Sample records for test facility pwr

  1. Posttest analysis of international standard problem 10 using RELAP4/MOD7. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M.; Davis, C.B.; Peterson, A.C. Jr.

    RELAP4/MOD7, a best estimate computer code for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This paper evaluates the capability of RELAP4/MOD7 to calculate refill/reflood phenomena. This evaluation uses the data of International Standard Problem 10, which is based on West Germany's KWU PKL refill/reflood experiment K9A. The PKL test facility represents a typical West German four-loop, 1300 MW pressurized water reactor (PWR) in reduced scale while maintaining prototypical volume-to-power ratio. The PKL facility was designed to specifically simulate the refill/reflood phase of amore » hypothetical loss-of-coolant accident (LOCA).« less

  2. Astronaut Robinson presents 2010 Silver Snoopy awards

    NASA Image and Video Library

    2010-06-23

    NASA's John C. Stennis Space Center Director Patrick Scheuermann and astronaut Steve Robinson stand with recipients of the 2010 Silver Snoopy awards following a June 23 ceremony. Sixteen Stennis employees received the astronauts' personal award, which is presented by a member of the astronaut corps representing its core principles for outstanding flight safety and mission success. This year's recipients and ceremony participants were: (front row, l to r): Cliff Arnold (NASA), Wendy Holladay (NASA), Kendra Moran (Pratt & Whitney Rocketdyne), Mary Johnson (Jacobs Technology Facility Operating Services Contract group), Cory Beckemeyer (PWR), Dean Bourlet (PWR), Cecile Saltzman (NASA), Marla Carpenter (Jacobs FOSC), David Alston (Jacobs FOSC); (back row, l to r) Scheuermann, Don Wilson (A2 Research), Tim White (NASA), Ira Lossett (Jacobs Technology NASA Test Operations Group), Kerry Gallagher (Jacobs NTOG); Rene LeFrere (PWR), Todd Ladner (ASRC Research and Technology Solutions) and Thomas Jacks (NASA).

  3. Simulation of German PKL refill/reflood experiment K9A using RELAP4/MOD7. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M.T.; Davis, C.B.; Behling, S.R.

    This paper describes a RELAP4/MOD7 simulation of West Germany's Kraftwerk Union (KWU) Primary Coolant Loop (PKL) refill/reflood experiment K9A. RELAP4/MOD7, a best-estimate computer program for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This study was the first major simulation using RELAP4/MOD7 since its release by the Idaho National Engineering Laboratory (INEL). The PKL facility is a reduced scale (1:134) representation of a typical West German four-loop 1300 MW pressurized water reactor (PWR). A prototypical scale of the total volume to power ratio wasmore » maintained. The test facility was designed specifically for an experiment simulating the refill/reflood phase of a Loss-of-Coolant Accident (LOCA).« less

  4. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  5. Multidimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus During LBLOCA Reflood Phase with a Direct Vessel Injection Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin

    Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less

  6. Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kervinen, T.; Riikonen, V.; Ritonummi, T.

    A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less

  7. Test prediction for the German PKL Test K5A using RELAP4/MOD6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.S.; Haigh, W.S.; Sullivan, L.H.

    RELAP4/MOD6 is the most recent modification in the series of RELAP4 computer programs developed to describe the thermal-hydraulic conditions attendant to postulated transients in light water reactor systems. The major new features in RELAP4/MOD6 include best-estimate pressurized water reactor (PWR) reflood transient analytical models for core heat transfer, local entrainment, and core vapor superheat, and a new set of heat transfer correlations for PWR blowdown and reflood. These new features were used for a test prediction of the Kraftwerk Union three-loop PRIMAR KREISLAUF (PKL) Reflood Test K5A. The results of the prediction were in good agreement with the experimental thermalmore » and hydraulic system data. Comparisons include heater rod surface temperature, system pressure, mass flow rates, and core mixture level. It is concluded that RELAP4/MOD6 is capable of accurately predicting transient reflood phenomena in the 200% cold-leg break test configuration of the PKL reflood facility.« less

  8. TRAC-PD2 posttest analysis of the CCTF Evaluation-Model Test C1-19 (Run 38). [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motley, F.

    The results of a Transient Reactor Analysis Code posttest analysis of the Cylindral Core Test Facility Evaluation-Model Test agree very well with the results of the experiment. The good agreement obtained verifies the multidimensional analysis capability of the TRAC code. Because of the steep radial power profile, the importance of using fine noding in the core region was demonstrated (as compared with poorer results obtained from an earlier pretest prediction that used a coarsely noded model).

  9. PWR-related integral safety experiments in the PKL 111 test facility SBLOCA under beyond-design-basis accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P.; Umminger, K.J.; Schoen, B.

    1995-09-01

    The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where themore » decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).« less

  10. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69more » rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING« less

  11. ORNL rod-bundle heat-transfer test data. Volume 2. Thermal-Hydraulic Test Facility experimental data report for test 3. 03. 6AR - transient film boiling in upflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, C. B.; Felde, D. K.; Sutton, A. G.

    1982-04-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less

  12. Posttest analysis of LOFT LOCE L2-3 using the ESA RELAP4 blowdown model. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, J.L.; Samuels, T.K.; Cooper, C.H.

    A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.

  13. Posttest TRAC-PD2/MOD1 predictions for FLECHT SEASET test 31504. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, C.P.

    TRAC-PD2/MOD1 is a publicly released version of TRAC that is used primarily to analyze large-break loss-of-coolant accidents in pressurized-water reactors (PWRs). TRAC-PD2 can calculate, among other things, reflood phenomena. TRAC posttest predictions are compared with test 31504 reflood data from the Full-Length Emergency Core Heat Transfer (FLECHT) System Effects and Separate Effects Tests (SEASET) facility. A false top-down quench is predicted near the top of the core and the subcooling is underpredicted at the bottom of the core. However, the overall TRAC predictions are good, especially near the center of the core.

  14. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally filesmore » and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.« less

  15. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  16. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    NASA Astrophysics Data System (ADS)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  17. Posttest RELAP5 simulations of the Semiscale S-UT series experiments. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, M.T.

    The RELAP5/MOD1 computer code was used to perform posttest calculations, simulating six experiments, run in the Semiscale Mod-2A facility, investigating the effects of upper head injection on small break transient behavior. The results of these calculations and corresponding test data are presented in this report. An evaluation is made of the capability of RELAP5 to calculate the thermal-hydraulic response of the Mod-2A system over a spectrum of break sizes, with and without the use of upper head injection.

  18. 76 FR 66090 - Facility Operating License Amendment From Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... operating pressures, leakage from primary water stress corrosion cracking below the proposed limited... discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized-Water Reactor...

  19. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  20. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.

  1. Low Platelet to White Blood Cell Ratio Indicates Poor Prognosis for Acute-On-Chronic Liver Failure.

    PubMed

    Jie, Yusheng; Gong, Jiao; Xiao, Cuicui; Zhu, Shuguang; Zhou, Wenying; Luo, Juan; Chong, Yutian; Hu, Bo

    2018-01-01

    Background. Platelet to white blood cell ratio (PWR) was an independent prognostic predictor for outcomes in some diseases. However, the prognostic role of PWR is still unclear in patients with hepatitis B related acute-on-chronic liver failure (ACLF). In this study, we evaluated the clinical performances of PWR in predicting prognosis in HBV-related ACLF. Methods. A total of 530 subjects were recruited, including 97 healthy controls and 433 with HBV-related ACLF. Liver function, prothrombin time activity (PTA), international normalized ratio (INR), HBV DNA measurement, and routine hematological testing were performed at admission. Results . At baseline, PWR in patients with HBV-related ACLF (14.03 ± 7.17) was significantly decreased compared to those in healthy controls (39.16 ± 9.80). Reduced PWR values were clinically associated with the severity of liver disease and the increased mortality rate. Furthermore, PWR may be an inexpensive, easily accessible, and significant independent prognostic index for mortality on multivariate analysis (HR = 0.660, 95% CI: 0.438-0.996, p = 0.048) as well as model for end-stage liver disease (MELD) score. Conclusions . The PWR values were markedly decreased in ACLF patients compared with healthy controls and associated with severe liver disease. Moreover, PWR was an independent prognostic indicator for the mortality rate in patients with ACLF. This investigation highlights that PWR comprised a useful biomarker for prediction of liver severity.

  2. J-2X Fuel Turbopump Point of Departure: The Performance of the J-2s Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, S. R.; Becht, D. G.; Mulder, A. D.

    2008-01-01

    To aid the J-2X program design effort with detailed performance and environment information, the J-2S fuel turbopump (FTP) inducer has undergone a thorough test series in both water and hydrogen. The test series utilizes both inducer only and a complete pump configuration to assess the inducer interaction to the overall turbopump system. The test goals include verification of suction performance against heritage J-2S data, head production, effects of thermodynamic suppression head (TSH), and evaluation of the inducer dynamic pressure caused by cavitation instabilities. Test facilities at both Pratt & Whitney Rocketdyne (PWR) and NASA s Stennis Space Center (SSC) are employed for the testing. The inducer only water test effort conducted at PWR established performance curves for suction performance, head production, and efficiency over a wide operating range. Because the heritage J-2S suction performance data set is in hydrogen, it is desired to obtain current suction performance data in hydrogen as well, thus avoiding the reliance on a theoretical TSH correlation for direct comparison. This data then provides an empirically based TSH correlation allowing for the comparison of water test suction data to system suction requirements. The FTP testing performed at SSC provides these suction performance relationships as well as inlet duct dynamic pressures during liquid hydrogen operation. The test effort successfully confirms the heritage J-2S suction performance and establishes the amount of TSH between water and hydrogen operation at the design flow coefficient. Correlating data is also obtained for cavitating instability frequency content, illustrating the validity of using the wide flow range water test data to predict hydrogen performance.

  3. Development of ECT/UT inspection system for bottom mounted instrumentation nozzle of PWR reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Fukui, S.; Iwahashi, Y.

    1994-12-31

    The development of inspection technique and tool for Bottom Mounted Instrument (BMI) nozzle of PWR plant was performed for countermeasure of leakage accident at incore instrument nozzle of Hamaoka-1 (BWR). MHI achieved the following development, of which object was PWR Plant R/V: (1) development of ECT/UT Multi-sensored Probe; (2) development of Inspection System (3) development of Data Processing System. The Inspection System had been functionally tested using full scale mock-up. As the result of the functional test, this system was confirmed to be very effective, and assumed to be hopeful for the actual application on site.

  4. Identification of poor households for premium exemptions in Ghana's National Health Insurance Scheme: empirical analysis of three strategies.

    PubMed

    Aryeetey, Genevieve Cecilia; Jehu-Appiah, Caroline; Spaan, Ernst; D'Exelle, Ben; Agyepong, Irene; Baltussen, Rob

    2010-12-01

    To evaluate the effectiveness of three alternative strategies to identify poor households: means testing (MT), proxy means testing (PMT) and participatory wealth ranking (PWR) in urban, rural and semi-urban settings in Ghana. The primary motivation was to inform implementation of the National Health Insurance policy of premium exemptions for the poorest households. Survey of 145-147 households per setting to collect data on consumption expenditure to estimate MT measures and of household assets to estimate PMT measures. We organized focus group discussions to derive PWR measures. We compared errors of inclusion and exclusion of PMT and PWR relative to MT, the latter being considered the gold standard measure to identify poor households. Compared to MT, the errors of exclusion and inclusion of PMT ranged between 0.46-0.63 and 0.21-0.36, respectively, and of PWR between 0.03-0.73 and 0.17-0.60, respectively, depending on the setting. Proxy means testing and PWR have considerable errors of exclusion and inclusion in comparison with MT. PWR is a subjective measure of poverty and has appeal because it reflects community's perceptions on poverty. However, as its definition of the poor varies across settings, its acceptability as a uniform strategy to identify the poor in Ghana may be questionable. PMT and MT are potential strategies to identify the poor, and their relative societal attractiveness should be judged in a broader economic analysis. This study also holds relevance to other programmes that require identification of the poor in low-income countries. © 2010 Blackwell Publishing Ltd.

  5. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  6. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard

    2016-05-12

    This report describes the third set of tests (the “DCL a shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  7. Structural Integrity of Water Reactor Pressure Boundary Components.

    DTIC Science & Technology

    1981-02-20

    environment, and load waveform parameters . A theory of the influence of dissolved oxygen content on the fatigue crack growth results in simulated PWR ...simulated PWR coolant is - (Continues ) DD IJN7 1473 EDITION OF I NOV S ..OSL- -C 2 S/ 0102-LF-014-6601 S1ECURITY CLASSI1FICATION OF THIS PAGE (When...not seem to influence the data, which was produced for a load ratio of 0.2 and a simulated PWR coolant environment. Test results for A106 Grade C piping

  8. Blowdown heat transfer separate-effects program. Quarterly progress report, October--December 1977. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.G.; Baucum, W.E.; Bohanan, R.E.

    1977-10-01

    The Thermal-Hydraulic Test Facility (THTF) has completed 20 powered rod blowdowns through October 13, 1977. Of these blowdowns, 5 were completed with all 49 rods powered, 2 were completed with 2 inactive rods, and 13 were completed with 4 inactive rods. Initial system pressure was 15.5 MPa, test section inlet temperature was 559 K, and break area was equivalent to a 200% break with the total area usually split between inlet and outlet in the ratio 0.40 : 0.60. Heater rod power was 80, 100, or 122 kW/rod, and the test section temperature was 607 K, 598 K, or 589more » K. Mean time to critical heat flux (CHF) varied from 0.7 to 1.4 sec with delayed CHF of 2.5 sec occurring in the upper half of the bundle in some tests.« less

  9. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putney, J.M.; Preece, R.J.

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies willmore » still be present in the successor code RELAP5/MOD3.« less

  10. 76 FR 40937 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... Generator Water Level High-High'' instrument setpoint and associated allowable value. The proposed change is... [Pressurized-Water Reactor] PWR Operability Requirements and Actions for RCS Leakage Instrumentation''. Basis... monitor is the containment atmospheric gaseous radiation monitor. The monitoring of RCS leakage is not a...

  11. 76 FR 21917 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... SGTR accident. At normal operating pressures, leakage from primary water stress corrosion cracking... PWR [pressurized- water reactor] Operability Requirements and Actions for RCS Leakage Instrumentation... water inventory can be obtained. Therefore, it is concluded that the proposed changes do not involve a...

  12. 76 FR 1644 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... tubesheet in that region. At normal operating pressures, leakage from primary water stress corrosion... cause failure. The EDG reliability will thereby be potentially increased by reducing the stresses on the..., ``Bases for Plugging Degraded PWR [pressurized-water reactor] Steam Generator Tubes,'' margins against...

  13. 77 FR 63343 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... PWR [Pressurized-Water Reactor] Steam Generator Tubes'' (Reference 32) and [Nuclear Energy Institute... maintains the required structural margins of the SG tubes for both normal and accident conditions. Nuclear Energy Institute 97-06, ``Steam Generator Program Guidelines'' (Reference 8), and NRC Regulatory Guide 1...

  14. Multidimensional effects in the thermal response of fuel rod simulators. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabbs, R.D.; Ott, L.J.

    1980-01-01

    One of the primary objectives of the Oak Ridge National Laboratory Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects Program is the determination of the transient surface temperature and surface heat flux of fuel pin simulators (FPSs) from internal thermocouple signals obtained during a loss-of-coolant experiment (LOCE) in the Thermal-Hydraulics Test Facility. This analysis requires the solution of the classical inverse heat conduction problem. The assumptions that allow the governing differential equation to be reduced to one dimension can introduce significant errors in the computed surface heat flux and surface temperature. The degree to which these computed variables are perturbed is addressedmore » and quantified.« less

  15. Validation of CESAR Thermal-hydraulic Module of ASTEC V1.2 Code on BETHSY Experiments

    NASA Astrophysics Data System (ADS)

    Tregoures, Nicolas; Bandini, Giacomino; Foucher, Laurent; Fleurot, Joëlle; Meloni, Paride

    The ASTEC V1 system code is being jointly developed by the French Institut de Radioprotection et Sûreté Nucléaire (IRSN) and the German Gesellschaft für Anlagen und ReaktorSicherheit (GRS) to address severe accident sequences in a nuclear power plant. Thermal-hydraulics in primary and secondary system is addressed by the CESAR module. The aim of this paper is to present the validation of the CESAR module, from the ASTEC V1.2 version, on the basis of well instrumented and qualified integral experiments carried out in the BETHSY facility (CEA, France), which simulates a French 900 MWe PWR reactor. Three tests have been thoroughly investigated with CESAR: the loss of coolant 9.1b test (OECD ISP N° 27), the loss of feedwater 5.2e test, and the multiple steam generator tube rupture 4.3b test. In the present paper, the results of the code for the three analyzed tests are presented in comparison with the experimental data. The thermal-hydraulic behavior of the BETHSY facility during the transient phase is well reproduced by CESAR: the occurrence of major events and the time evolution of main thermal-hydraulic parameters of both primary and secondary circuits are well predicted.

