategies as compared to traditional instructional strategies would increase third-grade students' achievement in science, based on the pretest/posttest of the school system and the Georgia Criterion-Referenced Competency Test (CRCT). Inquiry-based instruction, presented students with a question, an observation, a data set, or a hypothesis for problem solving such as scientists use when working in real-world situations. This descriptive research employed a quantitative strategy using a pretest/posttest control group design. The research compared the science academic achievement levels of one Grade 3 class [N=14] exposed to a teacher's inquiry-based instructional strategies as compared to one Grade 3 class [ N=18] exposed to a teacher's traditional instructional strategies. The study compared the science academic performance levels of third-grade students as measured by pretest/posttest mean scores from the school system-based assessment and the Georgia CRCT. Four research hypotheses were examined. Based on the overall findings from this study, both the experimental group and the control group significantly increased their mean scores from the pretests to the posttests. The amount of gain from the pretest to the posttest was significantly greater for the experimental group than the control group for pretest/posttest 1 [t(12) = 8.79, p < .01] and pretest/posttest 2 [t(12) = 9.40, p < .01]. The experimental group significantly outperformed the control group with regard to their mean number of items answered correctly on the life sciences test [t(27) = -1.95, p = .06]. Finally, the control group did not outperform the experimental group on any of the comparisons made throughout this study. The results of this study provide empirical support for the effectiveness of the use of inquiry-based learning strategies, given that the experimental group outperformed the control group on all four posttests, on the science CRCT and on the individual Science portions on the test including earth, life and physical sciences. In fact, this study was able to detect significant differences between the experimental group and the control group with regard to the degree to which the students improved from the pretests to the posttests.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.
NASA Astrophysics Data System (ADS)
Syifahayu
2017-02-01
The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.
ERIC Educational Resources Information Center
Düsmez, Ihsan; Barut, Yasar
2016-01-01
The research is an experimental study which has experimental and control groups, and based on pre-test, post-test, monitoring test model. Research group consists of second and third grade students of Primary School Education and Psychological Counseling undergraduate programmes in Giresun University Faculty of Educational Sciences. The research…
ERIC Educational Resources Information Center
McDaniel, Mark A.; Agarwal, Pooja K.; Huelser, Barbie J.; McDermott, Kathleen B.; Roediger, Henry L., III
2011-01-01
Typically, teachers use tests to evaluate students' knowledge acquisition. In a novel experimental study, we examined whether low-stakes testing ("quizzing") can be used to foster students' learning of course content in 8th grade science classes. Students received multiple-choice quizzes (with feedback); in the quizzes, some target…
Effects of Web based inquiry on physical science teachers and students in an urban school district
NASA Astrophysics Data System (ADS)
Stephens, Joanne
An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.
Investigation of effective strategies for developing creative science thinking
NASA Astrophysics Data System (ADS)
Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R.; Lin, Huann-shyang
2016-09-01
The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students' creative science thinking.
ERIC Educational Resources Information Center
Puri, O. P.
Contained in this experimental test are instructional materials for a one-semester course designed to give liberal arts students an appreciation of (1) the nature of science, (2) the development of science, (3) the contributions of scientists, (4) the impact of scientific discoveries on mankind, and (5) the possible future effects of science. The…
An inquiry approach to science and language teaching
NASA Astrophysics Data System (ADS)
Rodriguez, Imelda; Bethel, Lowell J.
The purpose of this study was to determine the effectiveness of an inquiry approach to science and language teaching to further develop classification and oral communication skills of bilingual Mexican American third graders. A random sample consisting of 64 subjects was selected for experimental and control groups from a population of 120 bilingual Mexican American third graders. The Solomon Four-Group experimental design was employed. Pre- and posttesting was performed by use of the Goldstein-Sheerer Object Sorting Test, (GSOST) and the Test of Oral Communication Skills, (TOCS). The experimental group participated in a sequential series of science lessons which required manipulation of objects, exploration, peer interaction, and teacher-pupil interaction. The children made observations and comparisons of familiar objects and then grouped them on the basis of perceived and inferred attributes. Children worked individually and in small groups. Analysis of variance procedures was used on the posttest scores to determine if there was a significant improvement in classification and oral communication skills in the experimental group. The results on the posttest scores indicated a significant improvement at the 0.01 level for the experimental group in both classification and oral communication skills. It was concluded that participation in the science inquiry lessons facilitated the development of classification and oral communication skills of bilingual children.
ERIC Educational Resources Information Center
Dasdemir, Ikramettin
2014-01-01
The aim of this study is to examine the impact of writing tasks on the 5th grade students' academic achievement and scientific attitude in science and technology course. The research is a quasi-experimental research including pre-test and post-test designs. These tests were administered as pre-test and post test to the groups. A total of sixty-two…
Harackiewicz, Judith M; Rozek, Christopher S; Hulleman, Chris S; Hyde, Janet S
2012-08-01
The pipeline toward careers in science, technology, engineering, and mathematics (STEM) begins to leak in high school, when some students choose not to take advanced mathematics and science courses. We conducted a field experiment testing whether a theory-based intervention that was designed to help parents convey the importance of mathematics and science courses to their high school-aged children would lead them to take more mathematics and science courses in high school. The three-part intervention consisted of two brochures mailed to parents and a Web site, all highlighting the usefulness of STEM courses. This relatively simple intervention led students whose parents were in the experimental group to take, on average, nearly one semester more of science and mathematics in the last 2 years of high school, compared with the control group. Parents are an untapped resource for increasing STEM motivation in adolescents, and the results demonstrate that motivational theory can be applied to this important pipeline problem.
Cooperative Learning and Learning Achievement in Social Science Subjects for Sociable Students
ERIC Educational Resources Information Center
Herpratiwi; Darsono; Sasmiati; Pujiyatli
2018-01-01
Purpose: The research objective was to compare students' learning achievement for sociable learning motivation students in social science (IPS) using cooperative learning. Research Methods: This research used a quasi-experimental method with a pre-test/post-test design involving 35 fifth-grade students. The learning process was conducted four…
NASA Astrophysics Data System (ADS)
Smith, William Bradford, Jr.
The National Guard Youth ChalleNGe Program (ChalleNGe) is a 17 month quasi-military training program authorized by Congress in the 1993 Defense Authorization Bill designed to improve life skills, education levels, and employment potential of 16--18 year old youth who drop out of high school. ChalleNGe is currently operational in 27 states/territories with the focus of this study on the Mississippi National Guard Program operated at Camp Shelby, Mississippi. During the five month residential portion of the program students are guided through an eight step process designed to meet the goals of improving life skills, education levels, and employment potential while ultimately leading to completion of high school equivalency credentials followed by a 12 month mentoring phase to encourage and track progress toward goals. The purpose of this study was to investigate the attitude toward science of a group of students enrolled in the ChalleNGe Program at Camp Shelby (ChalleNGe). The GED test is administered approximately two months into the residential phase of the program. While the program boasts an overall GED pass rate of nearly 80%, approximately 30--35% of students successfully complete the initial offering of the GED. As high school graduates, these students are offered college courses through William Carey College in Hattiesburg, Mississippi. Twenty four students elected to take the Introduction to Environmental Science course and formed the experimental group while 24 other students who passed the GED comprised the control group. Each group was administered the Scientific Attitude Inventory II, a 40 statement instrument with Likert Scale responses, as a pretest. Paired samples t-tests indicated no significant difference in attitude toward science between the experimental and control groups on the pretest. Following the two week Introduction to Environmental Science course for the experimental group, both groups were post tested. As predicted, the attitude toward science of the experimental group was significantly higher than that of the control group. Further investigation into correlation between the length of time students were away from the traditional school prior to starting ChalleNGe, the number of science classes previously taken, and reading scores on the Test of Adult Basic Education revealed no significant relationship. Responses provided by students to each of these three factors was significantly different between the experimental and control groups. In summary, attitude toward science can be positively impacted by short term interventions such as the environmental science course described herein. While the positive impact on attitude toward science caused by this course was the desired outcome of this project, appropriate emphasis should be placed on prevention of dropouts and the accompanying social issues.
The Propagation of Errors in Experimental Data Analysis: A Comparison of Pre-and Post-Test Designs
ERIC Educational Resources Information Center
Gorard, Stephen
2013-01-01
Experimental designs involving the randomization of cases to treatment and control groups are powerful and under-used in many areas of social science and social policy. This paper reminds readers of the pre-and post-test, and the post-test only, designs, before explaining briefly how measurement errors propagate according to error theory. The…
Exploring the Technical Expression of Academic Knowledge: The Science-in-CTE Pilot Study
ERIC Educational Resources Information Center
Pearson, Donna; Young, R. Brent; Richardson, George B.
2013-01-01
The Science-in-CTE pilot study tested a curriculum integration model that enhanced the science that oc-curs in CTE curricula. The study replicated the National Research Center for Career and Technical Ed-ucation's (NRCCTE) Math-in-CTE experimental research design (Stone, Alfeld, & Pearson, 2008) with applied science in secondary agricultural…
NASA Astrophysics Data System (ADS)
Lawrence, Lettie Carol
1997-08-01
The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.
NASA Astrophysics Data System (ADS)
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2017-03-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.
NASA Astrophysics Data System (ADS)
Peters, Erin E.
The purpose of the present quasi-experimental mixed-method design is to examine the effectiveness of a developmental intervention (4-phase EMPNOS) to teach the nature of science using metacognitive prompts embedded in an inquiry unit. Eighty-eight (N=88) eighth grade students from four classrooms were randomly assigned to an experimental and a control group. All participants were asked to respond to a number of tests (content and nature of science knowledge) and surveys (metacognition of the nature of science, metacognitive orientation of the classroom, and self-regulatory efficacy). Participants were also interviewed to find problem solving techniques and shared experiences between the groups. It was hypothesized that the experimental group would outperform the control group in all measures. Partial support for the hypotheses was found. Specifically, results showed significant gains in content knowledge and nature of science knowledge of the experimental group over the control group. Qualitative findings revealed that students in the control group reported valuing authority over evidence, while the experimental group reported that they depended on consensus of their group on the interpretation of the evidence rather than authority, which is more closely aligned to the aspects of the nature of science. Four-phase EMPNOS may have implications as a useful classroom tool in guiding students to check their thinking for alignment to scientific thinking.
A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing
NASA Astrophysics Data System (ADS)
Yang, Hsiu-Ting; Wang, Kuo-Hua
2014-08-01
Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.
NASA Astrophysics Data System (ADS)
Ugwu, Okechukwu; Soyibo, Kola
2004-01-01
The first objective of this study was to investigate if the experimental students' post-test knowledge of nutrition and plant reproduction would be improved more significantly than that of their control group counterparts based on their treatment, attitudes to science, self-esteem, gender and socio-economic background. Treatment involved teaching the experimental students under three learning modes--pure cooperative, cooperative-competitive and individualistic whole class interpersonal competitive condition--using concept and vee mappings and the lecture method. The control groups received the same treatment but were not exposed to concept and vee mappings. This study's second objective was to determine which of the three learning modes would produce the highest post-test mean gain in the subjects' knowledge of the two biology concepts. The study's sample comprised 932 eighth graders (12-13-year-olds) in 14 co-educational comprehensive high schools randomly selected from two Jamaican parishes. An integrated science performance test, an attitudes to science questionnaire and a self-esteem questionnaire were used to collect data. The results indicated that the experimental students (a) under the three learning modes, (b) with high, moderate, and low attitudes to science, and (c) with high, moderate, and low self-esteem, performed significantly better than their control group counterparts. The individualist whole class learning mode engendered the highest mean gain on the experimental students' knowledge, while the cooperative-competitive learning mode generated the highest mean gain for the control group students.
NASA Astrophysics Data System (ADS)
Yang, Kun-Yuan; Heh, Jia-Sheng
2007-10-01
The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.
ERIC Educational Resources Information Center
Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.
2012-01-01
The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group.…
ERIC Educational Resources Information Center
Aaron Price, C.; Chiu, A.
2018-01-01
We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4-8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards…
Schickore, Jutta
2016-02-01
This essay utilizes the concept "exploratory experimentation" as a probe into the relation between historiography and philosophy of science. The essay traces the emergence of the historiographical concept "exploratory experimentation" in the late 1990s. The reconstruction of the early discussions about exploratory experimentation shows that the introduction of the concept had unintended consequences: Initially designed to debunk philosophical ideas about theory testing, the concept "exploratory experimentation" quickly exposed the poverty of our conceptual tools for the analysis of experimental practice. Looking back at a number of detailed analyses of experimental research, we can now appreciate that the concept of exploratory experimentation is too vague and too elusive to fill the desideratum whose existence it revealed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten
2017-04-01
Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students' experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N = 16). Independent observers rated preservice teachers' group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.
Inquiry-Based Laboratory Practices in a Science Teacher Training Program
ERIC Educational Resources Information Center
Yakar, Zeha; Baykara, Hatice
2014-01-01
In this study, the effects of inquiry-based learning practices on the scientific process skills, creative thinking, and attitudes towards science experiments of preservice science teachers have been analyzed. A non-experimental quantitative analysis method, the single-group pre test posttest design, has been used. In order to observe the…
Biomedical programs operations plans
NASA Technical Reports Server (NTRS)
Walbrecher, H. F.
1974-01-01
Operational guidelines for the space shuttle life sciences payloads are presented. An operational assessment of the medical experimental altitude test for Skylab, and Skylab life sciences documentation are discussed along with the operations posture and collection of space shuttle operational planning data.
Lahey, Benjamin B.; Turkheimer, Eric; Lichtenstein, Paul
2013-01-01
Researchers have identified environmental risks that predict subsequent psychological and medical problems. Based on these correlational findings, researchers have developed and tested complex developmental models and have examined biological moderating factors (e.g., gene–environment interactions). In this context, we stress the critical need for researchers to use family-based, quasi-experimental designs when trying to integrate genetic and social science research involving environmental variables because these designs rigorously examine causal inferences by testing competing hypotheses. We argue that sibling comparison, offspring of twins or siblings, in vitro fertilization designs, and other genetically informed approaches play a unique role in bridging gaps between basic biological and social science research. We use studies on maternal smoking during pregnancy to exemplify these principles. PMID:23927516
D'Onofrio, Brian M; Lahey, Benjamin B; Turkheimer, Eric; Lichtenstein, Paul
2013-10-01
Researchers have identified environmental risks that predict subsequent psychological and medical problems. Based on these correlational findings, researchers have developed and tested complex developmental models and have examined biological moderating factors (e.g., gene-environment interactions). In this context, we stress the critical need for researchers to use family-based, quasi-experimental designs when trying to integrate genetic and social science research involving environmental variables because these designs rigorously examine causal inferences by testing competing hypotheses. We argue that sibling comparison, offspring of twins or siblings, in vitro fertilization designs, and other genetically informed approaches play a unique role in bridging gaps between basic biological and social science research. We use studies on maternal smoking during pregnancy to exemplify these principles.
ERIC Educational Resources Information Center
Olori, Abiola Lateef; Igbosanu, Adekunle Olusegun
2016-01-01
The study was carried out to determine the use of computer-based multimedia presentation on Senior Secondary School Students' Achievement in Agricultural Science. The study was a quasi-experimental, pre-test, post-test control group research design type, using intact classes. A sample of eighty (80) Senior Secondary School One (SS II) students was…
ERIC Educational Resources Information Center
Abdolhosseini, Amir; Keikhavani, Sattar; Hasel, Kourosh Mohammadi
2011-01-01
This study reviewed the effect of instructing cognitive and metacognitive strategies on the academic progress of Medical Sciences of Ilam University students. The research is quasi-experimental including a pre-test and a post-test. The population of the research includes the students of Medical Sciences of Ilam University. The sample includes 120…
NASA Astrophysics Data System (ADS)
Chung-Schickler, Genevieve C.
The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group on TOSRA scale two and biology knowledge. ANCOVAs did not indicate any significant differences on the post mean scores of the TOSRA or biology knowledge adjusted by differences in the pretest mean scores. Analysis of the research data did not show any significant correlation between attitudes toward science and biology knowledge.
1988-12-01
individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon
ERIC Educational Resources Information Center
Balim, Ali Günay
2013-01-01
This study aims at identifying the effects of the mind-mapping technique upon students' perceptions of inquiry-learning skills, academic achievement, and retention of knowledge. The study was carried out in the Science and Technology course. A quasi-experimental research design with a pre-test and post-test control group, which was selected from…
ERIC Educational Resources Information Center
Balim, Ali Günay
2013-01-01
The study aims to investigate the effects of using mind maps and concept maps on students' learning of concepts in science courses. A total of 51 students participated in this study which used a quasi-experimental research design with pre-test/post-test control groups. The constructivist-inspired study was carried out in the sixth-grade science…
Digital science games' impact on sixth and eighth graders' perceptions of science
NASA Astrophysics Data System (ADS)
Peng, Li-Wei
2009-12-01
The quasi-experimental study investigated sixth and eighth graders' perceptions of science with gender, grade levels, and educational experiences as the variables. The Theory of Planned Behavior (Ajzen, 1985) claims that attitude toward the behavior, subjective norm, and perceived behavioral control play a major role in people's intentions, and these intentions ultimately impact their behavior. The study adopted a quantitative research approach by conducting a science perceptions survey for examining students' self-efficacy in learning science (i.e., perceived behavioral control), value of science (i.e., attitude toward the behavior), motivation in science (i.e., attitude toward the behavior), and perceptions of digital science games in science classes (i.e., perceived behavioral control). A total of 255 participants' responses from four rural Appalachian middle school science classrooms in southeastern Ohio were analyzed through a three-way ANCOVA factorial pre-test and post-test data analysis with experimental and comparison groups. Additionally, the study applied a semi-structured, in-depth interview as a qualitative research approach to further examine STEAM digital science games' and Fellows' impact on students' perceptions of science. Eight students in the experimental group were interviewed. Interview data were analyzed with an inductive method. The results found in the three-way ANCOVA data analysis indicated that the diversity of educational experiences was a significant factor that impacted sixth and eighth graders' perceptions of science. Additionally, the interaction of gender and educational experiences was another significant factor that impacted sixth and eighth graders' perceptions of science. The findings of the two short-answer questions identified the reasons why the participants liked or disliked science, as well as why the participants would or would not choose a career in science. The conclusions of the semi-structured, in-depth interview supported that the interviewees' perceptions of the STEAM digital science games and Fellows ranged from neutral to positive. Seven out of eight of the interviewees commented that the STEAM digital science games and Fellows enhanced the interviewees' perceptions of science and their choice of careers. Five out of eight of the interviewees intended to have careers in science.
Statistical reporting inconsistencies in experimental philosophy
Colombo, Matteo; Duev, Georgi; Nuijten, Michèle B.; Sprenger, Jan
2018-01-01
Experimental philosophy (x-phi) is a young field of research in the intersection of philosophy and psychology. It aims to make progress on philosophical questions by using experimental methods traditionally associated with the psychological and behavioral sciences, such as null hypothesis significance testing (NHST). Motivated by recent discussions about a methodological crisis in the behavioral sciences, questions have been raised about the methodological standards of x-phi. Here, we focus on one aspect of this question, namely the rate of inconsistencies in statistical reporting. Previous research has examined the extent to which published articles in psychology and other behavioral sciences present statistical inconsistencies in reporting the results of NHST. In this study, we used the R package statcheck to detect statistical inconsistencies in x-phi, and compared rates of inconsistencies in psychology and philosophy. We found that rates of inconsistencies in x-phi are lower than in the psychological and behavioral sciences. From the point of view of statistical reporting consistency, x-phi seems to do no worse, and perhaps even better, than psychological science. PMID:29649220
Comparison of attitudes of non-science major students toward science and technology
NASA Astrophysics Data System (ADS)
Wick, Donald Gary
This study examines the attitudes of non-science major students who were enrolled in General Education Required (GER) science courses at three diverse Iowa post-secondary educational institutions: The University of Iowa, Cornell College, and Kirkwood Community College. The information was gathered using a survey instrument with the test subjects responding with a five-part Likert-scale to a series of statements regarding: (1) reasons for taking the science course, (2) views and attitudes toward science, and (3) the nature and implications of science and technology. The initial data gathered was analyzed using either chi-squared, analysis of variance (ANOVA), and/or Bonferroni tests. Responses to grouped statements were used to generate population indices related to: (1) experience, (2) attitude, (3) experimentation, and (4) technology. These indices were analyzed for statistically significant differences using Tukey's Studentized (HSD) and Tukey-Krammer tests. Statistically significant differences were found in the response means for some individual statements. When a population index was calculated for each school using the grouped responses related to attitude, experience, science/technology, multiple comparison testing determined significant differences with regards to attitude, experiences, and science/technology. No significant differences were found between the schools for the population index regarding experimentation. Demographic information gathered concerning the nature of the student populations included: (1) declared major, (2) classification, (3) previous number of science courses, (4) gender, and (5) use of computers for the science course. Analysis of demographic data also revealed statistically significant differences. The differences found in this study provide additional quantitative data to characterize the non-science major student. Recommendations based on this data are: (1) The University of Iowa strive for smaller GER class sizes and reevaluate current pedagogy, (2) Kirkwood Community College make class material more relevant and place more emphasis on research, (3) Cornell College utilize full professors in the non-major course and incorporate more technology, and (4) all reevaluate the science GERs course pedagogy, retain the science GERs, maintain the current number of GER science course choices, and, finally, reevaluate any GER science course credit reciprocity.
Apollo-Soyuz test project: Composite of MSFC final science report
NASA Technical Reports Server (NTRS)
1977-01-01
Experimental procedures of nine experiments conducted during the Apollo-Soyuz Test Project mission from July 15th to July 24th, 1975 are presented. Conclusions and recommendations based on these experiments are given.
2015-01-01
Troubleshooting Emergent Issues Edward Dawson Maritime Division Defence Science and Technology Organisation DSTO-TN-1402 ABSTRACT This...UNCLASSIFIED UNCLASSIFIED Published by Maritime Division DSTO Defence Science and Technology Organisation 506...tools used by the Defence Science and Technology Organisation (DSTO) are an efficient and effective means to determine and evaluate the motion
Experimental control requirements for life sciences
NASA Technical Reports Server (NTRS)
Berry, W. E.; Sharp, J. C.
1978-01-01
The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.
Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes
NASA Astrophysics Data System (ADS)
Achmad, Maulana; Suhandi, Andi
2017-05-01
The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.
The Effect of Using Mind Maps on the Development of Maths and Science Skills
ERIC Educational Resources Information Center
Polat, Ozgul; Yavuz, Ezgi Aksin; Tunc, Ayse Betul Ozkarabak
2017-01-01
The aim of this study is to examine the effect of mind mapping activities on the maths and science skills of children 48 to 60 months of age. The study was designed using an experimental model with a pre-test post-test and a control group. Accordingly, the hypotheses of the study was that there would be meaningful differences in the values…
ERIC Educational Resources Information Center
Serin, Oguz
2011-01-01
This study aims to investigate the effects of the computer-based instruction on the achievements and problem solving skills of the science and technology students. This is a study based on the pre-test/post-test control group design. The participants of the study consist of 52 students; 26 in the experimental group, 26 in the control group. The…
2005-08-01
Covers interaction of type, image, motion, sound, and sequence in Design staging for various media formats including commercials. 3 Computer Programming...the Behavioral & Social Sciences ARI 2511 Jefferson Davis Highway 11. MONITOR REPORT NUMBER Arlington, VA 22202-3926 Technical Report 1168 12...situational judgment test, and indicators of person-environment fit (e.g., job satisfaction). 15. SUBJECT TERMS Behavioral and social science Personnel
Engineering Design Handbook. Army Weapon Systems Analysis. Part 2
1979-10-01
EXPERIMENTAL DESIGN ............................... ............ 41-3 41-5 RESULTS OF THE ASARS lIX SIMULATIONS ........................... 41-4 41-6 LATIN...sciences and human factors engineering fields utilizing experimental methodology and multi-variable statistical techniques drawn from experimental ...randomly to grenades for the test design . The nine experimental types of hand grenades (first’ nine in Table 33-2) had a "pip" on their spherical
ERIC Educational Resources Information Center
Vuolo, Mike; Uggen, Christopher; Lageson, Sarah
2016-01-01
Given their capacity to identify causal relationships, experimental audit studies have grown increasingly popular in the social sciences. Typically, investigators send fictitious auditors who differ by a key factor (e.g., race) to particular experimental units (e.g., employers) and then compare treatment and control groups on a dichotomous outcome…
Teacher content knowledge in the context of science education reform
NASA Astrophysics Data System (ADS)
Doby, Janice Kay
1997-12-01
The decline of science education in elementary schools has been well documented. While numerous efforts have been made for the purpose of reforming science education, most of those efforts have targeted science programs, assessment techniques, and setting national, state, and local standards, stressing teacher accountability for meeting those standards. However, inadequate science content knowledge of preservice teachers limits their ability to master effective teaching strategies, and also may foster negative attitudes toward science and science teaching. It is, therefore, highly unlikely that any significant reform in science education will be realized until this major underlying problem is addressed and resolved. The purpose of this study was to examine the effects of an experimental elementary science methods course, which employs the use of laser videodisc technology and instructional implications from cognitive science and instructional design, in terms of preservice teacher gains in Earth and physical science content knowledge and locus of control in science. The experimental elementary science methods course was compared to a more traditional approach to the same course which focused primarily on methods of teaching in the physical sciences and other science domains. The experimental and traditional groups were compared before and after treatment in terms of preservice teachers' content knowledge in Earth and physical science and locus ofcontrol in science. Results indicated that the experimental and traditional groups were comparable prior to treatment. The experimental group (89 preservice teachers) responded correctly to 45% of the items on the Elementary Science Concepts Test (ESCT) pretest and the traditional group (78 preservice teachers) responded correctly to 42% of the pretest items, the difference between groups being nonsignificant. Further, the experimental and traditional groups scored similarly on the pre-assessment of locus of control in science with scores on the Preservice Teacher Information and Science Opinion Questionnaire (ISOQ) of 162.12 and 163.65, respectively, the difference also being nonsignificant. The pre- and post-administrations of both the ESCT and ISOQ were all found to be statistically significant (F (4, 162) = 271.18343, p<0.05) in predicting group membership. Analyses of variance indicated significantly greater gains in Earth and physical science content knowledge (F (1,165) = 743.7746, p<0.025) and locus of control in science (F (1,165) = 45.7477, p<0.025) for the experimental group compared to the traditional group. A significant difference (F = (2,162) = 31.82279, p<0.05) was found between the combined effect of locus of control in science and Earth and physical science content knowledge in respect to treatment, indicating that the curriculum and instructional design of the experimental course significantly influenced preservice teachers' science content knowledge and locus of control in science. Suggestions for further research included: (a) determining whether the results of this present research may also apply to inservice teachers, (b) determining the effects of such preservice and inservice training on actual classroom practice, (c) relating increased science knowledge with improvement in science lesson planning and mastery of pedagogical skills, and (d) more detailed analysis of instructional implications from cognitive science and instructional design in regard to their application to the teaching of science (as well as other content areas).
Effect of Digitally-Inspired Instruction on Seventh Grade Science Achievement
ERIC Educational Resources Information Center
Winn, Pam; Erwin, Susan; Becker, Melissa; White, Misty
2013-01-01
Results of a collaborative, quasi-experimental, research and development project partnering university professors with a seventh grade science teacher are reported. The study proposed to test the academic effectiveness of innovative digitally-inspired instruction using commonly available digital tools on 33 North Texas public school students…
Teaching Writing and Critical Thinking in Large Political Science Classes
ERIC Educational Resources Information Center
Franklin, Daniel; Weinberg, Joseph; Reifler, Jason
2014-01-01
In the interest of developing a combination of teaching techniques designed to maximize efficiency "and" quality of instruction, we have experimentally tested three separate and relatively common teaching techniques in three large introductory political science classes at a large urban public university. Our results indicate that the…
NASA Astrophysics Data System (ADS)
khawaldeh, Salem A. Al
2013-07-01
Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.
Promoting students' conceptual understanding using STEM-based e-book
NASA Astrophysics Data System (ADS)
Komarudin, U.; Rustaman, N. Y.; Hasanah, L.
2017-05-01
This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(p<0.005). N-gain analysis showsthe higher performance of students who were participated in experimental group (mean = 66.03) higher compared to control group (mean = 47.66) in answering conceptual understanding questions. Based on the results, it can be concluded that STEM-based e-book has positiveimpact in promoting students' understanding on lever system in human body. Therefore this learning approach is potential to be used as an alternative to triger the enhancement of students' understanding in science.
Learning to teach science in a professional development school program
NASA Astrophysics Data System (ADS)
Hildreth, David P.
1997-09-01
The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS program with respect to attitudes toward science, science process skills achievement, and sense of science teaching efficacy. In addition, qualitative data indicated that the most effective components of the science-focused PDS program rests largely on the fact that students learned to teach in a collaborative cohort team and that students spent extended periods of time in clinical internships and student teaching.
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung
2014-01-01
The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.
NASA Astrophysics Data System (ADS)
Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad
2017-05-01
This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
NASA Astrophysics Data System (ADS)
Dodick, Jeff; Argamon, Shlomo; Chase, Paul
2009-08-01
A key focus of current science education reforms involves developing inquiry-based learning materials. However, without an understanding of how working scientists actually do science, such learning materials cannot be properly developed. Until now, research on scientific reasoning has focused on cognitive studies of individual scientific fields. However, the question remains as to whether scientists in different fields fundamentally rely on different methodologies. Although many philosophers and historians of science do indeed assert that there is no single monolithic scientific method, this has never been tested empirically. We therefore approach this problem by analyzing patterns of language used by scientists in their published work. Our results demonstrate systematic variation in language use between types of science that are thought to differ in their characteristic methodologies. The features of language use that were found correspond closely to a proposed distinction between Experimental Sciences (e.g., chemistry) and Historical Sciences (e.g., paleontology); thus, different underlying rhetorical and conceptual mechanisms likely operate for scientific reasoning and communication in different contexts.
NASA Astrophysics Data System (ADS)
Aaron Price, C.; Chiu, A.
2018-06-01
We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4-8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards science, along with teacher classroom behaviour. Subject content questions were mostly taken from standardised state tests and literature, with an 'Explain:' prompt added to some items. Teachers in the treatment group showed a 7% gain in subject content knowledge over the control group. Students of teachers in the treatment group showed a 4% gain in subject content knowledge over the control group on multiple-choice items and an 11% gain on the constructed response items. There was no overall change in science attitudes of teachers or students over the control groups but we did find differences in teachers' reported self-efficacy and teaching anxiety levels, plus PD teachers reported doing more student-centered science teaching activities than the control group. All teachers came into the PD with high initial excitement, perhaps reflecting its context within an informal learning environment.
Influence of Joyful Learning on Elementary School Students’ Attitudes Toward Science
NASA Astrophysics Data System (ADS)
Anggoro, S.; Sopandi, W.; Sholehuddin, M.
2017-02-01
This study investigated the effects of joyful learning approach on elementary school students’ attitudes toward science. The method used is quasy experiment with the participants were divided into two groups. Thirty three of 4th grade students volunteered as an experimental group, and the other forty two act as a control group. The data was collected by questionnaire that are given before and after the lesson, observation sheet, and interview. The effect of joyful learning on students’ attitude was obtained by determining the n-gain and independent t-test. Observation and interview results were used to triangulate and support the quantitative findings. The data showed that the gain scores of the experimental group students’ attitudes toward science were significantly higher than the gain scores of control group. In addition, the experimental group made significantly greater progress in their cognitive, affective and conative experiences. Interviews and observations indicated that their attitude toward science changed over the intervention. This indicated that joyful learning approach can enhance the elementary school students’ attitudes toward science. According to these findings, it can be concluded that joyful learning approach can be used as an alternative approach to improve student’s attitude toward science.
ERIC Educational Resources Information Center
Heller, Joan I.
2012-01-01
This study evaluated an approach to professional development for middle school science teachers by closely examining one grade 8 course that embodies that approach. Using a cluster-randomized experimental design, the study tested the effectiveness of the Making Sense of SCIENCE[TM] professional development course on force and motion (Daehler,…
NASA Astrophysics Data System (ADS)
Dhitareka, P. H.; Firman, H.; Rusyati, L.
2018-05-01
This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.
The Effects of Cognitive Conflict Management on Cognitive Development and Science Achievement
ERIC Educational Resources Information Center
Budiman, Zainol Badli; Halim, Lilia; Mohd Meerah, Subahan; Osman, Kamisah
2014-01-01
Three teaching methods were compared in this study, namely a Cognitive Conflict Management Module (CCM) that is infused into Cognitive Acceleration through Science Education (CASE), (Module A) CASE without CCM (Module B) and a conventional teaching method. This study employed a pre- and post-test quasi-experimental design using non-equivalent…
Using Research to Teach an "Introduction to Biological Thinking"
ERIC Educational Resources Information Center
Bell, Ellis
2011-01-01
A course design for first-year science students is described, where the focus is on the skills necessary to do science. The course uses original research projects, designed by the students, to teach a variety of skills including reading the scientific literature, hypothesis development and testing, experimental design, data analysis and…
Introducing Science Experiments to Rote-Learning Classes in Pakistani Middle Schools
ERIC Educational Resources Information Center
Pell, Anthony William; Iqbal, Hafiz Muhammad; Sohail, Shahida
2010-01-01
A mixed-methods sequential research design has been used to test the effect of introducing teacher science demonstrations to a traditional book-learning sample of 384 Grade 7 boys and girls from five schools in Lahore, Pakistan. In the quasi-experimental quantitative study, the eight classes of comparable ability were designated either…
van Steenbergen, Henk; Bocanegra, Bruno R
2016-12-01
In a recent letter, Plant (2015) reminded us that proper calibration of our laboratory experiments is important for the progress of psychological science. Therefore, carefully controlled laboratory studies are argued to be preferred over Web-based experimentation, in which timing is usually more imprecise. Here we argue that there are many situations in which the timing of Web-based experimentation is acceptable and that online experimentation provides a very useful and promising complementary toolbox to available lab-based approaches. We discuss examples in which stimulus calibration or calibration against response criteria is necessary and situations in which this is not critical. We also discuss how online labor markets, such as Amazon's Mechanical Turk, allow researchers to acquire data in more diverse populations and to test theories along more psychological dimensions. Recent methodological advances that have produced more accurate browser-based stimulus presentation are also discussed. In our view, online experimentation is one of the most promising avenues to advance replicable psychological science in the near future.
Examining an online microbiology game as an effective tool for teaching the scientific process.
Bowling, Kristi G; Klisch, Yvonne; Wang, Shu; Beier, Margaret
2013-01-01
This study investigates the effectiveness of the online Flash game Disease Defenders in producing knowledge gains for concepts related to the scientific process. Disease Defenders was specifically designed to model how the scientific process is central to a variety of disciplines and science careers. An additional question relates to the game's ability to shift attitudes toward science. Middle school classes from grades six to eight were assigned to the experimental group (n = 489) or control group (n = 367) and asked to participate in a three-session intervention. The sessions involved completing a pretest, a game play session, and taking a posttest. Students in the experimental group played Disease Defenders while students in the control group played an alternative science game. Results showed a significant increase in mean science knowledge scores for all grades in the experimental group, with sixth grade and seventh grade students gaining more knowledge than eighth grade students. Additionally, results showed a significant positive change in science attitudes only among sixth graders, who also rated their satisfaction with the game more favorably than students in higher grades. No differences in mean test scores were found between genders for science knowledge or science attitudes, suggesting that the game is equally effective for males and females.
Examining an Online Microbiology Game as an Effective Tool for Teaching the Scientific Process†
Bowling, Kristi G.; Klisch, Yvonne; Wang, Shu; Beier, Margaret
2013-01-01
This study investigates the effectiveness of the online Flash game Disease Defenders in producing knowledge gains for concepts related to the scientific process. Disease Defenders was specifically designed to model how the scientific process is central to a variety of disciplines and science careers. An additional question relates to the game’s ability to shift attitudes toward science. Middle school classes from grades six to eight were assigned to the experimental group (n = 489) or control group (n = 367) and asked to participate in a three-session intervention. The sessions involved completing a pretest, a game play session, and taking a posttest. Students in the experimental group played Disease Defenders while students in the control group played an alternative science game. Results showed a significant increase in mean science knowledge scores for all grades in the experimental group, with sixth grade and seventh grade students gaining more knowledge than eighth grade students. Additionally, results showed a significant positive change in science attitudes only among sixth graders, who also rated their satisfaction with the game more favorably than students in higher grades. No differences in mean test scores were found between genders for science knowledge or science attitudes, suggesting that the game is equally effective for males and females. PMID:23858354
ERIC Educational Resources Information Center
Roesch, Frank; Nerb, Josef; Riess, Werner
2015-01-01
Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Collier, Arnold S.
2017-01-01
An experimental investigation of the aeroheating environment of the Mars Science Laboratory entry vehicle was conducted in the Arnold Engineering Development Complex Hypervelocity Wind Tunnel 9. Testing was performed on a 6-in. (0.1524 m) diameter model in the tunnel's Mach 8 and Mach 10 nozzles at free stream Reynolds numbers from 4.1×10*exp 6)/ft to 49×10(exp 6)/ft and from 1.2×10(exp 6)/ft to 19×10(exp 6)/ft, respectively, using pure nitrogen test gas. These conditions spanned the boundary layer flow regimes from completely laminar to fully turbulent flow over the entire forebody. A computational fluid dynamics study was conducted in support of the wind tunnel testing. Laminar and turbulent solutions were generated for all wind tunnel test conditions and comparisons of predicted heating distributions were performed with the data. These comparisons showed agreement for most cases to within the estimated +/-12% experimental uncertainty margin for fully-laminar or fully-turbulent conditions, while transitional heating data were bounded by laminar and turbulent predictions. These results helped to define uncertainty margins on the use of computational tools for vehicle design.
NASA Astrophysics Data System (ADS)
Choirunnisa, N. L.; Prabowo, P.; Suryanti, S.
2018-01-01
The main objective of this study is to describe the effectiveness of 5E instructional model-based learning to improve primary school students’ science process skills. The science process skills is important for students as it is the foundation for enhancing the mastery of concepts and thinking skills needed in the 21st century. The design of this study was experimental involving one group pre-test and post-test design. The result of this study shows that (1) the implementation of learning in both of classes, IVA and IVB, show that the percentage of learning implementation increased which indicates a better quality of learning and (2) the percentage of students’ science process skills test results on the aspects of observing, formulating hypotheses, determining variable, interpreting data and communicating increased as well.
Borenstein, Jason; Drake, Matthew J; Kirkman, Robert; Swann, Julie L
2010-06-01
To assess ethics pedagogy in science and engineering, we developed a new tool called the Engineering and Science Issues Test (ESIT). ESIT measures moral judgment in a manner similar to the Defining Issues Test, second edition, but is built around technical dilemmas in science and engineering. We used a quasi-experimental approach with pre- and post-tests, and we compared the results to those of a control group with no overt ethics instruction. Our findings are that several (but not all) stand-alone classes showed a significant improvement compared to the control group when the metric includes multiple stages of moral development. We also found that the written test had a higher response rate and sensitivity to pedagogy than the electronic version. We do not find significant differences on pre-test scores with respect to age, education level, gender or political leanings, but we do on whether subjects were native English speakers. We did not find significant differences on pre-test scores based on whether subjects had previous ethics instruction; this could suggest a lack of a long-term effect from the instruction.