  16. Cyclic and SCC Behavior of Alloy 690 HAZ in a PWR Environment

    NASA Astrophysics Data System (ADS)

    Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill

    The objective of this work is to determine the cyclic and stress corrosion cracking (SCC) crack growth rates (CGRs) in a simulated PWR water environment for Alloy 690 heat affected zone (HAZ). In order to meet the objective, an Alloy 152 J-weld was produced on a piece of Alloy 690 tubing, and the test specimens were aligned with the HAZ. The environmental enhancement of cyclic CGRs for Alloy 690 HAZ was comparable to that measured for the same alloy in the as-received condition. The two Alloy 690 HAZ samples tested exhibited maximum SCC CGR rates of 10-11 m/s in the simulated PWR environment at 320°C, however, on average, these rates are similar or only slightly higher than those for the as-received alloy.

  17. Design, Construction and Testing of an In-Pile Loop for PWR (Pressurized Water Reactor) Simulation.

    DTIC Science & Technology

    1987-06-01

    computer modeling remains at best semiempirical (C-i), this large variation in scaling factor makes extrapolation of data impossible. The DIDO Water...in a full scale PWR are not practical. The reactor plant is not controlled to tolerances necessary for research, and utilities are reluctant to vary...MIT Reactor Safeguards Committee, in revision 1 to the PCCL Safety Evaluation Report (SER), for final approval to begin in-pile testing and

  18. Main steam line break accident simulation of APR1400 using the model of ATLAS facility

    NASA Astrophysics Data System (ADS)

    Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.

    2018-02-01

    A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.

  19. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal,more » 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.« less

  20. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Geist, William H.; Root, Margaret A.

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  1. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE PAGES

    Ham, Y.; Kerr, P.; Sitaraman, S.; ...

    2016-05-05

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  2. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less

  3. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.; Kerr, P.; Sitaraman, S.

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  4. Performance testing and analyses of the VSC-17 ventilated concrete cask. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-05-01

    This document details performance test which was conducted on a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask configured for pressurized-water reactor (PWR) spent fuel. The performance test consisted of loading the VSC-17 cask with 17 canisters of consolidated PWR spent fuel from Virginia Power`s Surry and Florida Power & Light Turkey Point reactors. Cask surface, concrete, air channel surfaces, and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in a vertical cask orientation. Data on spent fuel integrity were also obtained.

  5. 77 FR 31655 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... controverted. In addition, the requestor/petitioner shall provide a brief explanation of the bases for the... against burst, as discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized... Institute] 97-06, Revision 3, ``Steam Generator Program Guidelines'' (Reference 1) and RG 1.121, ``Bases for...

  6. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  7. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loftus, M J; Hochreiter, L E; McGuire, M F

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

  8. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    NASA Astrophysics Data System (ADS)

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.

    2018-01-01

    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  9. Experiment data for determination of uncertainty of two-phase mass flow rate in a Semiscale Mod-3 system spool piece at Karlsruhe Kernforschungzentrum. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, A.G.

    1979-06-01

    Steady state, steam-water testing of a Semiscale Mod-3 system instrumented spool piece was accomplished in the Gesellschaft fur Kernforschung (GfK) facility at Karlsruhe Kernforschungzentrum, West Germany. The testing was undertaken to determine the accuracy of spool piece, two-phase mass flow rate, inferential measurements by comparison with upstream single-phase reference measurements. Other two-phase measurements were also made to aid in understanding the flow conditions and to implement data reduction. A total of 132 single- and two-phase test points were acquired, covering pressures from 0.4 to 7.5 MPa, flow rates from 0.5 to 4.9 kg/s, and two-phase mixture qualities from 1.0 tomore » 83% in the 66.7 mm inside diameter spool piece. The report includes a detailed description of the hardware and software and a tabulation of the data.« less

  10. Experiment data report for Semiscale Mod-1 Test S-05-1 (alternate ECC injection test)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, E. M.; Patton, Jr., M. L.; Sackett, K. E.

    Recorded test data are presented for Test S-05-1 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-1 was conducted from initial conditions of 2263 psia and 544/sup 0/F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the vessel lower plenum to simulatemore » emergency core coolant injection in a PWR, with the flow rate based on system volume scaling.« less

  11. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  12. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  13. Development of a new bench for puncturing of irradiated fuel rods in STAR hot laboratory

    NASA Astrophysics Data System (ADS)

    Petitprez, B.; Silvestre, P.; Valenza, P.; Boulore, A.; David, T.

    2018-01-01

    A new device for puncturing of irradiated fuel rods in commercial power plants has been designed by Fuel Research Department of CEA Cadarache in order to provide experimental data of high precision on fuel pins with various designs. It will replace the current set-up that has been used since 1998 in hot cell 2 of STAR facility with more than 200 rod puncturing experiments. Based on this consistent experimental feedback, the heavy-duty technique of rod perforation by clad punching has been preserved for the new bench. The method of double expansion of rod gases is also retained since it allows upgrading the confidence interval of volumetric results obtained from rod puncturing. Furthermore, many evolutions have been introduced in the new design in order to improve its reliability, to make the maintenance easier by remote handling and to reduce experimental uncertainties. Tightness components have been studied with Sealing Laboratory Maestral at Pierrelatte so as to make them able to work under mixed pressure conditions (from vacuum at 10-5 mbar up to pressure at 50 bars) and to lengthen their lifetime under permanent gamma irradiation in hot cell. Bench ergonomics has been optimized to make its operating by remote handling easier and to secure the critical phases of a puncturing experiment. A high pressure gas line equipped with high precision pressure sensors out of cell can be connected to the bench in cell for calibration purposes. Uncertainty analyses using Monte Carlo calculations have been performed in order to optimize capacity of the different volumes of the apparatus according to volumetric characteristics of the rod to be punctured. At last this device is composed of independent modules which allow puncturing fuel pins out of different geometries (PWR, BWR, VVER). After leak tests of the device and remote handling simulation in a mock-up cell, several punctures of calibrated specimens have been performed in 2016. The bench will be implemented soon in hot cell 2 of STAR facility for final qualification tests. PWR rod punctures are already planned for 2018.

  14. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  15. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  16. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  17. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  18. Study of the linearity of CABRI experimental ionization chambers during RIA transients

    NASA Astrophysics Data System (ADS)

    Lecerf, J.; Garnier, Y.; Hudelot, JP.; Duc, B.; Pantera, L.

    2018-01-01

    CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center and funded by the French Nuclear Safety and Radioprotection Institute (IRSN). For the purpose of the CABRI International Program (CIP), operated and managed by IRSN under an OECD/NEA framework it has been refurbished since 2003 to be able to provide experiments in prototypical PWR conditions (155 bar, 300 °C) in order to study the fuel behavior under Reactivity Initiated Accident (RIA) conditions. This paper first reminds the objectives of the power commissioning tests performed on the CABRI facility. The design and location of the neutron detectors monitoring the core power are also presented. Then it focuses on the different methodologies used to calibrate the detectors and check the consistency and co-linearity of the measurements. Finally, it presents the methods used to check the linearity of the neutron detectors up to the high power levels ( 20 GW) reached during power transients. Some results obtained during the power tests campaign are also presented.

  19. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ronald James

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) duringmore » cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.« less

  20. Association between gestational weight gain according to body mass index and postpartum weight in a large cohort of Danish women.

    PubMed

    Rode, Line; Kjærgaard, Hanne; Ottesen, Bent; Damm, Peter; Hegaard, Hanne K

    2012-02-01

    Our aim was to investigate the association between gestational weight gain (GWG) and postpartum weight retention (PWR) in pre-pregnancy underweight, normal weight, overweight or obese women, with emphasis on the American Institute of Medicine (IOM) recommendations. We performed secondary analyses on data based on questionnaires from 1,898 women from the "Smoke-free Newborn Study" conducted 1996-1999 at Hvidovre Hospital, Denmark. Relationship between GWG and PWR was examined according to BMI as a continuous variable and in four groups. Association between PWR and GWG according to IOM recommendations was tested by linear regression analysis and the association between PWR ≥ 5 kg (11 lbs) and GWG by logistic regression analysis. Mean GWG and mean PWR were constant for all BMI units until 26-27 kg/m(2). After this cut-off mean GWG and mean PWR decreased with increasing BMI. Nearly 40% of normal weight, 60% of overweight and 50% of obese women gained more than recommended during pregnancy. For normal weight and overweight women with GWG above recommendations the OR of gaining ≥ 5 kg (11 lbs) 1-year postpartum was 2.8 (95% CI 2.0-4.0) and 2.8 (95% CI 1.3-6.2, respectively) compared to women with GWG within recommendations. GWG above IOM recommendations significantly increases normal weight, overweight and obese women's risk of retaining weight 1 year after delivery. Health personnel face a challenge in prenatal counseling as 40-60% of these women gain more weight than recommended for their BMI. As GWG is potentially modifiable, our study should be followed by intervention studies focusing on GW.

  1. Experimental validation of the DARWIN2.3 package for fuel cycle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San-Felice, L.; Eschbach, R.; Bourdot, P.

    2012-07-01

    The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less

  2. Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N.

    2012-07-01

    The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existingmore » facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)« less

  3. Quarterly progress report on Blowdown Heat Transfer Separate-Effects Program for January--March 1978. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.G.; Bohanan, R.E.; Clark, D.L.

    1978-06-30

    The Thermal-Hydraulic Test Facility (THTF) has completed 24 powered rod blowdowns through Mar. 9, 1978. Of these blowdowns, 5 were completed with all 49 rods powered, 2 were completed with 2 inactive rods, and 13 were completed with 4 inactive rods. Initial system pressure was approximately 15.5 MPa (approximately 2250 psi), test section inlet temperature was approximately 559/sup 0/K (approximately 547/sup 0/F), and break area was equivalent to a 200 percent break with the total area usually split between inlet and outlet in the ratio 0.40 : 0.60. Heater rod power was 80, 100, or 122 kW/rod, and the testmore » section outlet temperature was 607/sup 0/K (632/sup 0/F), 598/sup 0/K (617/sup 0/F), or 589/sup 0/K (600/sup 0/F). Mean time to CHF varied from 0.7 to 1.4 sec, with delayed CHF of approximately 2.5 sec occurring in the upper half of the bundle in some tests.« less

  4. Simulation of a main steam line break with steam generator tube rupture using trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallardo, S.; Querol, A.; Verdu, G.

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less

  5. Annual progress report on the NSRR experiments, (21)

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).

  6. 77 FR 37795 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... display of ELEC:LH ESS PWR LO or ELEC:LH ESS NO PWR (Abnormal procedure 3-190-40), land at nearest suitable airport Upon display of ELEC:RH ESS PWR LO and ELEC:RH ESS NO PWR (Abnormal procedure 3-190-45...

  7. Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance.

    PubMed

    Carrara, Marcia Aparecida; Batista, Márcia Regina; Saruhashi, Tiago Ribeiro; Felisberto, Antonio Machado; Guilhermetti, Marcio; Bazotte, Roberto Barbosa

    2012-06-06

    The contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated. PWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated. Conventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (p<0.05) glucose concentration in the fed state. In addition, we observed IR and increased glucose tolerance in the fed state (PWR-day 20 vs. day 0). Furthermore, our data from glycogenolysis and gluconeogenesis suggested that the liver glucose production did not contribute to these changes in insulin sensitivity and/or glucose tolerance during late pregnancy. In contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The influence of psychological factors on post-partum weight retention at 9 months.

    PubMed

    Phillips, Joanne; King, Ross; Skouteris, Helen

    2014-11-01

    Post-partum weight retention (PWR) has been identified as a critical pathway for long-term overweight and obesity. In recent years, psychological factors have been demonstrated to play a key role in contributing to and maintaining PWR. Therefore, the aim of this study was to explore the relationship between post-partum psychological distress and PWR at 9 months, after controlling for maternal weight factors, sleep quality, sociocontextual influences, and maternal behaviours. Pregnant women (N = 126) completed a series of questionnaires at multiple time points from early pregnancy until 9 months post-partum. Hierarchical regression indicated that gestational weight gain, shorter duration (6 months or less) of breastfeeding, and post-partum body dissatisfaction at 3 and 6 months are associated with higher PWR at 9 months; stress, depression, and anxiety had minimal influence. Interventions aimed at preventing excessive PWR should specifically target the prevention of body dissatisfaction and excessive weight gain during pregnancy. What is already known on this subject? Post-partum weight retention (PWR) is a critical pathway for long-term overweight and obesity. Causes of PWR are complex and multifactorial. There is increasing evidence that psychological factors play a key role in predicting high PWR. What does this study add? Post-partum body dissatisfaction at 3 and 6 months is associated with PWR at 9 months post-birth. Post-partum depression, stress and anxiety have less influence on PWR at 9 months. Interventions aimed at preventing excessive PWR should target body dissatisfaction. © 2013 The British Psychological Society.

  9. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MONTROSE 2 KANSAS CITY PWR & LT. MISSOURI MONTROSE 3 KANSAS CITY PWR & LT. NEW YORK DUNKIRK 3 NIAGARA MOHAWK PWR. NEW YORK DUNKIRK 4 NIAGARA MOHAWK PWR. NEW YORK GREENIDGE 6 NY STATE ELEC & GAS. NEW YORK...

  10. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MONTROSE 2 KANSAS CITY PWR & LT. MISSOURI MONTROSE 3 KANSAS CITY PWR & LT. NEW YORK DUNKIRK 3 NIAGARA MOHAWK PWR. NEW YORK DUNKIRK 4 NIAGARA MOHAWK PWR. NEW YORK GREENIDGE 6 NY STATE ELEC & GAS. NEW YORK...

  11. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MONTROSE 2 KANSAS CITY PWR & LT. MISSOURI MONTROSE 3 KANSAS CITY PWR & LT. NEW YORK DUNKIRK 3 NIAGARA MOHAWK PWR. NEW YORK DUNKIRK 4 NIAGARA MOHAWK PWR. NEW YORK GREENIDGE 6 NY STATE ELEC & GAS. NEW YORK...

  12. PRESSURIZED WATER REACTOR PROGRAM TECHNICAL PROGRESS REPORT FOR THE PERIOD MAY 5, 1955 TO JUNE 16, 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The current PWR plant and core parameters are listed. Resign requirements are briefly summarized for a radiation monitoring system, a fuel handling water system, a coolant purification system, an electrical power distribution system, and component shielding. Results of studies on thermal bowing and stressing of UO/sub 2/ are reported. A graph is presented of reactor power vs. reactor flow for various hot channel conditions. Development of U-- Mo and U-Nb alloys has been stopped because of the recent selection of UO/sub 2/ fuel material for the PWR core and blanket. The fabrication characteristics of UO/sub 2/ powders are being studied.more » Seamless Zircaloy-2 tubing has been tested to determine elastic limits, bursting pressures, and corrosion resistance. Fabrication techniques and tests for corrosion and defects in Zircaloy-clad U-Mo and UO/sub 2/ fuel rods are described. The preparation of UO/sub 2/ by various methods is being studied to determine which method produces a material most suitable for PWR fuel elements. The stability of UO/sub 2/ compacts in high temperature water and steam is being determined. Surface area and density measurements have been performed on samples of UO/sub 2/ powder prepared by various methods. Revelopment work on U-- Mo and U--Nb alloys has included studies of the effect on corrosion behavior of additions to the test water, additions to the alloys, homogenization of the alloys, annealing times, cladding, and fabrication techniques. Data are presented on relaxation in spring materials after exposure to a corrosive environment. Results are reported from loop and autoclave tests on fission product and crud deposition. Results of irradiation and corrosion testing of clad and unclad U--Mo and U-Nh alloys are described. The UO/sub 2/ irradiation program has included studies of dimensional changes, release of fission gases, and activity in the water surrounding the samples. A review of the methods of calculating reactor physics parameters has been completed, and the established procedures have been applied to determination of PWR reference design parameters. Critical experiments and primary loop shielding analyses are described. (D.E.B.)« less

  13. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE PAGES

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-01-17

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  14. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  15. Development of on-line monitoring system for Nuclear Power Plant (NPP) using neuro-expert, noise analysis, and modified neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.

    2006-07-01

    The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less

  16. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  17. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to regulatory guide (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors.'' This RG is being revised to incorporate guidance for preoperational testing of new pressurized water reactor (PWR) designs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Jean-Marc; Eschbach, Romain; Launay, Agnes

    CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of coolingmore » time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR version 5.3 uses the CEA reference calculation codes for neutron physics with the JEFF-3.1.1 nuclear data set. (authors)« less

  19. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  20. Final Prep on SSME

    NASA Image and Video Library

    2005-10-25

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  1. Final Prep on SSME

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  2. TREAT Neutronics Analysis and Design Support, Part I: Multi-SERTTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.