The Effectiveness of Mandatory-Random Student Drug Testing. NCEE 2010-4025
ERIC Educational Resources Information Center
James-Burdumy, Susanne; Goesling, Brian; Deke, John; Einspruch, Eric
2010-01-01
To help assess the effects of school-based random drug testing programs, the U.S. Department of Education's Institute of Education Sciences (IES) contracted with RMC Research Corporation and Mathematica Policy Research to conduct an experimental evaluation of the Mandatory-Random Student Drug Testing (MRSDT) programs in 36 high schools within…
Lennon, Jay T
2011-06-01
A recent analysis revealed that most environmental microbiologists neglect replication in their science (Prosser, 2010). Of all peer-reviewed papers published during 2009 in the field's leading journals, slightly more than 70% lacked replication when it came to analyzing microbial community data. The paucity of replication is viewed as an 'endemic' and 'embarrassing' problem that amounts to 'bad science', or worse yet, as the title suggests, lying (Prosser, 2010). Although replication is an important component of experimental design, it is possible to do good science without replication. There are various quantitative techniques - some old, some new - that, when used properly, will allow environmental microbiologists to make strong statistical conclusions from experimental and comparative data. Here, I provide examples where unreplicated data can be used to test hypotheses and yield novel information in a statistically robust manner. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Rahayu, P. P.; Masykuri, M.; Soeparmi
2018-04-01
Professional Physics teacher must be able to manage science learning process by associating science itself with the daily life. At first the teacher must have competency in the ability of science literacy. The target of this research is vocational school Physics teachers for the purpose to describe their ability on science literacy. This research is a survey research using test method. The test instrument is The NOSLiT by Wenning.Research results are: 1) Scientific Nomenclature : 38.46 %, 2) Basic experimental and observational abilities : 38.46 %, 3) Rules of scientific evidence : 0%, 4) Postulate science: 15.38%, 5) scientific disposition: 7. 69%.Conclusion: The result of each indicator shows that the ability of science literacy of vocational school Physics teachers has not met the expectations yet. It’s can be used as the reflection for education experts to improve their science literacy ability so that can be applied to the learning process that directly or indirectly will have an impact on improving the students’ science literacy.
Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students
NASA Astrophysics Data System (ADS)
Kim, Kyung Hee; VanTassel-Baska, Joyce; Bracken, Bruce A.; Feng, Annie; Stambaugh, Tamra; Bland, Lori
2012-10-01
The purpose of the study was to measure the effects of higher level, inquiry-based science curricula on students at primary level in Title I schools. Approximately 3,300 K-3 students from six schools were assigned to experimental or control classes ( N = 115 total) on a random basis according to class. Experimental students were exposed to concept-based science curriculum that emphasized `deep learning' though concept mastery and investigation, whereas control classes learned science from traditional school-based curricula. Two ability measures, the Bracken Basic Concept Scale-Revised (BBCS-R, Bracken 1998) and the Naglieri Nonverbal Intelligence Test (NNAT, Naglieri 1991), were used for baseline information. Additionally, a standardized measure of student achievement in science (the MAT-8 science subtest), a standardized measure of critical thinking, and a measure for observing teachers' classroom behaviors were used to assess learning outcomes. Results indicated that all ability groups of students benefited from the science inquiry-based approach to learning that emphasized science concepts, and that there was a positive achievement effect for low socio-economic young children who were exposed to such a curriculum.
ERIC Educational Resources Information Center
Kim, Paul; Olaciregui, Claudia
2008-01-01
An electronic portfolio system, designed to serve as a resource-based learning space, was tested in a fifth-grade science class. The control-group students accessed a traditional folder-based information display in the system and the experimental-group students accessed a concept map-based information display to review a science portfolio. The…
ERIC Educational Resources Information Center
Simon, Hans-Reiner; Thormann, K.-D.
This report discusses the use of the Science Citation Index produced by the Institute for Scientific Information (ISI) as a given "expert system" in the experimental study of different search levels. The inquiry has two objectives: (1) to test whether a "traditional" information system will also produce the rudiments of a…
Swedish materials science experiment equipment
NASA Astrophysics Data System (ADS)
Jonsson, R.
1982-09-01
Details of the apparatus and experimentation performed with the Swedish MURMEC (multi-purpose Rocket-borne Materials science Experiment Carrier) and other materials science equipment for sounding rocket and airborne trials are presented. The MURMEC science modules contain four isothermal furnaces, 12 pore formation experiment furnaces, and two gradient furnaces. The modules feature a power system, experimental control, and monitoring sensors. Design details and operational features of each of the furnaces are provided, and results of the first MURMEC flight on-board a Swedish sounding rocket with the PIRAT (Pointed IR Astronomical Telescope) are discussed. Additional tests were performed using a modified NASA F-104 aircraft flown in a parabolic trajectory to produce a 0.3-0.1 g environment for 50-60 sec. Films were made of melting and resolidification processes during nine different flights using three different samples.
Establishing a Multidimensional Interaction in Science Instruction: Usage of Mobile Technology
ERIC Educational Resources Information Center
Yilmaz, Özkan; Sanalan, Vehbi Aytekin
2015-01-01
The aim of this study is to examine the effect of mobile technology use in university science instruction on students' academic achievement and self-regulation skills. An experimental study is conducted to test the use of mobile in-class interaction system (M-CIS) and to determine the change in students' academic achievement and self-regulation…
ERIC Educational Resources Information Center
Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia
2012-01-01
The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students…
Stretching the Traditional Notion of Experiment in Computing: Explorative Experiments.
Schiaffonati, Viola
2016-06-01
Experimentation represents today a 'hot' topic in computing. If experiments made with the support of computers, such as computer simulations, have received increasing attention from philosophers of science and technology, questions such as "what does it mean to do experiments in computer science and engineering and what are their benefits?" emerged only recently as central in the debate over the disciplinary status of the discipline. In this work we aim at showing, also by means of paradigmatic examples, how the traditional notion of controlled experiment should be revised to take into account a part of the experimental practice in computing along the lines of experimentation as exploration. Taking inspiration from the discussion on exploratory experimentation in the philosophy of science-experimentation that is not theory-driven-we advance the idea of explorative experiments that, although not new, can contribute to enlarge the debate about the nature and role of experimental methods in computing. In order to further refine this concept we recast explorative experiments as socio-technical experiments, that test new technologies in their socio-technical contexts. We suggest that, when experiments are explorative, control should be intended in a posteriori form, in opposition to the a priori form that usually takes place in traditional experimental contexts.
Mirzamani, S Mahmood; Ashoori, Mohammad; Sereshki, Narges Adib
2011-01-01
This study investigates the effect of social and token economy reinforcements on academic achievement of 9th grade boy students with intellectual disabilities in an experimental science class in Tehran Province. The method used for this study was experimental by pre-test, post- test with a control group. The boy students with intellectual disabilities from three junior high schools participated in this study. The sample consisted of thirty, 9th grade boy students with intellectual disabilities in the selected schools; the schools were chosen by the multi-stage cluster method. To measure the progress of students in the science class, a teacher made test and the Wechsler intelligence test for matching the groups for IQ were used. To ensure validity, the content validity criteria depended tests calculated by the Lashe method and teachers' perspective were used. The reliability coefficient was obtained by the reliability coefficient of related tests; the percent agreement method and the obtained data were analyzed using one-way variance analysis and Shefe prosecution test. The results showed that there was a significant increase in academic achievement of students with intellectual disabilities when using token economy than using social reinforcements compared with the control group. Also, when using social reinforcements, the academic achievement of students was more than the control group. Token economy and social reinforcements increased the academic achievement of students with intellectual disabilities in the science class; and also the effect of token economy reinforcements was more than social reinforcements on the subjects.
Murray, Nancy G.; Opuni, Kwame A.; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M.; Hobbs, Mary
2011-01-01
This study tested the effectiveness of a middle-school, multi-media health-sciences educational program called HEADS UP in non-Asian–minority (Hispanic and African American), inner-city students. The program was designed to increase the number of non-Asian minority students entering the academic health-sciences pipeline. Students of Asian ethnicity were excluded because they are not underrepresented in science professions. The curriculum modules include video role-model stories featuring minority scientists and students, hands-on classroom activities, and teacher resources. The modules (evaluated from 2004-2007) were developed through collaboration among The University of Texas Health Sciences Center, the Spring Branch Independent School District, and the Health Museum, Houston. A quasi-experimental, two-group pre-test/post-test design was used to assess program effects on students' performance, interest, and confidence in their ability to perform well in science; fear of science; and confidence in their ability to pursue science-related careers. An intervention school was matched to a comparison school by test scores, school demographics, and student demographics. Then, pairs of sixth-grade students (428 students) were matched by fifth-grade scores in science and by gender, ethnicity, and poverty status (free or reduced lunch) and followed up for three years. At eighth grade, students from the intervention school scored significantly higher (F=12.38, p<0.001) on the Stanford 10 Achievement Test in science and reported higher interest in science (F=11.08, p<0.001) than their matched pairs from the comparison school. HEADS UP shows potential for improving inner-city minority middle school students' performance and interest in science and is an innovative example of translating health-sciences research to the community. PMID:19474564
NASA Astrophysics Data System (ADS)
Klemmer, Cynthia Davis
Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that gardening was a successful teaching method for raising science achievement scores for boys in 3rd, 4 th, and 5th grades, and for girls in the 5th grade. The finding for girls may be important because it mediated a trend of decreasing scores in the control group at an age just prior to the onset of adolescence, when achievement and interest in science typically decrease.
NASA Astrophysics Data System (ADS)
Brown, Desmond P.; Reed, Jack A.
The Primary Education Improvement Program (Science) developed in Nigeria from 1970-1980 adopted a process approach to the teaching of science for children in Classes One and Two of primary school. In that insufficient formative data were available a study was organized to evaluate the attainment of the program's major objectives in terms of the children's ability to practice process skills. The study also attempted to measure children's interest, active participation and understanding of the lessons, as well as the availability of materials and ease of preparing and teaching the lessons for the teachers. Data were collected by means of teacher opinionnaires and a children's test to measure the attainment of process skills. The teachers who completed the opinionnaires rated the program as successful in terms of all the measured criteria. Children in the experimental and control groups were tested and their performances were compared. The results indicated that there were some significant differences in total test scores in favor of the experimental group after one year of primary school but none after two years. The program, though highly rated by teachers, did not produce the intended changes in children's behavior.
General Relativity: horizons for tests
NASA Astrophysics Data System (ADS)
Yatskiv, Ya. S.; Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Zhuk, A. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, E. V.; Khmil, S. V.
2013-12-01
Theoretical basis of the General Relativity Theory (GRT), its experimental tests as well as GRT applications are briefly summarized taking into account the results of the last decade. The monograph addresses scientists, post-graduated students, and students specialized in the natural sciences as well as everyone who takes an interest in GRT.
Testing the Fracture Behaviour of Chocolate
ERIC Educational Resources Information Center
Parsons, L. B.; Goodall, R.
2011-01-01
In teaching the materials science aspects of physics, mechanical behaviour is important due to its relevance to many practical applications. This article presents a method for experimentally examining the toughness of chocolate, including a design for a simple test rig, and a number of experiments that can be performed in the classroom. Typical…
ERIC Educational Resources Information Center
Martins, Isabel P.; Veiga, Luisa
2001-01-01
Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)
NASA Astrophysics Data System (ADS)
Roesch, Frank; Nerb, Josef; Riess, Werner
2015-03-01
Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.
NASA Astrophysics Data System (ADS)
Roberson, James Chadwick
The purpose of this study was to determine if supplementary mathematics materials (created to be complementary to a physical science course) could provide a significant change in the attitudes and performance of the students involved. The supplementary text was provided in the form of a booklet. Participants were students in a physical science class. Students were given surveys to evaluate existing knowledge of physical science, mathematics skill, and mathematics anxiety in the context of a science class. Students were divided into control and experimental groups by lab section, with the experimental group receiving a supplemental booklet. At the end of the semester, another anxiety survey was given. The anxiety surveys and test grades were compared between groups. Anxiety scores were compared between the beginning and end of the semester within each group. Too few students reported using the booklets for a reliable statistical comparison (of grades) to be made. A statistically significant difference in mathematics anxiety levels was found between the groups.
NASA Astrophysics Data System (ADS)
Nuryakin; Riandi
2017-02-01
A study has been conducted to obtain a depiction of middle school students’ critical thinking skills improvement through the implementation of reading infusion-loaded discovery learning model in science instruction. A quasi-experimental study with the pretest-posttest control group design was used to engage 55 eighth-year middle school students in Tasikmalaya, which was divided into the experimental and control group respectively were 28 and 27 students. Critical thinking skills were measured using a critical thinking skills test in multiple-choice with reason format questions that administered before and after a given instruction. The test was 28 items encompassing three essential concepts, vibration, waves and auditory senses. The critical thinking skills improvement was determined by using the normalized gain score and statistically analyzed by using Mann-Whitney U test.. The findings showed that the average of students’ critical thinking skills normalized gain score of both groups were 59 and 43, respectively for experimental and control group in the medium category. There were significant differences between both group’s improvement. Thus, the implementation of reading infusion-loaded discovery learning model could further improve middle school students’ critical thinking skills than conventional learning.
Students perception on the usage of PowerPoint in learning calculus
NASA Astrophysics Data System (ADS)
Othman, Zarith Sofiah; Tarmuji, Nor Habibah; Hilmi, Zulkifli Ab Ghani
2017-04-01
Mathematics is a core subject in most of the science and technology courses and in some social sciences programs. However, the low achievement of students in the subject especially in topics such as Differentiation and Integration is always an issue. Many factors contribute to the low performance such as motivation, environment, method of learning, academic background and others. The purpose of this paper is to determine the perception of learning mathematics using PowerPoint on Integration concepts at the undergraduate level with respect to mathematics anxiety, learning enjoyment, mobility and learning satisfaction. The main content of the PowerPoint presentation focused on the integration method with historical elements as an added value. The study was conducted on 48 students randomly selected from students in computer and applied sciences program as experimental group. Questionnaires were distributed to students to explore their learning experiences. Another 51 students who were taught using the traditional chalkboard method were used as the control group. Both groups were given a test on Integration. The statistical methods used were descriptive statistics and independent sample t-test between the experimental and the control group. The finding showed that most students perceived positively to the PowerPoint presentations with respect to mobility and learning satisfaction. The experimental group performed better than the control group.
Animal experimentation in forensic sciences: How far have we come?
Cattaneo, C; Maderna, E; Rendinelli, A; Gibelli, D
2015-09-01
In the third millennium where ethical, ethological and cultural evolution seem to be leading more and more towards an inter-species society, the issue of animal experimentation is a moral dilemma. Speaking from a self-interested human perspective, avoiding all animal testing where human disease and therapy are concerned may be very difficult or even impossible; such testing may not be so easily justifiable when suffering-or killing-of non human animals is inflicted for forensic research. In order to verify how forensic scientists are evolving in this ethical issue, we undertook a systematic review of the current literature. We investigated the frequency of animal experimentation in forensic studies in the past 15 years and trends in publication in the main forensic science journals. Types of species, lesions inflicted, manner of sedation or anesthesia and euthanasia were examined in a total of 404 articles reviewed, among which 279 (69.1%) concerned studies involving animals sacrificed exclusively for the sake of the experiment. Killing still frequently includes painful methods such as blunt trauma, electrocution, mechanical asphyxia, hypothermia, and even exsanguination; of all these animals, apparently only 60.8% were anesthetized. The most recent call for a severe reduction if not a total halt to the use of animals in forensic sciences was made by Bernard Knight in 1992. In fact the principle of reduction and replacement, frequently respected in clinical research, must be considered the basis for forensic science research needing animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Comparative Study on the Teaching Effects of TRIZ Courses for the Humanities
ERIC Educational Resources Information Center
Luo, Lingling; Li, Peng; Zhang, Ping
2017-01-01
In order to test the feasibility of the curriculum system of TRIZ used in humanities and social science majors, this study will test whether it is effective to cultivate students' creativity and to train their ability to solve problems. This study designs the randomly experimental targets in the two control groups for pretest and post-test. This…
ERIC Educational Resources Information Center
Vhurumuku, Elaosi; Chikochi, Andrew
2017-01-01
This paper reports the results of a study that compared two approaches to developing in-service teachers' subject matter knowledge and strategies for teaching nature of science. A treatment post-test only quasi-experimental research design was used. One group of in-service teachers (n = 15) was taught using what is called a capsular approach. In…
ERIC Educational Resources Information Center
Clarke, James B.; Coyle, James R.
2011-01-01
This article reports the results of a case study in which an experimental wiki knowledge base was designed, developed, and tested by the Brill Science Library at Miami University for an undergraduate engineering senior capstone project. The wiki knowledge base was created to determine if the science library could enhance the engineering literature…
ERIC Educational Resources Information Center
SANDBERG, JOHN H.; AND OTHERS
"INTRODUCTION TO THE SOCIAL SCIENCES" IS A RECOGNIZED AND ACCREDITED COURSE IN THE SCHOOL CURRICULUM. THOUGH IT IS OFFERED TO SENIORS WHO SCORE IN THE TOP TWO OR THREE PERCENTILE RANKS ON STANDARDIZED TESTS SUCH AS THE STANFORD-BINET INTELLIGENCE SCALE, IT COULD BE DEVELOPED INTO A SEMINAR. MEETING ONCE OR TWICE A WEEK, THE TWO SEMESTER…
Students' Opinions on the Light Pollution Application
ERIC Educational Resources Information Center
Özyürek, Cengiz; Aydin, Güliz
2015-01-01
The purpose of this study is to determine the impact of computer-animated concept cartoons and outdoor science activities on creating awareness among seventh graders about light pollution. It also aims to identify the views of the students on the activities that were carried out. This study used one group pre-test/post-test experimental design…
Measuring the Moral Sense: Morality Tests in Continental Europe between 1910 and 1930
ERIC Educational Resources Information Center
Verplaetse, Jan
2008-01-01
Although historians of psychological and educational sciences have not completely neglected early research in the field of morality testing, European contributions to the measurement of ethical judgement and moral feeling have not received much historical attention. In this paper, two principal, experimental paradigms that emerged in early…
ERIC Educational Resources Information Center
Janniro, Michael J.
1993-01-01
Describes a study conducted by the Department of Defense Polygraph Institute for their forensic science curriculum that investigated the effects of computer-based instruction on student learning of psychophysiological detection of deception test question formulation. Treatment of the experimental and control group is explained and posttest scores…
Aerothermodynamic Insight From The HIFIRE Program
NASA Astrophysics Data System (ADS)
Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott
2011-05-01
The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.
NASA Astrophysics Data System (ADS)
Pekdağ, Bülent; Azizoğlu, Nursen
2018-05-01
This study examines the effect of history-based instruction on the topic of the atom on students' academic achievement and their interest in the history of science, investigating as well the relationship between student interest and academic achievement. The sample of the study consisted of two groups of freshman students from an undergraduate elementary science teachers program. The same chemistry instructor taught the groups, which were randomly assigned as an experimental and a control group. The students in the control group received traditional teacher-centered instruction, while the experimental group students were taught the topic of the atom using history-based instruction enriched with various sources of situational interest such as novelty, autonomy, social involvement, and knowledge acquisition (NASK). Data gathering instruments were the Atom Achievement Test and the History of Science Interest Scale, administered to both of the groups before and after the instruction. The data were analyzed with the independent-samples t test, the paired-samples t test, and one-way ANCOVA statistical analysis. The results showed that the history-based instruction including NASK was more effective than traditional instruction in improving the students' learning of the subject of the atom as well as in stimulating and improving students' interest in the history of science. Further, students with high interest displayed significantly better achievement than students with low interest. The better learning of the topic of the atom was more pronounced in the case of students with a high interest in the history of science compared to students with moderate or low interest.
Engineering and simulation of life science Spacelab experiments
NASA Technical Reports Server (NTRS)
Bush, B.; Rummel, J.; Johnston, R. S.
1977-01-01
Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.
Ashoori, Mohammad; Sereshki, Narges Adib
2011-01-01
Objective This study investigates the effect of social and token economy reinforcements on academic achievement of 9th grade boy students with intellectual disabilities in an experimental science class in Tehran Province. Method The method used for this study was experimental by pre-test, post- test with a control group. The boy students with intellectual disabilities from three junior high schools participated in this study. The sample consisted of thirty, 9th grade boy students with intellectual disabilities in the selected schools; the schools were chosen by the multi-stage cluster method. To measure the progress of students in the science class, a teacher made test and the Wechsler intelligence test for matching the groups for IQ were used. To ensure validity, the content validity criteria depended tests calculated by the Lashe method and teachers' perspective were used. The reliability coefficient was obtained by the reliability coefficient of related tests; the percent agreement method and the obtained data were analyzed using one-way variance analysis and Shefe prosecution test. Results The results showed that there was a significant increase in academic achievement of students with intellectual disabilities when using token economy than using social reinforcements compared with the control group. Also, when using social reinforcements, the academic achievement of students was more than the control group. Conclusion Token economy and social reinforcements increased the academic achievement of students with intellectual disabilities in the science class; and also the effect of token economy reinforcements was more than social reinforcements on the subjects. PMID:22952517
Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan
2015-01-01
Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.
NASA Astrophysics Data System (ADS)
Roncke, Nancy
This formative, convergent-mixed methods research study investigated the impact of Socratic Seminars on eighth grade science students' independent comprehension of science texts. The study also highlighted how eighth grade students of varying reading abilities interacted with and comprehended science texts differently during and after the use of Socratic Seminars. In order to document any changes in the students' overall comprehension of science texts, this study compared the experimental and control groups' pre- and post-test performances on the Content Area Reading Assessment (Leslie & Caldwell, 2014) and self-perception surveys on students' scientific reading engagement. Student think-alouds and interviews also captured the students' evolving understandings of the science texts. At the conclusion of this sixteen-week study, the achievement gap between the experimental and control group was closed in five of the seven categories on the Content Area Reading Assessment, including supporting an inference with textual evidence, determining central ideas, explaining why or how, determining word meaning, and summarizing a science text. Students' self-perception surveys were more positive regarding reading science texts after the Socratic Seminars. Finally, the student think-alouds revealed that some students moved from a literal interpretation of the science texts to inquiries that questioned the text and world events.
NASA Astrophysics Data System (ADS)
Fettahlıoğlu, Pınar; Aydoğdu, Mustafa
2018-04-01
The purpose of this research is to investigate the effect of using argumentation and problem-based learning approaches on the development of environmentally responsible behaviours among pre-service science teachers. Experimental activities were implemented for 14 weeks for 52 class hours in an environmental education class within a science teaching department. A mixed method was used as a research design; particularly, a special type of Concurrent Nested Strategy was applied. The quantitative portion was based on the one-group pre-test and post-test models, and the qualitative portion was based on the holistic multiple-case study method. The quantitative portion of the research was conducted with 34 third-year pre-service science teachers studying at a state university. The qualitative portion of the study was conducted with six pre-service science teachers selected among the 34 pre-service science teachers based on the pre-test results obtained from an environmentally responsible behaviour scale. t tests for dependent groups were used to analyse quantitative data. Both descriptive and content analyses of the qualitative data were performed. The results of the study showed that the use of the argumentation and problem-based learning approaches significantly contributed to the development of environmentally responsible behaviours among pre-service science teachers.
NASA Astrophysics Data System (ADS)
Kruit, P. M.; Oostdam, R. J.; van den Berg, E.; Schuitema, J. A.
2018-03-01
In most primary science classes, students are taught science inquiry skills by way of learning by doing. Research shows that explicit instruction may be more effective. The aim of this study was to investigate the effects of explicit instruction on the acquisition of inquiry skills. Participants included 705 Dutch fifth and sixth graders. Students in an explicit instruction condition received an eight-week intervention of explicit instruction on inquiry skills. In the lessons of the implicit condition, all aspects of explicit instruction were absent. Students in the baseline condition followed their regular science curriculum. In a quasi-experimental pre-test-post-test design, two paper-and-pencil tests and three performance assessments were used to examine the acquisition and transfer of inquiry skills. Additionally, questionnaires were used to measure metacognitive skills. The results of a multilevel analysis controlling for pre-tests, general cognitive ability, age, gender and grade level indicated that explicit instruction facilitates the acquisition of science inquiry skills. Specifically on the performance assessment with an unfamiliar topic, students in the explicit condition outperformed students of both the implicit and baseline condition. Therefore, this study provides a strong argument for including an explicit teaching method for developing inquiry skills in primary science education.
NASA Astrophysics Data System (ADS)
White, M. A.; Tcherednichenko, I.; Hamar, M.; Taylor, M. J.; Litizzette, L.
2006-12-01
United States funding agencies increasingly are supporting activities designed to increase the enrollment of United States high school students in science, math, or engineering careers. However, in many cases, the likely outcomes of educational activities are unknown. A common approach within the physical and natural sciences is to provide high school aged students with a summer research experience, with the expectation that such experiences will increase student interest in science, possibly as a career choice. With funding support from the National Aeronautics and Space Administration New Investigator Grant program, we conducted a controlled experiment to test this assumption. In collaboration with Mountain Crest High School in Logan, UT, we recruited 40 students currently enrolled in science courses, assessed attitudes towards science (with informed consent), and randomly assigned 20 students to a control group and 20 students to an experimental group. Students in the experimental group were paired with faculty and graduate students in a wide range of field and laboratory research groups in natural resources and biology. Students were employed in at least two different research groups for an average of 30-40 hours per week for eight weeks in the summer of 2006. Following the completion of the summer work experience, we again assessed attitudes towards science in both groups and gathered additional information from the experimental group on satisfaction with the work experience and reasons for participating. Results are presented and discussed.
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
Science Fairs and Observational Science: A Case History from Earth Orbit
NASA Technical Reports Server (NTRS)
Lowman, Paul D., Jr.; Smith, David E. (Technical Monitor)
2002-01-01
Having judged dozens of science fairs over the years, I am repeatedly disturbed by the ground rules under which students must prepare their entries. They are almost invariably required to follow the "scientific method," involving formulating a hypothesis, a test of the hypothesis, and then a project in which this test is carried out. As a research scientist for over 40 years, I consider this approach to science fairs fundamentally unsound. It is not only too restrictive, but actually avoids the most important (and difficult) part of scientific research: recognizing a scientific problem in the first place. A well-known example is one of the problems that, by his own account, stimulated Einstein's theory of special relativity: the obvious fact that when an electric current is induced in a conductor by a magnetic field , it makes no difference whether the field or the conductor is actually (so to speak) moving. There is in other words no such thing as absolute motion. Physics was transformed by Einstein's recognition of a problem. Most competent scientists can solve problems after they have been recognized and a hypothesis properly formulated, but the ability to find problems in the first Place is much rarer. Getting down to specifics, the "scientific method" under which almost all students must operate is actually the experimental method, involving controlled variables, one of which, ideally, is changed at a time. However, there is another type of science that can be called observational science. As it happens, almost all the space research I have carried out since 1959 has been this type, not experimental science.
Dynamic simulation of a reverse Brayton refrigerator
NASA Astrophysics Data System (ADS)
Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.
2014-01-01
A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.
Umbilical Stiffness Matrix Characterization and Testing for Microgravity Science Payloads
NASA Technical Reports Server (NTRS)
Engberg, Robert C.
2003-01-01
This paper describes efforts of testing and analysis of various candidate cables and umbilicals for International Space Station microgravity science payloads. The effects of looping, large vs. small displacements, and umbilical mounting configurations were assessed. A 3-DOF stepper motor driven fixture was used to excite the umbilicals. Forces and moments were directly measured in all three axes with a 6-DOF load cell in order to derive suitable stiffness matrices for design and analysis of vibration isolation controllers. Data obtained from these tests were used to help determine the optimum type and configuration of umbilical cables for the International Space Station microgravity science glovebox (MSG) vibration isolation platform. The data and procedures can also be implemented into control algorithm simulations to assist in validation of actively controlled vibration isolation systems. The experimental results of this work are specific in support of the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) isolation platform, to be located in the microgravity science glovebox aboard the U.S. Destiny Laboratory Module.
Achieving high-density states through shock-wave loading of precompressed samples
Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul
2007-01-01
Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Using science digital storytelling to increase students’ cognitive ability
NASA Astrophysics Data System (ADS)
Dewi, N. R.; Savitri, E. N.; Taufiq, M.; Khusniati, M.
2018-04-01
The purpose of this research is to understand whether or not science digital storytelling can improve cognitive ability. The research design used in this study was one shoot case study. The population of the research was seventh-grade students of junior high school. The number of samples involved in this study was two classes with a total of 68 students. Data of students' cognitive ability were collected using a test. The data that has been collected were then analyzed using N-gain test. Results of data analysis showed that N-gain values of experimental groups are equal to 0.48 and 0.42 which are categorized into medium category. This finding indicates that science digital storytelling can improve students' cognitive ability.
Field-Induced Texturing of Ceramic Materials for Unparalleled Properties
2017-03-01
research for materials-by- design and advanced processing. Invited talk; 17th International Conference on Experimental Mechanics; 2016 Jul; Rhodes...material that could potentially be textured despite its diamagnetic nature. Predictive DFT modeling and experimental testing methods were designed ...presented at the Mater Science Forum; 2007 (unpublished). 71. Sugiyama T, Tahashi M, Sassa K, Asai S. The control of crystal orientation in non -magnetic
NASA Astrophysics Data System (ADS)
Hosier, Julie Winchester
Integration of subjects is something elementary teachers must do to insure required objectives are covered. Science-based Reader's Theatre is one way to weave reading into science. This study examined the roles of frequency, attitudes, and Multiple Intelligence modalities surrounding Electricity Content-Based Reader's Theatre. This study used quasi-experimental, repeated measures ANOVA with time as a factor design. A convenience sample of two fifth-grade classrooms participated in the study for eighteen weeks. Five Electricity Achievement Tests were given throughout the study to assess students' growth. A Student Reader's Theatre Attitudinal Survey revealed students' attitudes before and after Electricity Content-Based Reader's Theatre treatment. The Multiple Intelligence Inventory for Kids (Faris, 2007) examined whether Multiple Intelligence modality played a role in achievement on Electricity Test 4, the post-treatment test. Analysis using repeated measures ANOVA and an independent t-test found that students in the experimental group, which practiced its student-created Electricity Content-Based Reader's Theatre skits ten times versus two times for the for control group, did significantly better on Electricity Achievement Test 4, t(76) = 3.018, p = 0.003. Dependent t-tests did not find statistically significant differences between students' attitudes about Electricity Content-Based Reader's Theatre before and after treatment. A Kruskal-Wallis test found no statistically significant difference between the various Multiple Intelligence modalities score mean ranks (x2 = 5.57, df = 2, alpha = .062). Qualitative data do, however, indicate students had strong positive feelings about Electricity Content-Based Reader's Theatre after treatment. Students indicated it to be motivating, confidence-building, and a fun way to learn about science; however, they disliked writing their own scripts. Examining the frequency, attitudes, and Multiple Intelligence modalities lead to the conclusion that the role of frequency had the greatest impact on the success of Electricity Content-Based Reader's Theatre. The participating teachers, students, and research found integrating science and reading through Electricity Content-Based Reader's Theatre beneficial.
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1989-02-01
tics. sults in hardening effect which persists over greater 9. Fulmer Research Institute; design of polymer ma- depths than expected. D. Treheux...Dr. A.R. Bunsell, Dr. A. Massiah. Scientists Moncoffre); 92, page 14. and industrialists from at least seven European countries The experimental ...Ceramnic-Ceramic The Consultant Scientist is Professor K. Jack Composite Materials, page 3). 8 ESNIB 89-02 25. National Non -Destructive Testing Centre
Women are not less field independent than men-the role of stereotype threat.
Drążkowski, Dariusz; Szwedo, Jakub; Krajczewska, Aleksandra; Adamczuk, Anna; Piątkowski, Krzysztof; Jadwiżyc, Marcin; Rakowski, Adam
2017-10-01
Prior research has shown that females are less field independent (FI) than males. However, when gender identity is salient, performance on tests assessing constructs similar to FI may be hindered, because of stereotype threat. This study examined the impact of stereotype threat on gender differences in FI. We expected that (a) reporting one's own gender prior to FI testing and (b) having an opposite-gender experimenter would activate stereotype threat, and in turn result in lower performance on a test of FI among females. Overall, 170 participants were randomly assigned to one of eight conditions in a between-participants design varying the participant's gender, experimenter's gender and timing of the gender question (before vs. after test). Results showed that reporting one's gender before the FI test led to lower FI performance among females. Furthermore, females achieved higher FI when experimenters were females and gender questions were administered after the FI test. © 2015 International Union of Psychological Science.
An Experimental Study of a BSCS-Style Laboratory Approach for University General Biology.
ERIC Educational Resources Information Center
Leonard, William H.
1983-01-01
A Biological Sciences Curriculum Study (BSCS) inquiry approach for university general biology laboratory was tested against a well-established commercial program judged to be highly directive. The BSCS was found to be more effective in learning biology laboratory concepts than the commercial program as measured by a laboratory concepts test.…
Scientific Skills and Concept Learning by Rural Women for Personal and National Development
ERIC Educational Resources Information Center
Agbo, Felicia Onyemowo; Isa, Ali A. Muluku
2017-01-01
This paper examined scientific skills and concept learning by rural women for personal and national development. The research design employed was a quasi-experimental, one-group pre-test and post-test design. A non-formal science program package to enhance and empower the rural women's knowledge and skills in their daily activities (nutrition,…
UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Cosentino, Gary B.
2009-01-01
This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.
The Effect of Montessori Method on Cognitive Tempo of Kindergarten Children
ERIC Educational Resources Information Center
Kayili, Gökhan
2018-01-01
This study was undertaken to discover the effect of the Montessori Method on the cognitive tempo of 4-5-year-old children. Using an experimental pre-test-post-test paired control group design, the study sample included 60 children attending Ihsan Dogramaci Applied Nursery School (affiliated to Selcuk University, Department of Health Sciences) in…
Pilot Test of an Innovative Interprofessional Education Assessment Strategy
ERIC Educational Resources Information Center
Emmert, Michelle Christine
2011-01-01
The primary goal of this study was to test an innovative way of assessing students' teamwork skills in a controlled environment. Twenty-four second year students from Western University of Health Sciences (WesternU) participated in the experimental group and 22 third year students from WesternU participated in the control group. Students in the…
Life sciences flight experiments program - Overview
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1981-01-01
The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.
Henri Becquerel: serendipitous brilliance
NASA Astrophysics Data System (ADS)
Margaritondo, Giorgio
2008-06-01
Serendipity has always been an attendant to great science. Arno Penzias and Robert Wilson discovered the cosmic background radiation after first mistaking it for the effect of pigeon droppings on their microwave antenna. US spy satellites detected gamma-ray bursts when surveying the sky for evidence of secret Soviet nuclear tests during the Cold War. Satyendra Bose arrived at Bose-Einstein statistics only after discovering that a mathematical error explained the experimental data concerning the photoelectric effect. In the words of science-fiction writer Isaac Asimov, "The most exciting phrase in science is not 'Eureka!', but rather, 'That's funny...'.
NASA Astrophysics Data System (ADS)
Brust, Gregory John
This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science courses for non-science majors should focus on connections to students' daily lives while utilizing an STS curriculum and inquiry-based activities. Future research could focus on long term effects of this type of course as well as the effectiveness of these teaching methods for science majors.
Effective self-regulated science learning through multimedia-enriched skeleton concept maps
NASA Astrophysics Data System (ADS)
Marée, Ton J.; van Bruggen, Jan M.; Jochems, Wim M. G.
2013-04-01
Background: This study combines work on concept mapping with scripted collaborative learning. Purpose: The objective was to examine the effects of self-regulated science learning through scripting students' argumentative interactions during collaborative 'multimedia-enriched skeleton concept mapping' on meaningful science learning and retention. Programme description: Each concept in the enriched skeleton concept map (ESCoM) contained annotated multimedia-rich content (pictures, text, animations or video clips) that elaborated the concept, and an embedded collaboration script to guide students' interactions. Sample: The study was performed in a Biomolecules course on the Bachelor of Applied Science program in the Netherlands. All first-year students (N=93, 31 women, 62 men, aged 17-33 years) took part in this study. Design and methods: The design used a control group who received the regular course and an experimental group working together in dyads on an ESCoM under the guidance of collaboration scripts. In order to investigate meaningful understanding and retention, a retention test was administered a month after the final exam. Results: Analysis of covariance demonstrated a significant experimental effect on the Biomolecules exam scores between the experimental group and the control, and the difference between the groups on the retention test also reached statistical significance. Conclusions: Scripted collaborative multimedia ESCoM mapping resulted in meaningful understanding and retention of the conceptual structure of the domain, the concepts, and their relations. Not only was scripted collaborative multimedia ESCoM mapping more effective than the traditional teaching approach, it was also more efficient in requiring far less teacher guidance.
The Influence of Inquiry-Based Teaching on Male and Female Students' Motivation and Engagement
NASA Astrophysics Data System (ADS)
Kuo, Yen-Ruey; Tuan, Hsiao-Lin; Chin, Chi-Chin
2018-03-01
This study aims to examine the influence of inquiry-based instruction on eighth-grade male and female students' motivation and engagement in science learning in two public junior high schools in central Taiwan. Mixed-methods methodology was adopted with 60 students (32 males and 28 females) in the experimental group and 56 students (28 males and 28 females) in the control group. The study lasted for one semester and six units using inquiry-based teaching (90-180 min each) were implemented in the experimental group. Questionnaires used for measuring students' motivation and engagement in science learning were administered as pre- and post-tests. In addition, eight to ten male and female students from both experimental and control groups, as well as two instructors were interviewed four times throughout the semester. Quantitative data were analyzed with t test and the interview data were fully transcribed and coded. Results show that male and female students under intervention expected to do more experiments because it improved their understanding. Male and female students under intervention also used more learning strategies. However, males benefited more than females from the intervention in regard to their motivation and engagement in learning science. Males improved more in motivational constructs, recognized the value of learning science, and increased their cognitive, behavioral, and emotional engagement because what they learned applied to real life. In contrast, females had higher exam anxiety and lower cognitive engagement due to mathematics fear, stronger sense of pride in class, and caring too much about the right answers.
The philosophy of scientific experimentation: a review
2009-01-01
Practicing and studying automated experimentation may benefit from philosophical reflection on experimental science in general. This paper reviews the relevant literature and discusses central issues in the philosophy of scientific experimentation. The first two sections present brief accounts of the rise of experimental science and of its philosophical study. The next sections discuss three central issues of scientific experimentation: the scientific and philosophical significance of intervention and production, the relationship between experimental science and technology, and the interactions between experimental and theoretical work. The concluding section identifies three issues for further research: the role of computing and, more specifically, automating, in experimental research, the nature of experimentation in the social and human sciences, and the significance of normative, including ethical, problems in experimental science. PMID:20098589
Meseke, Jamie K; Nafziger, Rita; Meseke, Christopher A
2008-05-01
This pilot study examines the effect collaborative testing has on achievement of students taking a basic science course at a chiropractic college. The grades of 2 cohorts of students taking a basic science course were compared: the control group from the first academic term (n = 73) and the experimental group from the second academic term (n = 41). The control cohort completed weekly quizzes as individuals. The experimental cohort completed the weekly quizzes in small collaborative groups. All unit examinations and the final examination were taken by both cohorts individually. Grades for each cohort were derived from 6 weekly unit quizzes, 3 unit examinations, and a comprehensive final examination. Overall, the experimental group differed from the control group (Wilks' Lambda = 0.318; F(10,103) = 22.052; and P < .001). All quiz scores were significantly higher for the experimental group as compared with the control group. In addition, overall point totals and final course grades also differed significantly. No significant differences, however, were observed in either the first 2 unit examination scores or the final examination scores. These results confirm previous reports that student performance is enhanced by collaborative learning. Collaborative testing provided students with the opportunity to discuss their reasoning and receive immediate feedback from other group members regarding their rationale, which potentially enhanced understanding of course material. Students were encouraged to become more active in the course as group discussions emerged from individual perspectives. The collaborative learning process may enhance critical thinking abilities, which are vital for future chiropractic practitioners.
NASA Astrophysics Data System (ADS)
Anderson, Pamela Bennett
Purpose. The purpose of the first study was to ascertain the extent to which differences were present in the STAAR Mathematics and Science test scores by Grade 5 and Grade 8 student economic status. The purpose of the second study was to examine differences in Grade 5 STAAR Mathematics and Science test performance by gender and by ethnicity/race (i.e., Asian, Black, Hispanic, and White). Finally, with respect to the third study in this journal-ready dissertation, the purpose was to investigate the STAAR Mathematics and Science test scores of Grade 8 students by gender and by ethnicity/race (i.e., Asian, Black, Hispanic, and White). Method. For this journal-ready dissertation, a non-experimental, causal-comparative research design (Creswell, 2009) was used in all three studies. Grade 5 and Grade 8 STAAR Mathematics and Science test data were analyzed for the 2011-2012 through the 2014-2015 school years. The dependent variables were the STAAR Mathematics and Science test scores for Grade 5 and Grade 8. The independent variables analyzed in these studies were student economic status, gender, and ethnicity/race. Findings. Regarding the first study, statistically significant differences were present in Grade 5 and Grade 8 STAAR Mathematics and Science test scores by student economic status for each year. Moderate effect sizes (Cohen's d) were present for each year of the study for the Grade 5 STAAR Mathematics and Science exams, Grade 8 Science exams, and the 2014-2015 Grade 8 STAAR Mathematics exam. However, a small effect size was present for the 2011-2012 through 2013-2014 Grade 8 STAAR Mathematics exam. Regarding the second and third study, statistically significant differences were revealed for Grade 5 and Grade 8 STAAR Mathematics and Science test scores based on gender, with trivial effect sizes. Furthermore, statistically significant differences were present in these test scores by ethnicity/race, with moderate effects for each year of the study. With regard to each year for both studies, Asian students had the highest average test scores, followed by White, Hispanic, and Black students, respectively. Thus, a stairstep achievement gap (Carpenter, Ramirez, & Severn, 2006) was present.
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
NASA Astrophysics Data System (ADS)
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of
The effect of lab based instruction on ACT science scores
NASA Astrophysics Data System (ADS)
Hamilton, Michelle
Standardized tests, although unpopular, are required for a multitude of reasons. One of these tests is the ACT. The ACT is a college readiness test that many high school juniors take to gain college admittance. Students throughout the United States are unprepared for this assessment. The average high school junior is three points behind twenty-four, the ACT recommended score, for the science section. The science section focuses on reading text and, interpreting graphs, charts, tables and diagrams with an emphasis on experimental design and relationships among variables. For students to become better at interpreting and understanding scientific graphics they must have vast experience developing their own graphics. The purpose of this study was to provide students the opportunity to generate their own graphics to master interpretation of them on the ACT. According to a t-test the results show that students who are continually exposed to creating graphs are able to understand and locate information from graphs at a significantly faster rate.
SLAC Linac Preparations for FACET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, R.; Bentson, L.; Kharakh, D.
The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Using research to teach an "introduction to biological thinking".
Bell, Ellis
2011-01-01
A course design for first-year science students is described, where the focus is on the skills necessary to do science. The course uses original research projects, designed by the students, to teach a variety of skills including reading the scientific literature, hypothesis development and testing, experimental design, data analysis and interpretation, and quantitative skills and presentation of the research in a variety of formats. Copyright © 2011 Wiley Periodicals, Inc.
Krohs, Ulrich
2012-03-01
Systems biology aims at explaining life processes by means of detailed models of molecular networks, mainly on the whole-cell scale. The whole cell perspective distinguishes the new field of systems biology from earlier approaches within molecular cell biology. The shift was made possible by the high throughput methods that were developed for gathering 'omic' (genomic, proteomic, etc.) data. These new techniques are made commercially available as semi-automatic analytic equipment, ready-made analytic kits and probe arrays. There is a whole industry of supplies for what may be called convenience experimentation. My paper inquires some epistemic consequences of strong reliance on convenience experimentation in systems biology. In times when experimentation was automated to a lesser degree, modeling and in part even experimentation could be understood fairly well as either being driven by hypotheses, and thus proceed by the testing of hypothesis, or as being performed in an exploratory mode, intended to sharpen concepts or initially vague phenomena. In systems biology, the situation is dramatically different. Data collection became so easy (though not cheap) that experimentation is, to a high degree, driven by convenience equipment, and model building is driven by the vast amount of data that is produced by convenience experimentation. This results in a shift in the mode of science. The paper shows that convenience driven science is not primarily hypothesis-testing, nor is it in an exploratory mode. It rather proceeds in a gathering mode. This shift demands another shift in the mode of evaluation, which now becomes an exploratory endeavor, in response to the superabundance of gathered data. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Neal, Bradford A.; Stoliker, Patrick C.
2018-01-01
NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.
NASA Astrophysics Data System (ADS)
Holmes, Julie Ann
This study examined changes in student motivation and achievement in science in relationship with a visit to the IDEA Place Experiment Gallery. The study was based on the pretest-posttest control comparison group design with four treatment groups: control, exhibit, lesson, and exhibit/lesson. The sample was 228 sixth grade students from a public north central Louisiana school who were randomly assigned to one of the four experimental groups. Pretest, posttest, and delayed posttest measures of intrinsic motivation and achievement in science were determined using the Children's Academic Intrinsic Motivation Inventory and an achievement test written to measure areas of science incorporated in the Experiment Gallery exhibits. The data were analyzed using a one way Analysis of Variance (ANOVA), dependent t tests, and Pearson r. Statistical analysis revealed: (a) no significant differences in motivation or achievement on pretest and posttest scores between groups and, (b) no significant relationships between motivation level and achievement between groups on the posttest. Significant differences were found within groups for (a) the lesson group in motivation, and (b) the exhibit group in achievement from pretest to posttest and from posttest to delayed posttest. A significant relationship between level of motivation and science achievement was revealed for the exhibit group on the delayed posttests. There were no other significant findings to support that the effects of the treatment led to any long term effects on motivation or achievement within any of the four experimental groups.
ERIC Educational Resources Information Center
Agarwal, Pooja K.; Roediger, Henry L., III; McDaniel, Mark A.; McDermott, Kathleen B.
2010-01-01
In this study, the authors examined whether a test-enhanced learning program, integrated with daily classroom practices, is effective in a middle school setting. Specifically, they implemented and experimentally evaluated a test-enhanced learning program in 6th-8th grade Social Studies, English, Science, and Spanish classes. Although laboratory…
CRIS Cyber Range Lexicon Version 1.0
2015-10-30
Zachary Weber (MIT Lincoln Laboratory) Mr. Mike Wee (Cyber Test & Evaluation (T&E) Support Cell, TRMC/ Northrop Grumman ) Dr. David “Fuzzy” Wells (USPACOM) Mr. Bennett Wilson (NAVSEA GOV – CDSA, Damneck) ...11 Figure 4: Planes and Teams...the CRIS WG include, but are not limited to, Science & Technology (S&T) experimentation , Developmental and Operational Test and Evaluation (DT&E, OT
ERIC Educational Resources Information Center
Akpinar, Ercan
2014-01-01
This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30…
The Effect of Differentiated Science Curriculum on Students' Motivational Regulations
ERIC Educational Resources Information Center
Abu, Nese Kutlu; Gökdere, Murat
2018-01-01
The purpose of this study is to examine whether the Grid Model practices affect students' motivation for self-regulation. In the study, quasi-experimental research design with pre-test/post-test control group was used. This study was conducted with a total of 74 students from 4th grade students in different primary schools in Amasya. Motivated…
Thakore, Bhoomi K; Naffziger-Hirsch, Michelle E; Richardson, Jennifer L; Williams, Simon N; McGee, Richard
2014-08-02
Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such.
Can virtual science foster real skills? A study of inquiry skills in a virtual world
NASA Astrophysics Data System (ADS)
Dodds, Heather E.
Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life are being used as new frontiers in science education. There have been few studies looking specifically at science education in virtual worlds that foster inquiry skills. This quantitative quasi-experimental nonrandomized control group pretest and posttest study explored what affect a virtual world experience had on inquiry skills as measured by the TIPS (Test of Integrated Process Skills) and TIPS II (Integrated Process Skills Test II) instruments. Participants between the ages of 18 and 65 were recruited from educator mailing lists and Second Life discussion boards and then sorted into the experimental group, which received instructions to utilize several displays in Mendelian genetics at the Genome Island location within Second Life, or the control group, which received text-based PDF documents of the same genetics course content. All participants, in the form of avatars, were experienced Second Life residents to reduce any novelty effect. This study found a greater increase in inquiry skills in the experimental group interacting using a virtual world to learn science content (0.90 points) than a control group that is presented only with online text-based content (0.87 points). Using a mixed between-within ANOVA (analysis of variance), with an alpha level of 0.05, there was no significant interaction between the control or experimental groups and inquiry skills, F (1, 58) = .783, p = .380, partial eta squared = .013, at the specified .05 alpha level suggesting no significant difference as a result of the virtual world exercise. However, there is not enough evidence to state that there was no effect because there was a greater increase in scores for the group that experienced a virtual world exercise. This study adds to the increasing body of knowledge about virtual worlds and inquiry skills, particularly with adult learners.
A Correlational Study of Graphic Organizers and Science Achievement of English Language Learners
NASA Astrophysics Data System (ADS)
Clarke, William Gordon
English language learners (ELLs) demonstrate lower academic performance and have lower graduation and higher dropout rates than their non-ELL peers. The primary purpose of this correlational quantitative study was to investigate the relationship between the use of graphic organizer-infused science instruction and science learning of high school ELLs. Another objective was to determine if the method of instruction, socioeconomic status (SES), gender, and English language proficiency (ELP) were predictors of academic achievement of high school ELLs. Data were gathered from a New York City (NYC) high school fall 2012-2013 archival records of 145 ninth-grade ELLs who had received biology instruction in freestanding English as a second language (ESL) classes, followed by a test of their learning of the material. Fifty-four (37.2%) of these records were of students who had learned science by the conventional textbook method, and 91 (62.8%) by using graphic organizers. Data analysis employed the Statistical Package for the Social Sciences (SPSS) software for multiple regression analysis, which found graphic organizer use to be a significant predictor of New York State Regents Living Environment (NYSRLE) test scores (p < .01). One significant regression model was returned whereby, when combined, the four predictor variables (method of instruction, SES, gender, and ELP) explained 36% of the variance of the NYSRLE score. Implications of the study findings noted graphic organizer use as advantageous for ELL science achievement. Recommendations made for practice were for (a) the adoption of graphic organizer infused-instruction, (b) establishment of a protocol for the implementation of graphic organizer-infused instruction, and (c) increased length of graphic organizer instructional time. Recommendations made for future research were (a) a replication quantitative correlational study in two or more high schools, (b) a quantitative quasi-experimental quantitative study to determine the influence of graphic organizer instructional intervention and ELL science achievement, (c) a quantitative quasi-experimental study to determine the effect of teacher-based factors on graphic organizer-infused instruction, and (c) a causal comparative study to determine the efficacy of graphic organizer use in testing modifications for high school ELL science.
Murray, Nancy G; Opuni, Kwame A; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M; Hobbs, Mary
2009-06-01
To test the effectiveness of a middle school, multimedia health sciences educational program called HEADS UP in non-Asian-minority (Hispanic and African American), inner-city students. The program designers hope to increase the number of these students entering the health sciences pipeline. The program includes video role-model stories featuring minority scientists and students, hands-on activities, and teacher resources. Collaborators from The University of Texas Health Science Center at Houston, Spring Branch Independent School District, and the Health Museum developed the modules. From 2004 to 2007, the authors used a quasi-experimental, two-group pretest/posttest design to assess program effects on students' performance and interest in science, their science self-efficacy, their fear of science, and their science-related careers self-efficacy. An independent third party matched the intervention school to a comparison school by test scores, school demographics, and student demographics and then matched pairs of sixth-grade students (N = 428) by fifth-grade science scores, gender, ethnicity, and participation in the free or reduced lunch program. The authors collected data on these students for three years. At eighth grade (2007), the intervention school students scored significantly higher (F = 12.38, P < .001) on the Stanford Achievement Test 10 in science and reported higher interest in science (F = 11.08, P < .001) than their matched, comparison-school pairs. Students in neither group reported an increase in their confidence to choose a science-related career, but students in one high-implementing teacher's class reported decreased fear of science. HEADS UP shows potential for improving inner-city, non-Asian-minority middle school students' performance and interest in science.
Applying Authentic Data Analysis in Learning Earth Atmosphere
NASA Astrophysics Data System (ADS)
Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.
2017-09-01
The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.
X-rays of inner worlds: the mid-twentieth-century American projective test movement.
Lemov, Rebecca
2011-01-01
This essay begins to tell the neglected history of the projective test movement in the U.S. behavioral sciences from approximately 1941 to 1968. This cross-disciplinary enterprise attempted to use projective techniques as "X-ray" machines to see into the psyches of subjects tested around the world. The aim was to gather subjective materials en masse, pursuing data on a scope, scale, and manner rarely hazarded before in any science. In particular, the targeted data included the traces of the inner life and elusive aspects of subjective experience including dreams, life stories, and myriad test results from a battery of tests. This essay explores how the movement and the experimental data bank that resulted were unlikely yet telling sites for the practice and pursuit of the Cold War human sciences. To look closely at the encounters that resulted is to show how the most out-of-the-way places and seemingly insignificant moments played a role in heady scientific ambitions and global geopolitical projects. At times, the projective test movement became a mirror of Cold War rationality itself, as tests were employed at the very limits of their possible extension. The essay argues for an off-kilter centrality in the movement itself, shedding light on the would-be unified social sciences after World War II and the "subjective turn" they took. © 2011 Wiley Periodicals, Inc.
Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test
2017-11-01
STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Clearance Date: 28 Apr 2017 14. ABSTRACT The HIFiRE-5b program launched an experimental FLight test vehicle to study laminar-turbulent transition
NASA Astrophysics Data System (ADS)
Moote, Julie
2017-07-01
This study investigates the impact of participation in the CREativity in Science and Technology (CREST) programme on student self-regulated processes and related motivations. The CREST scheme, a student-run science project managed by the British Science Association, is currently being implemented in schools across the UK to increase student engagement and motivation in science. Through implementing a rigorous quasi-experimental research design using two intervention conditions and one control group with immediate as well as 3-month delayed post-test data, the results documented both the immediate and longer-term positive impact of CREST participation on students' self-reported levels of self-regulation. The present study also investigates changes in teachers' perceptions of students' self-regulated learning through CREST programme participation. Group differences regarding changes in student self-reported self-regulation were not matched when looking at the teacher-reported self-regulated learning results at both immediate post-test and delayed post-test. These discrepancies are discussed in relation to analyses conducted on the other motivational constructs measured.
ERIC Educational Resources Information Center
Robinson, James T.; Tolman, Richard R.
In order to evaluate Unit I (Digestion and Circulation) of the Me Now series of Life Sciences for the Educable Mentally Handicapped, 139 students in an experimental group (mean IQ 72.04; mean CA 144.9 months) and 154 control subjects (mean IQ 70.2; mean CA 148.3 months) were pre- and post-tested following instruction in the Me Now series…
Expanding the basic science debate: the role of physics knowledge in interpreting clinical findings.
Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L; Skye, Aimee L; Woods, Nicole N
2012-10-01
Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical information. Participants studied a handout about several respiratory disorders and how to interpret respiratory exam findings. The control group received the information in standard "textbook" format and the experimental group was presented with the same information as well as a causal explanation about how sound travels through lungs in both the normal and disease states. Comprehension and memory of the information was evaluated with a multiple-choice exam. Several questions that were not related to the causal knowledge served as control items. Questions related to the interpretation of physical exam findings served as the critical test items. The experimental group outperformed the control group on the critical test items, and our study shows that a causal explanation can improve a student's memory for interpreting clinical details. We suggest an expansion of which basic sciences are considered fundamental to medical education.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sumita; Volk, Trudi; Lumpe, Andrew
2009-06-01
This study examined the effects of an extensive inquiry-based field experience on pre service elementary teachers’ personal agency beliefs, a composite measure of context beliefs and capability beliefs related to teaching science. The research combined quantitative and qualitative approaches and included an experimental group that utilized the inquiry method and a control group that used traditional teaching methods. Pre- and post-test scores for the experimental and control groups were compared. The context beliefs of both groups showed no significant change as a result of the experience. However, the control group’s capability belief scores, lower than those of the experimental group to start with, declined significantly; the experimental group’s scores remained unchanged. Thus, the inquiry-based field experience led to an increase in personal agency beliefs. The qualitative data suggested a new hypothesis that there is a spiral relationship among teachers’ ability to establish communicative relationships with students, desire for personal growth and improvement, ability to implement multiple instructional strategies, and possession of substantive content knowledge. The study concludes that inquiry-based student teaching should be encouraged in the training of elementary school science teachers. However, the meaning and practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom.
Soto, Fabian A; Zheng, Emily; Fonseca, Johnny; Ashby, F Gregory
2017-01-01
Determining whether perceptual properties are processed independently is an important goal in perceptual science, and tools to test independence should be widely available to experimental researchers. The best analytical tools to test for perceptual independence are provided by General Recognition Theory (GRT), a multidimensional extension of signal detection theory. Unfortunately, there is currently a lack of software implementing GRT analyses that is ready-to-use by experimental psychologists and neuroscientists with little training in computational modeling. This paper presents grtools , an R package developed with the explicit aim of providing experimentalists with the ability to perform full GRT analyses using only a couple of command lines. We describe the software and provide a practical tutorial on how to perform each of the analyses available in grtools . We also provide advice to researchers on best practices for experimental design and interpretation of results when applying GRT and grtools .
Improving Science Achievement and Attitudes of Students With and Without Learning Disabilities
NASA Astrophysics Data System (ADS)
Sanders-White, Pamela
The primary purpose of this study was to investigate the effect of structured note-taking compared to traditional note-taking on the acquisition of scientific knowledge for students with and without learning disabilities (LD) and students with reading difficulties (RD). An additional purpose was to examine whether the two note-taking methods affected students' attitudes toward science. The sample population consisted of 203 fifth grade students across four public schools in the southern area of the United States. A standardized instrument aligned to Florida's science standards was used to measure the acquisition of scientific knowledge and the Test of Science-Related Attitudes (TOSRA) was used to measure seven distinct science-related attitudes. For meaningful analyses, students with LD and students with RD were collapsed to form a single group due to the small numbers of participants in each of the subgroups; the collapsed group was referred to as "low achievers." A three-way repeated measures ANOVA was conducted to determine the effects of the pretest-posttest Science Interim assessment by group, type of student, and gender. The pretest-posttest Science Interim assessment scores were the within-group factor, while group, type of student, and gender were the between-groups factors. Results revealed that there was a significant interaction between the pretest-posttest Science Interim assessment and group, F(1, 191) = 9.320, p = .003, indicating that scientific knowledge scores increased for the experimental group, but decreased for the control group. Results also indicated that there was a significant three-way interaction between the pretest-posttest Science Interim assessment, group, and gender, F(1, 191) = 5.197, p = .024, showing that all participants in the experimental group improved their scores; while in the control group, female scores decreased and male scores increased. Participants in the experimental and control groups did not show improved attitudes toward science, as measured by the pretest-posttest TOSRA constructs.
NASA Astrophysics Data System (ADS)
Mason, Cheryl L.; Butler Kahle, Jane
A project designed to foster the full and fair participation of girls in high-school science classes addressed obstacles, both perceived and actual, to equal participation. In order to modify existing classroom techniques and environments, a Teacher Intervention Program was designed. By means of a workshop and periodic personal communications, teachers were sensitized to the importance of a stimulating, gender-free learning environment. In addition, they were presented with a variety of methods and materials which had been shown to encourage girls in science. Twelve teachers, who were selected randomly, taught in diverse communities throughout one Midwestern state. The subjects tested were students in 24 general biology classes taught by the 12 teachers. Although both qualitative and quantitative measures were used during the research, only the quantitative results are discussed in this paper. Using ANOVA's, treatment group by student sex, a comparison of the mean scores was made for all students, as well as for all females and for all males. The results indicated that the experimental group, compared to the control group, had significantly higher mean scores on tests of attitudes toward science, perceptions of science, extracurricular science activities, and interest in a science-related career.
Teaching About Genetics and Sickle Cell Disease In Fifth Grade.
Day, Lucille Lang; Murray, Eileen; Treadwell, Marsha J; Lubin, Bertram H
2015-02-01
We are grateful to Laura McVittie Gray for her work on the development of the student activities described in this article. This work was made possible by a Science Education Partnership Award (SEPA), Grant Number R25RR020449, from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Additional support for this SEPA-funded project was provided by Grant Number UL1RR024131-01 from NCRR. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. A 5-lesson, 5th-grade instructional unit, "Genetics and Sickle Cell Disease," was developed and tested as part of a 40-lesson curriculum entitled SEEK (Science Exploration, Excitement, and Knowledge): A Curriculum in Health and Biomedical Science for Diverse 4th and 5th Grade Students. The genetics lessons include hands-on activities (e.g., DNA extraction from cheek cells), a simulated plant genetics experiment, and a classroom visit by a person with sickle cell disease, as well as by a health care practitioner who works with sickle cell patients or a scientist specializing in genetics. The unit was tested with 82 5th-grade students at public elementary schools in Oakland, CA; 96% were racial and ethnic minorities. The comparison group consisted of 84 5th-grade Oakland students racially/ ethnically, academically, and socio-economically matched to those in the experimental group. Both groups completed a 20-question, multiple-choice pre/posttest covering science concepts, scientific process, lifestyle choices, and careers. The experimental group showed significant improvement on 13 of 20 questions (P<.05, t-tests) and on the test as a whole, whereas the comparison group did not show significant improvement either on any of the questions or on the test as a whole. The experimental group improved on 10 concept questions, 2 scientific process questions, and 1 lifestyle question. Teachers rated the educational value of the unit as 9.5 on a scale from 1 (low) to 10 (high). These results show that genetics and sickle cell disease can be taught successfully in 5th grade, although they are not typically covered at this level. © 2015 National Medical Association. Published by Elsevier Inc. All rights reserved.
JPRS Report, Science & Technology Europe
1988-05-10
given environment essentially depends on three parameters ; these are: • the adhesion between the adhesive and the supports; • the cohesion of the...durability/CND J Electric current under high field/Tensile test at 4 degrees K I Synthetic hydroxyapatite /behavior under friction and wear GB NaCl, s...French programs GB Inventory of accelerated test procedures, correlation among parameters FC Influence of experimental parameters 8615 JPRS-EST-88
Effect of Formative and Ability Test Results on Early Learning of Students
ERIC Educational Resources Information Center
Kadir, Abdul; Ardi, Muhammad; Nurhayati, B.; Dirawan, Gufran Darma
2016-01-01
The objective of this study was to examine the relationship of formative tests to early learning ability of students in the science learning style. This research used an experimental method with a 2 x 2 factorial design. The participants comprised all the students in class VII of the Islamic Junior High School State of Kolaka, a total of 343…
ERIC Educational Resources Information Center
Behnam, Biook; Jenani, Shalaleh; Ahangari, Saeideh
2014-01-01
The present study aimed to examine the effect of time-management training on Iranian EFL learners' test-anxiety and self-efficacy. A quasi-experimental design was used. The study was carried out in Tabriz Azad University and University of Applied Sciences and Technology. Thirty-eight BA students majoring in TEFL who enrolled in the above mentioned…
A look at spatial abilities in undergraduate women science majors
NASA Astrophysics Data System (ADS)
Lord, Thomas R.
Contemporary investigations indicate that men generally perform significantly better in tasks involving visuo-spatial awareness than do women. Researchers have attempted to explain this difference through several hypotheses but as yet the reason for the dimorphism has not been established. Further, contemporary studies have indicated that enhancement of mental image formation and manipulation is possible when students are subjected to carefully designed spatial interventions. Present research was conducted to see if women in the sciences were as spatial perceptively accurate as their male counterparts. The researcher also was interested to find if the women that received the intervention excercises improved in their visuo-spatial awareness as rapidly as their male counterparts.The study was conducted on science majors at a suburban two year college. The population was randomly divided into groups (experimental, placebo, and control) each containing approximately the same number of men and women. All groups were given a battery of spatial perception tests (Ekstrom et al, 1976) at the onset of the winter semester and a second version of the battery at the conclusion of the semester. An analysis of variance followed by Scheffe contrasts were run on the results. The statistics revealed that the experimental group significantly outperformed the nonexperimental groups on the tests. When the differences between the mean scores for the women in the experimental group were statistically compared to those of the men in the experimental group the women were improving at a more rapid rate. Many women have the capacity to develop visuo-spatial aptitude and although they may start out behind men in spatial ability, they learn quickly and often catch up to the men's level when given meaningful visuo-spatial interventions.
Robert Dicke and the naissance of experimental gravity physics, 1957-1967
NASA Astrophysics Data System (ADS)
Peebles, Phillip James Edwin
2017-06-01
The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of developments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of natural science. The role of contingency is illustrated by Robert Dicke's decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The review also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach's Principle and Dirac's Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity. I conclude by offering lessons from this history, some peculiar to the study of gravity physics during the naissance, some of more general relevance. The central lesson, which is familiar but not always well advertised, is that physical theories can be empirically established, sometimes with surprising results.
CVT/GPL phase 3 integrated testing
NASA Technical Reports Server (NTRS)
Shurney, R. E.; Cantrell, E.; Maybee, G.; Schmitt, S.
1975-01-01
The hardware for 20 candidate shuttle program life sciences experiments was installed in the GPL and experiments were conducted during a 5-day simulated mission. The experiments involved humans, primates, rats, chickens, and marigold plants. All experiments were completed to the satisfaction of the experimenters. In addition to the scientific data gathered for each experiment, information was obtained concerning experiment hardware design and integration, experiment procedures, GPL support systems, and test operations. The results of the integrated tests are presented.
NASA Astrophysics Data System (ADS)
Shymansky, James A.; Wang, Tzu-Ling; Annetta, Leonard A.; Yore, Larry D.; Everett, Susan A.
2013-04-01
This paper is a report of a quasi-experimental study on the impact of a systemic 5-year, K-6 professional development (PD) project on the 'high stakes' achievement test scores of different student groups in rural mid-west school districts in the USA. The PD programme utilized regional summer workshops, district-based leadership teams and distance delivery technologies to help teachers learn science concepts and inquiry teaching strategies associated with a selection of popular science inquiry kits and how to adapt inquiry science lessons in the kits to teach and reinforce skills in the language arts-i.e. to teach more than science when doing inquiry science. Analyses of the school district-level pre-post high-stakes achievement scores of 33 school districts participating in the adaptation of inquiry PD and a comparative group of 23 school districts revealed that both the Grade 3 and Grade 6 student-cohorts in the school districts utilizing adapted science inquiry lessons significantly outscored their student-cohort counterparts in the comparative school districts. The positive school district-level high-stakes test results, which serve as the basis for state and local decision making, suggest that an inquiry adaptation strategy and a combination of regional live workshop and distance delivery technologies with ongoing local leadership and support can serve as a viable PD option for K-6 science.
The Effect of Integrating Aesthetic Understanding in Reflective Inquiry Activities
NASA Astrophysics Data System (ADS)
Lin, Huann-shyang; Hong, Zuway-R.; Chen, Chung-Chih; Chou, Chien-Ho
2011-06-01
The purpose of this study was to explore the effectiveness of integrating aesthetic understanding in reflective inquiry activities. Three typical classes of Taiwanese eighth graders (n = 106) and nine additional low-achieving students in the same school participated in the study. The treatment for experimental students emphasized scaffolding aesthetic understanding and reflections on inquiry strategies. It was found that the experimental group students consistently outperformed their counterparts on the post-test and the delayed post-test in conceptual understanding and application of science knowledge. In addition, the low-achieving students were motivated by the treatment and made significant progress on the two tests. The results of interview and classroom observation also revealed that the intervention made a difference in students' affective perceptions.
Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students
NASA Astrophysics Data System (ADS)
Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope
2014-08-01
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.
Jacques Loeb, B. F. Skinner, and the legacy of prediction and control
Hackenberg, Timothy D.
1995-01-01
The biologist Jacques Loeb is an important figure in the history of behavior analysis. Between 1890 and 1915, Loeb championed an approach to experimental biology that would later exert substantial influence on the work of B. F. Skinner and behavior analysis. This paper examines some of these sources of influence, with a particular emphasis on Loeb's firm commitment to prediction and control as fundamental goals of an experimental life science, and how these goals were extended and broadened by Skinner. Both Loeb and Skinner adopted a pragmatic approach to science that put practical control of their subject matter above formal theory testing, both based their research programs on analyses of reproducible units involving the intact organism, and both strongly endorsed technological applications of basic laboratory science. For Loeb, but especially for Skinner, control came to mean something more than mere experimental or technological control for its own sake; it became synonomous with scientific understanding. This view follows from (a) the successful working model of science Loeb and Skinner inherited from Ernst Mach, in which science is viewed as human social activity, and effective practical action is taken as the basis of scientific knowledge, and (b) Skinner's analysis of scientific activity, situated in the world of direct experience and related to practices arranged by scientific verbal communities. From this perspective, prediction and control are human acts that arise from and are maintained by social circumstances in which such acts meet with effective consequences. PMID:22478220
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn
2017-06-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo
2017-01-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields. PMID:28747984
Mangalam, Madhur; Karve, Shraddha Madhav
2015-06-26
Rugani et al. (Reports, 30 January 3015, p. 534) tested 3-day-old domestic chicks using an innovative experimental setup and demonstrate the presence of the mental number line. We raise concerns regarding this conclusion by highlighting the possible loopholes in the experimental design and the data analysis procedures. We further suggest auxiliary experiments that can substantiate the authors' claim. Copyright © 2015, American Association for the Advancement of Science.
Testing Interaction Effects without Discarding Variance.
ERIC Educational Resources Information Center
Lopez, Kay A.
Analysis of variance (ANOVA) and multiple regression are two of the most commonly used methods of data analysis in behavioral science research. Although ANOVA was intended for use with experimental designs, educational researchers have used ANOVA extensively in aptitude-treatment interaction (ATI) research. This practice tends to make researchers…
ERIC Educational Resources Information Center
Wheeler, David L.
1988-01-01
Scientists feel that progress in artificial intelligence and the availability of thousands of experimental results make this the right time to build and test theories on how people think and learn, using the computer to model minds. (MSE)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... similar to a fish trap but has an adjustable entrance and exit. It would be tested under an experimental design developed with input from NMFS' Southeast Fisheries Science Center. The gear initially would be...
Science and Television Commercials: Adding Relevance to the Research Methodology Course.
ERIC Educational Resources Information Center
Solomon, Paul R.
1979-01-01
Contends that research methodology courses can be relevant to issues outside of psychology and describes a method which relates the course to consumer problems. Students use experimental methodology to test claims made in television commercials advertising deodorant, bathroom tissues, and soft drinks. (KC)
The effects of calculator-based laboratories on standardized test scores
NASA Astrophysics Data System (ADS)
Stevens, Charlotte Bethany Rains
Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee Putnam County area. The study should be reproduced in various school districts in the state of Tennessee to compare the findings.
Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests
NASA Astrophysics Data System (ADS)
Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott
2016-11-01
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.
Results of an international phosphorus digestibility ring test with broiler chickens.
Rodehutscord, M; Adeola, O; Angel, R; Bikker, P; Delezie, E; Dozier, W A; Umar Faruk, M; Francesch, M; Kwakernaak, C; Narcy, A; Nyachoti, C M; Olukosi, O A; Preynat, A; Renouf, B; Saiz Del Barrio, A; Schedle, K; Siegert, W; Steenfeldt, S; van Krimpen, M M; Waititu, S M; Witzig, M
2017-06-01
The objective of this ring test was to investigate the prececal phosphorus (P) digestibility of soybean meal (SBM) in broiler chickens using the trial protocol proposed by the World's Poultry Science Association. It was hypothesized that prececal P digestibility of SBM determined in the collaborating stations is similar. Three diets with different inclusion levels of SBM were mixed in a feed mill specialized in experimental diets and transported to 17 collaborating stations. Broiler chicks were raised on commercial starter diets according to station-specific management routine. Then they were fed the experimental diets for a minimum of 5 d before content of the posterior half of the ileum was collected. A minimum of 6 experimental replicates per diet was used in each station. All diets and digesta samples were analyzed in the same laboratory. Diet, station, and their interaction significantly affected (P < 0.05) the prececal digestibility values of P and calcium of the diets. The prececal P digestibility of SBM was determined by linear regression and varied among stations from 19 to 51%, with significant differences among stations. In a subset of 4 stations, the prececal disappearance of myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate)-P; InsP6-P) also was studied. The prececal InsP6-P disappearance correlated well with the prececal P digestibility. We hypothesized that factors influencing InsP6 hydrolysis were main contributors to the variation in prececal P digestibility among stations. These factors were probably related to the feeding and housing conditions (floor pens or cages) of the birds in the pre-experimental phase. Therefore, we suggest that the World's Poultry Science Association protocol for the determination of digestible P be should extended to the standardization of the pre-experimental period. We also suggest that comparisons of P digestibility measurements among studies are made only with great caution until the protocol is more refined. © 2016 Poultry Science Association Inc.
Does "science" make you moral? The effects of priming science on moral judgments and behavior.
Ma-Kellams, Christine; Blascovich, Jim
2013-01-01
Previous work has noted that science stands as an ideological force insofar as the answers it offers to a variety of fundamental questions and concerns; as such, those who pursue scientific inquiry have been shown to be concerned with the moral and social ramifications of their scientific endeavors. No studies to date have directly investigated the links between exposure to science and moral or prosocial behaviors. Across four studies, both naturalistic measures of science exposure and experimental primes of science led to increased adherence to moral norms and more morally normative behaviors across domains. Study 1 (n = 36) tested the natural correlation between exposure to science and likelihood of enforcing moral norms. Studies 2 (n = 49), 3 (n = 52), and 4 (n = 43) manipulated thoughts about science and examined the causal impact of such thoughts on imagined and actual moral behavior. Across studies, thinking about science had a moralizing effect on a broad array of domains, including interpersonal violations (Studies 1, 2), prosocial intentions (Study 3), and economic exploitation (Study 4). These studies demonstrated the morally normative effects of lay notions of science. Thinking about science leads individuals to endorse more stringent moral norms and exhibit more morally normative behavior. These studies are the first of their kind to systematically and empirically test the relationship between science and morality. The present findings speak to this question and elucidate the value-laden outcomes of the notion of science.
Structural Benchmark Testing for Stirling Convertor Heater Heads
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.
2007-01-01
The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.
Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W
2018-01-01
Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p < .001; Adjusted R = .51). All independent variables were significant predictors with positive association. Science and mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.
NASA Astrophysics Data System (ADS)
Bennett, Camille
This study was an investigation of female adolescents' perceptions, attitudes, and beliefs towards science and reading science-related texts. Three surveys were used to collect data from 253 middle school students in Grade 7 and Grade 8 and six interviews were conducted with students. The interviews allowed a deeper analysis of the value students placed on science and on reading science-related texts. The quantitative data were collected through the following surveys: Test of Science Related Attitudes, Motivation for Reading Informational Books in School adapted, and Metacognitive Awareness Reading Strategies Inventory adapted. The purpose of the surveys was to provide a comprehensive picture of students' self-reported perceptions, attitudes, and beliefs towards science and the motivation to engage. Literacy processes and practices make engagement and learning in science possible; however, intrinsic motivation and cognitive strategies are critical influential components that educators cannot overlook. The female adolescents in this study expressed greater competence when involved in learning science through inquiry experimentation integrated with literacy presented in different formats.
Status of 'HIMES' reentry flight test project
NASA Astrophysics Data System (ADS)
Inatani, Yoshifumi; Kawaguchi, Jun'ichiro; Yonemoto, Koichi
1990-10-01
The salient features of the Highly Maneuverable Experimental Space (HIMES) vehicle which is being developed by the Institute of Space and Astronautical Science of Japan are discussed together with the results of tests conducted. Analytical studies carried out so far include system analyses, aerodynamic design, the navigation/guidance and control systems, the propulsion system, and structural studies. Results of flight tests conducted to verify these analyses include the low-speed gliding flight test and the atmospheric reentry flight test, as well as a ground firing test of the hydrogen-fueled propulsion system. Diagrams are presented of the HIMES vehicle and its propulsion engines.
Teaching science for public understanding: Developing decision-making abilities
NASA Astrophysics Data System (ADS)
Siegel, Marcelle A.
One of the most important challenges educators have is teaching students how to make decisions about complex issues. In this study, methods designed to enhance students' decision-making skills and attitudes were investigated. An issue-oriented science curriculum was partly replaced with activities designed by the experimenter. The first objective of the study was to examine the effects of an instructional method to increase students' use of relevant scientific evidence in their decisions. The second goal of the research was to test whether the instructional activities could promote students' beliefs that science is relevant to them, because attitudes have been shown to affect students' performance and persistence (Schommer, 1994). Third, the study was designed to determine whether the instructional activities would affect students' beliefs that their intelligence is not fixed but can grow; this question is based on Dweck and Leggett's (1988) definition of two orientations toward intelligence---entity theorists and incremental theorists (Dweck & Leggett, 1988; Dweck & Henderson, 1989). Two urban high-school classrooms participated in this study. Tenth graders examined scientific materials about current issues involving technology and society. Instructional materials on decision making were prepared for one class of students to enhance their regular issue-oriented course, Science and Sustainability. A computer program, called Convince Me (Schank, Ranney & Hoadley, 1996), provided scaffolding for making an evidence-based decision. The experimental group's activities also included pen-and-paper lessons on decision making and the effect of experience on the structure of the brain. The control class continued to engage in Science and Sustainability decision-making activities during the time the experimental class completed the treatment. The control group did not show significant improvement on decision-making tasks, and the experimental group showed marginally significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry
NASA Astrophysics Data System (ADS)
Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.
2004-02-01
This article outlines a successful community service project that involved members of our undergraduate chemistry club and area elementary schools. Elementary school students from various science classes throughout the region collected drinking water samples and mailed them to the university for analysis. Chemistry club members analyzed the water samples for possible lead contamination using anodic stripping voltammetry. The results and experimental data were returned to the science teachers for use in a variety of class projects. Chemistry club members presented their work during our annual Environmental Chemistry Conference. All participating science classes were invited to the conference. Over the years, participation in this project has steadily increased to its current enrollment of 28 science classes throughout the region.
NASA Astrophysics Data System (ADS)
Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael; Guerrero, Cindy; Fan, Yinan; Huerta, Margarita
2014-08-01
This paper presents the findings from a randomized control trial study of reading/literacy-integrated science inquiry intervention after 1 year of implementation and the treatment effect on 5th-grade low-socio-economic African-American and Hispanic students' achievement in science and English reading. A total of 94 treatment students and 194 comparison students from four randomized intermediate schools participated in the current project. The intervention consisted of ongoing professional development and specific instructional science lessons with inquiry-based learning, direct and explicit vocabulary instruction, and integration of reading and writing. Results suggested that (a) there was a significantly positive treatment effect as reflected in students' higher performance in district-wide curriculum-based tests of science and reading and standardized tests of science, reading, and English reading fluency; (b) males and females did not differ significantly from participating in science inquiry instruction; (c) African-American students had lower chance of sufficiently mastering the science concepts and achieving above the state standards when compared with Hispanic students across gender and condition, and (d) below-poverty African-American females are the most vulnerable group in science learning. Our study confirmed that even a modest amount of literacy integration in inquiry-based science instruction can promote students' science and reading achievement. Therefore, we call for more experimental research that focus on the quality of literacy-integrated science instruction from which middle grade students, particularly low-socio-economic status students, can benefit.