    2016-08-01

    Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. Calculations were performed to support analysis ofmore » a near-final design of the Multi-SERTTA vehicle, the design process for future TREAT test vehicles, and establish analytical practices for upcoming transient test experiments. Models of the Multi-SERTTA vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. Calculation of the PCF for reference conditions of a PWR fuel rodlet in clean water at operational temperature and pressure provided results between 1.10 and 1.74 W/g-MW depending on the location of the four Multi-SERTTA units with the stack. Basic changes to the Multi-SERTTA secondary vessel containment and support have minimal impact on PCF; using materials with less neutron absorption can improve expected PCF values, especially in the primary containment. An optimized balance is needed between structural integrity, experiment safety, and energy deposition in the experiment. Type of medium and environmental conditions within the primary vessel surrounding the fuel rodlet can also have a significant impact on resultant PCF values. The estimated reactivity insertion worth into the TREAT core is impacted more by the primary and secondary Multi-SERTTA vehicle structure with the experiment content and contained environment having a near negligible impact on overall system reactivity. Additional calculations were performed to evaluate the peak-to-average assembly powers throughout the TREAT core, as well as the nuclear heat generation for the various structural components of the Multi-SERTTA assembly. Future efforts include the evaluation of flux collars to shape the PCF for individual Multi-SERTTA units during an experiment such as to achieve uniformity in test unit environmental conditions impacted by the non-uniform axial flux/power profile of TREAT. Upon resumption of transient testing, experimental results from both the Multi-SERTTA and Multi-SERTTA-CAL will be compared against calculational results and methods for further optimization and design strategies.« less

  3. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri.

    PubMed

    Sergueev, Kirill; Dabrazhynetskaya, Alena; Austin, Stuart

    2005-05-01

    P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical in sequence and organization. However, pWR100parS promoted accurate plasmid partition in Escherichia coli when the pWR100 Par proteins were supplied. Unique BoxB hexamer motifs within parS define species specificities among previously described family members. Although substantially different from P1parS from the P1 plasmid prophage of E. coli, pWR100parS has the same BoxB sequence. As predicted, the species specificity of the two types proved identical. They also shared partition-mediated incompatibility, consistent with the proposed mechanistic link between incompatibility and species specificity. Among several informative sequence differences between pWR100parS and P1parS is the presence of a 21-bp insert at the center of the pWR100parS site. Deletion of this insert left much of the parS activity intact. Tolerance of central inserts with integral numbers of helical DNA turns reflects the critical topology of these sites, which are bent by binding the host IHF protein.

  4. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  5. 77 FR 15293 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ...-190-20), land at nearest suitable airport Upon display of ELEC:LH ESS PWR LO or ELEC:LH ESS NO PWR (Abnormal procedure 3-190-40), land at nearest suitable airport Upon display of ELEC:RH ESS PWR LO and ELEC...

  6. Grain boundary damage evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Kruska, Karen

    Long-term grain boundary (GB) damage evolution and stress corrosion crack initiation in alloy 690 are being investigated by constant load tensile testing in high-temperature, simulated PWR primary water. Six commercial alloy 690 heats are being tested in various cold work conditions loaded at their yield stress. This paper reviews the basic test approach and detailed characterizations performed on selected specimens after an exposure time of ~1 year. Intergranular crack nucleation was observed under constant stress in certain highly cold-worked (CW) alloy 690 heats and was found to be associated with the formation of GB cavities. Somewhat surprisingly, the heats mostmore » susceptible to cavity formation and crack nucleation were thermally treated materials with most uniform coverage of small GB carbides. Microstructure, % cold work and applied stress comparisons are made among the alloy 690 heats to better understand the factors influencing GB cavity formation and crack initiation.« less

  7. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herer, C.; Souyri, A.; Garnier, J.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to themore » annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.« less

  8. LOFT. Reactor arrives at containment building (TAN650), now being pushed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor arrives at containment building (TAN-650), now being pushed by locomotive. Camera facing northerly. Note "Hello Dolly" and "PWR MTA No. 1" (pressurized water reactor mobile test assembly) signs. Date: 1973. INEEL negative no. 73-3710 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. Effects of the weld thermal cycle on the microstructure of alloy 690

    NASA Astrophysics Data System (ADS)

    Tuttle, James R.

    Alloy 690 has been introduced as a material for use as the heat exchanger tubes in the steam generators (SGs) of pressurised water reactor (PWR) nuclear power plant. Its immediate predecessor, alloy 600, suffered from a number of degradation modes and another alternative, alloy 800, has also had in-service problems. In laboratory tests, alloy 690 in both mill annealed (MA) and special thermally treated (STT) condition has shown a high degree of resistance to degradation in simulated PWR primary side environments and other test media.Limited research has previously been undertaken to investigate the effects of welding on alloy 690, when the material is used in SG applications. It was deemed important to increase knowledge in this area since fabrication of PWR SGs involves gas tungsten arc welding (GTAW) of the heat exchanger tubes to a clad tubeplate. For this research investigation welded samples of alloy 690 have been produced in the laboratory using a range of thermal cycles based around recommended weld parameters for SG fabrication. These samples have been compared with archive welds from PWR SG manufacturers. A number of welds incorporating alloy 600 and a number using alloy 800 tubing material have also been fabricated in the laboratory for comparative purposes. Two experimental melts have been produced to study the effects of Nb substitution for Ti in alloy 690 type materials.Welded and unwelded specimens have been studied, analysed and tested using a variety of methods and techniques. A method of metallographic sample preparation for transmission electron microscope (TEM) thin foil specimens has been developed and documented which ensures foil perforation in a specific region. The effects of Nb substitution for Ti have been discussed. Chemical balances and microstructures in the fusion zone of welds manufactured from alloy 690 tubing incorporating alloy 82 weld consumable have been shown to be non-ideal. Within the heat affected zone (HAZ) of both laboratory produced and archive welds the microstructures have been identified as detrimentally altered from the STT condition original tubing material(s). A number of conclusions have been drawn and recommendations have been made for future work.

  10. Sub-Scale Testing and Development of the J-2X Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, Scott R.; Becht, David G.

    2011-01-01

    In the early stages of the J-2X upper stage engine program, various inducer configurations proposed for use in the fuel turbopump (FTP) were tested in water. The primary objectives of this test effort were twofold. First, to obtain a more comprehensive data set than that which existed in the Pratt & Whitney Rocketdyne (PWR) historical archives from the original J-2S program, and second, to supplement that data set with information regarding the cavitation induced vibrations for both the historical J-2S configuration as well as those tested for the J-2X program. The J-2X FTP inducer, which actually consists of an inducer stage mechanically attached to a kicker stage, underwent 4 primary iterations utilizing sub-scaled test articles manufactured and tested in PWR's Engineering Development Laboratory (EDL). The kicker remained unchanged throughout the test series. The four inducer configurations tested retained many of the basic design features of the J-2S inducer, but also included variations on leading edge blade thickness and blade angle distribution, primarily aimed at improving suction performance at higher flow coefficients. From these data sets, the effects of the tested design variables on hydrodynamic performance and cavitation instabilities were discerned. A limited comparison of impact to the inducer efficiency was determined as well.

  11. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  12. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  13. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGES

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  14. TREAT Neutronics Analysis and Design Support, Part II: Multi-SERTTA-CAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.

    2016-08-01

    Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. In integral aspect of prior TREAT transientmore » testing was the incorporation of calibration experiments to experimentally evaluate and validate test conditions in preparation of the actual fuel testing. The calibration experiment package established the test parameter conditions to support fine-tuning of the computational models to deliver the required energy deposition to the fuel samples. The calibration vehicle was designed to be as near neutronically equivalent to the experiment vehicle as possible to minimize errors between the calibration and final tests. The Multi-SERTTA-CAL vehicle was designed to serve as the calibration vehicle supporting Multi-SERTTA experimentation. Models of the Multi-SERTTA-CAL vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries; these results were then compared against those performed for Multi-SERTTA to determine the similarity and possible design modification necessary prior to construction of these experiment vehicles. The estimated reactivity insertion worth into the TREAT core is very similar between the two vehicle designs, with the primary physical difference being a hollow Inconel tube running down the length of the calibration vehicle. Calculations of PCF indicate that on average there is a reduction of approximately 6.3 and 12.6%, respectively, for PWR fuel rodlets irradiated under wet and dry conditions. Changes to the primary or secondary vessel structure in the calibration vehicle can be performed to offset this discrepancy and maintain neutronic equivalency. Current possible modifications to the calibration vehicle include reduction of the primary vessel wall thickness, swapping Zircaloy-4 for stainless steel 316 in the secondary containment, or slight modification to the temperature and pressure of the water environment within the primary vessel. Removal of some of the instrumentation within the calibration vehicle can also serve to slightly increase the PCF. Future efforts include further modification and optimization of the Multi-SERTTA and Multi-SERTTA-CAL designs in preparation of actual TREAT transient testing. Experimental results from both test vehicles will be compared against calculational results and methods to provide validation and support additional neutronics analyses.« less

  15. Manufacturing Methods and Technology Measure for Fabrication of Silicon Transcalent Rectifier.

    DTIC Science & Technology

    1980-09-01

    Prod Test/Eval’, z HA Kotler a Patent- Power & E 1 RM Roderick Env. Eng. & Test 1 JB Grosh Iron Mouptain - .l TUBE PARTS MFG. 5 RL SPALDING...AFAL/PODI ATTN: Working Group on Pwr. Devices (Mr. Philip Herron) 201 Varick Street Wright Patterson AFB, OH 45433 New York, NY 10014 Commander Mr

  16. The International Experimental Thermal Hydraulic Systems database – TIETHYS: A new NEA validation tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Upendra S.

    Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary ofmore » appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available. https://www.oecd-nea.org/tiethysweb/« less

  17. Preliminary Stratigraphic Basis for Geologic Mapping of Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, J. W.

    1993-01-01

    The age relations between geologic formations have been studied at 36 1000x1000 km areas centered at the dark paraboloid craters. The geologic setting in all these sites could be characterized using only 16 types of features and terrains (units). These units form a basic stratigraphic sequence (from older to younger: (1) Tessera (Tt); (2-3) Densely fractured terrains associated with coronae (COdf) and in the form of remnants among plains (Pdf); (4) Fractured and ridged plains (Pfr); (5) Plains with wrinkle ridges (Pwr); (6-7) Smooth and lobate plains (Ps/Pl); and (8) Rift-associated fractures (Fra). The stratigraphic position of the other units is determined by their relation with the units of the basic sequence: (9) Ridge bells (RB), contemporary with Pfr; (10-11) Ridges of coronae and arachnoids annuli (COar/Aar), contemporary with wrinkle ridges of Pwr; (12) Fractures of coronae annuli (COaf) disrupt Pwr and Ps/Pl; (13) Fractures (F) disrupt Pwr or younger units; (14) Craters with associated dark paraboloids (Cdp), which are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; (15-16) Surficial streaks (Ss) and surficial patches (Sp) are approximately contemporary with Cdp. These units may be used as a tentative basis for the geologic mapping of Venus including VMAP. This mapping should test the stratigraphy and answer the question of whether this stratigraphic sequence corresponds to geologic events which were generally synchronous all around the planet or whether the sequence is simply a typical sequence of events which occurred in different places at diffferent times.

  18. Fatigue limit and Hysteresis Behavior of Type 304L Stainless Steel in Air and PWR Water, at 150°C and 300°C

    NASA Astrophysics Data System (ADS)

    Solomon, H. D.; Amzallag, C.; Vallee, A. J.; DeLair, R. E.

    This is a study of the 107 cycle fatigue limit of Type 304L Stainless Steel, as measured in fully reversed (R=-1) load-controlled tests, at 150°C and 300°C, in air and PWR water. The staircase method was used to determine the fatigue limit. The tests run here utilized a cycle frequency of 1.818Hz and are compared to other tests from the literature that were run at 30Hz. The fatigue limit measured in the tests run at the high frequency was higher than that measured here. This is explained by measurements of the strain developed during cycling, using the different cycle frequencies. The tests run at the higher frequencies yielded lower strains for a given stress and, as expected, this resulted in higher fatigue limits. Using 107 cycles to define a run-out also led to a lower fatigue limit. These results are important as most previous fatigue limit measurements utilized 106 cycles or less to define a run-out, and when lives as long as 107 cycles are used the tests are generally run at high cycle frequencies, thus leading to higher fatigue limits than those measured here.

  19. Influence of Localized Plasticity on IASCC Sensitivity of Austenitic Stainless Steels under PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Tanguy, Benoit; Laffont, Lydia; Lafont, Marie-Christine; Guerre, Catherine; Andrieu, Eric

    The sensibility of precipitation-strengthened A286 austenitic stainless steel to Stress Corrosion Cracking (SCC) is studied by means of Slow Strain Rate Tests (SSRT). First, alloy cold working by Low Cycle Fatigue (LCF) is investigated. Fatigue tests under plastic strain control are performed at different strain levels (Δ ɛp/2=0.2%, 0.5% and 0.8%) in order to establish correlation between stress softening and deformation microstructure resulting from LCF tests. Deformed microstructures have been identified through TEM investigations. Three states of cyclic behaviour for precipitation-strengthened A286 have been identified: hardening, cyclic softening and finally saturation of softening. It is shown that the A286 alloy cyclic softening is due to microstructural features such as defects — free deformation bands resulting from dislocations motion along family plans <111>, that swept defects or γ' precipitates and lead to deformation localization. In order to quantify effects of plastic localized deformation on intergranular stress corrosion cracking (IGSCC) of the A286 alloy in PWR primary water, slow strain rate tests are conducted. For each cycling conditions, two specimens at a similar stress level are tested: the first containing free precipitate deformation bands, the other not significant of a localized deformation state. SSRT tests are still in progress.

  20. Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid

    NASA Astrophysics Data System (ADS)

    Arda, Samet Egemen

    A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.

  1. Reflux cooling experiments on the NCSU scaled PWR facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doster, J.M.; Giavedoni, E.

    1993-01-01

    Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less

  2. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China*

    PubMed Central

    Guan, Fa-chun; Sha, Zhi-peng; Zhang, Yu-yang; Wang, Jun-feng; Wang, Chao

    2016-01-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems. PMID:27487808

  3. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China.

    PubMed

    Guan, Fa-Chun; Sha, Zhi-Peng; Zhang, Yu-Yang; Wang, Jun-Feng; Wang, Chao

    2016-08-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems.

  4. Microstructural Effects on SCC Initiation PWR Primary Water Cold-Worked Alloy 600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    SCC initiation behavior of one mill annealed alloy 600 plate heat was investigated in simulated PWR primary water under constant load at yield stress with in-situ direct current potential drop (DCPD) monitoring for crack initiation. Twelve specimens were tested at similar cold work levels among which three showed much shorter SCC initiation times (<400 hrs) than the others (>1200 hrs). Post-test examinations revealed that these three specimens all feature an inhomogeneous microstructure where the primary crack always nucleated along the boundary of large elongated grains protruding normally into the gauge. In contrast, such microstructure was either not observed or didmore » not extend deep enough into the gauge in the other specimens exhibiting ~3-6X longer initiation times. In order to better understand the role of this microstructural inhomogeneity in SCC initiation, high-resolution microscopy was performed to compare carbide morphology and strain distribution between the long grains and normal grains, and their potential effects on SCC initiation are discussed in this paper.« less

  5. Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application

    NASA Astrophysics Data System (ADS)

    Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques

    TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.

  6. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Loveland, Thomas R.; Fosnight, Eugene A.; Tieszen, Larry L.; Ji, Lei; Gilmanov, Tagir

    2007-01-01

    Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results.In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub-pixel cropland components.

  7. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGES

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  8. Pretest analysis of Semiscale Mod-3 baseline test S-07-8 and S-07-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fineman, C.P.; Steiner, J.L.; Snider, D.M.

    This document contains a pretest analysis of the Semiscale Mod-3 system thermal-hydraulic response for the second and third integral tests in Test Series 7 (Tests S-07-8 and S-07-9). Test Series 7 is the first test series to be conducted with the Semiscale Mod-3 system. The design of the Mod-3 system includes an improved representation of certain portions of a pressurized water reactor (PWR) when compared to the previously operated Semiscale Mod-1 system. The improvements include a new vessel which contains a full length (3.66 m) core, a full length upper plenum and upper head, and an external downcomer. An activemore » pump and active steam generator scaled to their pressurized water reactor (PWR) counterparts have been added to the broken loop. The upper head design includes the capability to simulate emergency core coolant (ECC) injection into this region. Test Series 7 is divided into three groups of tests that emphasize the evaluation of the Mod-3 system performance during different phases of the loss-of-coolant experiment (LOCE) transient. The last test group, which includes Tests S-07-8 and S-07-9, will be used to evaluate the integral behavior of the system. The previous two test groups were used to evaluate the blowdown behavior and the reflood behavior of the system. 3 refs., 35 figs., 12 tabs.« less

  9. Ares I Crew Launch Vehicle Upper Stage/Upper Stage Engine Element Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    The Ares I upper stage is an integral part of the Constellation Program transportation system. The upper stage provides guidance, navigation and control (GN and C) for the second stage of ascent flight for the Ares I vehicle. The Saturn-derived J-2X upper stage engine will provide thrust and propulsive impulse for the second stage of ascent flight for the Ares I launch vehicle. Additionally, the upper stage is responsible for the avionics system of the the entire Ares I. This brief presentation highlights the requirements, design, progress and production of the upper stage. Additionally, test facilities to support J-2X development are discussed and an overview of the operational and manufacturing flows are provided. Building on the heritage of the Apollo and Space Shuttle Programs, the Ares I Us and USE teams are utilizing extensive lessons learned to place NASA and the US into another era of space exploration. The NASA, Boeing and PWR teams are integrated and working together to make progress designing and building the Ares I upper stage to minimize cost, technical and schedule risks.