Content and Context: Entropy Principle Experiments in a Course for Non-Science Students
ERIC Educational Resources Information Center
Bell, Jerry A.
1975-01-01
Describes an approach which begins with observations and systems familiar to the student and proceeds to develop and test models to explain them. Experimental topics include Brownian motion, a germinating cell, phase change of p-dichlorobenzene, extension and contraction of rubber, and an enzyme system. (GS)
Perfectionism Moderates Stereotype Threat Effects on STEM Majors' Academic Performance
ERIC Educational Resources Information Center
Rice, Kenneth G.; Lopez, Frederick G.; Richardson, Clarissa M. E.; Stinson, Jennifer M.
2013-01-01
Using a randomized, between-subjects experimental design, we tested hypotheses that self-critical perfectionism would moderate the effects of subtle stereotype threat (ST) for women and students in underrepresented racial/ethnic groups who are pursuing traditional degrees in science, technology, engineering, or math (STEM). A diverse sample of…
Explorations in Statistics: Permutation Methods
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2012-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eighth installment of "Explorations in Statistics" explores permutation methods, empiric procedures we can use to assess an experimental result--to test a null hypothesis--when we are reluctant to trust statistical…
Traditional Labs + New Questions = Improved Student Performance.
ERIC Educational Resources Information Center
Rezba, Richard J.; And Others
1992-01-01
Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…
Screening the psychological laboratory: Hugo Münsterberg, psychotechnics, and the cinema, 1892-1916.
Blatter, Jeremy
2015-03-01
According to Hugo Münsterberg, the direct application of experimental psychology to the practical problems of education, law, industry, and art belonged by definition to the domain of psychotechnics. Whether in the form of pedagogical prescription, interrogation technique, hiring practice, or aesthetic principle, the psychotechnical method implied bringing the psychological laboratory to bear on everyday life. There were, however, significant pitfalls to leaving behind the putative purity of the early psychological laboratory in pursuit of technological utility. In the Vocation Bureau, for example, psychological instruments were often deemed too intimidating for a public unfamiliar with the inner workings of experimental science. Similarly, when psychotechnical means were employed by big business in screening job candidates, ethical red flags were raised about this new alliance between science and capital. This tension was particularly evident in Münsterberg's collaboration with the Paramount Pictures Corporation in 1916. In translating psychological tests into short experimental films, Münsterberg not only envisioned a new mass medium for the dissemination of psychotechnics, but a means by which to initiate the masses into the culture of experimental psychology.
Biotic games and cloud experimentation as novel media for biophysics education
NASA Astrophysics Data System (ADS)
Riedel-Kruse, Ingmar; Blikstein, Paulo
2014-03-01
First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.
Jaenichen, Hans-Rainer; Pitz, Johann
2014-11-06
In the public debate about patents, specifically in the area of biotechnology, the position has been taken that patents block the progress of science. As we demonstrate in this review, this is not the case in the European Union (EU). The national patent acts of the EU member states define research and experimental use exemptions from patent infringement that allow sufficient room for research activities to promote innovation. This review provides a comparative overview of the legal requirements and the extent and limitations of experimental use exemptions, including the so-called Bolar provision, in Germany, the United Kingdom, France, Spain, Italy, and The Netherlands. The legal framework in the respective countries is illustrated with reference to practical examples concerning tests on patent-protected genetic targets and antibodies. Specific questions concerning the use of patent-protected research tools, the outsourcing of research activities, and the use of preparatory and supplying acts for experimental purposes that are necessary for conducting experiments are covered. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
NASA Astrophysics Data System (ADS)
Wendt, Jillian Leigh
This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a pretest consisting of the Misconceptions-Oriented Standards-Based Assessment Resources for Teachers (MOSART) Physical Science assessment and the Classroom Community Scale. Students in the control group received in-class assignments that were completed collaboratively in a face-to-face manner. Students in the experimental group received in-class assignments that were completed online collaboratively through the Edmodo educational platform. Both groups were members of intact, traditional face-to-face classrooms. The students were then post tested. Results pertaining to the MOSART assessment were statistically analyzed through ANCOVA analysis while results pertaining to the Classroom Community Scale were analyzed through MANOVA analysis. Results are reported and suggestions for future research are provided.
ERIC Educational Resources Information Center
Gray, Ron
2014-01-01
Inquiry experiences in secondary science classrooms are heavily weighted toward experimentation. We know, however, that many fields of science (e.g., evolutionary biology, cosmology, and paleontology), while they may utilize experiments, are not justified by experimental methodologies. With the focus on experimentation in schools, these fields of…
Construct Validity: Advances in Theory and Methodology
Strauss, Milton E.; Smith, Gregory T.
2008-01-01
Measures of psychological constructs are validated by testing whether they relate to measures of other constructs as specified by theory. Each test of relations between measures reflects on the validity of both the measures and the theory driving the test. Construct validation concerns the simultaneous process of measure and theory validation. In this chapter, we review the recent history of validation efforts in clinical psychological science that has led to this perspective, and we review five recent advances in validation theory and methodology of importance for clinical researchers. These are: the emergence of nonjustificationist philosophy of science; an increasing appreciation for theory and the need for informative tests of construct validity; valid construct representation in experimental psychopathology; the need to avoid representing multidimensional constructs with a single score; and the emergence of effective new statistical tools for the evaluation of convergent and discriminant validity. PMID:19086835
NASA Astrophysics Data System (ADS)
Conway-Klaassen, Janice Marjorie
"Stereotype threat is being at risk of confirming, as a self-characteristic, a negative stereotype about one's group" (C. M. Steele & Aronson, 1995, p. 797). A stereotype threat effect then is described as the detrimental impact on a person's performance or achievement measurements when they are placed in a stereotype threat environment. For women, the negative stereotype that exists in our culture states that women are typically not as capable as men in mathematics or science subjects. This study specifically explored the potential impact of stereotype threat on women who have chosen a science-based college major. They were tested in the domain of chemistry, which is related to mathematics and often involves high level of mathematics skills. I attempted to generate a stereotype threat in the participants through describing a chemistry challenge exam as either one that had consistently shown a gender bias against women and to create a nullification effect by describing the exam as one that had shown no gender bias in the past. In the third experimental condition acting as a control, participants received only generic instructions related to taking the test itself. The second part of this study investigated whether stereotype threat effects could impact women's achievement goal orientations. In previous studies performance avoidance goal orientations have been associated with individuals placed in a stereotype threat environment. The findings on the stereotype threat effect were not significant for the chemistry challenge test achievement scores. This may be due to several factors. One factor may be the design of the chemistry challenge test and the instructions for the test. The other factor may be the women in this study. As individuals who have chosen a science based major, they may have developed coping skills and strategies that reduced the impact of a stereotype threat. It is also possible that the testing environment itself generated an implicit stereotype type threat effect which reduced the differences among the experimental conditions. However, there were significant findings related to the participants' achievement goal orientations. Individuals in the stereotype threat condition displayed higher levels of performance avoidance, overall performance, and overall avoidance goal orientations consistent with the existing literature. Post-hoc open-ended questionnaires revealed that most participants believed that men and women were equally capable in mathematics and sciences but that they also had an awareness of the negative stereotype against women in mathematics and sciences among the public. This study supports the demonstration of stereotype threat effects on women who are enrolled in science based college majors. Although I was not able to create a stereotype threat effect on their chemistry challenge test scores, I was able to demonstrate an effect on their achievement goal orientations, which has implications for instructional design and standardized testing.
NASA Astrophysics Data System (ADS)
McKenzie, Neil Llewellyn
In support of the title of this thesis, an historical review of the literature and methods of delivering practical work in science in secondary schools was carried out. From the work of others, a personal model of classroom scientific investigations was developed and formulated in terms which could be tested in schools. The main emphasis was to see (a) whether the educational value of the model for practical investigations set in a context of integrated science and technology ('techno-science') could be defended theoretically and demonstrated by intervention methods; and (b) how closely such a model could comply with the requirements set out m the Orders for Science in the National Curriculum. The conclusions may be summarised as: (i) The first case study established the value of work experience which was curriculum-based on 'techno-science'. (ii) The second case study suggested that: a) based solely on the information from the questionnaire, the differences in teaching and learning styles measured before and following intervention do not yield a consistent pattern; b) other information, such as the statistical evidence from the analysis of trends in the number of students opting to study science at A-Level and the achievements of the test group in GCSE examinations and AT1 (experimental and investigative science) skills, pointed to the success of the predictions based on the hypothesis.
Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills
NASA Astrophysics Data System (ADS)
Seda Cetin, Pinar
2014-01-01
Background: Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students' conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose: The present study aimed to investigate the effects of argumentation-based chemistry lessons on pre-service science teachers' understanding of reaction rate concepts, their quality of argumentation, and their consideration of specific reaction rate concepts in constructing an argument. Moreover, students' perceptions of argumentation lessons were explored. Sample: There were 116 participants (21 male and 95 female), who were pre-service first-grade science teachers from a public university. The participants were recruited from the two intact classes of a General Chemistry II course, both of which were taught by the same instructor. Design and methods: In the present study, non-equivalent control group design was used as a part of quasi-experimental design. The experimental group was taught using explicit argumentation activities, and the control group was instructed using traditional instruction. The data were collected using a reaction rate concept test, a pre-service teachers' survey, and the participants' perceptions of the argumentation lessons questionnaire. For the data analysis, the Wilcoxon Signed Rank Test, the Mann-Whitney U-test and qualitative techniques were used. Results: The results of the study indicated that an argumentation-based intervention caused significantly better acquisition of scientific reaction rate-related concepts and positively impacted the structure and complexity of pre-service teachers' argumentation. Moreover, the majority of the participants reported positive feelings toward argumentation activities. Conclusions: As students are encouraged to state and support their view in the chemistry classroom when studying reaction rate, it was observed that their understanding increased in terms of both the context and the quality of the argumentation that they produced. In light of the findings, it is suggested that argumentation activities should be developed to promote students' science content knowledge and argumentation skills.
NASA Astrophysics Data System (ADS)
Powell, P. E.
Educators have recently come to consider inquiry based instruction as a more effective method of instruction than didactic instruction. Experience based learning theory suggests that student performance is linked to teaching method. However, research is limited on inquiry teaching and its effectiveness on preparing students to perform well on standardized tests. The purpose of the study to investigate whether one of these two teaching methodologies was more effective in increasing student performance on standardized science tests. The quasi experimental quantitative study was comprised of two stages. Stage 1 used a survey to identify teaching methods of a convenience sample of 57 teacher participants and determined level of inquiry used in instruction to place participants into instructional groups (the independent variable). Stage 2 used analysis of covariance (ANCOVA) to compare posttest scores on a standardized exam by teaching method. Additional analyses were conducted to examine the differences in science achievement by ethnicity, gender, and socioeconomic status by teaching methodology. Results demonstrated a statistically significant gain in test scores when taught using inquiry based instruction. Subpopulation analyses indicated all groups showed improved mean standardized test scores except African American students. The findings benefit teachers and students by presenting data supporting a method of content delivery that increases teacher efficacy and produces students with a greater cognition of science content that meets the school's mission and goals.
NASA Astrophysics Data System (ADS)
Brown, Norman Merrill
1998-09-01
Historically, researchers have reported an achievement difference between females and males on standardized science tests. These differences have been reported to be based upon science knowledge, abstract reasoning skills, mathematical abilities, and cultural and social phenomena. This research was designed to determine how mastery of specific science content from public school curricula might be evaluated with performance-based assessment models, without producing gender achievement differences. The assessment instruments used were Harcourt Brace Educational Measurement's GOALSsp°ler: A Performance-Based Measure of Achievement and the performance-based portion of the Stanford Achievement Testspcopyright, Ninth Edition. The identified independent variables were test, gender, ethnicity, and grade level. A 2 x 2 x 6 x 12 (test x gender x ethnicity x grade) factorial experimental design was used to organize the data. A stratified random sample (N = 2400) was selected from a national pool of norming data: N = 1200 from the GOALSsp°ler group and N = 1200 from the SAT9spcopyright group. The ANOVA analysis yielded mixed results. The factors of test, gender, ethnicity by grade, gender by grade, and gender by grade by ethnicity failed to produce significant results (alpha = 0.05). The factors yielding significant results were ethnicity, grade, and ethnicity by grade. Therefore, no significant differences were found between female and male achievement on these performance-based assessments.
Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij
2016-01-01
Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.
Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less
Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij
2016-01-01
Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375
NASA Astrophysics Data System (ADS)
Saliba, Marie-Therese
2011-12-01
Through this research we will fully assess the benefits brought by the ExAO (Computer Assisted Experimentation) in school laboratories of science and technology in Lebanon. We would also like to mention its contribution in a tangible way in laboratory research of Pedagogic Robotic from Montreal University, particularly in the development of ExAO mulaboratory. We wanted to test the capabilities of the ExAO, its use in the classroom such as: 1. A replacement of a traditional laboratory in the use of the experimental method. 2. A scientific investigation tool. 3. An integration tool of experimental sciences and mathematics. 4. An integration tool of experimental sciences, mathematics and technology in the technoscientific learning. To do so, we have mobilized 13 group classes, designated teachers to experiment themselves along with their students in order to assess, in a more realistic way, the benefits of implementing this micro computer laboratory at school. Different testing, evaluated using the results of learning activities undertaken by students, their responses to a questionnaire and feedback from teachers, show that: 1. The replacement of a traditional laboratory with an ExAO mulaboratory does not seem to pose problem, expected that students have adapted to it in only ten minutes, indicating that the speed with which data were graphed was more productive. 2. In order to investigate a physical phenomenon, the usability of the tutorial associated with the ability to amplify the phenomenon before its graph representation, has allowed students to design and implement quickly and independently an experiment to verify their prediction. 3. The integration of mathematics into an experimental approach can quickly grasp the phenomenon. In addition, it gives more autonomy and a meaning to the graphs and algebraic representations allowing to use them as a cognitive tool to interpret this phenomenon. 4. The approach made by the students to design and construct a technological object, showed that this activity was easily carried out by the use of universal sensors, amplifiers to offset the graphical modeling tool, and the tutorial ability to transform any measured variable by another variable (for instance, the resistance variation in temperature change, ...). This educational activity shows that students had no difficulty integrating in a single learning activity the mathematics, experimental sciences and technology, in order to design and implement a functional piece of technology. The ExAO mulaboratory, by offering new educational opportunities, such as the ability to design, produce and validate a technological object, in order to do so, new capacities to boost measures, modeling physical phenomena, developing new sensors, is an important addition to the experiments being conducted in ExAO. Keywords: ExAO, teaching, integration, Lebanese schools.
The Science of Filming Science
NASA Astrophysics Data System (ADS)
Harned, D.
2016-12-01
Filmmaking is a science. It is observation, data collection, analysis, experimentation, structure, and presentation. Filmmaking is a process that is familiar to scientists. Observation - what we know is gained from observation of the world around us. Film allows us to focus this observation, to pick out details, to understand nuance, to direct seeing. Filmmaking is a tool for learning about the world. Data collection - to study what we observe we must see what it is now, and how it is changing. This element of filmmaking is collecting images, video, documenting events, and gathering information. Analysis - to understand the film data we have collected we must understand connections, correlations, and cause and effect. We ask questions. We discover. Experimentation - film allows us to experiment with different scenarios, to test observations and make models. Structure - what we find or what we want to present must be sorted into a structured format using the tools of writing, filming, and editing. Presentation - the final film is the result of what we observe, what observations we collect, what we learn from those observations, how we test what we've learned, and how we organize and show what we find. Online video is transforming the way we see the world. We now have easy access to lectures by the famous and the obscure; we can observe lab experiments, documentaries of field expeditions, and actually see recent research results. Video is omnipresent in our culture and supplements or even replaces writing in many applications. We can easily present our own scientific results to new and important audiences. Video can do a lot for science and scientists: It can provide an expanded audience for scientific news and information, educate thousands, spread the word about scientific developments, help frame controversial science issues, show real scientists at work in the real world, promote interest in scientific publications, and report on science-agency programs. It can also interest young people in future science careers.
NASA Astrophysics Data System (ADS)
Houseal, Ana K.
Engaging elementary students in science through inquiry-based methodologies is at the center of science education reform efforts (AAAS, 1989, NRC 1996, 2000). Through scientific problem solving, students can learn that science is more than just learning facts and concepts (NRC, 2000) The process of scientific inquiry, as a way of approaching scientific problem solving, can be taught to students through experiential, authentic (or real-world) science experiences. Student-teacher-scientist partnerships (STSPs) are one vehicle used to connect students to these science experiences with practicing research scientists. However, the literature on STSPs demonstrates they are fraught with challenges and very little is known of their effects on teachers' and students' content knowledge growth or changes in their attitudes about science and scientists. This study addressed these two areas by researching a particular STSP. The STSP, called Students, Teachers, and Rangers and Research Scientists (STaRRS), designed to be incorporated into the existing long-standing education program Expedition: Yellowstone! (E:Y!) was the focus of this study. For teachers, a pre-test, intervention, post-test research design addressing content knowledge gains, attitude changes, and pedagogical changes was used. A quasi-experimental pre- post-test design using treatment and comparison groups of students addressed content knowledge gains and attitude changes. Findings provided evidence of significant positive shifts in teachers' attitudes regarding science and scientists, and trends of shifting pedagogical choices made by teachers. Students showed significant content knowledge gains and an increased positive attitude regarding their perceptions of scientists.
Development of a test rig for a helium twin-screw compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B. M.; Hu, Z. J.; Zhang, P.
2014-01-29
A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the testmore » performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.« less
Teaching and Learning Science for Transformative, Aesthetic Experience
NASA Astrophysics Data System (ADS)
Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve
2010-11-01
Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.
NASA Astrophysics Data System (ADS)
Krystyniak, Rebecca A.
2001-12-01
This study explored the effect of participation by second-semester general chemistry students in an extended open-inquiry laboratory investigation on their use of science process skills and confidence in performing specific aspects of laboratory investigations. In addition, verbal interactions of a student lab team among team members and with their instructor over three open-inquiry laboratory sessions and two non-inquiry sessions were investigated. Instruments included the Test of Integrated Skills (TIPS), a 36-item multiple-choice instrument, and the Chemistry Laboratory Survey (CLS), a researcher co-designed 20-item 8-point instrument. Instruments were administered at the beginning and close of the semester to 157 second-semester general chemistry students at the two universities; students at only one university participated in open-inquiry activity. A MANCOVA was performed to investigate relationships among control and experimental students, TIPS, and CLS post-test scores. Covariates were TIPS and CLS pre-test scores and prior high school and college science experience. No significant relationships were found. Wilcoxen analyses indicated both groups showed increase in confidence; experimental-group students with below-average TIPS pre-test scores showed a significant increase in science process skills. Transcribed audio tapes of all laboratory-based verbal interactions were analyzed. Coding categories, developed using the constant comparison method, led to an inter-rater reliability of .96. During open-inquiry activities, the lab team interacted less often, sought less guidance from their instructor, and talked less about chemistry concepts than during non-inquiry activities. Evidence confirmed that students used science process skills and engaged in higher-order thinking during both types of activities. A four-student focus shared their experiences with open-inquiry activities, indicating that they enjoyed the experience, viewed it as worthwhile, and believed it helped them gain understanding of the nature of chemistry research. Research results indicate that participation in open-inquiry laboratory increases student confidence and, for some students, the ability to use science process skills. Evidence documents differences in student laboratory interactions and behavior that are attributable to the type of laboratory experience. Further research into aspects of open-inquiry laboratory experiences is recommended.
2014-01-01
Background Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such. PMID:25084625
NASA Astrophysics Data System (ADS)
Galyas, Lesley Crowell
Understanding of visual representations is a pivotal skill necessary in science. These visual, verbal, and numeric representations are the crux of science discourses "by scientists, with students and the general public" (Pauwels, 2006, p.viii). Those who lack the understanding of these representations see it as a foreign language, one that they have never been taught to interpret. Roth, Bowen and Masciotra (2002) assert that students lack the necessary preparation to interpret scientific representational practices thoughtfully and skillfully and are not equipped to decipher the combinations of "divergent representational systems (graphs, images, equations) in a meaningful and edifying whole" (Pauwels, 2006, p.x). Several studies confirm that when students are unable to retrieve and apply knowledge, they will have difficulties with problem solving, critical thinking, and learning new material; moreover this has been demonstrated among all ability levels (O'Reilly & McNamara, 2007). The purpose of this mixed method case study was to explore the use of deliberate instruction of visual literacy skills embedded within inquiry science learning, utilizing the TLC method, for middle school students in a single classroom. Pre- and post-testing, teacher interviews and classroom observations were utilized. The study had three phases pre-implementation, implementation of TLC, and post implementation. The analysis was based on the Embedded Experimental Model. "This model is defined by having qualitative data embedded within an experimental design" (Creswell, 2007, Loc 806 of 3545). The 7th grade science classes studied are dual language immersion with 93% Hispanic and 100% economically disadvantaged students. These classes were taught by a single teacher where native Spanish speakers were taught in Spanish and English speakers were taught in English. The data for final test scores for students taught in English (English speakers, and EL exited) resulted in t (21)=5.42, * p≤.05; and for students taught in Spanish (EL) resulted in t (43)=10.29, *p≤.05. For these findings the following conclusions were made: Evidence from the t-test analysis suggests that increasing the focus of visual literacy skills increases student achievement on pre- and post-tests with both native English speakers as well as English learners.
Beyond the bucket: testing the effect of experimental design on rate and sequence of decay
NASA Astrophysics Data System (ADS)
Gabbott, Sarah; Murdock, Duncan; Purnell, Mark
2016-04-01
Experimental decay has revealed the potential for profound biases in our interpretations of exceptionally preserved fossils, with non-random sequences of character loss distorting the position of fossil taxa in phylogenetic trees. By characterising these sequences we can rewind this distortion and make better-informed interpretations of the affinity of enigmatic fossil taxa. Equally, rate of character loss is crucial for estimating the preservation potential of phylogentically informative characters, and revealing the mechanisms of preservation themselves. However, experimental decay has been criticised for poorly modeling 'real' conditions, and dismissed as unsophisticated 'bucket science'. Here we test the effect of a differing experimental parameters on the rate and sequence of decay. By doing so, we can test the assumption that the results of decay experiments are applicable to informing interpretations of exceptionally preserved fossils from diverse preservational settings. The results of our experiments demonstrate the validity of using the sequence of character loss as a phylogenetic tool, and sheds light on the extent to which environment must be considered before making decay-informed interpretations, or reconstructing taphonomic pathways. With careful consideration of experimental design, driven by testable hypotheses, decay experiments are robust and informative - experimental taphonomy needn't kick the bucket just yet.
NASA Astrophysics Data System (ADS)
Wolfinger, Donna M.
The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.
Using the First-Year English Class to Develop Scientific Thinking Skills
NASA Astrophysics Data System (ADS)
McNamara, B. J.; Burnham, C.; Green, S.; Ball, E.; Schryer, A.
2002-12-01
This poster presents the preliminary results from an experimental approach to teaching first-year writing using the scientific method as an organizing theme. The approach presumes a close connection between the classical scientific method: observing, hypothesis forming, hypothesis testing, and generalizing from the results of the testing, and the writing process: inventing and prewriting, drafting, and revising. The project has four goals: 1. To introduce students to the relations between scientific method, academic inquiry, and the writing process; 2. To help students see that academic inquiry, the work of generating, testing, and validating knowledge and then applying that knowledge in real contexts, is actually a hybrid form of the scientific method; 3. To encourage students to connect the work they are doing in the writing classroom with the work they are doing in other classes so they can transfer the skills learned in one context to the other; and 4. To cause students who have previously been alienated by science and science teaching to reconsider their attitudes, and to see the powerful influence of science and scientific thinking in our world. In short, we are teaching science literacy in a humanities classroom. The materials we use include science-based reading and the kinds of writing typically required in science classes. The poster presents the basic premises of the project, samples of class materials, and preliminary results of a controlled pre- and post-test of student attitudes toward science and writing, analyzed especially according to gender and minority status. We also present insights by participating instructors including a female graduate teaching assistant who had been trained as a scientist and a male who had not.
NASA Astrophysics Data System (ADS)
Kwon, So Young
Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.
ERIC Educational Resources Information Center
Blank, Rolf K.
2004-01-01
The purpose of the three-year CCSSO study was to design, implement, and test the effectiveness of the Data on Enacted Curriculum (DEC) model for improving math and science instruction. The model was tested by measuring its effects with a randomly selected sample of ?treatment? schools at the middle grades level as compared to a control group of…
NASA Technical Reports Server (NTRS)
1991-01-01
A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.
Review on the EFDA programme on tungsten materials technology and science
NASA Astrophysics Data System (ADS)
Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.
2011-10-01
All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.
NASA Astrophysics Data System (ADS)
Knappenberger, Naomi
This dissertation examines factors which may affect the educational effectiveness of science exhibits. Exhibit effectiveness is the result of a complex interaction among exhibit features, cognitive characteristics of the museum visitor, and educational outcomes. The purpose of this study was to determine the relative proportions of field-dependent and field-independent visitors in the museum audience, and to ascertain if the cognitive style of visitors interacted with instructional strategies to affect the educational outcomes for a computer-based science exhibit. Cognitive style refers to the self-consistent modes of selecting and processing information that an individual employs throughout his or her perceptual and intellectual activities. It has a broad influence on many aspects of personality and behavior, including perception, memory, problem solving, interest, and even social behaviors and self-concept. As such, it constitutes essential dimensions of individual differences among museum visitors and has important implications for instructional design in the museum. The study was conducted in the spring of 1998 at the Adler Planetarium and Astronomy Museum in Chicago. Two experimental treatments of a computer-based exhibit were tested in the study. The first experimental treatment utilized strategies designed for field-dependent visitors that limited the text and provided more structure and cueing than the baseline treatment of the computer program. The other experimental treatment utilized strategies designed for field-independent visitors that provided hypothesis-testing and more contextual information. Approximately two-thirds of the visitors were field-independent. The results of a multiple regression analysis indicated that there was a significant interaction between cognitive style and instructional strategy that affected visitors' posttest scores on a multiple-choice test of the content. Field-independent visitors out- performed the field-dependent visitors in the control, baseline, and both experimental treatments. Both field-dependent and field-independent visitor posttest scores increased in the field-dependent experimental treatment and in the field-independent treatment. The most effective treatment for all visitors was the field-independent treatment. Criteria for designing a computer-based exhibit to meet the needs of all visitors were recommended. These included organized, concise text; a structured, rather than exploratory design; and cueing in the form of questions, bold fonts, underlining of important words and concepts, and captioned images.
Positive perception of pharmacogenetic testing for psychotropic medications
Lanktree, Matthew B; Zai, Gwyneth; VanderBeek, Laura E; Giuffra, Daniel E; Smithson, David S; Kipp, Lucas B; Dalseg, Timothy R; Speechley, Mark; Kennedy, James L
2014-01-01
Introduction Pharmacogenetics attempts to identify inter-individual genetic differences that are predictive of variable drug response and propensity to side effects, with the prospect of assisting physicians to select the most appropriate drug and dosage for treatment. However, many concerns regarding genetic tests exist. We sought to test the opinions of undergraduate science and medical students in southern Ontario universities toward pharmacogenetic testing. Methods and Results Questionnaires were completed by 910 undergraduate medicine and science students from 2005 to 2007. Despite students' concerns that the results of genetic tests may be used for other purposes without consent (71%) or lead to discrimination (78%), an overwhelming number of students were in favor of pharmacogenetic testing (90%). Discussion To our knowledge, this study is the first to survey a large sample for their attitude toward pharmacogenetic testing for psychotropic medications. Our results indicate that, although concerns remain and scientific advancements are required, respondents were in support of pharmacogenetic testing for medications used to treat schizophrenia. © 2014 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd. PMID:24604560
NASA Astrophysics Data System (ADS)
Gao, Jike
2018-01-01
Through using the method of literature review, instrument measuring, questionnaire and mathematical statistics, this paper analyzed the current situation in Mass Sports of Tibetan Areas Plateau in Gansu Province. Through experimental test access to Tibetan areas in gansu province of air pollutants and meteorological index data as the foundation, control related national standard and exercise science, statistical analysis of data, the Tibetan plateau, gansu province people participate in physical exercise is dedicated to providing you with scientific methods and appropriate time.
NASA Astrophysics Data System (ADS)
Marshall, Jeff C.; Alston, Daniel M.
2014-11-01
Student's performance in science classrooms has continued to languish throughout the USA. Even though proficiency rates on national tests such as National Assessment of Educational Progress are higher for Caucasian students than African-Americans and Hispanics, all groups lack achieving desired proficiency rates. Further, the Next Generation Science Standards detail a new higher benchmark for all students. This study analyzes a professional development (PD) project, entitled Inquiry in Motion, designed to (a) facilitate teacher transformation toward greater quantity and quality of inquiry-based instruction, (b) improve student achievement in science practices and science concepts, and (c) begin to narrow the achievement gap among various groups. This 5-year PD study included 11 schools, 74 middle school teachers, and 9,981 students from diverse, high minority populations. Findings from the quasi-experimental study show statistically significant gains for all student groups (aggregate, males, females, Caucasians, African-Americans, and Hispanics) on all three science Measure of Academic Progress tests (composite, science practices, and science concepts) when compared to students of non-participating teachers. In addition to an increase in overall performance for all groups, a narrowing of the achievement gap of minority students relative to Caucasian students was seen. When combined with other studies, this study affirms that, when facilitated effectively, inquiry-based instruction may benefit all students, for all demographic groups measured.
CRIS Cyber Range Lexicon Version 1.0 (Report 59 0001)
2015-11-27
Evaluation (T&E) Support Cell, TRMC/ Northrop Grumman ) Dr. David “Fuzzy” Wells (USPACOM) Mr. Bennett Wilson (NAVSEA GOV – CDSA, Damneck...9 Figure 4: Planes and Teams...Communities supported by the CRIS WG include, but are not limited to, Science & Technology (S&T) experimentation , Developmental and Operational Test and
1982-07-01
aerospace engineering um~Ŕ" eqe~vswse 0engiee amp snry stem englnerlag. enI~e so ISaCW , meterI scienc Turbulent Swirling Flow Dowstreas of an Abrupt...With the horizontal test section and circumferentially local measurements, the extent of the influence of gravity -induced convection can be determined
ERIC Educational Resources Information Center
Korur, Fikret; Toker, Sacip; Eryilmaz, Ali
2016-01-01
This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…
Monitoring Undergraduate Student Needs and Activities at Experimental Biology: APS Pilot Survey
ERIC Educational Resources Information Center
Nichols, Nicole L.; Ilatovskaya, Daria V.; Matyas, Marsha L.
2017-01-01
Life science professional societies play important roles for undergraduates in their fields and increasingly offer membership, fellowships, and awards for undergraduate students. However, the overall impacts of society-student interactions have not been well studied. Here, we sought to develop and test a pilot survey of undergraduate students to…
Integrating Pharmacology Topics in High School Biology and Chemistry Classes Improves Performance
ERIC Educational Resources Information Center
Schwartz-Bloom, Rochelle D.; Halpin, Myra J.
2003-01-01
Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g.,…
2010-03-11
Students, Ajay Ramesh and Prithvi Aiyaswamy in 7th grade, Chaboya Middle School, San Jose, have entered the Intel Inernational Science Fair (May 2010) They are here at the Ames Research center to test the drag of race cars in the Fluid Mechanics Lab (FML) with the guidance of Kurt Long of the Experimental Aero-Physics Branch.
Darwin, Earthworms & Circadian Rhythms: A Fertile Field for Science Fair Experiments
ERIC Educational Resources Information Center
Burns, John T.; Scurti, Paul J.; Furda, Amy M.
2009-01-01
This article discusses why the study of earthworms has fascinated many scientists, and why earthworms make ideal experimental animals for students to test in the laboratory. Although earthworms may appear to be primitive, they are governed by both circadian and seasonal rhythms, just as more advanced organisms are. They possess an intelligence…
NASA Astrophysics Data System (ADS)
Griffin, Leslie Little
The purpose of this study was to determine the relationship of selected cognitive abilities and physical science misconceptions held by preservice elementary teachers. The cognitive abilities under investigation were: formal reasoning ability as measured by the Lawson Classroom Test of Formal Reasoning (Lawson, 1978); working memory capacity as measured by the Figural Intersection Test (Burtis & Pascual-Leone, 1974); verbal intelligence as measured by the Acorn National Academic Aptitude Test: Verbal Intelligence (Kobal, Wrightstone, & Kunze, 1944); and field dependence/independence as measured by the Group Embedded Figures Test (Witkin, Oltman, & Raskin, 1971). The number of physical science misconceptions held by preservice elementary teachers was measured by the Misconceptions in Science Questionnaire (Franklin, 1992). The data utilized in this investigation were obtained from 36 preservice elementary teachers enrolled in two sections of a science methods course at a small regional university in the southeastern United States. Multiple regression techniques were used to analyze the collected data. The following conclusions were reached following an analysis of the data. The variables of formal reasoning ability and verbal intelligence were identified as having significant relationships, both individually and in combination, to the dependent variable of selected physical science misconceptions. Though the correlations were not high enough to yield strong predictors of physical science misconceptions or strong relationships, they were of sufficient magnitude to warrant further investigation. It is recommended that further investigation be conducted replicating this study with a larger sample size. In addition, experimental research should be implemented to explore the relationships suggested in this study between the cognitive variables of formal reasoning ability and verbal intelligence and the dependent variable of selected physical science misconceptions. Further research should also focus on the detection of a broad range of science misconceptions among preservice elementary teachers.
NASA Astrophysics Data System (ADS)
Vowell, Julie E.
The purpose of this study was to determine the extent to which debriefing impacts the level of cognitive understanding among students in the fifth-grade science classroom. This mixed methods study involved two fifth-grade science classrooms (N = 39) in a one month exploration of rocks and minerals. Two fifth-grade science classrooms participated in a unit using identical content, but had different pedagogical orientations. The experimental class was taught using the "Do-Talk-Do-Debrief" instructional method and the control class was taught using the "Do-Talk-Do" instructional method without the "Debrief" (metacognitive component). Research for the quantitative portion of this study was conducted using a pretest-posttest control-group design. The design was used to test the hypothesized relationship between an activity-based instructional method with debriefing and students' achievement. Two intact, equivalent fifth-grade classes were randomly assigned to treatment and control conditions. Prior to the beginning of the study, a researcher-developed pretest was administered to all participants to assess the students' prior knowledge of rocks and minerals. A posttest measure was given to the participants upon conclusion of the unit to measure knowledge and understanding. Following the posttest, the participants did not receive additional instruction over rocks and minerals. A similar posttest was administered to both groups two weeks later as an added measure for retention. A t-test for independent samples was used to examine differences on the pretest between the experimental and control groups. Likewise, a t-test was used to compare the mean scores on the first posttest (achievement). A separate t-test was conducted on the second posttest (retention) and was followed by a Pearson Product Moment Correlation, conducted by group. Research for the qualitative portion of this study involved classroom observations throughout the rock and mineral unit followed by a teacher interview. Observations were made in two fifth-grade classrooms and Flanders' Categories for Interaction Analysis was used as a framework for observing the level of social interaction. The observations were transcribed and developed into a "thick" record as suggested by Dr. Phil Carspecken's stages of qualitative research. Member checking and peer debriefing techniques were employed to increase the trustworthiness of the study. The quantitative data suggested science achievement of fifth-grade science students who learned through activity-based instruction with debriefing was statistically significantly higher than the science achievement of fifth-grade science students who learned through activity-based instruction without debriefing (p<.01), as measured by the first posttest. Also, student retention as measured by fifth-grade science students who learned through activity-based instruction was statistically significantly higher than fifth-grade science students who learned through activity-based instruction without debriefing (p<.01), as measured by the second posttest. Additionally, the effect sizes for achievement and retention were very large and educationally meaningful. Activity-based instruction enhanced with debriefing resulted in a deeper construction of knowledge and retention of understanding.
Concept Verification Test - Evaluation of Spacelab/Payload operation concepts
NASA Technical Reports Server (NTRS)
Mcbrayer, R. O.; Watters, H. H.
1977-01-01
The Concept Verification Test (CVT) procedure is used to study Spacelab operational concepts by conducting mission simulations in a General Purpose Laboratory (GPL) which represents a possible design of Spacelab. In conjunction with the laboratory a Mission Development Simulator, a Data Management System Simulator, a Spacelab Simulator, and Shuttle Interface Simulator have been designed. (The Spacelab Simulator is more functionally and physically representative of the Spacelab than the GPL.) Four simulations of Spacelab mission experimentation were performed, two involving several scientific disciplines, one involving life sciences, and the last involving material sciences. The purpose of the CVT project is to support the pre-design and development of payload carriers and payloads, and to coordinate hardware, software, and operational concepts of different developers and users.
NASA Astrophysics Data System (ADS)
Sazonov, D. S.
2017-12-01
A correlation analysis of the model calculations and experimental measurements of wind-speed sensitivity of a rough sea-surface microwave emission at a frequency of 37.5 GHz are presented. The field data used in the research were collected over 3 years in the summer and autumn periods at the oceanographic platform of the Marine Hydrophysical Institute, Russian Academy of Sciences (RAS). A hypothesis about a significant correlation between the model calculations and experimentally measured sea-surface emission ability caused by wind forcing was formulated and tested to reveal this correlation. An evaluation of the discrepancy between the model and experimental data has been performed by an analysis of residuals. Our studies have shown that among the selected models not a single one adequately describes the experimental data.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
The importance and pitfalls of correlational science in palliative care research.
Klepstad, Pål; Kaasa, Stein
2012-12-01
Correlational science discovers associations between patient characteristics, symptoms and biomarkers. Correlational science using data from cross-sectional studies is the most frequently applied study design in palliative care research. The purpose of this review is to address the importance and potential pitfalls in correlational science. Associations observed in correlational science studies can be the basis for generating hypotheses that can be tested in experimental studies and are the basic data needed to develop classification systems that can predict patient outcomes. Major pitfalls in correlational science are that associations do not equate with causality and that statistical significance does not necessarily equal a correlation that is of clinical interest. Researchers should be aware of the end-points that are clinically relevant, that end-points should be defined before the start of the analyses, and that studies with several end-points should account for multiplicity. Correlational science in palliative care research can identify related clinical factors and biomarkers. Interpretation of identified associations should be done with careful consideration of the limitations underlying correlational analyses.
Does “Science” Make You Moral? The Effects of Priming Science on Moral Judgments and Behavior
Ma-Kellams, Christine; Blascovich, Jim
2013-01-01
Background Previous work has noted that science stands as an ideological force insofar as the answers it offers to a variety of fundamental questions and concerns; as such, those who pursue scientific inquiry have been shown to be concerned with the moral and social ramifications of their scientific endeavors. No studies to date have directly investigated the links between exposure to science and moral or prosocial behaviors. Methodology/Principal Findings Across four studies, both naturalistic measures of science exposure and experimental primes of science led to increased adherence to moral norms and more morally normative behaviors across domains. Study 1 (n = 36) tested the natural correlation between exposure to science and likelihood of enforcing moral norms. Studies 2 (n = 49), 3 (n = 52), and 4 (n = 43) manipulated thoughts about science and examined the causal impact of such thoughts on imagined and actual moral behavior. Across studies, thinking about science had a moralizing effect on a broad array of domains, including interpersonal violations (Studies 1, 2), prosocial intentions (Study 3), and economic exploitation (Study 4). Conclusions/Significance These studies demonstrated the morally normative effects of lay notions of science. Thinking about science leads individuals to endorse more stringent moral norms and exhibit more morally normative behavior. These studies are the first of their kind to systematically and empirically test the relationship between science and morality. The present findings speak to this question and elucidate the value-laden outcomes of the notion of science. PMID:23483960
NASA Astrophysics Data System (ADS)
Ebrahim, Ali
The purpose of this study is to examine the impact of two instructional methods on students' academic achievement and attitudes toward elementary science in the State of Kuwait: traditional teaching method and the 4-E learning cycle inquiry teaching method. The subjects were 111 students from four intact 4th grade classes. The experiment group (n = 56) received the learning cycle instruction while the control group (n = 55) received a more traditional approach over a four week period. The same female teacher taught the experimental and control groups for boys and a different female teacher taught experimental and control groups for girls. The dependent variables were measured through the use of: (1) a science achievement test to assess student achievement; and (2) an attitude survey to measure students' attitudes toward science. Quantitative data were collected on students' pre- and post-treatment achievement and attitudes measures. The two way MANOVA reveals that: the 4-E learning cycle instructional method produces significantly greater achievement and attitudes among fourth grade science students than the traditional teaching approach F (2, 93) = 19.765, (P = .000), corresponding to Wilks' Lambda = .702 with an effect size of .298 and a power of 1. In light of these findings, it is therefore suggested that students can achieve greater and have higher science attitudes when the 4-E learning cycle is used. In addition, these findings support the notion that effective instruction in teaching science, such as the 4-E learning cycle instruction, should be proposed and implemented in elementary schools.
Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling
NASA Astrophysics Data System (ADS)
Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.
2018-02-01
The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental design study to test the effectiveness of a model-based curriculum focused on the concepts of natural selection and population ecology that makes use of Excel modeling tools (Modeling Instruction in Biology with Excel, MBI-E). The curriculum revolves around the bio-engineering practice of controlling an invasive species. The study takes place in the Midwest within ten high schools teaching a regular-level introductory biology class. A post-test was designed that targeted a number of common misconceptions in both concept areas as well as representational usage. The results of a post-test demonstrate that the MBI-E students significantly outperformed the traditional classes in both natural selection and population ecology concepts, thus overcoming a number of misconceptions. In addition, implementing students made use of more multiple representations as well as demonstrating greater fascination for science.
Podcasts on Mobile Devices as a Read-Aloud Testing Accommodation in Middle School Science Assessment
NASA Astrophysics Data System (ADS)
McMahon, Don; Wright, Rachel; Cihak, David F.; Moore, Tara C.; Lamb, Richard
2016-04-01
The purpose of this study was to examine the effect of a digitized podcast to deliver read-aloud testing accommodations on mobile devices to students with disabilities and reading difficulties. The total sample for this study included 47 middle school students with reading difficulties. Of the 47 students, 16 were identified as students with disabilities who received special education services. Participants were randomly assigned to three experimental testing conditions, standard administration, teacher-controlled read-aloud in traditional group delivery format, and student-controlled read-aloud delivered as a podcast and accessed on a mobile device, and given sample end-of-year science assessments. Based on a factorial analysis of variances, with test conditions and student status as the fixed factors, both student groups demonstrated statistically significant gains based on their testing conditions. Results support the use of podcast delivery as a viable alternative to the traditional teacher-delivered read-aloud test accommodation. Conclusions are discussed in the context of universal design for learning testing accommodations for future research and practice.
NASA Astrophysics Data System (ADS)
Akben, Nimet
2018-05-01
The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.
NASA Astrophysics Data System (ADS)
Anderson, O. Roger
The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.
The effect of trade books on the environmental literacy of 11th and 12th graders in aquatic science
NASA Astrophysics Data System (ADS)
Lewis, Ann S.
The purpose of this study was to compare the environmental literacy of 11th and 12th graders who participated in an eighteen-week environmental education program using trade books versus 11 th- and 12th-graders who participated in an eighteen-week, traditional environmental education program without the use of trade books. This study was conducted using a quasi-experimental research technique. Four high school aquatic science classes at two suburban high schools were used in the research. One teacher at each high school taught one control class and one experimental class of aquatic science. In the experimental classes, four trade books were read to the classes during the eighteen-week semester. These four books were selected by the participating teachers before the semester began. The books used were A Home by the Sea, Sea Otter Rescue, There's a Hair in My Dirt, and The Missing Gator of Gumbo Limbo. The instrument used to measure environmental literacy was the Children's Environmental Attitude and Knowledge Scale. This test was given at the beginning of the semester and at the end of the semester. The scores at the end of the semester were analyzed by 2 x 2 mixed model ANOVA with the teacher as the random effect and the condition (trade books) as the fixed effect. The statistical analysis of this study showed that the students in the experimental classes did not score higher than the control classes on the Children's Environmental Attitude and Knowledge Scale or on a subset of "water" questions. Several limitations were placed on this research. These limitations included the following: (1) a small number of classes and a small number of teachers, (2) change from the original plan of using environmental science classes to aquatic science classes, (3) possible indifference of the students, and (4) restrictive teaching strategies of the teachers.
Temperature prediction of space flight experiments by computer thermal analysis
NASA Technical Reports Server (NTRS)
Birdsong, M. B.; Luttges, M. W.
1994-01-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Temperature prediction of space flight experiments by computer thermal analysis.
Birdsong, M B; Luttges, M W
1995-02-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
NASA Technical Reports Server (NTRS)
Mohamadinejad, H.; Knox, J. C.; Smith, James E.
1999-01-01
The importance of the wall effect on packed beds in the adsorption and desorption of carbon dioxide, nitrogen, and water on molecular sieve 5A of 0.127 cm in radius is examined experimentally and with one-dimensional computer simulations. Experimental results are presented for a 22.5-cm long by 4.5-cm diameter cylindrical column with concentration measurements taken at various radial locations. The set of partial differential equations are solved using finite differences and Newman's method. Comparison of test data with the axial-dispersed, non-isothermal, linear driving force model suggests that a two-dimensional model (submitted to Separation Science and Technology) is required for accurate simulation of the average column breakthrough concentration. Additional comparisons of test data with the model provided information on the interactive effects of carrier gas coadsorption with CO2, as well as CO2-H2O interactions.
NASA Astrophysics Data System (ADS)
Vázquez-Alonso, Ángel; Aponte, Abdiel; Manassero-Mas, María-Antonia; Montesano, Marisa
2016-07-01
This study examines the effectiveness of a teaching-learning sequence (TLS) to improve the understanding of the influences and interactions between a technology (mining) and society. The aim of the study is also to show the possibility of both teaching and assessing the most innovative issues and aspects of scientific competence and their impact on the understanding of the nature of science. The methodology used a quasi-experimental, pre-post-test design with a control group, with pre-post-test differences as the empirical indicators of improved understanding. Improvements were modest, as the empirical differences (pre-post and experimental-control group) were not large, but the experimental group scored more highly than the control group. The areas that showed improvement were identified. The paper includes the TLS itself and the standardized assessment tools that are functional and transferable to other researchers and teachers.
Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.
2004-01-01
The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.
Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.
2006-01-01
The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.
Integrated STEM in secondary education: A case study
NASA Astrophysics Data System (ADS)
De Meester, Jolien; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet; Dehaene, Wim
2016-05-01
Despite many opportunities to study STEM (Science, Technology, Engineering & Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils' interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school's teachers and a STEM education research group of the University of Leuven. To examine the pupils' attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils' interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils' understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.
Experimental Physical Sciences Vistas Performance through Science Winter 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Cruz, James Michael; Hockaday, Mary Yvonne P.
This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.
Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat
NASA Astrophysics Data System (ADS)
Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto
2013-03-01
Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.
NASA Astrophysics Data System (ADS)
Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.
2017-10-01
Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin
2009-01-01
Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.
ERIC Educational Resources Information Center
Karadag, Engin
2010-01-01
To assess research methods and analysis of statistical techniques employed by educational researchers, this study surveyed unpublished doctoral dissertation from 2003 to 2007. Frequently used research methods consisted of experimental research; a survey; a correlational study; and a case study. Descriptive statistics, t-test, ANOVA, factor…
Development and Evaluation of the Diagnostic Power for a Computer-Based Two-Tier Assessment
ERIC Educational Resources Information Center
Lin, Jing-Wen
2016-01-01
This study adopted a quasi-experimental design with follow-up interview to develop a computer-based two-tier assessment (CBA) regarding the science topic of electric circuits and to evaluate the diagnostic power of the assessment. Three assessment formats (i.e., paper-and-pencil, static computer-based, and dynamic computer-based tests) using…
The Effect of an Embedded Pedagogical Agent on the Students' Science Achievement
ERIC Educational Resources Information Center
Kizilkaya, Gonca; Askar, Petek
2008-01-01
Purpose: The purpose of this paper is to investigate the effect of an embedded pedagogical agent into a tutorial on achievement. Design/methodology/approach: Research methodology is designed according to the post test control group model in which the experimental group (69 students) was exposed to a tutorial with an embedded pedagogical agent;…
ERIC Educational Resources Information Center
Reinfried, Sibylle
2006-01-01
This research tested the hypothesis that students' erroneous mental models about groundwater will change towards more valid concepts if they are taught on the basis of a mental model-building strategy that focuses on the clarification of students' misconceptions. To examine the hypothesis a quasi-experimental research design was chosen. The…
SRA Economics Materials in Grades One and Two. Evaluation Reports.
ERIC Educational Resources Information Center
Shaver, James P.; Larkins, A. Guy
A class of first graders and a class of second graders in four Salt Lake City schools comprised the experimental sample in a study whose objectives were (1) to develop a test for assessing learning with "Our Working World" materials, published by Science Research Associate (SRA), and (2) to determine if students using the materials made…
[The 1, 2, 3 of laboratory animal experimentation].
Romero-Fernandez, Wilber; Batista-Castro, Zenia; De Lucca, Marisel; Ruano, Ana; García-Barceló, María; Rivera-Cervantes, Marta; García-Rodríguez, Julio; Sánchez-Mateos, Soledad
2016-06-01
The slow scientific development in Latin America in recent decades has delayed the incorporation of laboratory animal experimentation; however, this situation has started to change. Today, extraordinary scientific progress is evident, which has promoted the introduction and increased use of laboratory animals as an important tool for the advancement of biomedical sciences. In the aftermath of this boom, the need to provide the scientific community with training and guidance in all aspects related to animal experimentation has arisen. It is the responsibility of each country to regulate this practice, for both bioethical and legal reasons, to ensure consideration of the animals' rights and welfare. The following manuscript is the result of papers presented at the International Workshop on Laboratory Animal Testing held at the Technical University of Ambato, Ecuador; it contains information regarding the current state of affairs in laboratory animal testing and emphasizes critical aspects such as main species used, ethical and legal principles, and experimental and alternative designs for animal use. These works aim to ensure good practices that should define scientific work. This document will be relevant to both researchers who aim to newly incorporate animal testing into their research and those who seek to update their knowledge.
Pesticide regulations for agriculture: Chemically flawed regulatory practice.
Gamble, Donald S; Bruccoleri, Aldo G
2016-08-02
Two categories of pesticide soil models now exist. Government regulatory agencies use pesticide fate and transport hydrology models, including versions of PRZM.gw. They have good descriptions of pesticide transport by water flow. Their descriptions of chemical mechanisms are unrealistic, having been postulated using the universally accepted but incorrect pesticide soil science. The objective of this work is to report experimental tests of a pesticide soil model in use by regulatory agencies and to suggest possible improvements. Tests with experimentally based data explain why PRZM.gw predictions can be wrong by orders of magnitude. Predictive spreadsheet models are the other category. They are experimentally based, with chemical stoichiometry applied to integral kinetic rate laws for sorption, desorption, intra-particle diffusion, and chemical reactions. They do not account for pesticide transport through soils. Each category of models therefore lacks what the other could provide. They need to be either harmonized or replaced. Some preliminary tests indicate that an experimental mismatch between the categories of models will have to be resolved. Reports of pesticides in the environment and the medical problems that overlap geographically indicate that government regulatory practice needs to account for chemical kinetics and mechanisms. Questions about possible cause and effect links could then be investigated.
Which experimental systems should we use for human microbiome science?
Douglas, Angela E
2018-03-01
Microbiome science is revealing that the phenotype and health of animals, including humans, depend on the sustained function of their resident microorganisms. In this essay, I argue for thoughtful choice of model systems for human microbiome science. A greater variety of experimental systems, including wider use of invertebrate models, would benefit biomedical research, while systems ill-suited to experimental and genetic manipulation can be used to address very limited sets of scientific questions. Microbiome science benefits from the coordinated use of multiple systems, which is facilitated by networks of researchers with expertise in different experimental systems.
Verbal and visual learning of science terminology by high school biology students
NASA Astrophysics Data System (ADS)
Grant, Andrew Morton
The purpose of this study is to determine whether scientific terms with multiple meanings are more easily learned when taught pictorially or when taught verbally. The question of interference from previously known colloquial meanings is addressed as well. In carrying out this study, an experimental group of 30 students was taught pictorially and a control group of 30 students was taught verbally. Each group was made up of male and female students from the dominant culture (Caucasian) and from alternate cultures (mainly African American and Asian). The age of the participants was between 14 and 17. Students were selected as class groups. There were four class groups in the study. Class groups were assigned to the experimental or control group by random selection. Results were compared by use of a pre-test and post-test procedure. Students were asked to verbally describe 41 terms having scientific and colloquial meanings; they were to give the scientific meaning, if known, the colloquial if not, or leave a question mark if the term was unknown. They were then asked to draw a picture of the meaning of the term, if known. The same instructions were given to both groups. A series of seven hypotheses were identified. These hypotheses considered learning outcomes related to instructional mode as well as outcomes related to gender and cultural differences. An attempt was made to determine the similarity of the experimental and control groups. Student profiles, a learning styles inventory, and an imbedded image test all showed an initial similarity of the two groups. Once the pretest and posttest were given, data were analyzed by the use of the Chi-square of Association, the McNemar Chi-square, and Z scores (at.05 significance level). Results indicated significant differences in outcomes between the experimental group and the control group. The experimental group showed more science vocabulary learning than the control group and experienced more interference from the colloquial meanings of the terms used. Gender and cultural relationships were tested both between groups and within groups. Significant gender differences were found between groups. The patterns of response described in the experimental group were attributed to the method of pictorial instruction given this group.
NASA Astrophysics Data System (ADS)
Park, Wonyong; Song, Jinwoong
2018-03-01
There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.
Learning Experimentation through Science Fairs
ERIC Educational Resources Information Center
Paul, Jürgen; Lederman, Norman G.; Groß, Jorge
2016-01-01
Experiments are essential for both doing science and learning science. The aim of the German youth science fair, "Jugend forscht," is to encourage scientific thinking and inquiry methods such as experimentation. Based on 57 interviews with participants of the competition, this study summarises students' conceptions and steps of learning…
Orion Crew Module Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.
2011-01-01
The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard
2011-01-01
This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.
Publication bias and the failure of replication in experimental psychology.
Francis, Gregory
2012-12-01
Replication of empirical findings plays a fundamental role in science. Among experimental psychologists, successful replication enhances belief in a finding, while a failure to replicate is often interpreted to mean that one of the experiments is flawed. This view is wrong. Because experimental psychology uses statistics, empirical findings should appear with predictable probabilities. In a misguided effort to demonstrate successful replication of empirical findings and avoid failures to replicate, experimental psychologists sometimes report too many positive results. Rather than strengthen confidence in an effect, too much successful replication actually indicates publication bias, which invalidates entire sets of experimental findings. Researchers cannot judge the validity of a set of biased experiments because the experiment set may consist entirely of type I errors. This article shows how an investigation of the effect sizes from reported experiments can test for publication bias by looking for too much successful replication. Simulated experiments demonstrate that the publication bias test is able to discriminate biased experiment sets from unbiased experiment sets, but it is conservative about reporting bias. The test is then applied to several studies of prominent phenomena that highlight how publication bias contaminates some findings in experimental psychology. Additional simulated experiments demonstrate that using Bayesian methods of data analysis can reduce (and in some cases, eliminate) the occurrence of publication bias. Such methods should be part of a systematic process to remove publication bias from experimental psychology and reinstate the important role of replication as a final arbiter of scientific findings.
Predictors of cultural capital on science academic achievement at the 8th grade level
NASA Astrophysics Data System (ADS)
Misner, Johnathan Scott
The purpose of the study was to determine if students' cultural capital is a significant predictor of 8th grade science achievement test scores in urban locales. Cultural capital refers to the knowledge used and gained by the dominant class, which allows social and economic mobility. Cultural capital variables include magazines at home and parental education level. Other variables analyzed include socioeconomic status (SES), gender, and English language learners (ELL). This non-experimental study analyzed the results of the 2011 Eighth Grade Science National Assessment of Educational Progress (NAEP). The researcher analyzed the data using a multivariate stepwise regression analysis. The researcher concluded that the addition of cultural capital factors significantly increased the predictive power of the model where magazines in home, gender, student classified as ELL, parental education level, and SES were the independent variables and science achievement was the dependent variable. For alpha=0.05, the overall test for the model produced a R2 value of 0.232; therefore the model predicted 23.2% of variance in science achievement results. Other major findings include: higher measures of home resources predicted higher 2011 NAEP eighth grade science achievement; males were predicted to have higher 2011 NAEP 8 th grade science achievement; classified ELL students were predicted to score lower on the NAEP eight grade science achievement; higher parent education predicted higher NAEP eighth grade science achievement; lower measures of SES predicted lower 2011 NAEP eighth grade science achievement. This study contributed to the research in this field by identifying cultural capital factors that have been found to have statistical significance on predicting eighth grade science achievement results, which can lead to strategies to help improve science academic achievement among underserved populations.
The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.
NASA Astrophysics Data System (ADS)
Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.
2015-12-01
ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Liechty, Derek S.
2008-01-01
The influence of cavities (for attachment bolts) on the heat-shield of the proposed Mars Science Laboratory entry vehicle has been investigated experimentally and computationally in order to develop a criterion for assessing whether the boundary layer becomes turbulent downstream of the cavity. Wind tunnel tests were conducted on the 70-deg sphere-cone vehicle geometry with various cavity sizes and locations in order to assess their influence on convective heating and boundary layer transition. Heat-transfer coefficients and boundary-layer states (laminar, transitional, or turbulent) were determined using global phosphor thermography.
Physical Science Laboratory Manual, Experimental Version.
ERIC Educational Resources Information Center
Cooperative General Science Project, Atlanta, GA.
Provided are physical science laboratory experiments which have been developed and used as a part of an experimental one year undergraduate course in general science for non-science majors. The experiments cover a limited number of topics representative of the scientific enterprise. Some of the topics are pressure and buoyancy, heat, motion,…
NASA Astrophysics Data System (ADS)
Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.
2017-04-01
The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.
The effectivenes of science domain-based science learning integrated with local potency
NASA Astrophysics Data System (ADS)
Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu
2017-08-01
This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.
NASA Astrophysics Data System (ADS)
Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.
2014-01-01
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Xiong, L. Y.; Peng, N.
2014-01-29
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemensmore » S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.« less
Sharifi, Parvane; Rahmati, Abbas; Saber, Maryam
2013-10-01
To evaluate the effect of note-taking skills training on the achievement motivation in learning. The experimental study comprised graduate students of the 2010-11 batch at Kerman's Bahonar University and Kerman's Medical Sciences University, Iran. The study sample included 110 people; 55 in the test group, and 55 in the control group. They were randomly selected and replaced through the single-stage cluster sampling. To collect the data, a questionnaire was used. Pre-test was performed before the training session in two groups. After training course, a post-test was taken. For data analysis, the independent t-test, was used. The average pre-test score of the test group was 182 +/- 34.15, while for the control group it was 191 +/- 30.37 (p < 0.089). After the training, the post-test showed statistically significant change. The test group scored 220 +/- 20.94 against the controls who scored 195 +/- 27.26 (p < 0.001). The findings showed that achievement motivation in learning increased significantly after imparting training in note-taking skills. Authorities in the educational system should invest more for promotion of such skills.
Clinical trials transparency and the Trial and Experimental Studies Transparency (TEST) act.
Logvinov, Ilana
2014-03-01
Clinical trial research is the cornerstone for successful advancement of medicine that provides hope for millions of people in the future. Full transparency in clinical trials may allow independent investigators to evaluate study designs, perform additional analysis of data, and potentially eliminate duplicate studies. Current regulatory system and publishers rely on investigators and pharmaceutical industries for complete and accurate reporting of results from completed clinical trials. Legislation seems to be the only way to enforce mandatory disclosure of results. The Trial and Experimental Studies Transparency (TEST) Act of 2012 was introduced to the legislators in the United States to promote greater transparency in research industry. Public safety and advancement of science are the driving forces for the proposed policy change. The TEST Act may benefit the society and researchers; however, there are major concerns with participants' privacy and intellectual property protection. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantum violation of an instrumental test
NASA Astrophysics Data System (ADS)
Chaves, Rafael; Carvacho, Gonzalo; Agresti, Iris; Di Giulio, Valerio; Aolita, Leandro; Giacomini, Sandro; Sciarrino, Fabio
2018-03-01
Inferring causal relations from experimental observations is of primal importance in science. Instrumental tests provide an essential tool for that aim, as they allow one to estimate causal dependencies even in the presence of unobserved common causes. In view of Bell's theorem, which implies that quantum mechanics is incompatible with our most basic notions of causality, it is of utmost importance to understand whether and how paradigmatic causal tools obtained in a classical setting can be carried over to the quantum realm. Here we show that quantum effects imply radically different predictions in the instrumental scenario. Among other results, we show that an instrumental test can be violated by entangled quantum states. Furthermore, we demonstrate such violation using a photonic set-up with active feed-forward of information, thus providing an experimental proof of this new form of non-classical behaviour. Our findings have fundamental implications in causal inference and may also lead to new applications of quantum technologies.
An OSI architecture for the deep space network
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Cooper, Lynne P.
1993-01-01
The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.
A critical appraisal of experimental intracerebral hemorrhage research
MacLellan, Crystal L; Paquette, Rosalie; Colbourne, Frederick
2012-01-01
The likelihood of translating therapeutic interventions for stroke rests on the quality of preclinical science. Given the limited success of putative treatments for ischemic stroke and the reasons put forth to explain it, we sought to determine whether such problems hamper progress for intracerebral hemorrhage (ICH). Approximately 10% to 20% of strokes result from an ICH, which results in considerable disability and high mortality. Several animal models reproduce ICH and its underlying pathophysiology, and these models have been widely used to evaluate treatments. As yet, however, none has successfully translated. In this review, we focus on rodent models of ICH, highlighting differences among them (e.g., pathophysiology), issues with experimental design and analysis, and choice of end points. A Pub Med search for experimental ICH (years: 2007 to 31 July 2011) found 121 papers. Of these, 84% tested neuroprotectants, 11% tested stem cell therapies, and 5% tested rehabilitation therapies. We reviewed these to examine study quality (e.g., use of blinding procedures) and choice of end points (e.g., behavioral testing). Not surprisingly, the problems that have plagued the ischemia field are also prevalent in ICH literature. Based on these data, several recommendations are put forth to facilitate progress in identifying effective treatments for ICH. PMID:22293989
Impact of an inquiry unit on grade 4 students' science learning
NASA Astrophysics Data System (ADS)
Di Mauro, María Florencia; Furman, Melina
2016-09-01
This paper concerns the identification of teaching strategies that enhance the development of 4th grade students' experimental design skills at a public primary school in Argentina. Students' performance in the design of relevant experiments was evaluated before and after an eight-week intervention compared to a control group, as well as the persistence of this learning after eight months. The study involved a quasi-experimental longitudinal study with pre-test/post-test/delayed post-test measures, complemented with semi-structured interviews with randomly selected students. Our findings showed improvement in the experimental design skills as well as its sustainability among students working with the inquiry-based sequence. After the intervention, students were able to establish valid comparisons, propose pertinent designs and identify variables that should remain constant. Contrarily, students in the control group showed no improvement and continued to solve the posed problems based on prior beliefs. In summary, this paper shows evidence that implementing inquiry-based units involving problems set in cross-domain everyday situations that combine independent student work with teacher guidance significantly improves the development of scientific skills in real classroom contexts.
Minimizing student’s faults in determining the design of experiment through inquiry-based learning
NASA Astrophysics Data System (ADS)
Nilakusmawati, D. P. E.; Susilawati, M.
2017-10-01
The purpose of this study were to describe the used of inquiry method in an effort to minimize student’s fault in designing an experiment and to determine the effectiveness of the implementation of the inquiry method in minimizing student’s faults in designing experiments on subjects experimental design. This type of research is action research participants, with a model of action research design. The data source were students of the fifth semester who took a subject of experimental design at Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University. Data was collected through tests, interviews, and observations. The hypothesis was tested by t-test. The result showed that the implementation of inquiry methods to minimize of students fault in designing experiments, analyzing experimental data, and interpret them in cycle 1 students can reduce fault by an average of 10.5%. While implementation in Cycle 2, students managed to reduce fault by an average of 8.78%. Based on t-test results can be concluded that the inquiry method effectively used to minimize of student’s fault in designing experiments, analyzing experimental data, and interpreting them. The nature of the teaching materials on subject of Experimental Design that demand the ability of students to think in a systematic, logical, and critical in analyzing the data and interpret the test cases makes the implementation of this inquiry become the proper method. In addition, utilization learning tool, in this case the teaching materials and the students worksheet is one of the factors that makes this inquiry method effectively minimizes of student’s fault when designing experiments.
HIFiRE-5 Flight Vehicle Design
NASA Technical Reports Server (NTRS)
Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan
2010-01-01
The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances
NASA Technical Reports Server (NTRS)
Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali
2014-01-01
Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.
ERIC Educational Resources Information Center
Wei, Bing; Li, Xiaoxiao
2017-01-01
It is commonly recognised that practical work has a distinctive and central role in science teaching and learning. Although a large number of studies have addressed the definitions, typologies, and purposes of practical work, few have consulted practicing science teachers. This study explored science teachers' perceptions of experimentation for…
ERIC Educational Resources Information Center
Vieck, Jana
2013-01-01
The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…
DOT National Transportation Integrated Search
1994-04-01
This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, "IVHS Institutional Issues and Ca...
DOT National Transportation Integrated Search
1994-04-01
This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, IVHS Institutional Issues and ...
The Effects of Using an Interactive Whiteboard on the Academic Achievement of University Students
ERIC Educational Resources Information Center
Akbas, Oktay; Pektas, Huseyin Mirac
2011-01-01
The aim of this study was to identify the effects of the use of an interactive whiteboard on the academic achievement of university students on the topic of electricity in a science and technology laboratory class. The study was designed as a pretest/posttest control group experimental study. Mean, standard deviation and t- tests were used for…
Effects of Four Instructional Sequences on Application and Transfer. IDD&E Working Paper No. 12
ERIC Educational Resources Information Center
Chao, Chun-I; And Others
Using the Component Display Theory as an analyzing tool, this study compared the effects of expository and discovery methods of instruction on two learning outcomes, application and transfer. One hundred ninth grade students in each of four earth science classes were randomly assigned to five groups--four experimental groups designed to test four…
ERIC Educational Resources Information Center
Harrison, Justin; McKay, Ryan
2012-01-01
Temporal discounting rates have become a popular dependent variable in social science research. While choice procedures are commonly employed to measure discounting rates, equivalent present value (EPV) procedures may be more sensitive to experimental manipulation. However, their use has been impeded by the absence of test-retest reliability data.…
ERIC Educational Resources Information Center
Love, Edwin; Stelling, Pete
2012-01-01
The reaction that occurs when Mentos are added to bottled soft drinks has become a staple demonstration in earth science courses to explain how volcanoes erupt. This paper presents how this engaging exercise can be used in a marketing research course to provide hands-on experience with problem formation, hypothesis testing, and causal research. A…
Me and My Environment. Unit IV: Transfer and Cycling of Materials in My Environment.
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Boulder, CO.
Presented is the experimental edition of Unit IV: Transfer and Cycling of Materials in My Environment, which consists of 29 life science curriculum activities intended for the 13-to-15-year-old educable mentally retarded child. The curriculum guide is being used in the final field test prior to revision. Stressed throughout the program are…
The Question of Education Science: "Experiment"ism Versus "Experimental"ism
ERIC Educational Resources Information Center
Howe, Kenneth R.
2005-01-01
The ascendant view in the current debate about education science -- experimentism -- is a reassertion of the randomized experiment as the methodological gold standard. Advocates of this view have ignored, not answered, long-standing criticisms of the randomized experiment: its frequent impracticality, its lack of external validity, its confinement…
Colegrave, Nick
2017-01-01
A common approach to the analysis of experimental data across much of the biological sciences is test-qualified pooling. Here non-significant terms are dropped from a statistical model, effectively pooling the variation associated with each removed term with the error term used to test hypotheses (or estimate effect sizes). This pooling is only carried out if statistical testing on the basis of applying that data to a previous more complicated model provides motivation for this model simplification; hence the pooling is test-qualified. In pooling, the researcher increases the degrees of freedom of the error term with the aim of increasing statistical power to test their hypotheses of interest. Despite this approach being widely adopted and explicitly recommended by some of the most widely cited statistical textbooks aimed at biologists, here we argue that (except in highly specialized circumstances that we can identify) the hoped-for improvement in statistical power will be small or non-existent, and there is likely to be much reduced reliability of the statistical procedures through deviation of type I error rates from nominal levels. We thus call for greatly reduced use of test-qualified pooling across experimental biology, more careful justification of any use that continues, and a different philosophy for initial selection of statistical models in the light of this change in procedure. PMID:28330912
NASA Astrophysics Data System (ADS)
Marks, Jamar Terry
The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction with traditional science classroom instruction as compared to when instructed using solely traditional science classroom instruction. The targeted sample population consisted of fourth-grade students enrolled in a public elementary school located in the southeastern region of the United States. The convenience sample size consisted of 115 fourth-grade students enrolled in science classes. The pretest and posttest academic achievement data collected consisted of the science segment from the Spring 2015, and Spring 2016 state standardized assessments. Pretest and posttest academic achievement data were analyzed using an ANCOVA statistical procedure to test for differences, and the researcher reported the results of the statistical analysis. The results of the study show no significant difference in science academic achievement between treatment and control groups. An interpretation of the results and recommendations for future research were provided by the researcher upon completion of the statistical analysis.
A study in the use of the position of discrepant events in the teaching of science
NASA Astrophysics Data System (ADS)
Frassinelli, John James
The purpose of this study was to determine whether alternative placement of discrepant events would impact affective and cognitive outcomes of ninth-grade physical science students grouped into intact classes and classified as either "high" or "low" in prior academic achievement. Although researchers have found discrepant events to be effective in terms of cognition and recall, their chronological placement within science lessons had not been empirically researched. In this study, discrepant events were presented before, during, and after specific science lessons involving thermodynamics and heat. Discrepant events were withheld from the control group. To measure affective outcomes, the "enjoyment" and "motivation" scales taken from Sandman's (1973) Attitudes Towards Science Inventory (ATSI) were used to index subjects' global feelings about studying science, while a 20-item set of Semantic Differential (SD) scales was employed to determine their attitudes regarding the specific subject matter taught. To measure cognitive outcomes, a 20-item, selected response test was constructed by the researcher, with 6 items intended to assess subjects' knowledge of unit materials, and 14 items designed to query their understanding of unit concepts. Each subject (N = 131) was administered identical forms of each test in both pre-and post-test formats, both before and after the four-week study. Analyzed using a 4 x 2 mixed Analysis of Variance (ANOVA) model, data pertinent to the ATSI suggested neither between- nor within-group differences in subjects' global attitudes about studying science, although data pertinent to the SD scales indicated generally improved attitudes about studying thermodynamics and heat (F (1,122) = 2.759, p < .10). On the cognitive pretests and posttests, significant two-way interactions were observed for the overall test and experimental condition (F (3,121) = 4.068, p < .01), as well as for the overall test and higher prior achievement in physical science (F (1,121) = 7.059,p < .01). As contrasted with negligible changes in the control group's scores, robust mean-difference effect sizes were observed for all three treatment groups---"beginning" (d = 1.24), "during" (d = 0.70), and "after" ( d = 0.78)---but particularly for the "beginning" group. Subsequent analysis revealed that the apparent advantage of the "beginning" group was largely attributable to a particularly strong showing on the six test items concerned with knowledge (d = 2.06).
Discontinuous Fiber-reinforced Composites above Critical Length
Petersen, R.C.
2014-01-01
Micromechanical physics of critical fiber length, describing a minimum filament distance for resin impregnation and stress transfer, has not yet been applied in dental science. As a test of the hypothesis that 9-micron-diameter, 3-mm-long quartz fibers would increase mechanical strength over particulate-filled composites, photocure-resin-pre-impregnated discontinuous reinforcement was incorporated at 35 wt% into 3M Corporation Z100, Kerr Corporation HerculiteXRV, and an experimental photocure paste with increased radiopaque particulate. Fully articulated four-point bend testing per ASTM C 1161-94 for advanced ceramics and Izod impact testing according to a modified unnotched ASTM D 256-00 specification were then performed. All photocure-fiber-reinforced composites demonstrated significant improvements over particulate-filled compounds (p < 0.001) for flexural strength, modulus, work of fracture, strain at maximum load, and Izod toughness, with one exception for the moduli of Z100 and the experimental reinforced paste. The results indicate that inclusion of pre-impregnated fibers above the critical aspect ratio yields major advancements regarding the mechanical properties tested. PMID:15790745
New theory insights and experimental opportunities in Majorana wires
NASA Astrophysics Data System (ADS)
Alicea, Jason
Over the past decade, the quest for Majorana zero modes in exotic superconductors has undergone transformational advances on the design, fabrication, detection, and characterization fronts. The field now seems primed for a new era aimed at Majorana control and readout. This talk will survey intertwined theory and experimental developments that illuminate a practical path toward these higher-level goals. In particular, I will highlight near-term opportunities for testing fundamentals of topological quantum computing and longer-term strategies for building scalable hardware. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech.
Giofrè, David; Cumming, Geoff; Fresc, Luca; Boedker, Ingrid; Tressoldi, Patrizio
2017-01-01
From January 2014, Psychological Science introduced new submission guidelines that encouraged the use of effect sizes, estimation, and meta-analysis (the "new statistics"), required extra detail of methods, and offered badges for use of open science practices. We investigated the use of these practices in empirical articles published by Psychological Science and, for comparison, by the Journal of Experimental Psychology: General, during the period of January 2013 to December 2015. The use of null hypothesis significance testing (NHST) was extremely high at all times and in both journals. In Psychological Science, the use of confidence intervals increased markedly overall, from 28% of articles in 2013 to 70% in 2015, as did the availability of open data (3 to 39%) and open materials (7 to 31%). The other journal showed smaller or much smaller changes. Our findings suggest that journal-specific submission guidelines may encourage desirable changes in authors' practices.
Aquatics Systems Branch: transdisciplinary research to address water-related environmental problems
Dong, Quan; Walters, Katie D.
2015-01-01
The Aquatic Systems Branch at the Fort Collins Science Center is a group of scientists dedicated to advancing interdisciplinary science and providing science support to solve water-related environmental issues. Natural resource managers have an increasing need for scientific information and stakeholders face enormous challenges of increasing and competing demands for water. Our scientists are leaders in ecological flows, riparian ecology, hydroscape ecology, ecosystem management, and contaminant biology. The Aquatic Systems Branch employs and develops state-of-the-science approaches in field investigations, laboratory experiments, remote sensing, simulation and predictive modeling, and decision support tools. We use the aquatic experimental laboratory, the greenhouse, the botanical garden and other advanced facilities to conduct unique research. Our scientists pursue research on the ground, in the rivers, and in the skies, generating and testing hypotheses and collecting quantitative information to support planning and design in natural resource management and aquatic restoration.
Regulatory aspects on the use of fish embryos in environmental toxicology.
Halder, Marlies; Léonard, Marc; Iguchi, Taisen; Oris, James T; Ryder, Kathy; Belanger, Scott E; Braunbeck, Thomas A; Embry, Michelle R; Whale, Graham; Norberg-King, Teresa; Lillicrap, Adam
2010-07-01
Animal alternative tests are gaining serious consideration in an array of environmental sciences, particularly as they relate to sound management of chemicals and wastewater discharges. The ILSI Health and Environmental Sciences Institute and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the Application of the Fish Embryo Test in March, 2008. This relatively young discipline is following advances in animal alternatives for human safety sciences, and it is advisable to develop a broad comparison of how animal alternative tests involving fish are viewed in a regulatory context over a wide array of authorities or advising bodies. These include OECD, Western Europe, North America, and Japan. This paper summarizes representative practices from these regions. Presently, the global regulatory environment has varying stances regarding the protection of fish for use as an experimental animal. Such differences have a long-term potential to lead to a lack of harmony in approaches to fish toxicity testing, especially for chemicals in commerce across multiple geographic regions. Implementation of alternative methods and approaches will be most successful if accepted globally, including methods of fish toxicity testing. An important area for harmonization would be in the interpretation of protected and nonprotected life stages of fish. Use of fish embryos represent a promising alternative and allow bridging to more technically challenging alternatives with longer prospective timelines, including cell-based assays, ecotoxicogenomics, and QSARs. (c) 2010 SETAC.
Perceptions and attitudes of formative assessments in middle-school science classes
NASA Astrophysics Data System (ADS)
Chauncey, Penny Denyse
No Child Left Behind mandates utilizing summative assessment to measure schools' effectiveness. The problem is that summative assessment measures students' knowledge without depth of understanding. The goal of public education, however, is to prepare students to think critically at higher levels. The purpose of this study was to examine any difference between formative assessment incorporated in instruction as opposed to the usual, more summative methods in terms of attitudes and academic achievement of middle-school science students. Maslow's theory emphasizes that individuals must have basic needs met before they can advance to higher levels. Formative assessment enables students to master one level at a time. The research questions focused on whether statistically significant differences existed between classrooms using these two types of assessments on academic tests and an attitude survey. Using a quantitative quasi-experimental control-group design, data were obtained from a sample of 430 middle-school science students in 6 classes. One control and 2 experimental classes were assigned to each teacher. Results of the independent t tests revealed academic achievement was significantly greater for groups that utilized formative assessment. No significant difference in attitudes was noted. Recommendations include incorporating formative assessment results with the summative results. Findings from this study could contribute to positive social change by prompting educational stakeholders to examine local and state policies on curriculum as well as funding based on summative scores alone. Use of formative assessment can lead to improved academic success.
Using Spacelab as a precursor of science operations for the Space Station
NASA Technical Reports Server (NTRS)
Marmann, R. A.
1997-01-01
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.
Leveraging the power of music to improve science education
NASA Astrophysics Data System (ADS)
Crowther, Gregory J.; McFadden, Tom; Fleming, Jean S.; Davis, Katie
2016-01-01
We assessed the impact of music videos with science-based lyrics on content knowledge and attitudes in a three-part experimental research study of over 1000 participants (mostly K-12 students). In Study A, 13 of 15 music videos were followed by statistically significant improvements on questions about material covered in the videos, while performance on 'bonus questions' not covered by the videos did not improve. Video-specific improvement was observed in both basic knowledge and genuine comprehension (levels 1 and 2 of Bloom's taxonomy, respectively) and after both lyrics-only and visually rich versions of some videos. In Study B, musical versions of additional science videos were not superior to non-musical ones in their immediate impact on content knowledge, though musical versions were significantly more enjoyable. In Study C, a non-musical video on fossils elicited greater immediate test improvement than the musical version ('Fossil Rock Anthem'); however, viewers of the music video enjoyed a modest advantage on a delayed post-test administered 28 days later. Music video viewers more frequently rated their video as 'fun', and seemed more likely to revisit and/or share the video. Our findings contribute to a broader dialogue on promising new pedagogical strategies in science education.