  10. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.

  11. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    NASA Astrophysics Data System (ADS)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.

  12. Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    NASA Astrophysics Data System (ADS)

    Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.

    2018-01-01

    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.

  13. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. L. Davis; D. L. Knudson; J. L. Rempe

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less

  14. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H. M.

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less

  15. Statistical evaluation of the metallurgical test data in the ORR-PSF-PVS irradiation experiment. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallmann, F.W.

    1984-08-01

    A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.

  16. Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.

  17. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  18. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    PubMed Central

    Zhang, Pengfei; Liu, Le; He, Yonghong; Zhou, Yanfei; Ji, Yanhong; Ma, Hui

    2015-01-01

    In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR) thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques. PMID:25871718

  19. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    NASA Astrophysics Data System (ADS)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture, CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.

  20. Determination of tube-to-tube support interaction characteristics. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslinger, K.H.

    Tube-to-tube support interaction characteristics were determined on a multi-span tube geometry representative of the hot-leg side of the C-E, System 80 steam generator design. Results will become input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). Correlation of test data reported here with similar data obtained from the wear tests will be performed in an attempt to make predictions about the long-term fretting behavior of steam generator tubes.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Toloczko, Mychailo B.; Olszta, Matthew J.

    High chromium, nickel-base Alloy 690 exhibits an increased resistance to stress corrosion cracking (SCC) in pressurized water reactor (PWR) primary water environments over lower chromium alloy 600. As a result, Alloy 690 has been used to replace Alloy 600 for steam generator tubing, reactor pressure vessel nozzles and other pressure boundary components. However, recent laboratory crack-growth testing has revealed that heavily cold-worked Alloy 690 materials can become susceptible to SCC. To evaluate reasons for this increased SCC susceptibility, detailed characterizations have been performed on as-received and cold-worked Alloy 690 materials using electron backscatter diffraction (EBSD) and Vickers hardness measurements. Examinationsmore » were performed on cross sections of compact tension specimens that were used for SCC crack growth rate testing in simulated PWR primary water. Hardness and the EBSD integrated misorientation density could both be related to the degree of cold work for materials of similar grain size. However, a microstructural dependence was observed for strain correlations using EBSD and hardness which should be considered if this technique is to be used for gaining insight on SCC growth rates« less

  2. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly casesmore » are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.« less

  3. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE PAGES

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; ...

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less

  4. Bio-knowledge based filters improve residue-residue contact prediction accuracy.

    PubMed

    Wozniak, P P; Pelc, J; Skrzypecki, M; Vriend, G; Kotulska, M

    2018-05-29

    Residue-residue contact prediction through direct coupling analysis has reached impressive accuracy, but yet higher accuracy will be needed to allow for routine modelling of protein structures. One way to improve the prediction accuracy is to filter predicted contacts using knowledge about the particular protein of interest or knowledge about protein structures in general. We focus on the latter and discuss a set of filters that can be used to remove false positive contact predictions. Each filter depends on one or a few cut-off parameters for which the filter performance was investigated. Combining all filters while using default parameters resulted for a test-set of 851 protein domains in the removal of 29% of the predictions of which 92% were indeed false positives. All data and scripts are available from http://comprec-lin.iiar.pwr.edu.pl/FPfilter/. malgorzata.kotulska@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  5. PWR steam generator chemical cleaning, Phase I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the searchmore » sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.« less

  6. Development of an extended-burnup Mark B design. First semi-annual progress report, July-December 1978. Report BAW-1532-1. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-10-01

    The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less

  7. Task related doses in Spanish pressurized water reactors over the period 1988-1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Donnell, P.; Labarta, T.; Amor, I.

    1995-03-01

    In order to evaluate in depth the collective dose trend and its correlation with the effectiveness of the practical application of the ALARA principle in Spanish nuclear facilities, and base the different policy lines to promote this criteria, the CSN has fullfilled an analysis of the task related doses data over the period 1988-1992. Previously, the CSN had required to the utilities the compilation of their refuelling outage collective dose from 1988 according with a predeterminate number of tasks, in order to have available a representative and retrospective set of data in an homogeneous way and coherent with the internationalmore » data banks on occupational exposure in NPP, as the CEC and the NEA ones. The scope of this analysis was the following: first, the collective dose summaries for outage tasks and departments for PWR and for BWR, including the minimum, maximum and average dose (and statistics data) for 18 different refuelling outage tasks and 12 personal departments for each generation of each type of rector, the task and department related collective dose trends in each plant and in each generation, and second, the dose reduction techniques having been used during that period in each plant and the relative level of adoption. In this presentation the main results and conclusions of the first part of the study are reviewed for PWR.« less

  8. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait

    PubMed Central

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee. PMID:27977681

  9. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    PubMed

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  10. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less

  11. Testing for the J-2X Upper Stage Engine

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2010-01-01

    NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.

  12. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    NASA Astrophysics Data System (ADS)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  13. Development of new UV-I. I. Cerenkov Viewing Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki; Nemoto, Koshichi

    1994-02-01

    The Cerenkov glow images from boiling-water reactors (BWR) and pressurized-water reactors (PWR) irradiated fuel assemblies are generally used for inspections. However, sometimes it is difficult or impossible to identify the image by the conventional Cerenkov Viewing Device (CVD), because of the long cooling time and/or low burnup. Now a new UV-I.I. (Ultra-Violet light Image Intensifier) CVD has been developed, which can detect the very weak Cerenkov glow from spent fuel assemblies. As this new device uses the newly developed proximity focused type UV-I.I., Cerenkov photons are used efficiently, producing better quality Cerenkov glow images. Moreover, since the image is convertedmore » to a video signal, it is easy to improve the signal to noise ratio (S/N) by an image processor. The new CVD was tested at BWR and PWR power plants in Japan, with fuel burnups ranging from 6,200--33,000 MWD/MTU (megawatt days per metric ton of uranium) and cooling times ranging from 370 to 6,200 d. The tests showed that the new CVD is superior to the conventional STA/CRIEPI CVD, and could detect very feeble Cerenkov glow images using an image processor.« less

  14. Performance evaluation of two-stage fuel cycle from SFR to PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, T.; Hoffman, E.A.; Kim, T.K.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with anmore » average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)« less

  15. Crack growth testing on Cold Worked Alloy 690 in Primary Water Environment

    NASA Astrophysics Data System (ADS)

    Tice, David R.; Medway, Stuart L.; Platts, Norman; Stairmand, John W.

    While plant experience so far has shown excellent resistance of Alloy 690 to stress corrosion cracking in PWR primary water environments, laboratory tests have reported that susceptibility may be enhanced substantially by non-uniform cold working, particularly when the plane of crack growth is in the plane of rolling or forging. The Alloy 690 program aims to further the understanding of the mechanisms behind this susceptibility and the heat-to-heat variability reported for different materials.

  16. Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement

    NASA Astrophysics Data System (ADS)

    Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe

    2017-11-01

    Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.

  17. Recent operating experiences with steam generators in Japanese NPPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashima, Seiji

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation ofmore » SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.« less

  18. Design study of long-life PWR using thorium cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/kmore » and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.« less

  19. Effects of Thermo-Mechanical Treatments on Deformation Behavior and IGSCC Susceptibility of Stainless Steels in Pwr Primary Water Chemistry

    NASA Astrophysics Data System (ADS)

    Nouraei, S.; Tice, D. R.; Mottershead, K. J.; Wright, D. M.

    Field experience of 300 series stainless steels in the primary circuit of PWR plant has been good. Stress Corrosion Cracking of components has been infrequent and mainly associated with contamination by impurities/oxygen in occluded locations. However, some instances of failures have been observed which cannot necessarily be attributed to deviations in the water chemistry. These failures appear to be associated with the presence of cold-work produced by surface finishing and/or by welding-induced shrinkage. Recent data indicate that some heats of SS show an increased susceptibility to SCC; relatively high crack growth rates were observed even when the crack growth direction is orthogonal to the cold-work direction. SCC of cold-worked SS in PWR coolant is therefore determined by a complex interaction of material composition, microstructure, prior cold-work and heat treatment. This paper will focus on the interactions between these parameters on crack propagation in simulated PWR conditions.

  20. Hydrothermal synthesis of Ni 2FeBO 5 in near-supercritical PWR coolant and possible effects of neutron-induced 10B fission in fuel crud

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.

    2011-08-01

    The hydrothermal synthesis of a nickel-iron oxyborate, Ni 2FeBO 5, known as bonaccordite, was investigated at pressures and temperatures that might occur at the surface of high-power fuel rods in PWR cores and in supercritical water reactors, especially during localized departures from nucleate boiling and dry-outs. The tests were performed using aqueous mixtures of nickel and iron oxides with boric acid or boron oxide, and as a function of lithium hydroxide addition, temperature and time of heating. At subcritical temperatures nickel ferrite NiFe 2O 4 was always the primary reaction product. High yield of Ni 2FeBO 5 synthesis started near critical water temperature and was strongly promoted by additions of LiOH up to Li/Fe and Li/B molar ratios in a range 0.1-1. The synthesis of bonaccordite was also promoted by other alkalis such as NaOH and KOH. The bonaccordite particles were likely formed by dissolution and re-crystallization by means of an intermediate nickel ferrite phase. It is postulated that the formation of Ni 2FeBO 5 in deposits of borated nickel and iron oxides on PWR fuel cladding can be accelerated by lithium produced in thermal neutron capture 10B(n,α) 7Li reactions. The process may also be aided in the reactor core by kinetic energy of α-particles and 7Li ions dissipated in the crud layer.

  1. Plasmon waveguide resonance sensor using an Au-MgF2 structure.

    PubMed

    Zhou, Yanfei; Zhang, Pengfei; He, Yonghong; Xu, Zihao; Liu, Le; Ji, Yanhong; Ma, Hui

    2014-10-01

    We report an Au − MgF(2) plasmon waveguide resonance (PWR) sensor in this work. The characteristics of this sensing structure are compared with a surface plasmon resonance (SPR) structure theoretically and experimentally. The transverse-magnetic-polarized PWR sensor has a refractive index resolution of 9.3 × 10(-7) RIU, which is 6 times smaller than that of SPR at the incident light wavelength of 633 nm, and the transverse-electric-polarized PWR sensor has a refractive index resolution of 3.0 × 10(-6) RIU. This high-resolution sensor is easy to build and is less sensitive to film coating deviations.

  2. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

  3. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion.more » A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.« less

  4. Reactor antineutrino detector iDREAM.

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  5. Optimization of small long-life PWR based on thorium fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  6. 78 FR 56752 - Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... (iPWR). This guidance applies to environmental reviews associated with iPWR applications for limited... received on or before this date. ADDRESSES: You may submit comments by any of the following methods (unless... this document. You may access publicly-available information related to this document by any of the...

  7. TRAC posttest calculations of Semiscale Test S-06-3. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ireland, J.R.; Bleiweis, P.B.

    A comparison of Transient Reactor Analysis Code (TRAC) steady-state and transient results with Semiscale Test S-06-3 (US Standard Problem 8) experimental data is discussed. The TRAC model used employs fewer mesh cells than normal data comparison models so that TRAC's ability to obtain reasonable results with less computer time can be assessed. In general, the TRAC results are in good agreement with the data and the major phenomena found in the experiment are reproduced by the code with a substantial reduction in computing times.

  8. Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, G.; Moberg, L.

    SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less

  9. CH-47C Vulnerability Reduction Modification Program - Fly-by-Wire Backup Demonstration

    DTIC Science & Technology

    1976-08-01

    Actuator Position for Combined Axis Input ............................. 91 4 Systems Assessment Summary................... 95 C-1 Instrumentation Parameters ...SERVO CARD jEETO FROM MIXERS SUfEV __________ HYLIC AMPL AMPLVLE SHUT-O- DOWN DC PWR LOGIC REA MIONITOR SUMMER *O:EO SWITCH- BUFFER OVER 1 NETWORK...and ranels (Figures 12 and 13). The existing DELS preflight test set, which provides access to the system parameters , was installed along with the

  10. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration

    NASA Astrophysics Data System (ADS)

    Lee, Young-Ho; Kim, Hyung-Kyu; Kang, Heung-Seok; Yoon, Kyung-Ho; Kim, Jae-Yong; Lee, Kang-Hee

    2012-06-01

    Recently, a dual-cooled fuel (i.e., annular fuel) that is compatible with current operating PWR plants has been proposed in order to realize both a considerable amount of power uprating and an increase of safety margins. As the design concept should be compatible with current operating PWR plants, however, it shows a narrow gap between the fuel rods when compared with current solid nuclear fuel arrays and needs to modify the spacer grid shapes and their positions. In this study, fretting wear tests have been performed to evaluate the wear resistance of a dual-cooled fuel by using a proposed spring and dimple of spacer grids that have a cantilever type and hemispherical shape, respectively. As a result, the wear volume of the spring specimen gradually increases as the contact condition is changed from a certain gap, just contact to positive force. However, in the dimple specimen, just contact condition shows a large wear volume. In addition, a circular rod motion at upper region of contact surface is gradually increased and its diametric size depends on the wear depth increase. Based on the test results, the fretting wear resistance of the proposed spring and dimple is analyzed by comparing the wear measurement results and rod motion in detail.

  11. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    NASA Astrophysics Data System (ADS)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-06-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.

  12. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of amore » power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less

  14. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has alsomore » been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)« less

  15. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum ofmore » the individual components equaling the measured values.« less

  16. Optimization of small long-life PWR based on thorium fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh Nurul, E-mail: nsubkhi@students.itb.ac.id; Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung Djati Bandung Jalan A.H Nasution 105 Bandung; Suud, Zaki, E-mail: szaki@fi.itb.ac.id

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {supmore » 231}Pa give low excess reactivity.« less

  17. A complete dosimetry experimental program in support to the core characterization and to the power calibration of the CABRI reactor. A complete dosimetry experimental program in support of the core characterization and of the power calibration of the CABRI reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodiac, F.; Hudelot, JP.; Lecerf, J.

    CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center. Since 1978 the experimental programs have aimed at studying the fuel behavior under Reactivity Initiated Accident (RIA) conditions. Since 2003, it has been refurbished in order to be able to provide RIA and LOCA (Loss Of Coolant Accident) experiments in prototypical PWR conditions (155 bar, 300 deg. C). This project is part of a broader scope including an overall facility refurbishment and a safety review. The global modification is conducted by the CEA project team. It is funded by IRSN, which is conducting the CIP experimentalmore » program, in the framework of the OECD/NEA project CIP. It is financed in the framework of an international collaboration. During the reactor restart, commissioning tests are realized for all equipment, systems and circuits of the reactor. In particular neutronics and power commissioning tests will be performed respectively in 2015 and 2016. This paper focuses on the design of a complete and original dosimetry program that was built in support to the CABRI core characterization and to the power calibration. Each one of the above experimental goals will be fully described, as well as the target uncertainties and the forecasted experimental techniques and data treatment. (authors)« less

  18. CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.

    2007-01-01

    As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.

  19. Development a computer codes to couple PWR-GALE output and PC-CREAM input

    NASA Astrophysics Data System (ADS)

    Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.

  20. Shuttle Engine Designs Revolutionize Solar Power

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

  1. Fourier Transform-Plasmon Waveguide Spectroscopy: A Nondestructive Multifrequency Method for Simultaneously Determining Polymer Thickness and Apparent Index of Refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [ Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an averagemore » percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).« less

  2. Fourier transform-plasmon waveguide spectroscopy: a nondestructive multifrequency method for simultaneously determining polymer thickness and apparent index of refraction.

    PubMed

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an average percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).

  3. CECE: Expanding the Envelope of Deep Throttling in Liquid Oxygen/Liquid Hydrogen Rocket Engines For NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010

  4. Physics of hydride fueled PWR

    NASA Astrophysics Data System (ADS)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Kenneth

    The Nuclear Energy Institute (NEI) Small Modular Reactor (SMR) Licensing Task Force (TF) has been evaluating licensing issues unique and important to iPWRs, ranking these issues, and developing NEI position papers for submittal to the U.S. Nuclear Regulatory Commission (NRC) during the past three years. Papers have been developed and submitted to the NRC in a range of areas including: Price-Anderson Act, NRC annual fees, security, modularity, and staffing. In December, 2012, NEI completed a draft position paper on SMR source terms and participated in an NRC public meeting presenting a summary of this paper, which was subsequently submitted tomore » the NRC. One important conclusion of the source term paper was the evaluation and selection of high importance areas where additional research would have a significant impact on source terms. The highest ranked research area was iPWR containment aerosol natural deposition. The NRC accepts the use of existing aerosol deposition correlations in Regulatory Guide 1.183, but these were developed for large light water reactor (LWR) containments. Application of these correlations to an iPWR design has resulted in greater than a ten-fold reduction of containment airborne aerosol inventory as compared to large LWRs. Development and experimental justification of containment aerosol natural deposition correlations specifically for the unique iPWR containments is expected to result in a large reduction of design basis and beyond-design-basis accident source terms with concomitantly smaller dose to workers and the public. Therefore, NRC acceptance of iPWR containment aerosol natural deposition correlations will directly support the industry’s goal of reducing the Emergency Planning Zone (EPZ) for SMRs. Based on the results in this work, it is clear that thermophoresis is relatively unimportant for iPWRs. Gravitational settling is well understood, and may be the dominant process for a dry environment. Diffusiophoresis and enhanced settling by particle growth are the dominant processes for determining DFs for expected conditions in an iPWR containment. These processes are dependent on the areato-volume (A/V) ratio, which should benefit iPWR designs because these reactors have higher A/Vs compared to existing LWRs.« less

  6. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.