NASA Astrophysics Data System (ADS)
Mussen, Kimberly S.
This quantitative research study evaluated the effectiveness of employing pedagogy based on the theory of multiple intelligences (MI). Currently, not all students are performing at the rate mandated by the government. When schools do not meet the required state standards, the school is labeled as not achieving adequate yearly progress (AYP), which may lead to the loss of funding. Any school not achieving AYP would be interested in this study. Due to low state standardized test scores in the district for science, student achievement and attitudes towards learning science were evaluated on a pretest, posttest, essay question, and one attitudinal survey. Statistical significance existed on one of the four research questions. Utilizing the Analysis of Covariance (ANCOVA) for data analysis, student attitudes towards learning science were statically significant in the MI (experimental) group. No statistical significance was found in student achievement on the posttest, delayed posttest, or the essay question test. Social change can result from this study because studying the effects of the multiple intelligence theory incorporated into classroom instruction can have significant effect on how children learn, allowing them to compete in a knowledge society.
ERIC Educational Resources Information Center
Onghena, Sofie
2013-01-01
A case study of secondary experimental science instruction in Belgium demonstrates the importance of cross-national communication in the study of science education. Belgian secondary science education in the years 1880-1914 had a clear internationalist dimension. French and German influences turn out to have been essential, stimulated by the fact…
ERIC Educational Resources Information Center
Gray, Ron; Kang, Nam-Hwa
2014-01-01
Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during…
Leveraging e-Science infrastructure for electrochemical research.
Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F
2011-08-28
As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.
2015 Stewardship Science Academic Programs Annual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Terri; Mischo, Millicent
The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago tomore » engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.« less
The Great Plains Wind Power Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John
2014-01-30
This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texasmore » Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.« less
Efficacy of a footbath for post-partum fatigue in South Korea: A quasi-experimental study.
Choi, Eunsun; Song, Eunju
2017-04-01
The purpose of this study was to identify the effects of a footbath on post-partum fatigue. This study used a quasi-experimental design by using an unequivalent control group, pre-post-test design. The participants were divided into experimental and control groups. Fifty post-partum women who were admitted to an obstetrics and gynecology ward of a general hospital were the experimental group and 50 post-partum women who were admitted to an obstetrics and gynecology ward of a women's hospital were the control group. Two hospitals were providing similar postnatal care to their patients and they were located in the same city. The experimental group received a footbath along with postnatal care at the hospital, while the control group received only postnatal care from the hospital. Each group completed the Fatigue Continuum Form at a specified time. The general characteristics and pretest dependent variables were homogenous between the two groups. The hypothesis was supported post-test as the Fatigue Continuum Form scores differed significantly between the experimental and the control groups. This study showed that a footbath helps to decrease fatigue among post-partum women. In addition, it is a good preventative strategy for post-partum women who should initiate it in the early post-partum period. © 2016 Japan Academy of Nursing Science.
The effectiveness of problem-based learning on teaching the first law of thermodynamics
NASA Astrophysics Data System (ADS)
Tatar, Erdal; Oktay, Münir
2011-11-01
Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.
Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kantzos, Pete T.
2006-01-01
For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.
NASA Astrophysics Data System (ADS)
Gray, Ron; Kang, Nam-Hwa
2014-01-01
Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.
NASA Astrophysics Data System (ADS)
Sell, K. S.; Heather, M. R.; Herbert, B. E.
2004-12-01
Exposing earth system science (ESS) concepts into introductory geoscience courses may present new and unique cognitive learning issues for students including understanding the role of positive and negative feedbacks in system responses to perturbations, spatial heterogeneity, and temporal dynamics, especially when systems exhibit complex behavior. Implicit learning goals of typical introductory undergraduate geoscience courses are more focused on building skill-sets and didactic knowledge in learners than developing a deeper understanding of the dynamics and processes of complex earth systems through authentic inquiry. Didactic teaching coupled with summative assessment of factual knowledge tends to limit student¡¦s understanding of the nature of science, their belief in the relevancy of science to their lives, and encourages memorization and regurgitation; this is especially true among the non-science majors who compose the majority of students in introductory courses within the large university setting. Students organize scientific knowledge and reason about earth systems by manipulating internally constructed mental models. This pilot study focuses on characterizing the impact of inquiry-based learning with multiple representations to foster critical thinking and mental model development about authentic environmental issues of coastal systems in an introductory geoscience course. The research was conducted in nine introductory physical geology laboratory sections (N ˜ 150) at Texas A&M University as part of research connected with the Information Technology in Science (ITS) Center. Participants were randomly placed into experimental and control groups. Experimental groups were exposed to multiple representations including both web-based learning materials (i.e. technology-supported visualizations and analysis of multiple datasets) and physical models, whereas control groups were provided with the traditional ¡workbook style¡" laboratory assignments. Assessment of pre- and post-test results was performed to provide indications of content knowledge and mental model expression improvements between groups. A rubric was used as the assessment instrument to evaluate student products (Cronbach alpha: 0.84 ¡V 0.98). Characterization of student performance based on a Student¡¦s t-test indicates that significant differences (p < 0.05) in pre-post achievement occurred primarily within the experimental group; this illustrates that the use of multiple representations had an impact on student learning of ESS concepts, particularly in regard to mental model constructions. Analysis of variance also suggests that student mental model constructions were significantly different (p < 0.10) between test groups. Factor analysis extracted three principle components (eigenvalue > 1) which show similar clustering of variables that influence cognition, indicating that the cognitive processes driving student understanding of geoscience do not vary among student test groups. Categories of cognition include critical thinking skills (percent variance = 22.16%), understanding of the nature of science (percent variance = 25.16%), and ability to interpret results (percent variance = 28.89%). Lower numbers of students completed all of the required assignments of this research than expected (65.3%), restricting the quality of the results and therefore the ability to make more significant interpretations; this was likely due to the non-supportive learning environment in which the research was implemented.
NASA Astrophysics Data System (ADS)
Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu
2015-06-01
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.
NASA Astrophysics Data System (ADS)
Disimoni, Katherine Cecilia
The development of conceptual knowledge, particularly at the elementary level, is one area in which researchers and educators have noted remarkable deficiencies. The purpose of this descriptive study was to observe the impact of the use of writing as a thinking tool on the promotion and development of scientific concepts and science process skills in elementary students in the discipline of science. Reports from some of the publications for science research and educational progress cited the direct links of writing effectiveness to the development of skills in critical thinking. The study consisted of 12 fourth-grade students in the control group and their 12 fourth-grade counterparts in the experimental group. The treatment for the study was the use of learning logs by the experimental group to record their written responses to predesigned prompts related to hands-on science experiences during the intervention period. Their counterparts did no writing. Statistical measures used were Student's t tests to determine if significance was present. A pretest and posttest were given that involved written responses to the same prompt. Three judges used a specially designed rubric to evaluate and score the writing. Significant differences were found when the scores of the experimental group were analyzed between pretest and posttest. Also, a standardized test to assess basic process skills was administered prior to and after the intervention. There were no statistical differences found in either group to demonstrate that writing effected the development of process skills. The researcher determined that perhaps writing is not the best way to promote process skills. Rather, engaging in science is the best way. These skills are built separately but used in tandem, particularly when learning about science and mathematics. The implications of this study impact upon several areas of education which make up paradigms leading to good practice based on sound theory. These components include the use of writing as a tool to develop and link conceptual knowledge, use of scientific discourse in collaborative efforts, use of integration of language arts and theme-related content areas, and multiinstructional techniques. Rather than a "change" of paradigms for veteran teachers then, an "addition to" existing paradigms could lead to the changes necessary to revamp curriculum and may aid in meeting the demands of a vastly changing and diverse population of monolingual and multilingual learners experiencing gaps in their construction and demonstration of oral and written knowledge.
ERIC Educational Resources Information Center
Lorch, Robert F., Jr.; Lorch, Elizabeth P.; Freer, Benjamin Dunham; Dunlap, Emily E.; Hodell, Emily C.; Calderhead, William J.
2014-01-01
Students (n = 1,069) from 60 4th-grade classrooms were taught the control of variables strategy (CVS) for designing experiments. Half of the classrooms were in schools that performed well on a state-mandated test of science achievement, and half were in schools that performed relatively poorly. Three teaching interventions were compared: an…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
Performance objectives are stated for each of the three secondary school units included in this package prepared for the Dade County Florida Quinmester Program. The units all concern some aspect of instruction in scientific method. "The Scientific Approach to Solving Problems" introduces students to the use of experimental testing of…
ERIC Educational Resources Information Center
Gilljam, Mikael; Esaiasson, Peter; Lindholm, Torun
2010-01-01
This article tests whether the form of decision-making used in school environments affects pupils' views on the legitimacy of the decisions made, and of the decision-making procedure. Building on political science theory on democratic decision-making, it compares pupils' reactions towards decisions made by pupil councils, by pupils via referendum,…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
The study reviewed in this paper examined three separate methods for teaching the "control of variables strategy" ("CVS"), a procedure for conducting a science experiment so that only one variable is tested and all others are held constant, or "controlled." The study analyzed data from a randomized controlled trial of…
Textile composite processing science
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.
1993-01-01
A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.
Complex Water Impact Visitor Information Validation and Qualification Sciences Experimental Complex Our the problem space. The Validation and Qualification Sciences Experimental Complex (VQSEC) at Sandia
The National Cancer Institute's Physical Sciences - Oncology Network
NASA Astrophysics Data System (ADS)
Espey, Michael Graham
In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.
History of optics: a modern teaching tool
NASA Astrophysics Data System (ADS)
Vazquez, D.; Gonzalez-Cano, A.; Diaz-Herrera, N.; Llombart, N.; Alda, J.
2012-10-01
The history of optics is a very rich field of science and it is possible to find many simple and significant examples of the application and success of the experimental method and therefore is a very good tool to transmit to the student the way science proceeds and to introduce the right spirit of critical analysis, building and testing of models, etc. Optical phenomena are specially well suited for this because in fact optical observations and experiments have made science advance in a crucial way in many different periods of history, because they are in many cases quite visual, quite simple in concept and it is very easy to produce experimental setups in classrooms. Also, the intrinsic multidisciplinary character of Optics, which is a subject that has historically influenced in a notorious way fields as art, philosophy, religion and cultural and social studies in general, provide a very wide frame that permits to apply these examples to many different auditories. We present here some reflections about the role that history of optics can play in teaching and show some real examples of its application during the many years that we have been employing it in the context of the Optics School of the Complutense University of Madrid, Spain.
NASA Astrophysics Data System (ADS)
Lilly, James Edward
This research evaluated the POWERFUL IDEAS IN PHYSICAL SCIENCE (PIiPS) curriculum model used to develop a physical science course taken by preservice elementary teachers. The focus was on the evaluation of discrepant events used to induce conceptual change in relation to students' ideas concerning heat, temperature, and specific heat. Both quantitative and qualitative methodologies were used for the analysis. Data was collected during the 1998 Fall semester using two classes of physical science for elementary school teachers. The traditionally taught class served as the control group and the class using the PIiPS curriculum model was the experimental group. The PIiPS curriculum model was evaluated quantitatively for its influence on students' attitude toward science, anxiety towards teaching science, self efficacy toward teaching science, and content knowledge. An analysis of covariance was performed on the quantitative data to test for significant differences between the means of the posttests for the control and experimental groups while controlling for pretest. It was found that there were no significant differences between the means of the control and experimental groups with respect to changes in their attitude toward science, anxiety toward teaching science and self efficacy toward teaching science. A significant difference between the means of the content examination was found (F(1,28) = 14.202 and p = 0.001), however, the result is questionable. The heat and energy module was the target for qualitative scrutiny. Coding for discrepant events was adapted from Appleton's 1996 work on student's responses to discrepant event science lessons. The following qualitative questions were posed for the investigation: (1) what were the ideas of the preservice elementary students prior to entering the classroom regarding heat and energy, (2) how effective were the discrepant events as presented in the PIiPS heat and energy module, and (3) how much does the "risk taking factor" associated with not telling the students the answer right away, affect the learning of the material. It was found that preservice elementary teachers harbor similar preconceptions as the general population according to the literature. The discrepant events used in this module of the PIiPS curriculum model met with varied results. It appeared that those students who had not successfully confronted their preconceptions were less likely to accept the new concepts that were to be developed using the discrepant events. Lastly, students had shown great improvement in content understanding and developed the ability to ask deep and probing questions.
The Effects of Using Space to Teach Standard Elementary School Curriculum
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1996-01-01
This brief report and recommendation for further research brings to a formal close this effort, the original purpose of which is described in detail in The effects of using space to teach standard elementary school curriculum, Volume 1, included here as the Appendix. Volume 1 describes the project as a 3-year research program to determine the effectiveness of using space to teach. The research design is quasi experimental using standardized test data on students from Aldrin Elementary School and a District-identified 'control' school, which shall be referred to as 'School B.' Students now in fourth through sixth grades will be compared now (after one year at Aldrin) and tracked at least until the present sixth graders are through the eighth grade. Appropriate statistical tests will be applied to standardized test scores to see if Aldrin students are 'better' than School B students in areas such as: Overall academic performance; Performance in math/science; and Enrollments in math/science in middle school.
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
ERIC Educational Resources Information Center
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-01-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However,…
Roles and applications of biomedical ontologies in experimental animal science.
Masuya, Hiroshi
2012-01-01
A huge amount of experimental data from past studies has played a vital role in the development of new knowledge and technologies in biomedical science. The importance of computational technologies for the reuse of data, data integration, and knowledge discoveries has also increased, providing means of processing large amounts of data. In recent years, information technologies related to "ontologies" have played more significant roles in the standardization, integration, and knowledge representation of biomedical information. This review paper outlines the history of data integration in biomedical science and its recent trends in relation to the field of experimental animal science.
NASA Astrophysics Data System (ADS)
McWright, Cynthia Nicole
For decades science educators and educational institutions have been concerned with the status of science content being taught in K-12 schools and the delivery of the content. Thus, educational reformers in the United States continue to strive to solve the problem on how to best teach science for optimal success in learning. The constructivist movement has been at the forefront of this effort. With mandatory testing nationwide and an increase in science, technology, engineering, and mathematics (STEM) jobs with little workforce to fulfill these needs, the question of what to teach and how to teach science remains a concern among educators and all stakeholders. The purpose of this research was to determine if students' chemistry knowledge and interest can be increased by using the 5E learning cycle in a middle school with a high population of English language learners. The participants were eighth-grade middle school students in a large metropolitan area. Students participated in a month-long chemistry unit. The study was a quantitative, quasi-experimental design with a control group using a traditional lecture-style teaching strategy and an experimental group using the 5E learning cycle. Students completed a pre-and post-student attitude in science surveys, a pretest/posttest for each mini-unit taught and completed daily exit tickets using the Expert Science Teaching Educational Evaluation Model (ESTEEM) instrument to measure daily student outcomes in main idea, student inquiry, and relevancy. Analysis of the data showed that there was no statistical difference between the two groups overall, and all students experienced a gain in content knowledge overall. All students demonstrated a statistically significant difference in their interest in science class, activities in science class, and outside of school. Data also showed that scores in writing the main idea and writing inquiry questions about the content increased over time.
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.
2010-10-01
This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.
NASA Astrophysics Data System (ADS)
Wei, Bing; Li, Xiaoxiao
2017-09-01
It is commonly recognised that practical work has a distinctive and central role in science teaching and learning. Although a large number of studies have addressed the definitions, typologies, and purposes of practical work, few have consulted practicing science teachers. This study explored science teachers' perceptions of experimentation for the purpose of restructuring school practical work in view of science practice. Qualitative interviews were conducted with 87 science teachers at the secondary school level. In the interviews, science teachers were asked to make a comparison between students' experiments and scientific experiments. Eight dimensions of experimentation were generated from the qualitative data analysis, and the distributions of these eight dimensions between the two types of experiments were compared and analysed. An ideal model of practical work was suggested for restructuring practical work at the secondary school level, and some issues related to the effective enactment of practical work were discussed.
Biosphere 2 test module experimentation program
NASA Technical Reports Server (NTRS)
Alling, Abigail; Leigh, Linda S.; Maccallum, Taber; Alvarez-Romo, Norberto
1990-01-01
The Biosphere 2 Test Module is a facility which has the capability to do either short or long term closures: five month closures with plants were conducted. Also conducted were investigations of specific problems, such as trace gas purification by bioregenerative systems by in-putting a fixed concentration of a gas and observing its uptake over time. In other Test Module experiments, the concentration of one gas was changed to observe what effects this has on other gases present or on the system. The science of biospherics which encompasses the study of closed biological systems provides an opening into the future in space as well as in the Earth's biosphere.
Experimental Physical Sciences Vistas: MaRIE (draft)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack
To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less
NASA Technical Reports Server (NTRS)
Bueker, P. A.
1982-01-01
The Nitrogen Washout System measures nitrogen elimination on a breath basis from the body tissues of a subject breathing pure oxygen. The system serves as a prototype for a Space Shuttle Life Sciences experiment and in the Environmental Physiology Laboratory. Typically, a subject washes out body nitrogen for three hours while breathing oxygen from a mask enclosed in a positive-pressure oxygen tent. A nitrogen washout requires one test operator and the test subject. A DEC LSI-11/02 computer is used to (1) control and calibrate the mass spectrometer and Skylab spirometer, (2) gather and store experimental data and (3) provide limited real time analysis and more extensive post-experiment analysis. Five programs are used to gather and store the experimental data and perform all the real time control and analysis.
Participation in a coteaching classroom and students' end-of-course test scores
NASA Astrophysics Data System (ADS)
Debro, Ava
General education students consistently perform poorly on standardized science tests. Coteaching is an instructional strategy that improves the achievement of students with disabilities, but very little research exists that examines the effect of coteaching classrooms on the performance of general education students. The purpose of this study was to examine the effect of coteaching classrooms on the performance of general education students. The constructivist theoretical framework provided the foundation for this research. The research question examined the effect that coteaching classrooms had on the performance of general education biology students. In this experimental design utilizing a posttest-only control group, coteaching instructional strategy was the treatment, and student performance was measured using the scores obtained from the biology end-of-course test. Data for this study was analyzed using an independent t-test. The results of this study revealed that there was not a statistically significant difference in student performance on the biology end-of-course test between treatment and control groups. More than half of the general education biology students enrolled in coteaching classrooms failed the end-of-course test. Researchers may use this study as a catalyst to examine other instructional practices that may improve student performance in science courses. The results of this study may be used to persuade coteachers of the importance of attending frequent professional development opportunities that examine a variety of coteaching instructional strategies. Improving the performance of general education students in science may improve standardized test scores, afford more students the opportunity to attend college, and ensure that students are able to compete on a global level.
High Performance Input/Output for Parallel Computer Systems
NASA Technical Reports Server (NTRS)
Ligon, W. B.
1996-01-01
The goal of our project is to study the I/O characteristics of parallel applications used in Earth Science data processing systems such as Regional Data Centers (RDCs) or EOSDIS. Our approach is to study the runtime behavior of typical programs and the effect of key parameters of the I/O subsystem both under simulation and with direct experimentation on parallel systems. Our three year activity has focused on two items: developing a test bed that facilitates experimentation with parallel I/O, and studying representative programs from the Earth science data processing application domain. The Parallel Virtual File System (PVFS) has been developed for use on a number of platforms including the Tiger Parallel Architecture Workbench (TPAW) simulator, The Intel Paragon, a cluster of DEC Alpha workstations, and the Beowulf system (at CESDIS). PVFS provides considerable flexibility in configuring I/O in a UNIX- like environment. Access to key performance parameters facilitates experimentation. We have studied several key applications fiom levels 1,2 and 3 of the typical RDC processing scenario including instrument calibration and navigation, image classification, and numerical modeling codes. We have also considered large-scale scientific database codes used to organize image data.
“Standardization through Mechanization”
KIRK, ROBERT G. W.
2012-01-01
“In all his work,” Science News-Letter reported on 17 August 1940, “Reyniers follows a slogan of his own, follows it so zealously as to make it almost a fetish: standardization through mechanization.”1 Utilizing new technologies that he designed and built, James Reyniers came to “wide notice in the world of science” due to his innovative approach to standardizing organisms for use as experimental tools. “Ordinarily, when a scientist wants to study an unknown germ (or drug, or nutrient) he tries it out on an experimental animal,” Life magazine explained in September 1949 when reporting Reyniers’s innovative technologies. “But since all laboratory animals are invariably contaminated by a host of unknown germs, he can never be absolutely sure that results he sees are really caused by the agent he is testing. This problem … can be solved only by using animals whose bodies contain no germs at all. Now, for the first time, such animals are available.”2 Reyniers had extended the bacteriological ideal of pure culture to encompass the whole organism, creating “bacteriologically blank” organisms, or “biological tabula rasa,” which he believed formed ideal tools for experimental science. PMID:22530388
Assessing Students' Experimentation Processes in Guided Inquiry
ERIC Educational Resources Information Center
Emden, Markus; Sumfleth, Elke
2016-01-01
In recent science education, experimentation features ever more strongly as a method of inquiry in science classes rather than as a means to illustrate phenomena. Ideas and materials to teach inquiry abound. Yet, tools for assessing students' achievement in their processes of experimentation are lacking. The present study assumes a basal,…
Teaching Experimental Design to Elementary School Pupils in Greece
ERIC Educational Resources Information Center
Karampelas, Konstantinos
2016-01-01
This research is a study about the possibility to promote experimental design skills to elementary school pupils. Experimental design and the experiment process are foundational elements in current approaches to Science Teaching, as they provide learners with profound understanding about knowledge construction and science inquiry. The research was…
NASA Astrophysics Data System (ADS)
Majumder, Tiku
2017-04-01
In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.
NASA Astrophysics Data System (ADS)
Taştan, Özgecan; Yalçınkaya, Eylem; Boz, Yezdan
2008-10-01
The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental group in which CCT instruction was applied, and the other as the control group in which traditional teaching method was used. The data were obtained through the use of Energy Concept Test (ECT), the Attitude Scale towards Chemistry (ASC) and Science Process Skill Test (SPST). In order to find out the effect of the conceptual change text on students' learning of energy concept, independent sample t-tests, ANCOVA (analysis of covariance) and ANOVA (analysis of variance) were used. Results revealed that there was a statistically significant mean difference between the experimental and control group in terms of students' ECT total mean scores; however, there was no statistically significant difference between the experimental and control group in terms of students' attitude towards chemistry. These findings suggest that conceptual change text instruction enhances the understanding and achievement.
Testability of evolutionary game dynamics based on experimental economics data
NASA Astrophysics Data System (ADS)
Wang, Yijia; Chen, Xiaojie; Wang, Zhijian
In order to better understand the dynamic processes of a real game system, we need an appropriate dynamics model, so to evaluate the validity of a model is not a trivial task. Here, we demonstrate an approach, considering the dynamical macroscope patterns of angular momentum and speed as the measurement variables, to evaluate the validity of various dynamics models. Using the data in real time Rock-Paper-Scissors (RPS) games experiments, we obtain the experimental dynamic patterns, and then derive the related theoretical dynamic patterns from a series of typical dynamics models respectively. By testing the goodness-of-fit between the experimental and theoretical patterns, the validity of the models can be evaluated. One of the results in our study case is that, among all the nonparametric models tested, the best-known Replicator dynamics model performs almost worst, while the Projection dynamics model performs best. Besides providing new empirical macroscope patterns of social dynamics, we demonstrate that the approach can be an effective and rigorous tool to test game dynamics models. Fundamental Research Funds for the Central Universities (SSEYI2014Z) and the National Natural Science Foundation of China (Grants No. 61503062).
Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Kim, Byoung Chul; Shin, Chang Seouk; Ahn, Jung Keun; Won, Mi-Sook
2014-02-01
A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.
US EPA - A*Star Partnership - Accelerating the Acceptance of ...
The path for incorporating new alternative methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. Some of these challenges include development of relevant and predictive test systems and computational models to integrate and extrapolate experimental data, and rapid characterization and acceptance of these systems and models. The series of presentations will highlight a collaborative effort between the U.S. Environmental Protection Agency (EPA) and the Agency for Science, Technology and Research (A*STAR) that is focused on developing and applying experimental and computational models for predicting chemical-induced liver and kidney toxicity, brain angiogenesis, and blood-brain-barrier formation. In addressing some of these challenges, the U.S. EPA and A*STAR collaboration will provide a glimpse of what chemical risk assessments could look like in the 21st century. Presentation on US EPA – A*STAR Partnership at international symposium on Accelerating the acceptance of next-generation sciences and their application to regulatory risk assessment in Singapore.
Using R in experimental design with BIBD: An application in health sciences
NASA Astrophysics Data System (ADS)
Oliveira, Teresa A.; Francisco, Carla; Oliveira, Amílcar; Ferreira, Agostinho
2016-06-01
Considering the implementation of an Experimental Design, in any field, the experimenter must pay particular attention and look for the best strategies in the following steps: planning the design selection, conduct the experiments, collect observed data, proceed to analysis and interpretation of results. The focus is on providing both - a deep understanding of the problem under research and a powerful experimental process at a reduced cost. Mainly thanks to the possibility of allowing to separate variation sources, the importance of Experimental Design in Health Sciences is strongly recommended since long time. Particular attention has been devoted to Block Designs and more precisely to Balanced Incomplete Block Designs - in this case the relevance states from the fact that these designs allow testing simultaneously a number of treatments bigger than the block size. Our example refers to a possible study of inter reliability of the Parkinson disease, taking into account the UPDRS (Unified Parkinson's disease rating scale) in order to test if there are significant differences between the specialists who evaluate the patients performances. Statistical studies on this disease were described for example in Richards et al (1994), where the authors investigate the inter-rater Reliability of the Unified Parkinson's Disease Rating Scale Motor Examination. We consider a simulation of a practical situation in which the patients were observed by different specialists and the UPDRS on assessing the impact of Parkinson's disease in patients was observed. Assigning treatments to the subjects following a particular BIBD(9,24,8,3,2) structure, we illustrate that BIB Designs can be used as a powerful tool to solve emerging problems in this area. Once a structure with repeated blocks allows to have some block contrasts with minimum variance, see Oliveira et al. (2006), the design with cardinality 12 was selected for the example. R software was used for computations.
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆
Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan
2016-01-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875
Commerce Lab - An enabling facility and test bed for commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, Jack; Atkins, Harry L.; Williams, John R.
1986-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
ERIC Educational Resources Information Center
Heinicke, Susanne
2014-01-01
Every measurement in science, every experimental decision, result and information drawn from it has to cope with something that has long been named by the term "error". In fact, errors describe our limitations when it comes to experimental science and science looks back on a long tradition to cope with them. The widely known way to cope…
From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs
NASA Astrophysics Data System (ADS)
Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan
2014-07-01
This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.
Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products
NASA Astrophysics Data System (ADS)
Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula
2015-10-01
The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.
Design of Knowledge Models for Teaching Experimental Sciences at University
ERIC Educational Resources Information Center
Pérez de Villarreal, Maider
2018-01-01
Teaching Experimental Sciences is a compulsory subject in the Bachelor's Degree in Primary Education (BDPE). It belongs to the discipline of Education and to the field of "Knowledge of the social and natural environment", and consists of a total of 24 ECTS, of which 6 ECTS correspond to "Teaching Natural Sciences" (TNS). This…
Goodman, Matthew
2016-01-01
For several decades now, many histories of science have sought to emphasize the important role of instruments and other material objects in the operation of science. Many, too, have been attentive to ideas of space and place and the different geographies which are visible in the historical practice of science. This paper draws on both traditions in its interpretation of a heretofore neglected aspect of Britain's nineteenth-century geomagnetic story: that of the British Magnetic Survey, 1833–38. Far from being a footnote to the more expansive geomagnetic projects then taking place in mainland Europe or to the later British worldwide magnetic scheme, this paper argues that the British Magnetic Survey represents an important instance in which magnetic instruments, their users and their makers, were tested, developed and ultimately proved credible.
Life sciences experiments in the first Spacelab mission
NASA Technical Reports Server (NTRS)
Huffstetler, W. J.; Rummel, J. A.
1978-01-01
The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.
Curley, Louise E; Kennedy, Julia; Hinton, Jordan; Mirjalili, Ali; Svirskis, Darren
2017-01-01
Despite pharmaceutical sciences being a core component of pharmacy curricula, few published studies have focussed on innovative methodologies to teach the content. This commentary identifies imaging techniques which can visualise oral dosage forms in-vivo and observe formulation disintegration in order to achieve a better understanding of in-vivo performance. Images formed through these techniques can provide students with a deeper appreciation of the fate of oral formulations in the body compared to standard disintegration and dissolution testing, which is conducted in-vitro. Such images which represent the in-vivo setting can be used in teaching to give context to both theory and experimental work, thereby increasing student understanding and enabling teaching of pharmaceutical sciences supporting students to correlate in-vitro and in-vivo processes.
Education in the Field Influences Children's Ideas and Interest toward Science
NASA Astrophysics Data System (ADS)
Zoldosova, Kristina; Prokop, Pavol
2006-10-01
This paper explores the idea of informal science education in scientific field laboratory (The Science Field Centre). The experimental group of pupils ( N = 153) was experienced with approximately 5-day lasting field trips and experiments in the Field Centre in Slovakia. After finishing the course, two different research methods were used to discover their interest and ideas toward science. Pupils from the experimental group showed significant differences from those that did not experience education in the Field Centre (control group, N = 365). In comparison to the control group, pupils of the experimental group highly preferred book titles that were related to their program in the Field Centre. There were differences between the drawings of ideal school environment from both pupils groups. In the drawings of the experimental group, we found significantly more items connected with the educational environment of the Field Centre (e.g. laboratory equipment, live animals). We suppose field science education would be one of the most effective ways to increase interest of pupils to study science and to invaluable intrinsic motivation at the expense extrinsic motivation.
Ratcliff, Marc J
2005-04-01
Historians of science have neglected the French Academician Réaumur, whose work is emblematic of a modern conception of science that joins together technology, science, and society. Réaumur practised rigorous experimentation on organisms, and uncovered industrial and utilitarian secrets which he communicated to the public. His patronage was essential in boosting the generation of young naturalists of the 1740s who advanced further the experimental approach to the study of nature. For Réaumur, his work was not separate from his mission to disclose and communicate previously restricted knowledge for the benefits of science and society.
Between the laboratory and the museum: Claude Bernard and the problem of time.
Schmidgen, Henning
2013-01-01
This paper explores the relation between biological and historical time with respect to Claude Bernard's Lectures on the Phenomena of Life Common to Animals and Plants (1878). These lectures mirror Bernard's turn from the experimental physiology of animal organisms to a "general physiology" of elementary organisms, or cells, and discuss the problematic interrelation of science, life, and time. The paper argues that experimental life sciences in Bernard's sense are always also "living sciences," i.e., sciences in dynamic development. The perspectives of this conception are discussed with reference to Hans-Jörg Rheinberger's historical studies concerning the materiality and semiotics of "experimental systems."
Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom
Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.
2014-01-01
Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301
Kim, Ji Eun; Kim, Suk Sun
2017-08-01
This study aimed to examine the effects of cognitive behavior therapy for insomnia (CBT-I) based on the mobile social networking service (SNS) on dysfunctional beliefs and attitudes about sleep, sleep quality, daytime sleepiness, depression, and quality of life among rotating-shift nurses in a hospital in Korea. A nonequivalent control group pre-post test design was used. The participants included 55 nurses with rotating three-shift work (25 in the experimental group and 30 in the control group). For the experimental group, CBT-I using mobile SNS was provided once a week for 60 minutes over six weeks. Data were analyzed using descriptive statistics, χ²-test, independent samples t-test, and Mann-whitney U test with the SPSS 21.0 program. In the homogeneity test of the general characteristics and study variables, there were no significant differences between the two groups. Nurses in the experimental group had significantly lower scores on dysfunctional beliefs and attitudes regarding sleep and sleepiness than nurses in the control group. Nurses in the experimental group had significantly higher scores on sleep quality and quality of life than nurses in the control group. These findings indicate that using the mobile SNS-based CBT-I is feasible and has significant and positive treatment-related effects on rotating-shift nurses' irrational thoughts and beliefs in association with sleep, sleep quality, daytime sleepiness, and quality of life. These contribute to expanding our knowledge of rotating-shift nurses' sleep issues and their preferences for intervention. © 2017 Korean Society of Nursing Science
ERIC Educational Resources Information Center
Gucluer, Efe; Kesercioglu, Teoman
2012-01-01
The aim of this study is examining the effect of the using scientific literacy development activities on students' achievement. The study was carried out in a primary school in Buca Izmir for 2010-2011 academic years. System of our body was chosen as a study topic in our search which took 6 weeks. Pre-post test semi experimental control model was…
Embedding spiritual value through science learning
NASA Astrophysics Data System (ADS)
Johan, H.; Suhandi, A.; Wulan, A. R.; Widiasih; Ruyani, A.; Karyadi, B.; Sipriyadi
2018-05-01
The purpose of this study was to embed spiritual value through science learning program especially earth planet. Various phenomena in earth planet describe a divinity of super power. This study used quasi experimental method with one group pre-test-post-test design. Convenience sampling was conducted in this study. 23 pre-service physics teacher was involved. Pre-test and post-test used a questionnaire had been conducted to collected data of spiritual attitude. Open ended question had been utilized at post-test to collected data. A fourth indicators of spiritual value related to divinity of God was used to embed spiritual value. The results show a shifted of students’ awareness to divinity of God. Before implementing the earth planet learning, 85.8% of total students strongly agree that learning activity embed spiritual value while after learning process, it increased be 93.4%. After learning earth planet, it known that students’ spiritual value was influenced by character of earth planet concept which unobservable and media visual which display each incredible phenomena process in our earth planet. It can be concluded that spiritual value can be embedded through unobservable phenomena of during learning earth planet process.
Lee, JuHee; Lee, Yoonju; Lee, Senah; Bae, Juyeon
2016-01-01
To examine the effects of high-fidelity patient simulation (HFPS) led clinical reasoning course among undergraduate nursing students. A quasi-experimental study of non-equivalent control group pretest-post test design was applied. A total of 49 senior nursing students participated in this study. The experimental group consisted of the students who took the "clinical reasoning" course (n = 23) while the control group consisted of students who did not (n = 26). Self-administered scales including the nursing core competencies, problem solving, academic self-efficacy, and Kolb learning style inventory were analyzed quantitatively using SPSS version 20.0. Data analysis was conducted using one-way ancova due to a significant difference in nursing core competencies between the experimental group and control group. There was a significant improvement in nursing core competencies in the experimental group (F = 7.747, P = 0.008). The scores of problem solving and academic self-efficacy were higher in the experimental group after the HFPS led clinical reasoning course without statistical difference. There is a need for the development of effective instructional methods to improve learning outcomes in nursing education. Future research is needed related to simulation education as well as management strategies so that learning outcomes can be achieved within different students' learning style. © 2015 The Authors. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.
NASA Astrophysics Data System (ADS)
Walls, Leon
Nature of Science is one of the most fundamental aspects of understanding science. How different cultures, races and ethnicities see and interpret science differently is critical. However, the NOS views specific to African American teachers and learners have gone largely unresearched. The views of a purposeful sample of African American third grade children reported in this study contribute to efforts to make science equitable for all students. Conducted in two Midwest urban settings, within the students' regular classrooms, three instruments were employed: Views of Nature of Science Elementary (an interview protocol), Elementary Draw a Scientist Test (a drawing activity supplemented by an explicating narrative), and Identify a Scientist (a simple select-a-photo technique supported by Likert-measured sureness). The responses provided by twenty-three students were coded using qualitative content analysis. The findings are represented in three main categories: Science - is governed by experimentation, invention and discovery teach us about the natural world, school is not the only setting for learning science; Scientists - intelligent, happy, studious men and women playing multiple roles, with distinct physical traits working in laboratories; Students - capable users and producers of science and who view science as fun. This study advocates for: use of such instruments for constant monitoring of student views, using the knowledge of these views to construct inquiry based science lessons, and increased research about students of color.
Too good to be true: publication bias in two prominent studies from experimental psychology.
Francis, Gregory
2012-04-01
Empirical replication has long been considered the final arbiter of phenomena in science, but replication is undermined when there is evidence for publication bias. Evidence for publication bias in a set of experiments can be found when the observed number of rejections of the null hypothesis exceeds the expected number of rejections. Application of this test reveals evidence of publication bias in two prominent investigations from experimental psychology that have purported to reveal evidence of extrasensory perception and to indicate severe limitations of the scientific method. The presence of publication bias suggests that those investigations cannot be taken as proper scientific studies of such phenomena, because critical data are not available to the field. Publication bias could partly be avoided if experimental psychologists started using Bayesian data analysis techniques.
NASA Astrophysics Data System (ADS)
Nugroho, O. F.; Chandra, D. T.; Sanjaya, Y.; Pendidikan Indonesia, Universitas
2017-02-01
The purpose of this study was to improve students’ concept comprehension using concept map as a consolidation phase based STAD. This study was conducted by randomized control group pretest-posttest. Data was collected by using an instrument test to evaluate the effect of concept map as a consolidation phase based STAD on students’understanding about environmental pollution. Data was analyzed using normalized gain (n-gain) and independent t-test. The n-gain analysis shows the increased of students’s understanding about environmental pollution at experimental group arehigher than at the control group. The result of this study showed that students’ comprehension at the experimental class (0,53) higher compared to the control group (0,23). Whilst the t-test analysis shows that there is a significant effect of mapping concept as a consolidation phase based STAD towards students’ concept comprehension. It can be concluded that the implementation of mapping concept based STAD may improve the students’s understanding on science concept.
Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate
2017-03-01
Do social cognition and epistemological understanding promote elementary school children's experimentation skills? To investigate this question, 402 children (ages 8, 9, and 10) in 2nd, 3rd, and 4th grades were assessed for their experimentation skills, social cognition (advanced theory of mind [AToM]), epistemological understanding (understanding the nature of science), and general information-processing skills (inhibition, intelligence, and language abilities) in a whole-class testing procedure. A multiple indicators multiple causes model revealed a significant influence of social cognition (AToM) on epistemological understanding, and a McNemar test suggested that children's development of AToM is an important precursor for the emergence of an advanced, mature epistemological understanding. Children's epistemological understanding, in turn, predicted their experimentation skills. Importantly, this relation was independent of the common influences of general information processing. Significant relations between experimentation skills and inhibition, and between epistemological understanding, intelligence, and language abilities emerged, suggesting that general information processing contributes to the conceptual development that is involved in scientific thinking. The model of scientific thinking that was tested in this study (social cognition and epistemological understanding promote experimentation skills) fitted the data significantly better than 2 alternative models, which assumed nonspecific, equally strong relations between all constructs under investigation. Our results support the conclusion that social cognition plays a foundational role in the emergence of children's epistemological understanding, which in turn is closely related to the development of experimentation skills. Our findings have significant implications for the teaching of scientific thinking in elementary school and they stress the importance of children's epistemological understanding in scientific-thinking processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Gendron, Faustine; Bollori, Lucas; Villeneuve, Felix
2017-04-01
In France, at the end of the last year in high school, students of the scientific terminal class have written exams in all subjects they are studying, and in "Life and Earth's Sciences", they also have an Experimental Skills Testing in order to rate them in scientific approach. This one-hour evaluation is made of four steps: - During the first evaluation, students have to show that they are able to propose a scientific strategy connected to a scientific problem. - During the second evaluation, they have to experiment. - During the third evaluation, they have to introduce their results. - During the last evaluation, they have to deduce and conclude. The final testing take place at the end of May, but during all the school year, teachers have to train their students, and it's impossible to make them work on real subjects. Therefore, it's necessary to produce new subjects every year. Linked to a fall school in Sicily last October, my colleagues and I have decided to create a new Experimental Skills Test to use new examples and illustrate subduction in the Mediterranean Sea with Aeolian Islands. We would like to make our pupils understand what the Aeolian volcanism is due to, by using information, equipment and software, etc. we have in our classrooms in our high school. Since we have found several ways for our students to prove that the Aeolian Islands are linked to a subduction zone, we have decided, following our research, to divide the new experimental skills testing in three different tests, in order to make students train on most of the equipment and then to share their results to produce a collaborative final work.
NASA Astrophysics Data System (ADS)
Shayer, Michael; Adey, Philip S.
Two years after the end of a two-year intervention program intended to promote formal operational thinking, the achievement of students initially 12 years of age was tested by their results in British National examinations, taken at age 16. The intervention methodology was set within the context of science learning, so the difference between experimental and control classes was examined first in terms of their science results. The boys achieved an average of 40% more grades of C or above than the controls. This grade is the minimum criterion for higher education in Britain. The achievement was not found equally in all students: About 40% of the boys and 25% of the girls showed effect sizes of two standard deviations in relation to comparable controls, whereas the others did not differ from the controls. Both boys and girls showed significantly higher achievement in English than comparable controls, with an effect size about half that for science. The boys - but not the girls - also showed higher achievement in mathematics. It is argued that this evidence supports the interpretation that the students' increased science achievement was caused by increased general intellectual capacity, and not just by improved domain-specific skills.
NASA Astrophysics Data System (ADS)
Jones, Carol L.
The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated they enjoyed. Additionally, as best-practice, the questioning in all the gaming within CAT did not allow a student to continue until he/she had given the correct answer, thus reinforcing the correct response.
Improving plant bioaccumulation science through consistent reporting of experimental data.
Fantke, Peter; Arnot, Jon A; Doucette, William J
2016-10-01
Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
[The Effects of an Empowerment Education Program for Kidney Transplantation Patients].
Kim, Sung Hee; You, Hye Sook
2017-08-01
This study was conducted to develop an Empowerment Education Program (EEP) for kidney transplant patients and to test the program's effects on uncertainty, self-care ability, and compliance. The research was conducted using a nonequivalent control group with a pretest-posttest design. The participants were 53 outpatients (experimental group: 25, control group: 28) who were receiving hospital treatment after kidney transplants. After the pre-test, patients in the experimental group underwent a weekly EEP for six weeks. The post-test was conducted immediately after, and four weeks after the program's completion in the same manner as the pre-test. For the control group, we conducted a post-test six and ten weeks after the pre-test, without and program intervention. A repeated measure ANOVA was performed to compare the change scores on main outcomes. Uncertainty was significantly lower in the experimental group than in the control group, both immediately after (t=-3.84, p=<.001) and 4 weeks after (t=-4.51 p=<.001) the program, whereas self-care ability (t=5.81, p=<.001), (t=5.84, p=<.001) and compliance (t=5.07, p=<.001), (t=5.45, p=<.001) were significantly higher. Kidney transplant patients who underwent an EEP showed a decrease in uncertainty and an improvement in self-care ability and compliance. Thus, our findings confirmed that an EEP can be an independent intervention method for improving and maintaining the health of kidney transplant patients. © 2017 Korean Society of Nursing Science
Quantitative biology: where modern biology meets physical sciences.
Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija
2014-11-05
Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. © 2014 Shekhar, Zhu, Mazutis, Sgro, Fai, and Podolski. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Onghena, Sofie
2013-04-01
A case study of secondary experimental science instruction in Belgium demonstrates the importance of cross-national communication in the study of science education. Belgian secondary science education in the years 1880-1914 had a clear internationalist dimension. French and German influences turn out to have been essential, stimulated by the fact that Belgium, as a result of its geographical position, considered itself as the centre of scientific relations between France and Germany, and as actually strengthened by its linguistic and cultural dualism in this regard. This pursuit of internationalist nationalism also affected the configuration of chemistry and physics as experimental courses at Belgian Royal State Schools, although the years preceding WWI are usually characterized as a period of rising nationalism in science, with countries such as Germany and France as prominent actors. To what extent did France and Germany influence Belgian debates on science education, science teachers' training, the use of textbooks, and the instalment of school laboratories and teaching collections?
ERIC Educational Resources Information Center
Wendt, Jillian L.; Rockinson-Szapkiw, Amanda
2014-01-01
This quantitative, quasi-experimental pretest/posttest control group design examined the effects of online collaborative learning on middle school students' science literacy. For a 9-week period, students in the control group participated in collaborative face-to-face activities whereas students in the experimental group participated in online…
Examining the Relationship of Textbooks and Labs on Student Achievement in Eighth-Grade Science
NASA Astrophysics Data System (ADS)
Sugalan, Anacita Noromor
One of the most important objectives of teachers, parents, school administrators, and students is to improve student scores on standardized tests such as the State of Texas Assessment for Academic Readiness (STAAR) in eighth-grade science. This quasi experimental study examined the science achievement scores between schools that use textbooks and labs when delivering instruction. This study utilized a quantitative approach using archival data and survey design. Analysis of covariance (ANCOVA) and multiple regression were used to analyze the data while controlling STAAR eighth-grade reading scores to reveal significant differences between classes. The sample and population for this study were predominantly eighth-grade Hispanic students in South Texas. Analysis of covariance showed that classes that used high labs got higher science scores and that the reading scores were significantly related to science scores. Multiple regression findings indicated that textbooks and labs were significant predictors of student achievement on the STAAR eighth- grade science class result in South Texas for Spring 2015. The findings of this study may serve as a catalyst for improving student achievement in science through changes in textbook adoption and doing labs in science. The result suggests the need to research further to investigate other contributing factors of student achievement.
Sung, Ki Wol; Kang, Hye Seung; Nam, Ji Ran; Park, Mi Kyung; Park, Ji Hyeon
2018-04-01
This study aimed to estimate the effects of a health mentoring program on fasting blood sugar, total cholesterol, triglyceride, physical activity, self care behavior and social support changes among community-dwelling vulnerable elderly individuals with diabetes. A non-equivalent control group pre-post-test design was used. Participants were 70 community-dwelling vulnerable elderly individuals with diabetes. They were assigned to the experimental (n=30) or comparative (n=30) or control group (n=28). The experimental group participated in the health mentoring program, while the comparative group participated in health education program, the control group did not participate in any program. Data analyses involved a chi-square test, Fisher's exact test, a generalized linear model, and the Bonferroni correction, using SPSS 23.0. Compared to the control group, the experimental and comparative groups showed a significant decrease in fasting blood sugar, total cholesterol, and triglyceride. Compared to the comparative and control groups, the experimental group showed significant improvement in self care behavior. However, there were no statistical differences in physical activity or social support among the three groups. These findings indicate that the health mentoring program is an effective intervention for community-dwelling vulnerable elderly individuals with diabetes. This program can be used as an efficient strategy for diabetes self-management within this population. © 2018 Korean Society of Nursing Science.
Cumming, Geoff; Fresc, Luca; Boedker, Ingrid; Tressoldi, Patrizio
2017-01-01
From January 2014, Psychological Science introduced new submission guidelines that encouraged the use of effect sizes, estimation, and meta-analysis (the “new statistics”), required extra detail of methods, and offered badges for use of open science practices. We investigated the use of these practices in empirical articles published by Psychological Science and, for comparison, by the Journal of Experimental Psychology: General, during the period of January 2013 to December 2015. The use of null hypothesis significance testing (NHST) was extremely high at all times and in both journals. In Psychological Science, the use of confidence intervals increased markedly overall, from 28% of articles in 2013 to 70% in 2015, as did the availability of open data (3 to 39%) and open materials (7 to 31%). The other journal showed smaller or much smaller changes. Our findings suggest that journal-specific submission guidelines may encourage desirable changes in authors’ practices. PMID:28414751
Argument as Professional Development: Impacting Teacher Knowledge and Beliefs About Science
NASA Astrophysics Data System (ADS)
Crippen, Kent J.
2012-12-01
Using a case study method, the experiences of a group of high school science teachers participating in a unique professional development method involving an argue-to-learn intervention were examined. The participants ( N = 42) represented 25 different high schools from a large urban school district in the southwestern United States. Data sources included a multiple-choice science content test and artifacts from a capstone argument project. Findings indicate although it was intended for the curriculum to be a robust and sufficient collection of evidence, participant groups were more likely to use the Web to find unique evidence than to they were to use the provided materials. Content knowledge increased, but an issue with teacher conceptions of primary data was identified, as none of the participants chose to use any of their experimental results in their final arguments. The results of this study reinforce multiple calls for science curricula that engage students (including teachers as students) in the manipulation and questioning of authentic data as a means to better understanding complex socioscientific issues and the nature of science.
Fbis report. Science and technology: Economic review, September 19, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-19
;Partial Contents: Germany: Braunschweig University Tests Organic Semiconductors; France: Ariane-5 Tests Suspended; First Tests in Euro-Russian RECORD Rocket Engine Program; France: Renault`s Multi-Model Assembly Line Presented; Germany: New High Speed Trains Under Development; France: Matra Test Drone, Missile Systems; France: Experimental Project for Automobile Recycling; Germany: Survey of Flexible Manufacturing Developments; Germany: Heinrich Hertz Institute Produces Polymer-Based Circuit; French Firms Introduce Computerized Control Room for Nuclear Plants; German Machine Tool Industry Calls for Information Technology Projects; Germany: R&D Achievements in Digital HDTV Reported; Hungary: Secondary Telecommunications Networks Described; EU: Mergers in Pharmaceutical Industry Reported; SGS-Thomson Business Performance Analyzed; Germany`s Siemensmore » Invest Heavily in UK Semiconductor Plant.« less
NASA Astrophysics Data System (ADS)
Ng, Luke; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randolph
2001-04-01
Biological ligands tagged with ^125 I have been used in studies including comparisons between normal and diabetic mice in vivo. In order to enhance the image of the mouse pancreas we have tested a number of pinhole collimators coupled to two types of position sensitive photomultiplier tube. Various shapes of pinhole have been tested. Results will be described and discussed. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation, The Virginia Commonwealth Health Research Board and the Thomas F. and Kate Miller Jeffress Memorial Trust.
Laboratory animal science: a resource to improve the quality of science.
Forni, M
2007-08-01
The contribution of animal experimentation to biomedical research is of undoubted value, nevertheless the real usefulness of animal models is still being hotly debated. Laboratory Animal Science is a multidisciplinary approach to humane animal experimentation that allows the choice of the correct animal model and the collection of unbiased data. Refinement, Reduction and Replacement, the "3Rs rule", are now widely accepted and have a major influence on animal experimentation procedures. Refinement, namely any decrease in the incidence or severity of inhumane procedures applied to animals, has been today extended to the entire lives of the experimental animals. Reduction of the number of animals used to obtain statistically significant data may be achieved by improving experimental design and statistical analysis of data. Replacement refers to the development of validated alternative methods. A Laboratory Animal Science training program in biomedical degrees can promote the 3Rs and improve the welfare of laboratory animals as well as the quality of science with ethical, scientific and economic advantages complying with the European requirement that "persons who carry out, take part in, or supervise procedures on animals, or take care of animals used in procedures, shall have had appropriate education and training".
Impact of GK-12 Fellows on Middle School Students Along the U.S.-Mexico Border
NASA Astrophysics Data System (ADS)
Hagedorn, E. A.; Miller, K. C.; Kennedy, J.
2009-12-01
Here we present key results of a 3-year quasi-experimental impact study of NSF GK-12 fellows on middle school students. The GK-12 program at the University of Texas at El Paso, placed ten science or engineering graduate students into middle school science classrooms for 10 hours per week. In the first year, the fellows were placed with 6th grade students. In successive years, fellows were placed in 7th and then 8th grade classrooms. Most middle school students had a fellow in their classroom for two or three years. The five participating schools had demographic characteristics that included a greater than 75% Hispanic population and greater than 75% free and reduced lunch participation. Five similar middle schools were chosen as a control group. We hypothesized that participating students would not only learn more science than their control group peers but would express more interest in science careers. The graduate fellows and their partner teachers participated in an extensive professional development program focusing on using inquiry science methods effectively in the classroom. Teachers and fellows spent two weeks in a summer institute that included one week at a remote desert research facility and one week at the university. In addition to the summer institute, fellows took a weekly seminar course that focused on current science learning research and inquiry teaching. Several times per semester the teachers and fellows met for shared inquiry science workshops. Two critical components of our impact study were monitoring student progress in science through existing standardized tests (district benchmarks and the 8th grade state science exam) and a yearly open-ended questionnaire asking “what 3 things would you like to do when you are an adult?” We have statewide science test results for the 794 students who had a GK-12 fellow in their classroom for each of the 3 years and 854 students in the control group who had been in their same school for each of the 3 years. An independent samples t-test as well as the non-parametric Mann-Whitney U test of the data show that there is no statistically significant difference between the mean raw scores for the treatment and control groups on the state science test. Currently, we are investigating whether there are other crucial differences between the treatment and control groups that might mask any science improvement. For example, we plan to examine the results of 7th grade state reading and mathematics scores as a predictor variable for science achievement. Analysis of the open-ended career responses, shows that in each of the first two years, the number of STEM careers indicated by GK12 impacted middle school students was higher in the spring than in the fall and higher in the spring than those of the control group schools. Data from the third year will be presented at the meeting.
The role of visualization in learning from computer-based images
NASA Astrophysics Data System (ADS)
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-05-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.
The Beliefs and Behaviors of Pupils in an Experimental School: The Science Lab.
ERIC Educational Resources Information Center
Lancy, David F.
This booklet, the second in a series, reports on the results of a year-long research project conducted in an experimental school associated with the Learning Research and Development Center, University of Pittsburgh. Specifically, this is a report of findings pertaining to one major setting in the experimental school, the science lab. The science…
Zero Gravity Research Facility User's Guide
NASA Technical Reports Server (NTRS)
Thompson, Dennis M.
1999-01-01
The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.
Plasmonics and SERS activity of post-transition metal nanoparticles
NASA Astrophysics Data System (ADS)
Bezerra, A. G.; Machado, T. N.; Woiski, T. D.; Turchetti, D. A.; Lenz, J. A.; Akcelrud, L.; Schreiner, W. H.
2018-05-01
Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice
Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.
An Interrogative Model of Computer-Aided Adaptive Testing: Some Experimental Evidence
1988-09-01
Ahilitfas 2 Final 3g zj, research report, Office of Naval Research, Arlington, VA, June 1986. Brovn, 3. S. and Harris, a., " Artificial Intelligence and...Building an Intellegent Tutoring System," in Methods and Tactics in Cggnitive Science (Rds. Kintsch, Miller, and Poison), Lavrence Zrlbaum Associates...Education, Washington, DC, November 1984. 89 -7- In SIvasankaran, T. R. and Bul, Tung X., "A Bayesian Diagnostic Model for Intellegent CAI Systems
Interruption of Neural Function.
1987-05-01
applcbse) University of Colorado I Be. ADDRESS (City. Stele and ZIP Code) 10. SOURCE OF FUNDING NOS. Campus Box B-19 PROGRAM PROJECT TASK WORK UNIT Boulder...rectification, frequency-sensitive phenomena, safety, and some effects on bio - logical systems," invited review, Charles Polk, Ed., CRC Handbook of Biological...experimental test", Mathematical Bio - Sciences, Vol. 29, pp. 235-253, 1978. [131 Kuf1er. S. WV., J. G. Nicholls, and A. R. Martin, "From Nettron to Brain
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
ERIC Educational Resources Information Center
Dexter, Douglas D.; Park, Youn J.; Hughes, Charles A.
2011-01-01
This article presents a meta-analysis of experimental and quasi-experimental studies in which intermediate and secondary students with learning disabilities were taught science content through the use of graphic organizers (GOs). Following an exhaustive search for studies meeting specified selection criteria, 23 standardized mean effect sizes were…
Francis, Gregory
2016-01-01
In response to concerns about the validity of empirical findings in psychology, some scientists use replication studies as a way to validate good science and to identify poor science. Such efforts are resource intensive and are sometimes controversial (with accusations of researcher incompetence) when a replication fails to show a previous result. An alternative approach is to examine the statistical properties of the reported literature to identify some cases of poor science. This review discusses some details of this process for prominent findings about racial bias, where a set of studies seems "too good to be true." This kind of analysis is based on the original studies, so it avoids criticism from the original authors about the validity of replication studies. The analysis is also much easier to perform than a new empirical study. A variation of the analysis can also be used to explore whether it makes sense to run a replication study. As demonstrated here, there are situations where the existing data suggest that a direct replication of a set of studies is not worth the effort. Such a conclusion should motivate scientists to generate alternative experimental designs that better test theoretical ideas.
Francis, Gregory
2016-01-01
In response to concerns about the validity of empirical findings in psychology, some scientists use replication studies as a way to validate good science and to identify poor science. Such efforts are resource intensive and are sometimes controversial (with accusations of researcher incompetence) when a replication fails to show a previous result. An alternative approach is to examine the statistical properties of the reported literature to identify some cases of poor science. This review discusses some details of this process for prominent findings about racial bias, where a set of studies seems “too good to be true.” This kind of analysis is based on the original studies, so it avoids criticism from the original authors about the validity of replication studies. The analysis is also much easier to perform than a new empirical study. A variation of the analysis can also be used to explore whether it makes sense to run a replication study. As demonstrated here, there are situations where the existing data suggest that a direct replication of a set of studies is not worth the effort. Such a conclusion should motivate scientists to generate alternative experimental designs that better test theoretical ideas. PMID:27713708
NASA Astrophysics Data System (ADS)
Clark, Douglas; Jorde, Doris
2004-01-01
This study analyzes the impact of an integrated sensory model within a thermal equilibrium visualization. We hypothesized that this intervention would not only help students revise their disruptive experientially supported ideas about why objects feel hot or cold, but also increase their understanding of thermal equilibrium. The analysis synthesizes test data and interviews to measure the impact of this strategy. Results show that students in the experimental tactile group significantly outperform their control group counterparts on posttests and delayed posttests, not only on tactile explanations, but also on thermal equilibrium explanations. Interview transcripts of experimental and control group students corroborate these findings. Discussion addresses improving the tactile model as well as application of the strategy to other science topics. The discussion also considers possible incorporation of actual kinetic or thermal haptic feedback to reinforce the current audio and visual feedback of the visualization. This research builds on the conceptual change literature about the nature and role of students' experientially supported ideas as well as our understanding of curriculum and visualization design to support students in learning about thermodynamics, a science topic on which students perform poorly as shown by the National Assessment of Educational Progress (NAEP) and Third International Mathematics and Science Study (TIMSS) studies.
Fasano, Fabrizio; Mitolo, Micaela; Gardini, Simona; Venneri, Annalena; Caffarra, Paolo; Pazzaglia, Francesca
2018-01-01
Recently, efforts have been made to combine complementary perspectives in the assessment of Alzheimer type dementia. Of particular interest is the definition of the fingerprints of an early stage of the disease known as Mild Cognitive Impairment or prodromal Alzheimer's Disease. Machine learning approaches have been shown to be extremely suitable for the implementation of such a combination. In the present pilot study we combined the machine learning approach with structural magnetic resonance imaging and cognitive test assessments to classify a small cohort of 11 healthy participants and 11 patients experiencing Mild Cognitive Impairment. Cognitive assessment included a battery of standardised tests and a battery of experimental visuospatial memory tests. Correct classification was achieved in 100% of the participants, suggesting that the combination of neuroimaging with more complex cognitive tests is suitable for early detection of Alzheimer Disease. In particular, the results highlighted the importance of the experimental visuospatial memory test battery in the efficiency of classification, suggesting that the high-level brain computational framework underpinning the participant's performance in these ecological tests may represent a "natural filter" in the exploration of cognitive patterns of information able to identify early signs of the disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
PSYCHOLOGY. Estimating the reproducibility of psychological science.
2015-08-28
Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Robbins, Dennis; Ford, K. E. Saavik
2018-01-01
The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York and the American Museum of Natural History (AMNH), has developed and offers hands-on workshops to undergraduate faculty on teaching science thought and practices. These professional development workshops emphasize a curriculum and pedagogical strategies that uses computers and other digital devices in a laboratory environment to teach students fundamental topics, including: proportional reasoning, control of variables thinking, experimental design, hypothesis testing, reasoning with data, and drawing conclusions from graphical displays. Topics addressed here are rarely taught in-depth during the formal undergraduate years and are frequently learned only after several apprenticeship research experiences. The goal of these workshops is to provide working and future faculty with an interactive experience in science learning and teaching using modern technological tools.
Encouraging a "Romantic Understanding" of Science: The Effect of the Nikola Tesla Story
NASA Astrophysics Data System (ADS)
Hadzigeorgiou, Yannis; Klassen, Stephen; Klassen, Cathrine Froese
2012-08-01
The purpose of this paper is to discuss and apply the notion of romantic understanding by outlining its features and its potential role in science education, to identify its features in the story of Nikola Tesla, and to describe an empirical study conducted to determine the effect of telling such a story to Grade 9 students. Elaborated features of the story are the humanization of meaning, an association with heroes and heroic qualities, the limits of reality and extremes of experience, a sense of wonder, and a contesting of conventions and conventional ideas. The study demonstrates the learning benefits of encouraging a romantic understanding through a story that is structured explicitly around the identified features, in this instance in the context of the production and transmission of alternating current electricity. Quantitative and qualitative analyses of journal entries showed that the group of students who were encouraged to understand the concept of alternating current romantically (the experimental group) became more involved with both the content and the context of the story than a comparison group of students who were taught the concept explicitly, without a context (the control group). The students in the experimental group also performed statistically better on a science-content test taken 1 week and again 8 weeks after the indicated teaching intervention. This finding, along with the content analyses of students' journals, provided evidence of romantic understanding of the science content for those students who listened to the Tesla story.
NASA Astrophysics Data System (ADS)
Haskins, Sandra Sue
The purpose of this study was to quantitatively determine whether the material found in ABC promotes scientific inquiry through the inclusion of science process skills, and to quantitatively determine the type (experimental, comparative, or descriptive) and character (wet-lab, paper and pencil, model, or computer) of laboratory activities. The research design allowed for an examination of the frequency and type of science process skills required of students in 79 laboratory activities sampled from all 12 units utilizing a modified 33-item laboratory analysis inventory (LAI) (Germane et al, 1996). Interrater reliability for the science process skills was completed on 19 of the laboratory activities with a mean score of 86.1%. Interrater reliability for the type and character of the laboratory, on the same 19 laboratory activities, was completed with mean scores of 79.0% and 96.5%, respectively. It was found that all laboratory activities provide a prelaboratory activity. In addition, the science process skill category of student performance is required most often of students with the skill of learning techniques or manipulating apparatus occurring 99% of the time. The science process skill category observed the least was student planning and design, occurring only 3% of the time. Students were rarely given the opportunity to practice science process skills such as developing and testing hypotheses through experiments they have designed. Chi-square tests, applied at the .05 level of significance, revealed that there was a significant difference in the type of laboratory activities; comparative laboratory activities appeared more often (59%). In addition the character of laboratory activities, "wet-lab" activities appeared more often (90%) than any of the others.
NASA Astrophysics Data System (ADS)
Pathommapas, Nookorn
2018-01-01
Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of chemistry teachers and researcher, 2) the percentage of students having understandings of chemistry concepts before and after learning at the four stations ranged from 15.92-54.23% and 83.89-97.02%, respectively, and 3)students' opinions of using their 21st century skills in the science camp after finishing the camp activities were at a high level of satisfactions, ranged from 4.09-4.47 of 5 rating scores.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sumita
This study examined the effects of an extensive inquiry-based field experience on pre-service elementary teachers' personal agency beliefs (PAB) about teaching science and their ability to effectively implement science instruction. The research combined quantitative and qualitative approaches within an ethnographic research tradition. A comparison was made between the pre and posttest scores for two groups. The experimental group utilized the inquiry method; the control group did not. The experimental group had the stronger PAB pattern. The field experience caused no significant differences to the context beliefs of either groups, but did to the capability beliefs. The number of college science courses taken by pre-service elementary teachers' was positively related to their post capability belief (p = .0209). Qualitative information was collected through case studies which included observation of classrooms, assessment of lesson plans and open-ended, extended interviews of the participants about their beliefs in their teaching abilities (efficacy beliefs), and in teaching environments (context beliefs). The interview data were analyzed by the analytic induction method to look for themes. The emerging themes were then grouped under several attributes. Following a review of the attributes a number of hypotheses were formulated. Each hypothesis was then tested across all the cases by the constant comparative method. The pattern of relationship that emerged from the hypotheses testing clearly suggests a new hypothesis that there is a spiral relationship among the ability to establish communicative relationship with students, desire for personal growth and improvement, and greater content knowledge. The study concluded that inquiry based student teaching should be encouraged to train school science teachers. But the meaning and the practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom. A survey should be undertaken to ascertain the extent to which what is currently being practiced, as the inquiry method is indeed the inquiry method. Practicing the inquiry method is greatly more demanding than traditional methods of teacher training. A widespread adoption of the method will require considerable changes in these factors.
In pursuit of a science of agriculture: the role of statistics in field experiments.
Parolini, Giuditta
2015-09-01
Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.
NASA Astrophysics Data System (ADS)
Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su
2018-07-01
We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.
Programming experience promotes higher STEM motivation among first-grade girls.
Master, Allison; Cheryan, Sapna; Moscatelli, Adriana; Meltzoff, Andrew N
2017-08-01
The gender gap in science, technology, engineering, and math (STEM) engagement is large and persistent. This gap is significantly larger in technological fields such as computer science and engineering than in math and science. Gender gaps begin early; young girls report less interest and self-efficacy in technology compared with boys in elementary school. In the current study (N=96), we assessed 6-year-old children's stereotypes about STEM fields and tested an intervention to develop girls' STEM motivation despite these stereotypes. First-grade children held stereotypes that boys were better than girls at robotics and programming but did not hold these stereotypes about math and science. Girls with stronger stereotypes about robotics and programming reported lower interest and self-efficacy in these domains. We experimentally tested whether positive experience with programming robots would lead to greater interest and self-efficacy among girls despite these stereotypes. Children were randomly assigned either to a treatment group that was given experience in programming a robot using a smartphone or to control groups (no activity or other activity). Girls given programming experience reported higher technology interest and self-efficacy compared with girls without this experience and did not exhibit a significant gender gap relative to boys' interest and self-efficacy. These findings show that children's views mirror current American cultural messages about who excels at computer science and engineering and show the benefit of providing young girls with chances to experience technological activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Kehinde, Elijah O.
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224
Kehinde, Elijah O
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. © 2013 S. Karger AG, Basel.
System Related Interventions to Reduce Diagnostic Error: A Narrative Review
Singh, Hardeep; Graber, Mark L.; Kissam, Stephanie M.; Sorensen, Asta V.; Lenfestey, Nancy F.; Tant, Elizabeth M.; Henriksen, Kerm; LaBresh, Kenneth A.
2013-01-01
Background Diagnostic errors (missed, delayed, or wrong diagnosis) have gained recent attention and are associated with significant preventable morbidity and mortality. We reviewed the recent literature to identify interventions that have been, or could be, implemented to address systems-related factors that contribute directly to diagnostic error. Methods We conducted a comprehensive search using multiple search strategies. We first identified candidate articles in English between 2000 and 2009 from a PubMed search that exclusively evaluated for articles related to diagnostic error or delay. We then sought additional papers from references in the initial dataset, searches of additional databases, and subject matter experts. Articles were included if they formally evaluated an intervention to prevent or reduce diagnostic error; however, we also included papers if interventions were suggested and not tested in order to inform the state-of-the science on the topic. We categorized interventions according to the step in the diagnostic process they targeted: patient-provider encounter, performance and interpretation of diagnostic tests, follow-up and tracking of diagnostic information, subspecialty and referral-related; and patient-specific. Results We identified 43 articles for full review, of which 6 reported tested interventions and 37 contained suggestions for possible interventions. Empirical studies, though somewhat positive, were non-experimental or quasi-experimental and included a small number of clinicians or health care sites. Outcome measures in general were underdeveloped and varied markedly between studies, depending on the setting or step in the diagnostic process involved. Conclusions Despite a number of suggested interventions in the literature, few empirical studies have tested interventions to reduce diagnostic error in the last decade. Advancing the science of diagnostic error prevention will require more robust study designs and rigorous definitions of diagnostic processes and outcomes to measure intervention effects. PMID:22129930
Science and craftsmanship: the art of experiment and instrument making.
Dierig, Sven
2006-01-01
In his two-volume monograph Untersuchungen über thierische Elektricität, the Berlin physiologist Emil du Bois-Reymond described the relation between nervous electricity and muscle mechanics by way of a long series of experiments. This work is a key text in the history of the experimental life sciences. But it not only contains new findings about the functioning of muscles and its nerves. Du Bois-Reymond practiced an art of experimentation in which aesthetics of mechanical craftsmanship allied itself with the science of physiology. Experimentation, as du Bois-Reymond understood it, was simultaneously an epistemic and an aesthetic practice. The goal of his science was thus producing both knowledge and aesthetic success. To cite this article: S. Dierig, C. R. Biologies 329 (2006).
NASA Astrophysics Data System (ADS)
Wiwin, E.; Kustijono, R.
2018-03-01
The purpose of the study is to describe the use of Physics practicum to train the science process skills and its effect on the scientific attitudes of the vocational high school students. The components of science process skills are: observing, classifying, inferring, predicting, and communicating. The established scientific attitudes are: curiosity, honesty, collaboration, responsibility, and open-mindedness. This is an experimental research with the one-shot case study design. The subjects are 30 Multimedia Program students of SMK Negeri 12 Surabaya. The data collection techniques used are observation and performance tests. The score of science process skills and scientific attitudes are taken from observational and performance instruments. Data analysis used are descriptive statistics and correlation. The results show that: 1) the physics practicum can train the science process skills and scientific attitudes in good category, 2) the relationship between the science process skills and the students' scientific attitude is good category 3) Student responses to the learning process using the practicum in the good category, The results of the research conclude that the physics practicum can train the science process skill and have a significant effect on the scientific attitude of the vocational highschool students.
Using the Learning Together Strategy to Affect Student Achievement in Physical Science
NASA Astrophysics Data System (ADS)
Campbell, Manda D.
Despite efforts mandated by national legislation, the state of Georgia has made little progress in improving Grade 5 students' standardized test scores in science, spurring the need for social change. The purpose of this quantitative causal-comparative study was to determine whether there was a significant difference in the student achievement in the conceptual understanding of science concepts in a classroom where the teacher applied the cooperative learning strategy, Learning Together, as compared to the classroom in which teacher-directed instruction was applied. The theories of positive social interdependence and social development, which posit that social interaction promotes cognitive gains, provided a framework for the study. A convenience sample of 38 students in Grade 5 participated in the 6-week study. Nineteen students received the cooperative learning strategy treatment, while 19 students did not. Pre- and post-tests were administered to students in both groups, and an analysis of variance was performed to examine differences between the 2 sample means. Results indicated that the group receiving the cooperative learning strategy scored significantly higher than did the control group receiving direct instruction. The experimental group also scored higher in vocabulary acquisition. Using the cooperative learning strategy of Learning Together could guide teachers' efforts to help students achieve excellent state-mandated test scores. Learning Together may be employed as a powerful teaching tool across grade levels and content areas, thus promoting positive gains in other state-mandated testing areas such as math, language arts, and social studies.
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li
2015-05-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Wu, Chia-Lien
2011-05-01
The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific explanations (i.e., explanation skills). Quantitative and qualitative data including interview transcripts, classroom video recordings, and pre- and post-tests of explanation skills were collected from 68 fifth graders in two science classes. Analyses of data show that after engaging in 5-week inquiry activities, students developed better inquiry skills to construct scientific explanations. More students realized the existence of experimental errors, viewed experimental data as evidence to support their claims, and had richer understanding about the nature of scientific questions. However, most students' epistemological beliefs were still naïve (the beginning level); they could not differentiate between experimental results and scientific knowledge and believed that the purpose of science is doing experiments or research. The results also show that students who held a more sophisticated epistemology (the intermediate level) tended to develop better inquiry skills than those with naïve beliefs. Analyses of classroom observations suggest possible explanations for how students reflected their epistemological views in their inquiry practices.
ORBIT modelling of fast particle redistribution induced by sawtooth instability
NASA Astrophysics Data System (ADS)
Kim, Doohyun; Podestà, Mario; Poli, Francesca; Princeton Plasma Physics Laboratory Team
2017-10-01
Initial tests on NSTX-U show that introducing energy selectivity for sawtooth (ST) induced fast ion redistribution improves the agreement between experimental and simulated quantities, e.g. neutron rate. Thus, it is expected that a proper description of the fast particle redistribution due to ST can improve the modelling of ST instability and interpretation of experiments using a transport code. In this work, we use ORBIT code to characterise the redistribution of fast particles. In order to simulate a ST crash, a spatial and temporal displacement is implemented as ξ (ρ , t , θ , ϕ) = ∑ξmn (ρ , t) cos (mθ + nϕ) to produce perturbed magnetic fields from the equilibrium field B-> , δB-> = ∇ × (ξ-> × B->) , which affect the fast particle distribution. From ORBIT simulations, we find suitable amplitudes of ξ for each ST crash to reproduce the experimental results. The comparison of the simulation and the experimental results will be discussed as well as the dependence of fast ion redistribution on fast ion phase space variables (i.e. energy, magnetic moment and toroidal angular momentum). Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.
Cano García, Francisco; García, Ángela; Berbén, A B G; Pichardo, M C; Justicia, Fernando
2014-01-01
Although much research has examined the impact of question generation on students' reading comprehension and learning from lectures, far less research has analysed its influence on how students learn and study science. The present study aims to bridge this knowledge gap. Using a quasi-experimental design, three complete ninth-grade science classes, with a total of 72 students, were randomly assigned to three conditions (groups): (G1) questioning-training by providing prompts; (G2) question-generation without any explicit instruction; and (G3) no question control. Participants' pre-test and post-test self-reported measures of metacognitive knowledge, self-regulation and learning approaches were collected and data analysed with multivariate and univariate analyses of covariance. (a) MANCOVA revealed a significant effect for group; (b) ANCOVAs showed the highest average gains for G1 and statistically significant between-group differences in the two components of metacognition: metacognitive knowledge and self-regulation; and (c) the direction of these differences seemed to vary in each of these components. Question-generation training influenced how students learned and studied, specifically their metacognition, and it had a medium to large effect size, which was somewhat related to the prompts used.
Kenyon, Kristy L.; Onorato, Morgan E.; Gottesman, Alan J.; Hoque, Jamila; Hoskins, Sally G.
2016-01-01
CREATE (Consider, Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) is an innovative pedagogy for teaching science through the intensive analysis of scientific literature. Initiated at the City College of New York, a minority-serving institution, and regionally expanded in the New York/New Jersey/Pennsylvania area, this methodology has had multiple positive impacts on faculty and students in science, technology, engineering, and mathematics courses. To determine whether the CREATE strategy is effective at the community college (2-yr) level, we prepared 2-yr faculty to use CREATE methodologies and investigated CREATE implementation at community colleges in seven regions of the United States. We used outside evaluation combined with pre/postcourse assessments of students to test related hypotheses: 1) workshop-trained 2-yr faculty teach effectively with the CREATE strategy in their first attempt, and 2) 2-yr students in CREATE courses make cognitive and affective gains during their CREATE quarter or semester. Community college students demonstrated positive shifts in experimental design and critical-thinking ability concurrent with gains in attitudes/self-rated learning and maturation of epistemological beliefs about science. PMID:26931399
Inertial Fusion and High-Energy-Density Science in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarter, C B
2001-09-06
Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less
STEM Education-An Exploration of Its Impact on Female Academic Success in High School
NASA Astrophysics Data System (ADS)
Ybarra, Michael E.
The 21st century presents many new career opportunities and choices for women today. However, over the past decade, there has been a growing concern that there will not be enough students trained in Science, Technology, Engineering, and Math (STEM) to fill jobs in the United States. Current research reveals that there will be a need for highly skilled workers in the STEM industries, along with the opportunities to earn higher wages. With these opportunities ahead, it is paramount that secondary schools prepare not only their male students, but also their female students for these lucrative STEM careers. The purpose of this study was to investigate to what degree female high school students enrolled in a STEM academy, and who may play sports, experience academic differences in college preparatory math and science courses, and in the math and science portions of the California Standards Test. Academic differences shall be defined as differences in grade point averages. A comparison will be made of female students who take similar classes and play sports, but who are not enrolled in a STEM academy program. This comparison will then incorporate a quantitative non-experimental research design, along with a chi-square test.
Parolini, Giuditta
2015-01-01
During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.
HIFIRE Flight 2 Overview and Status Update 2011
NASA Technical Reports Server (NTRS)
Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore
2011-01-01
A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.
Turbulent Aeroheating Testing of Mars Science Laboratory Entry Vehicle in Perfect-Gas Nitrogen
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Collier, Arnold S.
2007-01-01
An experimental investigation of turbulent aeroheating on the Mars Science Laboratory entry vehicle heat shield has been conducted in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9. Testing was performed on a 6-in. (0.1524 m) diameter MSL model in pure N2 gas in the tunnel s Mach 8 and Mach 10 nozzles at free stream Reynolds numbers of 4.1x10(exp 6)/ft to 49x10(exp 6)/ft (1.3x10(exp 7)/m to 16x10(exp 7)/m) and 1.2x10(exp 6)/ft to 19x10(exp 6)/ft (0.39x10(exp 7)/m to 62x10(exp 7)/m), respectively. These conditions were sufficient to span the regime of boundary-layer flow from completely laminar to fully-developed turbulent flow over the entire forebody. A supporting aeroheating test was also conducted in the Langley Research Center 20-Inch Mach 6 Air Tunnel at free stream Reynolds number of 1x10(exp 6)/ft to 7x10(exp 6)/ft (0.36x10(exp 7)/m to 2.2x10(exp 7)/m) in order to help corroborate the Tunnel 9 results. A complementary computational fluid dynamics study was conducted in parallel to the wind tunnel testing. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins on predictions for aeroheating environments during entry into the Martian atmosphere. Data from both wind tunnel tests and comparisons with the predictions are presented herein. It was concluded from these comparisons that for perfect-gas conditions, the computational tools could predict fully-laminar or fully-turbulent heating conditions to within 10% of the experimental data
Turbulent Aeroheating Testing of Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Collier, Arnold S.
2008-01-01
An experimental investigation of turbulent aeroheating on the Mars Science Laboratory entry vehicle heat shield has been conducted in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9. Testing was performed on a 6-in. (0.1524 m) diameter MSL model in pure N2 gas in the tunnel's Mach 8 and Mach 10 nozzles at free stream Reynolds numbers of 4.1 x 10(exp 6)/ft to 49 x 10(exp 6)/ft (1.3 x 10(exp 7)/m to 19 x 10(exp 6/ft) and 1.2 x 10(exp 6)/ft to 19 x 10(exp 6)/ft (0.39 x 10(exp 7)/m to 62 x 10(exp 7)/m), respectively. These conditions were sufficient to span the regime of boundary-layer flow from completely laminar to fully-developed turbulent flow over the entire forebody. A supporting aeroheating test was also conducted in the Langley Research Center 20-Inch Mach 6 Air Tunnel at free stream Reynolds number of 1 x 10(exp 6)/ft to 7 x 10(exp 6)/ft (0.36 x 10(exp 7)/m to 2.2 x 10(exp 7)/m) in order to help corroborate the Tunnel 9 results. A complementary computational fluid dynamics study was conducted in parallel to the wind tunnel testing. Laminar and turbulent predictions were generated for the wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins on predictions for aeroheating environments during entry into the Martian atmosphere. Data from both wind tunnel tests and comparisons with the predictions are presented herein. It was concluded from these comparisons that for perfect-gas conditions, the computational tools could predict fully-laminar or fully-turbulent heating conditions to within 12% or better of the experimental data.