  7. Report on the PWR-radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, D.J.

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and informationmore » relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.« less

  8. Automotive Test Rig Final Design Report. Volume 2. Control System.

    DTIC Science & Technology

    1986-01-01

    Pressure Switch Status P27 Low Brake Release Pressure Switch Status P26 Low Brake...Supply Pressure Switch Status P25 Low Port Charge Pump Pressure Switch Status P24 Low Starboard Charge Pump Pressure Switch Status P23 Hydraulic Filter By...Sensed Switch Status P31 Low Scavenge Pump Pressure Switch Status P30 P37 Signal Return for Computer J21 Not Used J22 P A +24 B Pwr Rtn C Ground C

  9. Limited Artificial and Natural Icing Tests Production UH-60A Helicopter (Re-Evaluation).

    DTIC Science & Technology

    1981-08-01

    parameters , and definitions of icing types and severities are presented in appendix D. 2 RESULTS AND DISCUSSION GENERAL 9. Artificial and natural icing flight...anti-ice off, the system may be reactivated by cycling the appropriate windshield anti-ice switch. The windshield anti-ice system is fully operational...is off, then the fault monitor illuminates the respective PWR light on its front panel. The light informs the crew that further action is requied to

  10. Costs, equity, efficiency and feasibility of identifying the poor in Ghana's National Health Insurance Scheme: empirical analysis of various strategies.

    PubMed

    Aryeetey, Genevieve Cecilia; Jehu-Appiah, Caroline; Spaan, Ernst; Agyepong, Irene; Baltussen, Rob

    2012-01-01

    To analyse the costs and evaluate the equity, efficiency and feasibility of four strategies to identify poor households for premium exemptions in Ghana's National Health Insurance Scheme (NHIS): means testing (MT), proxy means testing (PMT), participatory wealth ranking (PWR) and geographic targeting (GT) in urban, rural and semi-urban settings in Ghana. We conducted the study in 145-147 households per setting with MT as our gold standard strategy. We estimated total costs that included costs of household surveys and cost of premiums paid to the poor, efficiency (cost per poor person identified), equity (number of true poor excluded) and the administrative feasibility of implementation. The cost of exempting one poor individual ranged from US$15.87 to US$95.44; exclusion of the poor ranged between 0% and 73%. MT was most efficient and equitable in rural and urban settings with low-poverty incidence; GT was efficient and equitable in the semi-urban setting with high-poverty incidence. PMT and PWR were less equitable and inefficient although feasible in some settings. We recommend MT as optimal strategy in low-poverty urban and rural settings and GT as optimal strategy in high-poverty semi-urban setting. The study is relevant to other social and developmental programmes that require identification and exemptions of the poor in low-income countries. © 2011 Blackwell Publishing Ltd.

  11. Calculation and benchmarking of an azimuthal pressure vessel neutron fluence distribution using the BOXER code and scraping experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzgrewe, F.; Hegedues, F.; Paratte, J.M.

    1995-03-01

    The light water reactor BOXER code was used to determine the fast azimuthal neutron fluence distribution at the inner surface of the reactor pressure vessel after the tenth cycle of a pressurized water reactor (PWR). Using a cross-section library in 45 groups, fixed-source calculations in transport theory and x-y geometry were carried out to determine the fast azimuthal neutron flux distribution at the inner surface of the pressure vessel for four different cycles. From these results, the fast azimuthal neutron fluence after the tenth cycle was estimated and compared with the results obtained from scraping test experiments. In these experiments,more » small samples of material were taken from the inner surface of the pressure vessel. The fast neutron fluence was then determined form the measured activity of the samples. Comparing the BOXER and scraping test results have maximal differences of 15%, which is very good, considering the factor of 10{sup 3} neutron attenuation between the reactor core and the pressure vessel. To compare the BOXER results with an independent code, the 21st cycle of the PWR was also calculated with the TWODANT two-dimensional transport code, using the same group structure and cross-section library. Deviations in the fast azimuthal flux distribution were found to be <3%, which verifies the accuracy of the BOXER results.« less

  12. Development and Testing of Neutron Cross Section Covariance Data for SCALE 6.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Williams, Mark L; Wiarda, Dorothea

    2015-01-01

    Neutron cross-section covariance data are essential for many sensitivity/uncertainty and uncertainty quantification assessments performed both within the TSUNAMI suite and more broadly throughout the SCALE code system. The release of ENDF/B-VII.1 included a more complete set of neutron cross-section covariance data: these data form the basis for a new cross-section covariance library to be released in SCALE 6.2. A range of testing is conducted to investigate the properties of these covariance data and ensure that the data are reasonable. These tests include examination of the uncertainty in critical experiment benchmark model k eff values due to nuclear data uncertainties, asmore » well as similarity assessments of irradiated pressurized water reactor (PWR) and boiling water reactor (BWR) fuel with suites of critical experiments. The contents of the new covariance library, the testing performed, and the behavior of the new covariance data are described in this paper. The neutron cross-section covariances can be combined with a sensitivity data file generated using the TSUNAMI suite of codes within SCALE to determine the uncertainty in system k eff caused by nuclear data uncertainties. The Verified, Archived Library of Inputs and Data (VALID) maintained at Oak Ridge National Laboratory (ORNL) contains over 400 critical experiment benchmark models, and sensitivity data are generated for each of these models. The nuclear data uncertainty in k eff is generated for each experiment, and the resulting uncertainties are tabulated and compared to the differences in measured and calculated results. The magnitude of the uncertainty for categories of nuclides (such as actinides, fission products, and structural materials) is calculated for irradiated PWR and BWR fuel to quantify the effect of covariance library changes between the SCALE 6.1 and 6.2 libraries. One of the primary applications of sensitivity/uncertainty methods within SCALE is the assessment of similarities between benchmark experiments and safety applications. This is described by a c k value for each experiment with each application. Several studies have analyzed typical c k values for a range of critical experiments compared with hypothetical irradiated fuel applications. The c k value is sensitive to the cross-section covariance data because the contribution of each nuclide is influenced by its uncertainty; large uncertainties indicate more likely bias sources and are thus given more weight. Changes in c k values resulting from different covariance data can be used to examine and assess underlying data changes. These comparisons are performed for PWR and BWR fuel in storage and transportation systems.« less

  13. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, Eiichi

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  14. Comparison of Measures of Vibration Affecting Occupants of Military Vehicles

    DTIC Science & Technology

    1986-12-01

    8217 ,, l I WES equipment 27. The WES equipment consisted of a battery operated absorbed power ( ABS -PW) meter with signal conditioning...West Germany. These will be referred to as the ISO ride meter and the ABS -PWR ridemeter, respectively. The first implemented the vibration measure...the ABS -PWR algorithms were used with each acceleration signal source (analog and digital) to provide a comprehensive basis for comparing the vibration

  15. Pretest mediction of Semiscale Test S-07-10 B. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbe, C A

    A best estimate prediction of Semiscale Test S-07-10B was performed at INEL by EG and G Idaho as part of the RELAP4/MOD6 code assessment effort and as the Nuclear Regulatory Commission pretest calculation for the Small Break Experiment. The RELAP4/MOD6 Update 4 and the RELAP4/MOD7 computer codes were used to analyze Semiscale Test S-07-10B, a 10% communicative cold leg break experiment. The Semiscale Mod-3 system utilized an electrially heated simulated core operating at a power level of 1.94 MW. The initial system pressure and temperature in the upper plenum was 2276 psia and 604/sup 0/F, respectively.

  16. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.

  17. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less

  18. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.W. Davis

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  19. Estimating irradiated nuclear fuel characteristics by nonlinear multivariate regression of simulated gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Håkansson, A.; Thulin, M.

    2018-07-01

    In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.

  20. Vectorized and multitasked solution of the few-group neutron diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, S.K.; Turinsky, P.J.; Shayer, Z.

    1989-03-01

    A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. Formore » the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model.« less

  1. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2011-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  2. Preliminary Consideration of the ADS Research in China

    NASA Astrophysics Data System (ADS)

    Fang, Shouxian; Fu, Shinian

    2002-08-01

    Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator Driven Subcritical system), can avoid these troubles and it is recognized as a most prospective power system for fission energy. So during the early time of nuclear power development in our country, it is worthwhile to exploit this novel idea. In this paper, the ADS research program and a proposed verification facility are described. It consists of an 300MeV/3mA low energy accelerator, a swimming pool reactor and some basic research equipment. Beam physics, such as beam halo formation, in the intense-beam accelerator is also discussed.

  3. Probabilistic approach for decay heat uncertainty estimation using URANIE platform and MENDEL depletion code

    NASA Astrophysics Data System (ADS)

    Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.

    2014-06-01

    The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.

  4. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  5. On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.

    PubMed

    Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning

    2016-08-01

    For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stand-alone containment analysis of Phébus FPT tests with ASTEC and MELCOR codes: the FPT-2 test.

    PubMed

    Gonfiotti, Bruno; Paci, Sandro

    2018-03-01

    During the last 40 years, many studies have been carried out to investigate the different phenomena occurring during a Severe Accident (SA) in a Nuclear Power Plant (NPP). Such efforts have been supported by the execution of different experimental campaigns, and the integral Phébus FP tests were probably some of the most important experiments in this field. In these tests, the degradation of a Pressurized Water Reactor (PWR) fuel bundle was investigated employing different control rod materials and burn-up levels in strongly or weakly oxidizing conditions. From the findings on these and previous tests, numerical codes such as ASTEC and MELCOR have been developed to analyze the evolution of a SA in real NPPs. After the termination of the Phébus FP campaign, these two codes have been furthermore improved to implement the more recent findings coming from different experimental campaigns. Therefore, continuous verification and validation is still necessary to check that the new improvements introduced in such codes allow also a better prediction of these Phébus tests. The aim of the present work is to re-analyze the Phébus FPT-2 test employing the updated ASTEC and MELCOR code versions. The analysis focuses on the stand-alone containment aspects of this test, and three different spatial nodalizations of the containment vessel (CV) have been developed. The paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and fission products (FP) behavior. When possible, a comparison among the results obtained during this work and by different authors in previous work is also performed. This paper is part of a series of publications covering the four Phébus FP tests using a PWR fuel bundle: FPT-0, FPT-1, FPT-2, and FPT-3, excluding the FPT-4 one, related to the study of the release of low-volatility FP and transuranic elements from a debris bed and a pool of melted fuel.

  7. Pretest and posttest calculations of Semiscale Test S-07-10D with the TRAC computer program. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duerre, K.H.; Cort, G.E.; Knight, T.D.

    The Transient Reactor Analysis Code (TRAC) developed at the Los Alamos National Laboratory was used to predict the behavior of the small-break experiment designated Semiscale S-07-10D. This test simulates a 10 per cent communicative cold-leg break with delayed Emergency Core Coolant injection and blowdown of the broken-loop steam generator secondary. Both pretest calculations that incorporated measured initial conditions and posttest calculations that incorporated measured initial conditions and measured transient boundary conditions were completed. The posttest calculated parameters were generally between those obtained from pretest calculations and those from the test data. The results are strongly dependent on depressurization rate and,more » hence, on break flow.« less

  8. Effects of crack tip plastic zone on corrosion fatigue cracking of alloy 690(TT) in pressurized water reactor environments

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Qiu, S. Y.; Chen, Y.; Fu, Z. H.; Lin, Z. X.; Xu, Q.

    2015-01-01

    Alloy 690(TT) is widely used for steam generator tubes in pressurized water reactor (PWR), where it is susceptible to corrosion fatigue. In this study, the corrosion fatigue behavior of Alloy 690(TT) in simulated PWR environments was investigated. The microstructure of the plastic zone near the crack tip was investigated and labyrinth structures were observed. The relationship between the crack tip plastic zone and fatigue crack growth rates and the environment factor Fen was illuminated.

  9. Waterside corrosion of Zircaloy-clad fuel rods in a PWR environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    A data base of Zircaloy corrosion behavior under PWR operating conditions has been established from previously published reports as well as from new Kraftwerk Union (KWU) fuel examinations. The data show that the reactor environment increases the corrosion. ZrO/sub 2/ film thermal conductivity is another major factor that influences corrosion behavior. It was inferred from KWU film thickness data that the oxide film thermal conductivity may decrease once circumferential cracks develop in the layer. 57 refs.

  10. Chemical Agonists of the PML/Daxx Pathway for Prostate Cancer Therapy

    DTIC Science & Technology

    2011-04-01

    positive nuclei. These data suggest that the assay is highly specific and will not suffer from promiscuous reactivity with NIH library compounds...Figure 16B). Strikingly, when we compared Daxx levels in PCa cell lines to a nontumorigenic human prostatic epithelial line, PWR -1E, they were...Lysates from six different cell types ( PWR -1E, ALVA-31 Daxx K/D, ALVA-31 WT, DU145, LNCaP, and PC3) were normalized for total protein content (60 μg

  11. Development of modified MDA (M-MDA), PWR fuel cladding tube for high duty operation in future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Seiichi; Kido, Toshiya; Arakawa, Yasushi

    2007-07-01

    A new cladding material of M-MDA has been developed in order to prepare for a strong growing demand for advanced fuel which can maintain its integrity even under high duties due to more efficient operation such as higher burnup, higher LHR, and longer operation cycle which will contribute the suppression of environmental burdens like CO{sub 2} emission. The main aim of M-MDA is to have excellent corrosion resistance while the other properties are inherited from MDA, which has been adopted to the step 2 fuel, instead of Zry-4, of Japanese PWR plant whose upper limit of assembly discharged burnup ismore » 55 MWd/kgU. And we could confirm that the main aim of M-MDA was achieved by means of out-of-pile tests. In order to confirm improvement of corrosion resistance of M-MDA in the actual operation, irradiation test of M-MDA in the commercial reactor of Vandellos II is ongoing. The latest results of on-site examination after every end of cycle showed that oxide thickness of M-MDA-SR was much smaller than that of MDA at rod discharged burnup of approximately 60 MWd/kgU. The final irradiation cycle was completed on April 2007 and then we will obtain corrosion data of M-MDA over 70 MWd/kgU. M-MDA is a candidate alloy for advanced fuel under higher duty usage. (authors)« less

  12. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less

  13. High-temperature Gas Reactor (HTGR)

    NASA Astrophysics Data System (ADS)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  14. Review of PWR fuel rod waterside corrosion behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Zhai, Ziqing; Bruemmer, Stephen M.

    Due to its superior resistance to corrosion and stress corrosion cracking (SCC), high Cr, Ni-base Alloy 690 is now commonly used in pressurized water reactors (PWRs). Even though highly cold-worked (CW) Alloy 690 has been shown to be susceptible to SCC crack growth in PWR primary water environments, an open question remains whether SCC initiation was possible for these materials under constant load test conditions. Testing has been performed on a series of CW alloy 690 CRDM tubing specimens at constant load for up to 9,220 hours in 360°C simulated PWR primary water. A companion paper will discuss the overallmore » testing approach and describe results on different alloy 690 heats and cold work levels. The focus of the current paper is to illustrate the use of focused ion beam (FIB), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the high-resolution investigation of precursor damage and intergranular (IG) crack nucleation in these specimens. Three-dimensional (3D) FIB/SEM imaging has been conducted on a series of grain boundary (GB) damage precursors, such as IG small cavities, local corrosion and even shallow cracks observed at the specimen surface. Contrast variations and EDS mapping were used to distinguish oxides, carbides and cavities from the matrix material. Nanometer-sized cavities were observed associated with GB carbides in the highly CW specimens. Shallow IG cracks were present in the 30%CW specimens and exhibited oxidized crack flanks and a higher density of cavities ahead of the oxide front in all cases. The shape and distribution of carbides and cavities in the plane of the cracked GBs was analyzed in 3D to gain a mechanistic understanding of the processes that may be leading to crack initiation in highly CW alloy 690.« less

  16. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose ratesmore » were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faidy, C.

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  18. Planar Monolithic Schottky Varactor Diode Millimeter-Wave Frequency Multipliers

    DTIC Science & Technology

    1992-06-01

    wave applications", IEEE Trans on Microwave Theory and Tech., vol. 39, no. 12, Dec. 1991 , pp. 1964-1971. A copy of this paper is 35 included in...Watts to Bulky 1991 spectral HV DC Power line Pwr Very Inguscio varies Massive 1986 with Vac.:um line Very low Gas noise Supply Ledatron Up to 1 W at...PULSED Band up to 1985 HV DC 10 GHz Massive Pwr Magnetic V?4MA > 100 GHz > 1 Watt Wide Cooling Research Quasi- McGruer Theory Theory Band Planar 1991

  19. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  20. In-reactor performance of LWR-type tritium target rods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanning, D.D.; Paxton, M.M.; Crumbaugh, L.