NASA Astrophysics Data System (ADS)
Marion, Virginia Frances
1998-12-01
The goal of Project Inquiry, a two-year long multiphase study, was to transform the delivery of science instruction from a traditional, textbook driven delivery approach to a hands-on, minds-on, constructivist approach. Teachers from a midwestern urban school district were trained in constructivism while learning physics concepts and content through guided inquiry instruction in collaborative groups. The objectives aimed to increase teachers' content expertise and science teaching efficacy, as well as to have teachers become better facilitators of learning. Phase two of the three phases of Project Inquiry was the focus of this study. Fifty-seven teachers participated in Phase two, which began with an intense two week summer institute in 1995. A longitudinal time-series (OxOO), quasi-experimental research design was used to investigate the relationship between science teaching efficacy scores and gains in physics content knowledge. The data consisted of: (a) six sets of pre and post physics content knowledge test scores (electricity, magnetism, matter and balance); (b) three sets of STEBI-A (inservice), Science Teaching Efficacy Belief Instrument scores, a pre to post, pre to follow-up, and post to follow-up; and (c) demographic variables that were used as covariates, grade taught, years of experience, and postbaccalaureate training. Using the general linear model with an Alpha level of.05, and testing the hypothesized relationships, results indicated that although there were significant positive gains in content knowledge (p =.000) and science teaching efficacy (p =.000), the overall average gains in physics content knowledge were not predictive of gains in either Personal Science Teaching Efficacy or Science Outcome Expectancy. Post hoc analysis used individual content gain scores, in regression models that included the three covariates: grade taught, years of experience, and post baccalaureate training, to test the relationship between knowledge gains and efficacy gains. A series of interactions between significant content areas and the covariates was also run. Science Teaching Outcome Expectancy and Personal Science Teaching Efficacy showed different relationships with the predictor variables. Though gains in specific content areas were related to gains in Science Teaching Outcome Expectancy and Personal Science Teaching Efficacy, gains in Personal Science Teaching Efficacy were further modified by the covariates. These results may reflect not only a more complex relationship between content knowledge gain and Personal Science Teaching Efficacy but also the complex nature of the construct. Evaluation of the physics content knowledge tests revealed that the tests were not valid for evaluating 35 of the 37 identified learning objectives. Although the data did not render valid results, it does give insights into possible relationships that may exist given a more stringent investigation with a valid instrument to measure content knowledge gains. In addition, this study demonstrated the importance of considering the likelihood of interactions among a given set of variables and the covariates. The findings also suggest the possible value of considering the psychological factors associated with the change process when planning professional development programs.
Joung, Jaewon; Kim, Sungjae
2017-04-01
The purpose of this study was to develop a relapse prevention program (RPP) and examine the effects of the RPP on insight, empowerment, and treatment adherence in patients with schizophrenia. A non-equivalent control group pretest-posttest design was used. Participants were 54 inpatients who had a diagnosis of schizophrenia (experimental group: 26, control group: 28). The study was carried out from February 7, 2012 to February 6, 2013. Over a 10-day period prior to discharge each participant in the experimental group received three one-hour sessions of RPP a one-to-one patient-nurse interaction. Data were collected using Assess Unawareness of Mental Disorder (SUMD), Empowerment Scale, and Insight and Treatment Attitude Questionnaire (ITAQ) and analyzed using PASW 18.0 with chi-square test, independent t-test, Mann-Whitney U test, and ANCOVA. The experimental group had a significant increase in insight and treatment adherence compared to the control group. However, there was no significant difference in empowerment between the two groups. Findings indicate that the RPP for patients with schizophrenia was effective in improving insight and treatment adherence. A longitudinal study is needed to confirm the persistence of these effects of RPP in patients with schizophrenia. © 2017 Korean Society of Nursing Science
NASA Astrophysics Data System (ADS)
Miller, H. R.; Sell, K. S.; Herbert, B. E.
2004-12-01
Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes, teaching assistant attitudes, the lack of scaffolded learning, limited pedagogical content knowledge, and departmental oversight, which were all encountered during this study, can have an affect on the students' attitudes and achievements during the course. Data collected showed an overall improvement in content knowledge (38% increase); while performance effort clearly declined as seen through post-mental model expressions (a decline in performance by 24.8%) and percentage of assignments turned in (39% of all students turned in the required final report). A non-supportive learning environment was also seen through student comments on the final survey, "I think that all the TA's and the professor have forgotten that we are an intro class". A non-supportive environment clearly does not encourage critical thinking and completion of work. This pilot study showed that the complex learning environment can play a significant role in student learning. It also illustrates the need for future studies in IBL with supportive learning environments in order for students to achieve academic excellence and develop scientific reasoning and critical thinking skills.
NASA Technical Reports Server (NTRS)
1975-01-01
Dr. David R. Scott was appointed Director of NASA's Flight Research Center on April 18, 1975. From August 1973 he served as Deputy Director of FRC and was appointed acting director in January 1975. He is retired from the U.S. Air Force where he held the rank of Colonel. Dave left the NASA Dryden Flight Research Center on October 30, 1977 after the Center had been renamed in honor of Hugh L. Dryden. As a NASA astronaut, Scott flew on Gemini 8, Apollo 9 and was spacecraft commander of Apollo 15. When he left the astronaut corps in 1972, Scott was named Technical Assistant to the Apollo Program Manager at Johnson Space Center in Houston. Later he served as Special Assistant for Mission Operations and Government Funded Equipment. Dave earned a Bachelor of Science Degree from the United States Military Academy in 1954, standing fifth in a class of 633, and the degrees of Bachelor and Master of Science in Aeronautics and Astronautics from the Massachusetts Institute of Technology (MIT) in 1962. He was awarded an Honorary Doctorate of Astronautical Science from the University of Michigan in 1971. Dave has graduated from the Air Force Experimental Test Pilot School and Aerospace Research Pilot School. He has over 5,600 hours flying time along with 20 hours of extra vehicular activity (EVA) time. Dr. Scott is a Fellow of the American Astronautical Society; Associate Fellow of the American Institute of Aeronautics and Astronautics; a member of the Society of Experimental Test Pilots, Tau Beta Pi, Sigma Xi, and Sigma Gamma Tau. Among Dr. Scott's special honors are two NASA Distinguished Service Medals, the NASA Exceptional Service Medal, two Air Force Distinguished Service Medals, the Air Force Distinguished Flying Cross, the Air Force Association's David C. Schilling Trophy, and the Robert J. Collier Trophy for 1971.
NASA Astrophysics Data System (ADS)
Dalphond, James M.
In modern classrooms, scientific probes are often used in science labs to engage students in inquiry-based learning. Many of these probes will never leave the classroom, closing the door on real world experimentation that may engage students. Also, these tools do not encourage students to share data across classrooms or schools. To address these limitations, we have developed a web-based system for collecting, storing, and visualizing sensor data, as well as a hardware package to interface existing classroom probes. This system, The Internet System for Networked Sensor Experimentation (iSENSE), was created to address these limitations. Development of the system began in 2007 and has proceeded through four phases: proof-of-concept prototype, technology demonstration, initial classroom deployment, and classroom testing. User testing and feedback during these phases guided development of the system. This thesis includes lessons learned during development and evaluation of the system in the hands of teachers and students. We developed three evaluations of this practical use. The first evaluation involved working closely with teachers to encourage them to integrate activities using the iSENSE system into their existing curriculum. We were looking for strengths of the approach and ease of integration. Second, we developed three "Activity Labs," which teachers used as embedded assessments. In these activities, students were asked to answer questions based on experiments or visualizations already entered into the iSENSE website. Lastly, teachers were interviewed after using the system to determine what they found valuable. This thesis makes contributions in two areas. It shows how an iterative design process was used to develop a system used in a science classroom, and it presents an analysis of the educational impact of the system on teachers and students.
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.; Lin, Huann-shyang; Wang, Hsin-Hui; Chen, Hsiang-Ting; Yang, Kuay-Keng
2013-07-01
This study investigated the effects of a science and society intervention on elementary school students' argumentation skills and their attitudes toward science. One hundred and eleven fifth grade students volunteered as an experimental group to join a 12-week intervention; another 107 sixth grade students volunteered to be the comparison group. All participants completed the Student Questionnaire at the beginning and end of this study. Observation and interview results were used to triangulate and consolidate the quantitative findings. The data showed that after the intervention, the quality of the experimental group students' arguments and their attitudes toward science were significantly higher than their comparison group counterparts. In addition, the experimental group boys made significantly greater progress in the quality of their argumentation from the pretest to posttest than the girls; and low achievers made the most significant progress in their attitudes toward science and quality of argumentation. Interviews and observations indicated that their understandings of explanation and argumentation changed over the intervention. This indicated that a science and society intervention can enhance both the ability of students to develop strong arguments and their attitudes toward science.
NASA Astrophysics Data System (ADS)
Eardley, Julie Anne
The purpose of this study was to determine the effect of different instructional media (computer assisted instruction (CAI) tutorial vs. traditional textbook) on student attitudes toward science and computers and achievement scores in a team-taught integrated science course, ENS 1001, "The Whole Earth Course," which was offered at Florida Institute of Technology during the Fall 2000 term. The effect of gender on student attitudes toward science and computers and achievement scores was also investigated. This study employed a randomized pretest-posttest control group experimental research design with a sample of 30 students (12 males and 18 females). Students had registered for weekly lab sessions that accompanied the course and had been randomly assigned to the treatment or control group. The treatment group used a CAI tutorial for completing homework assignments and the control group used the required textbook for completing homework assignments. The Attitude toward Science and Computers Questionnaire and Achievement Test were the two instruments administered during this study to measure students' attitudes and achievement score changes. A multivariate analysis of covariance (MANCOVA), using hierarchical multiple regression/correlation (MRC), was employed to determine: (1) treatment versus control group attitude and achievement differences; and (2) male versus female attitude and achievement differences. The differences between the treatment group's and control group's homework averages were determined by t test analyses. The overall MANCOVA model was found to be significant at p < .05. Examining research factor set independent variables separately resulted in gender being the only variable that significantly contributed in explaining the variability in a dependent variable, attitudes toward science and computers. T test analyses of the homework averages showed no significant differences. Contradictory to the findings of this study, anecdotal information from personal communication, course evaluations, and homework assignments indicated favorable attitudes and higher achievement scores for a majority of the students in the treatment group.
NASA Astrophysics Data System (ADS)
Berryhill, Katie J.
As astronomy education researchers become more interested in experimentally testing innovative teaching strategies to enhance learning in introductory astronomy survey courses ("ASTRO 101"), scholars are placing increased attention toward better understanding factors impacting student gain scores on the widely used Test Of Astronomy STandards (TOAST). Usually used in a pre-test and post-test research design, one might naturally assume that the pre-course differences observed between high- and low-scoring college students might be due in large part to their pre-existing motivation, interest, experience in science, and attitudes about astronomy. To explore this notion, 11 non-science majoring undergraduates taking ASTRO 101 at west coast community colleges were interviewed in the first few weeks of the course to better understand students' pre-existing affect toward learning astronomy with an eye toward predicting student success. In answering this question, we hope to contribute to our understanding of the incoming knowledge of students taking undergraduate introductory astronomy classes, but also gain insight into how faculty can best meet those students' needs and assist them in achieving success. Perhaps surprisingly, there was only weak correlation between students' motivation toward learning astronomy and their pre-test scores. Instead, the most fruitful predictor of TOAST pre-test scores was the quantity of pre-existing, informal, self-directed astronomy learning experiences.
On the advantage of an external focus of attention: a benefit to learning or performance?
Lohse, Keith R; Sherwood, David E; Healy, Alice F
2014-02-01
Although there is general agreement in the sport science community that the focus of attention (FOA) has significant effects on performance, there is some debate about whether or not the FOA adopted during training affects learning. A large number of studies on the focus of attention have shown that subjects who train with an external FOA perform better on subsequent retention and transfer tests. However, the FOA in these studies was not experimentally controlled during testing. Therefore, the current study used a dart-throwing paradigm in which the FOA was experimentally manipulated at both acquisition and testing over very short and long training times. Performance at test, in terms of accuracy and precision, was improved by adopting an external focus at test regardless of the focus instructed during acquisition, in both Experiment 1 and 2. Although an effect of acquisition focus during testing in Experiment 2 provides some evidence that FOA affects learning, the current data demonstrate a much stronger effect for performance than learning, and stronger effects of attention on precision than accuracy. Theoretical implications of these results are discussed, but in general these data provide a more nuanced understanding of how attentional focus instructions influence motor learning and performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Nedjat, Saharnaz; Bore, Miles; Majdzadeh, Reza; Rashidian, Arash; Munro, Don; Powis, David; Karbakhsh, Mojgan; Keshavarz, Hossein
2013-12-01
Tehran University of Medical Sciences has two streams of medical student admission: an established high school entry (HSE) route and an experimental graduate entry (GE) route. To compare the cognitive skills, personality traits and moral characteristics of HSE and GE students admitted to this university. The personal qualities assessment tool (PQA; www.pqa.net.au ) was translated from English to Persian and then back-translated. Afterwards 35 individuals from the GE and 109 individuals from the 2007 to 2008 HSE completed the test. The results were compared by t-test and Chi-square. The HSE students showed significantly higher ability in the cognitive skills tests (p < 0.001). They were also more libertarian (p = 0.022), but had lower ability to confront stress and unpleasant events (p < 0.001), and had lower self-awareness and self-control (p < 0.001). On the basis of their personal qualities, the GE students had more self-control and strength when coping with stress than the HSE students, but the latter had superior cognitive abilities. Hence it may be useful to include cognitive tests in GE students' entry exam and include tests of personal qualities to exclude those with unsuitable characteristics.
A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates
NASA Astrophysics Data System (ADS)
Dark, Marta L.
2011-05-01
Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.
The Road to Certainty and Back.
Westheimer, Gerald
2016-10-14
The author relates his intellectual journey from eye-testing clinician to experimental vision scientist. Starting with the quest for underpinning in physics and physiology of vague clinical propositions and of psychology's acceptance of thresholds as "fuzzy-edged," and a long career pursuing a reductionist agenda in empirical vision science, his journey led to the realization that the full understanding of human vision cannot proceed without factoring in an observer's awareness, with its attendant uncertainty and open-endedness. He finds support in the loss of completeness, finality, and certainty revealed in fundamental twentieth-century formulations of mathematics and physics. Just as biology prospered with the introduction of the emergent, nonreductionist concepts of evolution, vision science has to become comfortable accepting data and receiving guidance from human observers' conscious visual experience.
Experimenter Confirmation Bias and the Correction of Science Misconceptions
NASA Astrophysics Data System (ADS)
Allen, Michael; Coole, Hilary
2012-06-01
This paper describes a randomised educational experiment ( n = 47) that examined two different teaching methods and compared their effectiveness at correcting one science misconception using a sample of trainee primary school teachers. The treatment was designed to promote engagement with the scientific concept by eliciting emotional responses from learners that were triggered by their own confirmation biases. The treatment group showed superior learning gains to control at post-test immediately after the lesson, although benefits had dissipated after 6 weeks. Findings are discussed with reference to the conceptual change paradigm and to the importance of feeling emotion during a learning experience, having implications for the teaching of pedagogies to adults that have been previously shown to be successful with children.
Quality knowledge of science through virtual laboratory as an element of visualization
NASA Astrophysics Data System (ADS)
Rizman Herga, Natasa
Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic experiment, carried out over a period of two school years (2012/2013 and 2013/2014) in ten primary schools, the effectiveness of teaching carried out with the support of a virtual laboratory was analyzed. The obtained empirical findings reveal that the use of virtual laboratory has great impact on the pupils' knowledge and interest. At the end of the experiment, pupils in the experimental group had an advantage according to knowledge of chemical contents in science. Also, the use of virtual laboratory had an impact on the sustainability of the acquired knowledge of science contents and pupils' interest at the end of the experiment, because the pupils in the experimental group had a higher interest for learning science contents. The didactic experiment determined, that the use of virtual laboratory enables quality learning and teaching chemical contents of science, because it allows: (1) experimental work as an active learning method, (2) the visualization of abstract concepts and phenomena, (3) dynamic sub micro presentations (4) integration of all three levels of the chemical concept as a whole and (5) positively impacts pupils' interest, knowledge and sustainability of the acquired knowledge.
NASA Astrophysics Data System (ADS)
Esmaeel, Yaqoub Y. R.
The educational system in Kuwait is undergoing some fundamental changes, and the need for reform of environmental education has become urgent as a result of the concerns of both the government and the public over environmental issues. It is in such a context that this research was conducted. The research was intended to develop, implement, and evaluate an experimental programme Man and Nutrition for Kuwaiti primary school pupils, aimed at developing a positive environmental achievement, Information about the present status of environmental concepts and environmental education in Kuwait was obtained from preliminary study such as interviews and curriculum analysis. Interviews were conducted in ten different primary schools in four districts in Kuwait, which involved 31 pupils in total, hi addition, information was obtained by analysis of the science curriculum for fourth grade primary schools. The preliminary study was carried out during the period April to October 1998. The results of the preliminary study served to aid the development of an experimental teaching programme. The experimental programme Man and Nutrition consisted of eight lessons printed in two booklets, a teacher's guide and pupil's textbook. The research included a review of the relevant literature examining the development of environmental programmes and activities in a number of countries, which were selected because of their environmental education approaches, and the variety of their environmental conditions. Pilot testing of the teaching programmes was carried out to ascertain the appropriateness of the materials and the data collecting instruments used for the evaluation of the main experimental study. The main study group included 115 pupils in four primary schools and four teachers selected in Kuwait. Data collecting included pre and post-tests and the course evaluation by teachers using semi-structured interviews. Statistical analysis of data obtained was carried out using the SPSS/PC+ computer programme. The major results of this study indicated that: (1) The present science programme of the fourth grade does not sufficiently cover the concepts identified as environmental concepts. (2) The experimental programme was significantly effective in increasing the pupils' knowledge regarding the environmental programme Man and Nutrition. (3) A significant difference in the mean scores was found between boys and girls in the post-achievement test. (4) There was a significant difference in the pupils' mean scores between the educational districts in the post-achievement test. (5) The experimental programme had similar influences on pupils' overall achievement by parents' education. Based upon the above major research results, the study puts forward some practical recommendations regarding the development of a school environmental education programme. Since the study is one of the first of its kind in Kuwait, it also suggests a few possible areas for future research. It is hoped that the research will lead to a worthwhile primary school environmental education.
NASA Astrophysics Data System (ADS)
Shayer, Michael; Adey, Philip S.
A one-year lag was found between the effect of an intervention intended to promote formal operational thinking in students initially 11 or 12 years of age and the appearance of substantial science achievement in the experimental groups. A one-year lag was also reported on cognitive development: Whereas at the end of the two-year intervention the experimental groups were up to 0.9 ahead of the control groups, one year later the differential on Piagetian measures had disappeared, but the experimentals now showed better science achievement of even greater magnitude. Although the control groups showed normal distribution both on science achievement and cognitive development, the experimental groups showed bi- or trimodal distribution. Between one-half and one-quarter of the students involved in the experiment in different groups showed effects of the order of 2 both on cognitive development and science achievement; some students appeared unaffected (compared with the controls), and others demonstrated modest effects on science achievement. An age/gender interaction is reported: the most substantial effects were found in boys initially aged 12+ and girls initially 11+. The only group to show no effects was boys initially aged 11+. It is suggested that the intervention methods may have favored the abstract analytical learning style as described by Cohen 1986.
NASA Astrophysics Data System (ADS)
Kirsch, Scott Lawrence
From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.
Aein, Fereshteh; Aliakbari, Fatemeh
2017-01-01
Concept map is a useful cognitive tool for enhancing a student's critical thinking (CT) by encouraging students to process information deeply for understanding. However, the evidence regarding its effectiveness on nursing students' CT is contradictory. This paper compares the effectiveness of concept mapping and traditional linear nursing care planning on students' CT. An experimental design was used to examine the CT of 60 baccalaureate students who participated in pediatric clinical nursing course in the Shahrekord University of Medical Sciences, Shahrekord, Iran in 2013. Participants were randomly divided into six equal groups of each 10 student, of which three groups were the control group, and the others were the experimental group. The control group completed nine traditional linear nursing care plans, whereas experimental group completed nine concept maps during the course. Both groups showed significant improvement in overall and all subscales of the California CT skill test from pretest to posttest ( P < 0.001), but t -test demonstrated that improvement in students' CT skills in the experimental group was significantly greater than in the control group after the program ( P < 0.001). Our findings support that concept mapping can be used as a clinical teaching-learning activity to promote CT in nursing students.
Kim, Eun Hwi; Suh, Soon Rim
2017-06-01
This study was conducted to verify the effects of a memory and visual-motor integration program for older adults based on self-efficacy theory. A non-equivalent control group pretest-posttest design was implemented in this quasi-experimental study. The participants were 62 older adults from senior centers and older adult welfare facilities in D and G city (Experimental group=30, Control group=32). The experimental group took part in a 12-session memory and visual-motor integration program over 6 weeks. Data regarding memory self-efficacy, memory, visual-motor integration, and depression were collected from July to October of 2014 and analyzed with independent t-test and Mann-Whitney U test using PASW Statistics (SPSS) 18.0 to determine the effects of the interventions. Memory self-efficacy (t=2.20, p=.031), memory (Z=-2.92, p=.004), and visual-motor integration (Z=-2.49, p=.013) increased significantly in the experimental group as compared to the control group. However, depression (Z=-0.90, p=.367) did not decrease significantly. This program is effective for increasing memory, visual-motor integration, and memory self-efficacy in older adults. Therefore, it can be used to improve cognition and prevent dementia in older adults. © 2017 Korean Society of Nursing Science
Aein, Fereshteh; Aliakbari, Fatemeh
2017-01-01
Introduction: Concept map is a useful cognitive tool for enhancing a student's critical thinking (CT) by encouraging students to process information deeply for understanding. However, the evidence regarding its effectiveness on nursing students’ CT is contradictory. This paper compares the effectiveness of concept mapping and traditional linear nursing care planning on students’ CT. Methods: An experimental design was used to examine the CT of 60 baccalaureate students who participated in pediatric clinical nursing course in the Shahrekord University of Medical Sciences, Shahrekord, Iran in 2013. Results: Participants were randomly divided into six equal groups of each 10 student, of which three groups were the control group, and the others were the experimental group. The control group completed nine traditional linear nursing care plans, whereas experimental group completed nine concept maps during the course. Both groups showed significant improvement in overall and all subscales of the California CT skill test from pretest to posttest (P < 0.001), but t-test demonstrated that improvement in students’ CT skills in the experimental group was significantly greater than in the control group after the program (P < 0.001). Conclusions: Our findings support that concept mapping can be used as a clinical teaching-learning activity to promote CT in nursing students. PMID:28546978
Development of the Biological Experimental Design Concept Inventory (BEDCI).
Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur
2014-01-01
Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non-expert-like thinking in students and to evaluate the success of teaching strategies that target conceptual changes. We used BEDCI to diagnose non-expert-like student thinking in experimental design at the pre- and posttest stage in five courses (total n = 580 students) at a large research university in western Canada. Calculated difficulty and discrimination metrics indicated that BEDCI questions are able to effectively capture learning changes at the undergraduate level. A high correlation (r = 0.84) between responses by students in similar courses and at the same stage of their academic career, also suggests that the test is reliable. Students showed significant positive learning changes by the posttest stage, but some non-expert-like responses were widespread and persistent. BEDCI is a reliable and valid diagnostic tool that can be used in a variety of life sciences disciplines. © 2014 T. Deane et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Sasser, Selena Kay
This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase science content knowledge in this sample. Qualitative data from the tutor, fidelity raters, and interviews indicated the participants were excited about the problem and were interested in the science content knowledge related to the problem. They also indicated they were motivated to continue informal study in the problem area. Participants indicated, during the interview, their initial frustration with the lack of knowledge gained from the tutor; however, indicated this led to more learning on their part. This study will contribute to the overall knowledge of problem based learning and its structures, science teaching efficacy beliefs of elementary preservice teachers, and to current teaching and learning practices.
NASA Astrophysics Data System (ADS)
Matveev, D. T.; Chepurnov, B. D.
Test results obtained during 1980-1981 at the Zvenigorod station are presented for the Intercosmos laser rangefinder which was modified in various ways: e.g., optical components of the laser were replaced, and the mechanical Q-switch of the laser resonator was replaced by a phototropic Q-switch. Improved reliability was noted, and the ranging accuracy was increased by 1.5-2 times. It is concluded that the Zvenigorod tests indicate that the first-generation Intercosmos laser rangefinder can be effectively modernized at other Intercosmos tracking stations.
ERIC Educational Resources Information Center
Pike, Lisa; Rentsch, Jeremy
2017-01-01
This math activity focuses on experimental design while connecting math with life science. It is important that the science and engineering practices (SEPs) are not taught as a separate "unit" but integrated within the curriculum wherever possible. The focus is on experimental design to teach animal behavior. Students predict and test…
Safari, Yahya; Meskini, Habibeh
2016-01-01
Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students’ problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. Results: The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students’ mean scores in terms of gender and major. Conclusion: Since metacognitive instruction has positive effects on students’ problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students. PMID:26234970
Safari, Yahya; Meskini, Habibeh
2015-05-17
Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students' mean scores in terms of gender and major. Since metacognitive instruction has positive effects on students' problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.
NASA Technical Reports Server (NTRS)
Husted, R. R.; Smith, I. D.; Fennessey, P. V.
1977-01-01
Chemical and biological alteration of a Mars landing site was investigated experimentally and analytically. The experimental testing was conducted using a specially designed multiple nozzle configuration consisting of 18 small bell nozzles. The chemical test results indicate that an engine using standard hydrazine fuel will contaminate the landing site with ammonia (50-500ppm), nitrogen (5-50ppm), aniline (0.01-0.5ppm), hydrogen cyanide (0.01-0.5ppm), and water. A purified fuel, with impurities (mostly aniline) reduced by a factor of 50-100, limits the amount of hydrogen cyanide and aniline to below detectable limits for the Viking science investigations and leaves the amounts of ammonia, nitrogen, and water in the soil unchanged. The large amounts of ammonia trapped in the soil will make interpretation of the organic analysis investigation results more difficult. The biological tests indicate that the combined effects of plume gases, surface heating, surface erosion, and gas composition resulting from the retrorockets will not interfere with the Viking biology investigation.
HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations
NASA Technical Reports Server (NTRS)
Kimmel, Roger L.; Prabhu, Dinesh
2015-01-01
The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.
Development and Testing of an Innovative Two-Arm Focal-Plane Thermal Strap (TAFTS)
NASA Technical Reports Server (NTRS)
Urquiza, E.; Vasquez, C.; Rodriguez, J.; Van Gorp, B.
2011-01-01
Maintaining temperature stability in optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness. This paper will describe the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three degrees of freedom.
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
NASA Astrophysics Data System (ADS)
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731
A critique of the hypothesis, and a defense of the question, as a framework for experimentation.
Glass, David J
2010-07-01
Scientists are often steered by common convention, funding agencies, and journal guidelines into a hypothesis-driven experimental framework, despite Isaac Newton's dictum that hypotheses have no place in experimental science. Some may think that Newton's cautionary note, which was in keeping with an experimental approach espoused by Francis Bacon, is inapplicable to current experimental method since, in accord with the philosopher Karl Popper, modern-day hypotheses are framed to serve as instruments of falsification, as opposed to verification. But Popper's "critical rationalist" framework too is problematic. It has been accused of being: inconsistent on philosophical grounds; unworkable for modern "large science," such as systems biology; inconsistent with the actual goals of experimental science, which is verification and not falsification; and harmful to the process of discovery as a practical matter. A criticism of the hypothesis as a framework for experimentation is offered. Presented is an alternative framework-the query/model approach-which many scientists may discover is the framework they are actually using, despite being required to give lip service to the hypothesis.
Bibliography on Cold Regions Science and Technology. Volume 44, Part 1, 1990
1990-12-01
Design criteria. Ice mechanics, composition. 44-975 44.985 44-966 Theoretical and experimental analyses of glacial Primary production, chlorophyll...44-1209 New methods and materials for molding and casting Murrell, S.A.F., Rist, M.A. - Experimental methodologies to support aircraft icing ice...Safety Dynamic loads, Moisture, Design , Thermocouples, Leavesley, G.H., Hydrological sciences journal, Dec. Bitumens, Experimentation . 1989, 34(6), p.6 17
Kolker, Eugene; Özdemir, Vural; Martens, Lennart; Hancock, William; Anderson, Gordon; Anderson, Nathaniel; Aynacioglu, Sukru; Baranova, Ancha; Campagna, Shawn R; Chen, Rui; Choiniere, John; Dearth, Stephen P; Feng, Wu-Chun; Ferguson, Lynnette; Fox, Geoffrey; Frishman, Dmitrij; Grossman, Robert; Heath, Allison; Higdon, Roger; Hutz, Mara H; Janko, Imre; Jiang, Lihua; Joshi, Sanjay; Kel, Alexander; Kemnitz, Joseph W; Kohane, Isaac S; Kolker, Natali; Lancet, Doron; Lee, Elaine; Li, Weizhong; Lisitsa, Andrey; Llerena, Adrian; Macnealy-Koch, Courtney; Marshall, Jean-Claude; Masuzzo, Paola; May, Amanda; Mias, George; Monroe, Matthew; Montague, Elizabeth; Mooney, Sean; Nesvizhskii, Alexey; Noronha, Santosh; Omenn, Gilbert; Rajasimha, Harsha; Ramamoorthy, Preveen; Sheehan, Jerry; Smarr, Larry; Smith, Charles V; Smith, Todd; Snyder, Michael; Rapole, Srikanth; Srivastava, Sanjeeva; Stanberry, Larissa; Stewart, Elizabeth; Toppo, Stefano; Uetz, Peter; Verheggen, Kenneth; Voy, Brynn H; Warnich, Louise; Wilhelm, Steven W; Yandl, Gregory
2014-01-01
Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.
Kolker, Eugene; Özdemir, Vural; Martens, Lennart; Hancock, William; Anderson, Gordon; Anderson, Nathaniel; Aynacioglu, Sukru; Baranova, Ancha; Campagna, Shawn R; Chen, Rui; Choiniere, John; Dearth, Stephen P; Feng, Wu-Chun; Ferguson, Lynnette; Fox, Geoffrey; Frishman, Dmitrij; Grossman, Robert; Heath, Allison; Higdon, Roger; Hutz, Mara H; Janko, Imre; Jiang, Lihua; Joshi, Sanjay; Kel, Alexander; Kemnitz, Joseph W; Kohane, Isaac S; Kolker, Natali; Lancet, Doron; Lee, Elaine; Li, Weizhong; Lisitsa, Andrey; Llerena, Adrian; MacNealy-Koch, Courtney; Marshall, Jean-Claude; Masuzzo, Paola; May, Amanda; Mias, George; Monroe, Matthew; Montague, Elizabeth; Mooney, Sean; Nesvizhskii, Alexey; Noronha, Santosh; Omenn, Gilbert; Rajasimha, Harsha; Ramamoorthy, Preveen; Sheehan, Jerry; Smarr, Larry; Smith, Charles V; Smith, Todd; Snyder, Michael; Rapole, Srikanth; Srivastava, Sanjeeva; Stanberry, Larissa; Stewart, Elizabeth; Toppo, Stefano; Uetz, Peter; Verheggen, Kenneth; Voy, Brynn H; Warnich, Louise; Wilhelm, Steven W; Yandl, Gregory
2013-12-01
Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.
Developing citizen science projects: Cut twigs for 'chilling' pupils
NASA Astrophysics Data System (ADS)
Menzel, Annette; Matiu, Michael; Laube, Julia
2017-04-01
Citizen science projects mainly involve two aims, science and education. Depending on the setting, either the data delivery part for answering questions raised by scientists or the educating part e.g. on scientific practices, crosscutting concepts, application of core science contents or awareness for environmental problems prevails. In this respect, spring phenology is a grateful topic because it addresses both aspects nearly symmetrically. In science, it remains unresolved which factors besides spring warming also trigger spring bud development, namely chilling / photoperiod / humidity / nutrient availability. The appearance of fresh leaves in spring has been fascinating for humans; it is linked to cultural heritage, festivals and has always attracted nature lovers, from young children to senior citizens. In our study, we set up a twig experiment to study the chilling effect on bud burst of Corylus avellana L. which was conducted by trained citizen scientists at their home. We asked the scientific question if the effects of chilling can be analysed by the twig method, and how sampling and experimental setting should be designed. Furthermore we tested if the twig method is feasible for citizen scientist projects, and report minimum requirements, successes and drawbacks.
NASA Astrophysics Data System (ADS)
Gauchat, Carrie
This study utilized both quantitative and qualitative methods in investigating how a novel science curriculum, geared towards the 21 st century student, affected skills and attitudes towards science for tenth grade students. The quantitative portion of the study was a quasi-experimental design since random groups were not possible. This portion of the study used a pretest/posttest design to measure any improvement in science skills, and a Likert scale survey to measure any improvements in students' attitudes. Statistical tests revealed no significant differences between students who received the novel curriculum versus those students who received a traditional curriculum. Both groups showed significant improvements in all skill areas. Qualitatively, the researcher used informal teacher interviews and student surveys to identify the most relevant and effective curriculum components for the 21st century student. The findings suggest that the task of creating a meaningful and relevant curriculum based on the necessary skills of this century is not an easy task. There is much more work to be done in this area, but according to the qualitative findings integrated design and student technology are promising.
Making Controlled Experimentation More Informative in Inquiry Investigations
ERIC Educational Resources Information Center
McElhaney, Kevin Wei Hong
2010-01-01
This dissertation incorporates three studies that examine how the design of inquiry based science instruction, dynamic visualizations, and guidance for experimentation contribute to physics students' understanding of science. I designed a week-long, technology-enhanced inquiry module on car collisions that logs students' interactions with a…
ERIC Educational Resources Information Center
Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten
2017-01-01
Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process,…
Combinatorial and high-throughput screening of materials libraries: review of state of the art.
Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert
2011-11-14
Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.
Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Chen, Lixiang; Zhang, Wuhong; Wu, Ziwen; Wang, Jikang; Fickler, Robert; Karimi, Ebrahim
2017-08-01
Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between physical qudits, d -dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy's paradox represents "the best version of Bell's theorem" without using inequalities. However, so far it has only been tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate the ladder proof of Hardy's paradox for arbitrary high-dimensional systems. Furthermore, we experimentally demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally entangled photon pairs. We perform the ladder proof of Hardy's paradox for dimensions 3 and 4, both with the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of high-dimensionally entangled quantum states and may find applications in quantum information science.
Study regarding the spline interpolation accuracy of the experimentally acquired data
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Danisor, Alin; Tamas, Razvan
2016-12-01
Experimental data processing is an issue that must be solved in almost all the domains of science. In engineering we usually have a large amount of data and we try to extract the useful signal which is relevant for the phenomenon under investigation. The criteria used to consider some points more relevant then some others may take into consideration various conditions which may be either phenomenon dependent, or general. The paper presents some of the ideas and tests regarding the identification of the best set of criteria used to filter the initial set of points in order to extract a subset which best fits the approximated function. If the function has regions where it is either constant, or it has a slow variation, fewer discretization points may be used. This means to create a simpler solution to process the experimental data, keeping the accuracy in some fair good limits.
Instructional Efficiency of Changing Cognitive Load in an Out-of-School Laboratory
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2010-04-01
Our research objective focused on monitoring students' mental effort and cognitive achievement to unveil potential effects of an instructional change in an out-of-school laboratory offering gene technology modules. Altogether, 231 students (12th graders) attended our day-long hands-on module. Within a quasi-experimental design, a treatment group followed the newly developed two-step approach derived from cognitive load theory while a control group applied experimentation in a conventional one-step mode. The difference consisted of additional focused discussions combined with noting students' ideas (Step 1) prior to starting any experimental procedure (Step 2). We monitored mental effort (nine times during the teaching unit) and cognitive achievement (in a pre-post-design with follow-up test). The treatment demonstrated a change in instructional efficiency (by combining mental effort and cognitive achievement data), especially for intrinsically high-loaded students. Conclusions for optimizing individual cognitive load in science teaching were drawn.
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
Blencowe, Claire; Brigstocke, Julian; Noorani, Tehseen
2018-05-01
Through two case studies, the Hearing Voices Movement and Stepping Out Theatre Company, we demonstrate how successful participatory organisations can be seen as 'engines of alternative objectivity' rather than as the subjective other to objective, biomedical science. With the term 'alternative objectivity', we point to collectivisations of experience that are different to biomedical science but are nonetheless forms of objectivity. Taking inspiration from feminist theory, science studies and sociology of culture, we argue that participatory mental health organisations generate their own forms of objectivity through novel modes of collectivising experience. The Hearing Voices Movement cultivates an 'activist science' that generates an alternative objective knowledge through a commitment to experimentation, controlling, testing, recording and sharing experience. Stepping Out distinguishes itself from drama therapy by cultivating an alternative objective culture through its embrace of high production values, material culture, aesthetic standards. A crucial aspect of participatory practice is overcoming alienation, enabling people to get outside of themselves, encounter material worlds and join forces with others.
Gottesman, Alan J; Hoskins, Sally G
2013-01-01
The Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment (CREATE) strategy for teaching and learning uses intensive analysis of primary literature to improve students' critical-thinking and content integration abilities, as well as their self-rated science attitudes, understanding, and confidence. CREATE also supports maturation of undergraduates' epistemological beliefs about science. This approach, originally tested with upper-level students, has been adapted in Introduction to Scientific Thinking, a new course for freshmen. Results from this course's initial semesters indicate that freshmen in a one-semester introductory course that uses a narrowly focused set of readings to promote development of analytical skills made significant gains in critical-thinking and experimental design abilities. Students also reported significant gains in their ability to think scientifically and understand primary literature. Their perceptions and understanding of science improved, and multiple aspects of their epistemological beliefs about science gained sophistication. The course has no laboratory component, is relatively inexpensive to run, and could be adapted to any area of scientific study.
Gottesman, Alan J.; Hoskins, Sally G.
2013-01-01
The Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment (CREATE) strategy for teaching and learning uses intensive analysis of primary literature to improve students’ critical-thinking and content integration abilities, as well as their self-rated science attitudes, understanding, and confidence. CREATE also supports maturation of undergraduates’ epistemological beliefs about science. This approach, originally tested with upper-level students, has been adapted in Introduction to Scientific Thinking, a new course for freshmen. Results from this course's initial semesters indicate that freshmen in a one-semester introductory course that uses a narrowly focused set of readings to promote development of analytical skills made significant gains in critical-thinking and experimental design abilities. Students also reported significant gains in their ability to think scientifically and understand primary literature. Their perceptions and understanding of science improved, and multiple aspects of their epistemological beliefs about science gained sophistication. The course has no laboratory component, is relatively inexpensive to run, and could be adapted to any area of scientific study. PMID:23463229