    Pacific Northwest Laboratory has conducted several 1-yr irradiation tests of light water reactor-type tritium target rods. These tests have been sponsored by the U.S. Department of Energy's Office of New Production Reactors. The first test, designated water capsule-1 (WC-1), was conducted in the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory from November 1989 to December 1990. The test vehicle contained a single 4-ft target rod within a pressurized water capsule. The capsule maintained the rod at pressurized water reactor (PWR)-type water temperature and pressure conditions. Posttest nondestructive examinations of the WC-1 rod involved visual examinations, dimensional checks,more » gamma scanning, and neutron radiography. The results indicate that the rod maintained the integrity of its pressure seal and was otherwise unaltered both mechanically and dimensionally by its irradiation and posttest handling.« less

  1. AREVA Team Develops Sump Strainer Blockage Solution for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Ray

    2006-07-01

    The purpose of this paper is to discuss the methodology, testing challenges, and results of testing that a team of experts from Areva NP, Alden Research Laboratory, Inc (ALDEN), and Performance Contracting Inc. (PCI) has developed. The team is currently implementing a comprehensive solution to the issue of Emergency Core Cooling System (ECCS) sump strainer blockage facing Pressurized Water Reactor (PWR) Nuclear Plants. The team has successfully demonstrated two key results from the testing of passive Sure-FlowTM strainers, which were designed to distribute the required flow over a large surface area resulting in extremely low approach velocities. First, the actualmore » head loss (pressure drop) as tested, across the prototype strainers, was much lower than the calculated head loss using the Nuclear Regulatory Commission (NRC) approved NUREG/CR-6224 head loss correlation. Second, the penetration fractions were much lower than those seen in the NRC sponsored debris penetration tests. (author)« less

  2. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, B. D.

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and themore » mechanical properties of the rods will be tested and analyzed.« less

  3. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.

  4. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  5. Penetrative Internal Oxidation from Alloy 690 Surfaces and Stress Corrosion Crack Walls during Exposure to PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically <10 nm in diameter) extending from the water interface into the alloy 690 matrix reaching depths of 500 nm. These filaments consisted of discrete, plate-shaped Cr2O3 particles surrounded by a distribution of nanocrystalline, rock-salt (Ni-Cr-Fe) oxide. The oxide-containing filament depth was found to increase with exposure time and, at longer times, the filaments became very dense at the surface leaving only isolated islands of metal. Individual dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.

  6. Nuclear fuel performance: Trends, remedies and challenges

    NASA Astrophysics Data System (ADS)

    Rusch, C. A.

    2008-12-01

    It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.

  7. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2018-04-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.

  8. LWR pressure vessel surveillance dosimetry improvement program: LWR power reactor surveillance physics-dosimetry data base compendium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.

    1985-08-01

    This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old)more » was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence.« less

  9. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are keptmore » open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).« less

  10. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement formore » extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).« less

  11. The pluralistic water research concept - a new human-water system research approach

    NASA Astrophysics Data System (ADS)

    Evers, Mariele; Höllermann, Britta; Almoradie, Adrian; Taft, Linda; Garcia-Santos, Glenda

    2017-04-01

    Sustainable water resources management has been and still is a main challenge for decision makers even though for the past number of decades integrative approaches and concepts (e.g. Integrated Water Resources Management - IWRM) have been developed to address problems on floods, droughts, water quality, water quantity, environment and ecology. Although somehow these approaches are aiming to address water related problems in an integrative approach and to some extent include or involve society in the planning and management, they still lack some of the vital components in including the social dimensions and their interaction with water. Understanding these dynamics in a holistic way and how they are shaped by time and space may tackle these shortcomings and provide more effective and sustainable management solutions with respect to a set of potential present social actions and values as well as possible futures. This paper aims to discuss challenges to coherently and comprehensively integrate the social dimensions of different human-water concepts like IWRM, socio-hydrology and waterscape. Against this background it will develop criteria for an integrative approach and present a newly developed concept termed pluralistic water research (PWR) concept. PWR is not only a pluralistic but also an integrative and interdisciplinary approach to acknowledge the social and water dimensions and their interaction and dynamics by considering more than one perspective of a water-related issue, hereby providing a set of multiple (future) developments. Our PWR concept will be illustrated by a case study application of the Canary island La Gomera. Furthermore an outlook on further possible developments of the PWR concept will be presented and discussed.

  12. Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1986-01-01

    During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less

  13. Fabrication of simulated DUPIC fuel

    NASA Astrophysics Data System (ADS)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  14. Development of a new lattice physics code robin for PWR application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Chen, G.

    2013-07-01

    This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhancedmore » neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)« less

  15. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less

  16. VERA Core Simulator Methodology for PWR Cycle Depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclearmore » reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.« less

  17. Research and test facilities for development of technologies and experiments with commercial applications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  18. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  19. Overview of experimental support for fission-product transport analyses at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.

    The program was designed to determine fission product and aerosol release rates from irradiated fuel under accident conditions, to identify the chemical forms of the released material, and to correlate the results with experimental and specimen conditions with the data from related experiments. These tests of PWR fuel were conducted and fuel specimen and test operating data are presented. The nature and rate of fission product vapor interaction with aerosols were studied. Aerosol deposition rates and transport in the reactor vessel during LWR core-melt accidents were studied. The Nuclear Safety Pilot Plant is dedicated to developing an expanded data basemore » on the behavior of aerosols generated during a severe accident.« less

  20. In-pile Hydrothermal Corrosion Evaluation of Coated SiC Ceramics and Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, David; Ang, Caen; Katoh, Yutai

    2017-09-01

    Hydrothermal corrosion accelerated by water radiolysis during normal operation is among the most critical technical feasibility issues remaining for silicon carbide (SiC) composite-based cladding that could provide enhanced accident-tolerance fuel technology for light water reactors. An integrated in-pile test was developed and performed to determine the synergistic effects of neutron irradiation, radiolysis, and pressurized water flow, all of which are relevant to a typical pressurized water reactor (PWR). The test specimens were chosen to cover a range of SiC materials and a variety of potential options for environmental barrier coatings. This document provides a summary of the irradiation vehicle design,more » operations of the experiment, and the specimen loading into the irradiation vehicle.« less

  1. TRAC-P1: an advanced best estimate computer program for PWR LOCA analysis. I. Methods, models, user information, and programming details

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-05-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less

  2. ALARA Council: Sharing our resources and experiences to reduce doses at Commonwealth Edison Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rescek, F.

    1995-03-01

    Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less

  3. The fractalline properties of experimentally simulated PWR fuel crud

    NASA Astrophysics Data System (ADS)

    Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.

    2018-02-01

    The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.

  4. First Conclusions of the WPEC/Subgroup-22 Nuclear Data for Improved LEU-LWR Reactivity Predictions

    NASA Astrophysics Data System (ADS)

    Courcelle, Arnaud

    2005-05-01

    This paper is a summary of a collective work in the framework of the Working Party in International Nuclear Data Evaluation and Co-operation (WPEC) to investigate the reasons for systematic reactivity underprediction of thermal LEU-LWR (Low-Enriched Uranium, Light-Water Reactor). This keff underprediction (≈ -500 pcm) is observed with the most recent nuclear data libraries (ENDF/B-VI.8, JENDL3.3 and JEFF3.0) This report reviews the evaluation work performed at several laboratories [Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory (LANL), Commissariat a l'énergie atomique de Bruyeres-Le-Chatel (CEA-BRC), International Atomic Energy Agency (IAEA)] as well as the integral tests (mainly at LANL, Knoll Atomic Power Laboratory (KAPL), Bettis Atomic Power Laboratory (BAPL), Nuclear Research and Consultancy Group NRG-Petten, CEA and IAEA) of the successive versions of the new evaluated files. The present status of the work can be summarized as follows: • Improved evaluations of 238U inelastic data proposed by LANL and CEA-BRC were tested against integral benchmarks and partially improve the reactivity prediction. • The thermal capture cross-section of 238U has been revised, and a new evaluation of 238U resonance parameters, up to 20 keV, is in progress at ORNL. Integral tests have ensured that the modifications of 238U capture cross-section in the thermal and resolved range were still compatible with 238U integral measurements (238U capture rate ratios measured in critical facilities and 239Pu build-up prediction in a depleted pressurized water reactor (PWR) assembly). It is demonstrated that the combination of the new inelastic data (LANL or BRC) with the preliminary ORNL resonance parameter set gives a good correction of the reactivity under-estimation. The provisional conclusions of this collective work are expected to contribute toward the improvement of the future versions of nuclear data libraries.

  5. Nuclear safety. Technical progress journal, October 1996--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The five papers in this issue address various issues associated with the behavior of high burnup fuels, especially under reactivity initiated accident (RIA) conditions. The mechanisms and parameters that have an effect on the fuel behavior are detailed, based on tests and analyses. The ultimate goal of the research reported is the development of new regulatory criteria for high burnup fuel under design basis accident conditions. Specific topics of the papers, which are abstracted individually in the database, are: (1) regulatory assessment of test data for RIAs, (2) high burnup fuel transient behavior under RIA conditions, (3) NSRR/RIA experiments withmore » high burnup PWR fuels, (4) the Russian RIA research program, and (5) RIA simulation experiments on the intermediate and high burnup test rods. The papers are contributed from the United States, France, Japan, and Russia.« less

  6. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, C.L.; Rausch, W.N.; Hesson, G.M.

    The LOCA Simulation Program in the NRU reactor is the first set of experiments to provide data on the behavior of full-length, nuclear-heated PWR fuel bundles during the heatup, reflood, and quench phases of a loss-of-coolant accident (LOCA). This paper compares the temperature time histories of 4 experimental test cases with 4 computer codes: CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT. The preliminary comparisons between prediction and experiment show that the state-of-the art fuel codes have large uncertainties and are not necessarily conservative in predicting peak temperatures, turn around times, and bundle quench times.

  8. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucau, Joseph; Mirabella, C.; Nilsson, Lennart

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less

  9. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less

  10. Experimental validation of depletion calculations with VESTA 2.1.5 using JEFF-3.2

    NASA Astrophysics Data System (ADS)

    Haeck, Wim; Ichou, Raphaëlle

    2017-09-01

    The removal of decay heat is a significant safety concern in nuclear engineering for the operation of a nuclear reactor both in normal and accidental conditions and for intermediate and long term waste storage facilities. The correct evaluation of the decay heat produced by an irradiated material requires first of all the calculation of the composition of the irradiated material by depletion codes such as VESTA 2.1, currently under development at IRSN in France. A set of PWR assembly decay heat measurements performed by the Swedish Central Interim Storage Facility (CLAB) located in Oskarshamm (Sweden) have been calculated using different nuclear data libraries: ENDF/B-VII.0, JEFF-3.1, JEFF-3.2 and JEFF-3.3T1. Using these nuclear data libraries, VESTA 2.1 calculates the assembly decay heat for almost all cases within 4% of the measured decay heat. On average, the ENDF/B-VII.0 calculated decay heat values appear to give a systematic underestimation of only 0.5%. When using the JEFF-3.1 library, this results a systematic underestimation of about 2%. By switching to the JEFF-3.2 library, this systematic underestimation is improved slighty (up to 1.5%). The changes made in the JEFF-3.3T1 beta library appear to be overcorrecting, as the systematic underestimation is transformed into a systematic overestimation of about 1.5%.

  11. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downar, Thomas

    This report summarizes the current status of VERA-CS Verification and Validation for PWR Core Follow operation and proposes a multi-phase plan for continuing VERA-CS V&V in FY17 and FY18. The proposed plan recognizes the hierarchical nature of a multi-physics code system such as VERA-CS and the importance of first achieving an acceptable level of V&V on each of the single physics codes before focusing on the V&V of the coupled physics solution. The report summarizes the V&V of each of the single physics codes systems currently used for core follow analysis (ie MPACT, CTF, Multigroup Cross Section Generation, and BISONmore » / Fuel Temperature Tables) and proposes specific actions to achieve a uniformly acceptable level of V&V in FY17. The report also recognizes the ongoing development of other codes important for PWR Core Follow (e.g. TIAMAT, MAMBA3D) and proposes Phase II (FY18) VERA-CS V&V activities in which those codes will also reach an acceptable level of V&V. The report then summarizes the current status of VERA-CS multi-physics V&V for PWR Core Follow and the ongoing PWR Core Follow V&V activities for FY17. An automated procedure and output data format is proposed for standardizing the output for core follow calculations and automatically generating tables and figures for the VERA-CS Latex file. A set of acceptance metrics is also proposed for the evaluation and assessment of core follow results that would be used within the script to automatically flag any results which require further analysis or more detailed explanation prior to being added to the VERA-CS validation base. After the Automation Scripts have been completed and tested using BEAVRS, the VERA-CS plan proposes the Watts Bar cycle depletion cases should be performed with the new cross section library and be included in the first draft of the new VERA-CS manual for release at the end of PoR15. Also, within the constraints imposed by the proprietary nature of plant data, as many as possible of the FY17 AMA Plant Core Follow cases should also be included in the VERA-CS manual at the end of PoR15. After completion of the ongoing development of TIAMAT for fully coupled, full core calculations with VERA-CS / BISON 1.5D, and after the completion of the refactoring of MAMBA3D for CIPS analysis in FY17, selected cases from the VERA-CS validation based should be performed, beginning with the legacy cases of Watts Bar and BEAVRS in PoR16. Finally, as potential Phase III future work some additional considerations are identified for extending the VERA-CS V&V to other reactor types such as the BWR.« less

  13. Development and applications of nondestructive evaluation at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1990-01-01

    A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.

  14. 75 FR 13 - Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...The Nuclear Regulatory Commission (NRC) is amending its regulations to provide alternate fracture toughness requirements for protection against pressurized thermal shock (PTS) events for pressurized water reactor (PWR) pressure vessels. This final rule provides alternate PTS requirements based on updated analysis methods. This action is desirable because the existing requirements are based on unnecessarily conservative probabilistic fracture mechanics analyses. This action reduces regulatory burden for those PWR licensees who expect to exceed the existing requirements before the expiration of their licenses, while maintaining adequate safety, and may choose to comply with the final rule as an alternative to complying with the existing requirements.

  15. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Bernard, D.; Blaise, P.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency ofmore » Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)« less

  16. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE PAGES

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa; ...

    2016-09-07

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  17. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGES

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  18. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  19. OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana

    PubMed Central

    Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou

    2018-01-01

    Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040

  20. Development and Application of Laser Peening System for PWR Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masaki Yoda; Itaru Chida; Satoshi Okada

    2006-07-01

    Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion crackingmore » (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described. (authors)« less

  1. Efficiency, equity and feasibility of strategies to identify the poor: an application to premium exemptions under National Health Insurance in Ghana.

    PubMed

    Jehu-Appiah, Caroline; Aryeetey, Genevieve; Spaan, Ernst; Agyepong, Irene; Baltussen, Rob

    2010-05-01

    This paper outlines the potential strategies to identify the poor, and assesses their feasibility, efficiency and equity. Analyses are illustrated for the case of premium exemptions under National Health Insurance (NHI) in Ghana. A literature search in Medline search was performed to identify strategies to identify the poor. Models were developed including information on demography and poverty, and costs and errors of in- and exclusion of these strategies in two regions in Ghana. Proxy means testing (PMT), participatory welfare ranking (PWR), and geographic targeting (GT) are potentially useful strategies to identify the poor, and vary in terms of their efficiency, equity and feasibility. Costs to exempt one poor individual range between US$11.63 and US$66.67, and strategies may exclude up to 25% of the poor. Feasibility of strategies is dependent on their aptness in rural/urban settings, and administrative capacity to implement. A decision framework summarizes the above information to guide policy making. We recommend PMT as an optimal strategy in relative low poverty incidence urbanized settings, PWR as an optimal strategy in relative low poverty incidence rural settings, and GT as an optimal strategy in high incidence poverty settings. This paper holds important lessons not only for NHI in Ghana but also for other countries implementing exemption policies. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  2. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs,more » were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.« less

  3. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Michael W; Miner, Kris

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less

  4. CRACK GROWTH RESPONSE OF ALLOY 690 IN SIMULATED PWR PRIMARY WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The stress corrosion crack growth response of three extruded alloy 690 CRDM tube heats was investigated in several thermomechanical conditions. Extremely low propagation rates (< 1 x 10{sup -9} mm/s) were observed under constant stress intensity factor (K) loading at 325-350 C in the as-received, thermally treated (TT) materials despite using a variety of transitioning techniques. Post-test observation of the crack-growth surfaces revealed only isolated intergranular (IG) cracking. One-dimensional cold rolling to 17% reduction and testing in the S-L orientation did not promote enhanced stress corrosion rates. However, somewhat higher propagation rates were observed in a 30% cold-rolled alloy 690TTmore » specimen tested in the T-L orientation. Cracking of the cold-rolled material was promoted on grain boundaries oriented parallel to the rolling plane with the % IG increasing with the amount of cold rolling.« less

  5. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    NASA Astrophysics Data System (ADS)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for Coolant-Line-Analysis Package. Versions were created that were both coupled to COBRA-TF and standalone, with the most recent version being a standalone code. This code performs a separate, simplified, 1-D solution of the conservation equations while making special considerations for coolant-line geometry and flow phenomena. The end of this project saw a functional code package that demonstrates a stable numerical solution and that has gone through a series of Validation and Verification tests using the Two-Phase Testing Facility (TPTF) experimental data[2]. The results indicate that CLAP is under-performing RELAP5-MOD3 in predicting the experimental void of the TPTF facility in some cases. There is no apparent pattern, however, to point to a consistent type of case that the code fails to predict properly (e.g., low-flow, high-flow, discharging to full vessel, or discharging to empty vessel). Pressure-profile predictions are sometimes unrealistic, which indicates that there may be a problem with test-case boundary conditions or with the coupling of continuity and momentum equations in the solution algorithm. The code does predict the flow regime correctly for all cases with the stratification-force model off. Turning the stratification model on can cause the low-flow case void profiles to over-react to the force and the flow regime to transition out of stratified flow. The code would benefit from an increased amount of Validation & Verification testing. The development of CLAP was significant, as it is a cleanly written, logical representation of the reactor coolant-line geometry. It is stable and capable of modeling basic flow physics in the reactor coolant-line. Code development and debugging required the temporary removal of the energy equation and mass-transfer terms in governing equations. The reintroduction of these terms will allow future coupling to RELAP and re-coupling with COBRA-TF. Adding in more applicable entrainment and de-entrainment models would allow the capture of more advanced physics in the coolant-line that can be expected during Loss-of-Coolant Accident. One of the package's benefits is its ability to be used as a platform for future coolant-line model development and implementation, including capturing of the important de-entrainment behavior in reactor hot-legs (steam-binding effect) and flow convection in the upper-plenum region of the vessel.

  6. Small engine components test facility compressor testing cell at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Brokopp, Richard A.; Gronski, Robert S.

    1992-01-01

    LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.

  7. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE PAGES

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...

    2017-04-27

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  8. Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.

    The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.

  9. Efficient solution of the simplified P N equations

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.

    2014-12-23

    We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.

  10. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  11. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  12. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  13. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  14. Zebra: An advanced PWR lattice code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L.; Wu, H.; Zheng, Y.

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precisionmore » and a high efficiency. (authors)« less

  15. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  16. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  17. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  18. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  19. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  20. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  1. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less

  2. Accreditation status and geographic location of outpatient vascular testing facilities among Medicare beneficiaries: the VALUE (Vascular Accreditation, Location & Utilization Evaluation) study.

    PubMed

    Rundek, Tatjana; Brown, Scott C; Wang, Kefeng; Dong, Chuanhui; Farrell, Mary Beth; Heller, Gary V; Gornik, Heather L; Hutchisson, Marge; Needleman, Laurence; Benenati, James F; Jaff, Michael R; Meier, George H; Perese, Susana; Bendick, Phillip; Hamburg, Naomi M; Lohr, Joann M; LaPerna, Lucy; Leers, Steven A; Lilly, Michael P; Tegeler, Charles; Alexandrov, Andrei V; Katanick, Sandra L

    2014-10-01

    There is limited information on the accreditation status and geographic distribution of vascular testing facilities in the US. The Centers for Medicare & Medicaid Services (CMS) provide reimbursement to facilities regardless of accreditation status. The aims were to: (1) identify the proportion of Intersocietal Accreditation Commission (IAC) accredited vascular testing facilities in a 5% random national sample of Medicare beneficiaries receiving outpatient vascular testing services; (2) describe the geographic distribution of these facilities. The VALUE (Vascular Accreditation, Location & Utilization Evaluation) Study examines the proportion of IAC accredited facilities providing vascular testing procedures nationally, and the geographic distribution and utilization of these facilities. The data set containing all facilities that billed Medicare for outpatient vascular testing services in 2011 (5% CMS Outpatient Limited Data Set (LDS) file) was examined, and locations of outpatient vascular testing facilities were obtained from the 2011 CMS/Medicare Provider of Services (POS) file. Of 13,462 total vascular testing facilities billing Medicare for vascular testing procedures in a 5% random Outpatient LDS for the US in 2011, 13% (n=1730) of facilities were IAC accredited. The percentage of IAC accredited vascular testing facilities in the LDS file varied significantly by US region, p<0.0001: 26%, 12%, 11%, and 7% for the Northeast, South, Midwest, and Western regions, respectively. Findings suggest that the proportion of outpatient vascular testing facilities that are IAC accredited is low and varies by region. Increasing the number of accredited vascular testing facilities to improve test quality is a hypothesis that should be tested in future research. © The Author(s) 2014.

  3. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, M; Blink, J A; Greenberg, H R

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less

  4. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  5. Testing to Transition the J-2X from Paper to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, Tom

    2010-01-01

    The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer water flow, turbine air flow, turbopump seal testing, main injector and gas generator, injector testing, augmented spark igniter testing, nozzle side loads cold flow testing, nozzle extension film cooling flow testing, control system testing with hardware in the loop, and nozzle extension emissivity coating tests. In parallel with hardware manufacturing, work is progressing on the new A-3 test stand to support full duration altitude testing. The Stennis A-2 test stand is scheduled to be turned over to the Constellation Program in September 2010 to be modified for J-2X testing also. As the structural steel was rising on the A-3 stand, work was under way in the nearby E complex on the chemical steam generator and subscale diffuser concepts to be used to evacuate the A-3 test cell and simulate altitude conditions.

  6. Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Paul E.; Ross, Steven; Grey, Carissa Ann

    This report describes tests conducted using a full-size rail cask, the ENSA ENUN 32P, involving handling of the cask and transport of the cask via truck, ships, and rail. The purpose of the tests was to measure strains and accelerations on surrogate pressurized water reactor fuel rods when the fuel assemblies were subjected to Normal Conditions of Transport within the rail cask. In addition, accelerations were measured on the transport platform, the cask cradle, the cask, and the basket within the cask holding the assemblies. These tests were an international collaboration that included Equipos Nucleares S.A., Sandia National Laboratories, Pacificmore » Northwest National Laboratory, Coordinadora Internacional de Cargas S.A., the Transportation Technology Center, Inc., the Korea Radioactive Waste Agency, and the Korea Atomic Energy Research Institute. All test results in this report are PRELIMINARY – complete analyses of test data will be completed and reported in FY18. However, preliminarily: The strains were exceedingly low on the surrogate fuel rods during the rail-cask tests for all the transport and handling modes. The test results provide a compelling technical basis for the safe transport of spent fuel.« less

  7. Automatic treatment of the variance estimation bias in TRIPOLI-4 criticality calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumonteil, E.; Malvagi, F.

    2012-07-01

    The central limit (CLT) theorem States conditions under which the mean of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed. The use of Monte Carlo transport codes, such as Tripoli4, relies on those conditions. While these are verified in protection applications (the cycles provide independent measurements of fluxes and related quantities), the hypothesis of independent estimates/cycles is broken in criticality mode. Indeed the power iteration technique used in this mode couples a generation to its progeny. Often, after what is called 'source convergence' this coupling almost disappears (the solutionmore » is closed to equilibrium) but for loosely coupled systems, such as for PWR or large nuclear cores, the equilibrium is never found, or at least may take time to reach, and the variance estimation such as allowed by the CLT is under-evaluated. In this paper we first propose, by the mean of two different methods, to evaluate the typical correlation length, as measured in cycles number, and then use this information to diagnose correlation problems and to provide an improved variance estimation. Those two methods are based on Fourier spectral decomposition and on the lag k autocorrelation calculation. A theoretical modeling of the autocorrelation function, based on Gauss-Markov stochastic processes, will also be presented. Tests will be performed with Tripoli4 on a PWR pin cell. (authors)« less

  8. Analysis of steam generator tube rupture transients with single failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trambauer, K.

    The Gesellschaft fuer Reaktorsicherheit is engaged in the collection and evaluation of light water reactor operating experience as well as analyses for the risk study of the pressurized water reactor (PWR). Within these activities, thermohydraulic calculations have been performed to show the influence of different boundary conditions and disturbances on the steam generator tube rupture (SGTR) transients. The analyses of these calculations have focused on the measures and systems needed to cope with an SGTR. The reference plant for this analysis is a 1300-MW(e) PWR of Kraftwerk Union design with four loops, each containing a U-tube steam generator (SG) andmore » a reactor cooling pump (RCP). The thermal-hydraulic code DRUFAN-02 was used for the transient calculations.« less

  9. SCC Initiation Behavior of Alloy 182 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Zhai, Ziqing; Bruemmer, Stephen M.

    SCC initiation behavior of 15% cold forged specimens cut from four different alloy 182 weldments was investigated in 360°C simulated PWR primary water under constant load at the yield stress using direct current potential drop to perform in-situ monitoring of SCC initiation time. Within each weldment, one or more specimens underwent SCC initiation within 24 hours of reaching full load while some specimens had much longer initiation times, in a few cases exceeding 2500 hours. Detailed examinations were conducted on these specimens with a focus on different microstructural features such as preexisting defects, grain orientation and second phases, highlighting anmore » important role of microstructure in crack initiation of alloy 182.« less

  10. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.

    2008-01-01

    In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.

  12. Survey of solar thermal test facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masterson, K.

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less

  13. 76 FR 41783 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Commodities Group, Constellation Pwr Source Generation LLC, Constellation NewEnergy, Inc., CER Generation II..., CER Generation, LLC, Constellation Energy Commodities Group M, Constellation Mystic Power, LLC...

  14. Large-break LOCA, in-reactor fuel bundle Materials Test MT-6A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, C.L.; Hesson, G.M.; Pilger, J.P.

    1993-09-01

    This is a report on one of a series of experiments to simulates a loss-of-coolant accident (LOCA) using full-length fuel rods for pressurized water reactors (PWR). The experiments were conducted by Pacific Northwest Laboratory (PNL) under the LOCA simulation Program sponsored by the US Nuclear Regulatory Commission (NRC). The major objective of this program was causing the maximum possible expansion of the cladding on the fuel rods from a short-term adiabatic temperature transient to 1200 K (1700 F) leading to the rupture of the cladding; and second, by reflooding the fuel rods to determine the rate at which the fuelmore » bundle is cooled.« less

  15. Development of data base with mechanical properties of un- and pre-irradiated VVER cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmolov, V.; Yegorova, L.; Kaplar, E.

    1998-03-01

    Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in thismore » paper.« less

  16. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  17. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  18. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  19. STD testing policies and practices in U.S. city and county jails.

    PubMed

    Parece, M S; Herrera, G A; Voigt, R F; Middlekauff, S L; Irwin, K L

    1999-09-01

    Studies have shown that sexually transmitted disease (STD) rates are high in the incarcerated population. However, little is known about STD testing policies or practices in jails. To assess STD testing policies and practices in jails. The Division of STD Prevention developed and distributed an e-mail survey to 94 counties reporting more than 40 primary and secondary cases in 1996 or having cities with more than 200,000 persons. State and local STD program managers completed the assessment in collaboration with health departments and the main jail facilities in the selected counties. Most facilities (52-77%) had a policy for STD screening based only on symptoms or by arrestee request, and in these facilities, 0.2% to 6% of arrestees were tested. Facilities having a policy of offering routine testing tested only 3% to 45% of arrestees. Large facilities, facilities using public providers, and facilities routinely testing for syphilis using Stat RPR tested significantly more arrestees (P<0.05). Approximately half of the arrestees were released within 48 hours after intake, whereas 45% of facilities did not have STD testing results until after 48 hours. Most facilities had a policy for STD screening based only on symptoms or by arrestee request. Facilities having a policy of routine STD testing are not testing most of the arrestees. There is a small window (<48 hours) for STD testing and treatment before release. Smaller jails and facilities using private providers may need additional resources to increase STD testing levels. Correctional facilities should be considered an important setting for STD public health intervention where routine rapid STD screening and treatment on-site could be implemented.

  20. Xenon-induced power oscillations in a generic small modular reactor

    NASA Astrophysics Data System (ADS)

    Kitcher, Evans Damenortey

    As world demand for energy continues to grow at unprecedented rates, the world energy portfolio of the future will inevitably include a nuclear energy contribution. It has been suggested that the Small Modular Reactor (SMR) could play a significant role in the spread of civilian nuclear technology to nations previously without nuclear energy. As part of the design process, the SMR design must be assessed for the threat to operations posed by xenon-induced power oscillations. In this research, a generic SMR design was analyzed with respect to just such a threat. In order to do so, a multi-physics coupling routine was developed with MCNP/MCNPX as the neutronics solver. Thermal hydraulic assessments were performed using a single channel analysis tool developed in Python. Fuel and coolant temperature profiles were implemented in the form of temperature dependent fuel cross sections generated using the SIGACE code and reactor core coolant densities. The Power Axial Offset (PAO) and Xenon Axial Offset (XAO) parameters were chosen to quantify any oscillatory behavior observed. The methodology was benchmarked against results from literature of startup tests performed at a four-loop PWR in Korea. The developed benchmark model replicated the pertinent features of the reactor within ten percent of the literature values. The results of the benchmark demonstrated that the developed methodology captured the desired phenomena accurately. Subsequently, a high fidelity SMR core model was developed and assessed. Results of the analysis revealed an inherently stable SMR design at beginning of core life and end of core life under full-power and half-power conditions. The effect of axial discretization, stochastic noise and convergence of the Monte Carlo tallies in the calculations of the PAO and XAO parameters was investigated. All were found to be quite small and the inherently stable nature of the core design with respect to xenon-induced power oscillations was confirmed. Finally, a preliminary investigation into excess reactivity control options for the SMR design was conducted confirming the generally held notion that existing PWR control mechanisms can be used in iPWR SMRs with similar effectiveness. With the desire to operate the SMR under the boron free coolant condition, erbium oxide fuel integral burnable absorber rods were identified as a possible means to retain the dispersed absorber effect of soluble boron in the reactor coolant in replacement.

  1. DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grelle, Austin L.; Park, Young S.; Vilim, Richard B.

    Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator mustmore » process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation exercise. The background and overview of the software will be presented to give an overview of the approach. Following, the verification and validation effort using the GPASS code for simulation of plant transients including a sensitivity study on important parameters will be presented« less

  2. The J-2X Oxidizer Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.

  3. Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility

    NASA Image and Video Library

    1991-10-09

    Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.

  4. OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. The first of these two tests, CCI-1, was conducted on December 19, 2003. This test investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The second of these two planned tests, CCI-2, will be conducted with a nearly identical test facility and experiment boundary conditions, but with a Limestone/Common Sand (LCS) concrete test section to investigate the effect of concrete type on the two-dimensional core-concrete interaction and debris cooling behavior. The objective of this report is to provide the overall test plan for CCI-2 to enable pretest calculations to be carried out. The report begins by providing a summary description of the CCI-2 test apparatus, followed by a description of the planned test operating procedure. Overall specifications for CCI-2 are provided in Table 1-1.« less

  5. Survey of aircraft icing simulation test facilities in North America

    NASA Technical Reports Server (NTRS)

    Olsen, W.

    1981-01-01

    A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.

  6. VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND SATURN I (BLDG. 4557) STRUCTURAL TEST FACILITIES, SATURN V TEST FACILITY IS IN THE FOREGROUND RIGHT. THE SATURN I TEST FACILITY IS IN THE BACKGROUND CENTER. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  7. PWR design for low doses in the United Kingdom: The present and the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zodiates, A.M.; Willcock, A.

    1995-03-01

    The Pressurizer Water Reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant System (SNUPPS). This design was developed to meet the United Kingdom (UK) requirements and those improvements are embodied in the Sizewell B plant. Nuclear Electric plc is now looking to the design of the future PWRs to be built in the UK. These PWRs will be based as replicas of the Sizewell B design, but attention will be given to reducing operator doses further. This paper details the approach in operator protection improvements incorporated at Sizewall B,more » presents the estimated annual collective dose, and identifies the approach being adopted to reduce further operator doses in future plants.« less

  8. Electrochemical study of pre- and post-transition corrosion of Zr alloys in PWR coolant

    NASA Astrophysics Data System (ADS)

    Macák, Jan; Novotný, Radek; Sajdl, Petr; Renčiuková, Veronika; Vrtílková, Věra

    Corrosion properties of Zr-Sn and Zr-Nb zirconium alloys were studied under simulated PWR conditions (or, more exactly, VVER conditions — boric acid, potassium hydroxide, lithium hydroxide) at temperatures up to 340°C and 15MPa using in-situ electrochemical impedance spectroscopy (EIS) and polarization measurements. EIS spectra were obtained in a wide range of frequencies (typically 100kHz — 100μHz). It enabled to gain information of both dielectric properties of oxide layers developing on the Zr-alloys surface and of the kinetics of the corrosion process and the associated charge and mass transfer phenomena. Experiments were run for more than 380 days; thus, the study of all the corrosion stages (pre-transition, transition, post-transition) was possible.

  9. Conceptual design study of small long-life PWR based on thorium cycle fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWRmore » result small excess reactivity and reduced power peaking during its operation.« less

  10. 40 CFR 792.31 - Testing facility management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  11. Corrosion performance of alternative steam generator materials and designs. Volume 2. Posttest examination of a seawater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Fink, G.C.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high seawater contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 282 fault steaming days at a 30 ppM chloride concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heat transfermore » tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited moderate pitting, primarily in the sludge pile region above the tubesheet.« less

  12. Corrosion performance of alternative steam generator materials and designs. Volume 3. Posttest examination of a freshwater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less

  13. Antenna Test Facility (ATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  14. Radiant Heat Test Facility (RHTF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  16. 40 CFR 160.31 - Testing facility management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  17. Tritium Mitigation/Control for Advanced Reactor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Christensen, Richard; Saving, John P.

    A tritium removal facility, which is similar to the design used for tritium recovery in fusion reactors, is proposed in this study for fluoride-salt-cooled high-temperature reactors (FHRs) to result in a two-loop FHR design with the elimination of an intermediate loop. Using this approach, an economic benefit can potentially be obtained by removing the intermediate loop, while the safety concern of tritium release can be mitigated. In addition, an intermediate heat exchanger (IHX) that can yield a similar tritium permeation rate to the production rate of 1.9 Ci/day in a 1,000 MWe PWR needs to be designed to prevent themore » residual tritium that is not captured in the tritium removal system from escaping into the power cycle and ultimately the environment. The main focus of this study is to aid the mitigation of tritium permeation issue from the FHR primary side to significantly reduce the concentration of tritium in the secondary side and the process heat application side (if applicable). The goal of the research is to propose a baseline FHR system without the intermediate loop. The specific objectives to accomplish the goals are: To estimate tritium permeation behavior in FHRs; To design a tritium removal system for FHRs; To meet the same tritium permeation level in FHRs as the tritium production rate of 1.9 Ci/day in 1,000 MWe PWRs; To demonstrate economic benefits of the proposed FHR system via comparing with the three-loop FHR system. The objectives were accomplished by designing tritium removal facilities, developing a tritium analysis code, and conducting an economic analysis. In the fusion reactor community, tritium extraction has been widely investigated and researched. Borrowing the experiences from the fusion reactor community, a tritium control and mitigation system was proposed. Based on mass transport theories, a tritium analysis code was developed, and the tritium behaviors were analyzed using the developed code. Tritium removal facilities were designed and laboratory-scale experiments were proposed for the validation of the proposed tritium removal facilities.« less

  18. Facility-level association of preoperative stress testing and postoperative adverse cardiac events.

    PubMed

    Valle, Javier A; Graham, Laura; Thiruvoipati, Thejasvi; Grunwald, Gary; Armstrong, Ehrin J; Maddox, Thomas M; Hawn, Mary T; Bradley, Steven M

    2018-06-22

    Despite limited indications, preoperative stress testing is often used prior to non-cardiac surgery. Patient-level analyses of stress testing and outcomes are limited by case mix and selection bias. Therefore, we sought to describe facility-level rates of preoperative stress testing for non-cardiac surgery, and to determine the association between facility-level preoperative stress testing and postoperative major adverse cardiac events (MACE). We identified patients undergoing non-cardiac surgery within 2 years of percutaneous coronary intervention in the Veterans Affairs (VA) Health Care System, from 2004 to 2011, facility-level rates of preoperative stress testing and postoperative MACE (death, myocardial infarction (MI) or revascularisation within 30 days). We determined risk-standardised facility-level rates of stress testing and postoperative MACE, and the relationship between facility-level preoperative stress testing and postoperative MACE. Among 29 937 patients undergoing non-cardiac surgery at 131 VA facilities, the median facility rate of preoperative stress testing was 13.2% (IQR 9.7%-15.9%; range 6.0%-21.5%), and 30-day postoperative MACE was 4.0% (IQR 2.4%-5.4%). After risk standardisation, the median facility-level rate of stress testing was 12.7% (IQR 8.4%-17.4%) and postoperative MACE was 3.8% (IQR 2.3%-5.6%). There was no correlation between risk-standardised stress testing and composite MACE at the facility level (r=0.022, p=0.81), or with individual outcomes of death, MI or revascularisation. In a national cohort of veterans undergoing non-cardiac surgery, we observed substantial variation in facility-level rates of preoperative stress testing. Facilities with higher rates of preoperative stress testing were not associated with better postoperative outcomes. These findings suggest an opportunity to reduce variation in preoperative stress testing without sacrificing patient outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Cooling of core debris and the impact on containment pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.W.

    1981-07-01

    An evaluation of the core debris/water interactions associated with a postulated meltdown of a PWR and its impact on the containment pressure is presented. In the event of a complete core meltdown in a PWR, the interaction of molten debris with water in the bottom head of the reactor vessel could result in complete evaporation of water and breach of the vessel wall. In the reactor cavity, the debris-water interaction may lead to a rapid generation of steam, which could lead to pressures beyond the containment building limit. Previous analysis of the debris-water interactions with the MARCH code was basedmore » on the single-sphere model, in which the internal and surface heat transfer are the controlling mechanisms. In this study, the potential in-vessel and ex-vessel debris-water interactions are analyzed in terms of porous debris bed models. The debris cooling and steam generation are controlled by the hydrodynamics of the two-phase flow. The porous models developed by Dhir-Catton and by Lipinski were examined and used to test their impact on containment dynamics. The tests include several particle sizes from 1 mm to 50 mm. Detailed transient data on the pressure, temperature, and mass of steam in the containment building was obtained for all cases. Bands of pressure variation which represents the possible pressure rise under accident conditions were obtained for the Dhir-Catton model and for the Lipinski model. The results show that, for the case of a wet cavity, the magnitude of the predicted pressure rises is not strongly affected by the different models. The occurrence of the peak pressure, however, is considerably delayed by using the debris bed model. For the case of a dry cavity, a large reduction of the peak pressure is obtained by using the debris bed model.« less

  20. Integral Full Core Multi-Physics PWR Benchmark with Measured Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forget, Benoit; Smith, Kord; Kumar, Shikhar

    In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevantmore » multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.« less

  1. Reference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate BoilingReference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate Boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David

    The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less

  2. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  3. Upgrade of the cryogenic CERN RF test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirotte, O.; Benda, V.; Brunner, O.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less

  4. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperaturemore » (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.« less

  5. Postpartum weight trajectories in overweight and lean women.

    PubMed

    Bogaerts, Annick; De Baetselier, Elyne; Ameye, Lieveke; Dilles, Tinne; Van Rompaey, Bart; Devlieger, Roland

    2017-06-01

    overweight and obesity in women of reproductive age are increasing and are often linked with excessive weight gain in pregnancy and weight retention after birth. Studies on spontaneous maternal weight trajectory after childbirth are scarce. we describe women's spontaneous weight trajectory during the first six weeks of the postpartum period and its relationship between Body Mass Index and socio-demographical, behavioural and psychological variables. data from 212 women who gave birth in three regional hospitals were collected prospectively between December 2015 and February 2016. Potential determinants were examined during pregnancy and the postpartum period at four and six weeks after childbirth. Descriptive statistics and a linear multivariate regression model were used. Early postnatal weight retention (PWR) was defined as the difference between the maternal weight six weeks after childbirth and the pre-pregnancy weight (kg). mean PWR at six weeks after childbirth was 3.3kg (SD 4.1), with a range between -7 and +16.2kg; 81% reported some weight retention (PWR>0kg), and 36% showed a high weight retention (PWR≥5kg). Women with a BMI <25kg/m 2 showed a significantly higher mean PWR six weeks after childbirth compared to women with a BMI ≥25kg/m 2 (4.0kg versus 1.6kg, p=0.002). There was a significant correlation between maternal weight retention and gestational weight gain (GWG) (B=0.65, p<0.001) and pre-pregnancy body mass index <25kg/m 2 (B=1.12, p=0.017), six weeks after childbirth. weight retention six weeks after childbirth is associated with pre-pregnancy BMI and GWG, but contrary to expectations, lean women with excessive GWG tended to retain most weight after childbirth. No significant associations with several socio-demographical, behavioural and psychological variables were found. weight management strategies around pregnancy should not be limited to overweight and obese mothers. Women with pre-pregnancy BMI <25kg/m 2 require equal attention to prevent postnatal weight retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. New NREL Research Facility Slashes Energy Use by 66 Percent

    Science.gov Websites

    Thermal Test Facility, which serves as a showcase of energy-saving features and the home of NREL's cutting technologies now being developed at the Thermal Test Facility will help us reach this goal." The facility energy-efficient building design, NREL's Thermal Test Facility houses sophisticated equipment for

  7. PRESSURIZED WATER REACTOR (PWR) PROJECT TECHNICAL PROGRESS REPORT FOR THE PERIOD DECEMBER 24, 1959 TO FEBRUARY 23, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    < 9 A < 2 6 < 7 4 8 9 6 2 6 equalizing vent valves on air locks 2, 4, and 5 was completed. An evaluation of the failed main coolant pump No. 1-80-F-737 was completed. The design for installing combination ball check and manual stop valves on the boiler water level sight glasses, to prevent the escape of steam should a defective sight glass develop, was completed. The main coolant pumps No. 80 and No. 79 were modified by increasing the radial clearance of the impeller wear ring and by removing the upper labyrinth ring. A designmore » for relocating the cooling water flow orifice 17-J4-17 was completed. Metallurgy: Preliminary data from the Bett 69-1 in-pile thermal conductivity capsules indicate that the thermal conductivity of as-sintered ZrO/sub 2/ 34 wt.% UO/sub 2/ appears to decrease from an initial value of about 1.6 Btu/hr-ft- deg F to about 0.7 Btu/hr-ft- deg F after 17 days irradiation in an estimated perturbed flux of 4 x 10/sup 13/. The thermal conductivities of UO/sub 2/ and BeO 51 wt.% UO/sub 2/ fuel remained unchanged during this time. Examination of the two failed X-3-1 fuel plates and the two failed CR-V-m fuel plates showed that a definite burnup limitation exists for bulk UO/sub 2/i of about 16 x 10/sup 20/ to 21.5 x 10/sup 20/ fissions/cc at which point the fuel increases in volume about 4- -5%. Irradiation of both fine and coarse dis-persions of 28 wt.% UO/sub 2/in BeO to exposures of about 11 x 10/sup 20/ fissions/cc shows this material has very poor dimensional stabllity and poor fission gas retention ability. The fine particles dispersion showed approximately 4.8 times the thickness increase as did the coarse particles. Interim examination of a bulk B/sub 4/ burnable poison plate irradiated in the HB-1 loop to about 60 at.% B/sup 10/ burnup showed a 17% increase in plate thickness. The technical feasibility of fabricating blanket receptacles with full length fuel channels and an integral cover plate by form rolling was established. Hack-pressure-bonding appears to be a suitable means of incorporating void volume in fuel compartments of oxide plates. High density (99% T.D.) and improved microstructure of B/sub 4/C-SiC burnable poisons are achieved when small (2 micron) B/sub 4/C particle size powder is used ia hot pressing compacts. Measurements of the self-diffusion coefficients of uranium in UO/sub 2/ by the method of surface activity decrease were completed. Experiments on the diffusion of Xe/sup 133/ in Core 2--type UO/sup 2/ fuel platelets were completed. Diffusion anaeals carried out at 1000 deg C on samples from the X-3-1 and the 14-28 irradiation tests show that the apparent diffusion coefficient for Kr/sup 85/ incresses considerably with burnup. An average activation energy for thoron emanation in UO/sub 2/ was estimated to be 44 kcal/mole. An initial experiment on the release of helium from slightly irradiated B/sub 4/C at 900 deg C resulted in a diffusion coefficient for helium of 3.5 x 10/sup -8/ Physics: Calculatad values for seed-blanket power sharing as a function of PWR-1 Seed 1 life were compared with measured data obtained from thermal instrumentation at Shippingport. Two-dimensional depletion studies in the PWR-2 "composite cell" geometry were completed for seed assembly configurations having different radial fuel zoning. An eighth core representation is being employed for a two- dimensional depletion calculation of PWR-2. An analysis of the effect on the axial power distribution of the nonuniform temperature distribution in an 8 ft PWR-2 core loaded with 295 kg of U/sup 235/ indicated that local variations in power density of as much as 15% may occur, relative to the distribution that would exist if the axial temperature distribution were uniform. A technique was developed which makes possible an approximately correct description of the neutron capture rate within small rectangular boron wafers in diffusion theory calculations. Seed peaking factors measured in a five-cluster slab of PWR-2 mock- up materials were measured and compared with calculated peaking factors obtained using the nuclear« less

  8. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    DTIC Science & Technology

    2013-06-01

    Densities ............................................................................................................ 21 2.3 Fuel Mass (Core Total...70 7.1 Geometry, Material Density, and Mass Summary for All Cores...21 Table 3: Fuel Rod Masses for Different Clads

  10. TRAC analyses for CCTF and SCTF tests and UPTF design/operation. [Cylindrical Core Test Facility; Slab Core Test Facility; Upper Plenum Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spore, J.W.; Cappiello, M.W.; Dotson, P.J.

    The analytical support in 1985 for Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF), and Upper Plenum Test Facility (UPTF) tests involves the posttest analysis of 16 tests that have already been run in the CCTF and the SCTF and the pretest analysis of 3 tests to be performed in the UPTF. Posttest analysis is used to provide insight into the detailed thermal-hydraulic phenomena occurring during the refill and reflood tests performed in CCTF and SCTF. Pretest analysis is used to ensure that the test facility is operated in a manner consistent with the expected behavior of anmore » operating full-scale plant during an accident. To obtain expected behavior of a plant during an accident, two plant loss-of-coolant-accident (LOCA) calculations were performed: a 200% cold-leg-break LOCA calculation for a 2772 MW(t) Babcock and Wilcox plant and a 200% cold-leg-break LOCA calculation for a 3315 MW(t) Westinghouse plant. Detailed results are presented for several CCTF UPI tests and the Westinghouse plant analysis.« less

  11. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  12. Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  14. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    NASA Image and Video Library

    1991-10-09

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  15. Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility

    NASA Technical Reports Server (NTRS)

    Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.

  16. Realistic development and testing of fission systems at a non-nuclear testing facility

    NASA Astrophysics Data System (ADS)

    Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

  17. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  18. Full-scale 3-D finite element modeling of a two-loop pressurized water reactor for heat transfer, thermal–mechanical cyclic stress analysis, and environmental fatigue life estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath

    This paper discusses a system-level finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent sequentially coupled thermal-mechanical stress analysis were performed for typical thermal-mechanical fatigue cycles. The in-air fatigue lives of example components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described inmore » US-NRC report: NUREG-6909.« less

  19. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis,more » the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.« less

  20. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  1. Development of cement solidification process for sodium borate waste generated from PWR plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji

    2013-07-01

    A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less

  2. Analysis of the return to power scenario following a LBLOCA in a PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macian, R.; Tyler, T.N.; Mahaffy, J.H.

    1995-09-01

    The risk of reactivity accidents has been considered an important safety issue since the beginning of the nuclear power industry. In particular, several events leading to such scenarios for PWR`s have been recognized and studied to assess the potential risk of fuel damage. The present paper analyzes one such event: the possible return to power during the reflooding phase following a LBLOCA. TRAC-PF1/MOD2 coupled with a three-dimensional neutronic model of the core based on the Nodal Expansion Method (NEM) was used to perform the analysis. The system computer model contains a detailed representation of a complete typical 4-loop PWR. Thus,more » the simulation can follow complex system interactions during reflooding, which may influence the neutronics feedback in the core. Analyses were made with core models bases on cross sections generated by LEOPARD. A standard and a potentially more limiting case, with increased pressurizer and accumulator inventories, were run. In both simulations, the reactor reaches a stable state after the reflooding is completed. The lower core region, filled with cold water, generates enough power to boil part of the incoming liquid, thus preventing the core average liquid fraction from reaching a value high enough to cause a return to power. At the same time, the mass flow rate through the core is adequate to maintain the rod temperature well below the fuel damage limit.« less

  3. Community concepts of poverty: an application to premium exemptions in Ghana’s National Health Insurance Scheme

    PubMed Central

    2013-01-01

    Background Poverty is multi dimensional. Beyond the quantitative and tangible issues related to inadequate income it also has equally important social, more intangible and difficult if not impossible to quantify dimensions. In 2009, we explored these social and relativist dimension of poverty in five communities in the South of Ghana with differing socio economic characteristics to inform the development and implementation of policies and programs to identify and target the poor for premium exemptions under Ghana’s National Health Insurance Scheme. Methods We employed participatory wealth ranking (PWR) a qualitative tool for the exploration of community concepts, identification and ranking of households into socioeconomic groups. Key informants within the community ranked households into wealth categories after discussing in detail concepts and indicators of poverty. Results Community defined indicators of poverty covered themes related to type of employment, educational attainment of children, food availability, physical appearance, housing conditions, asset ownership, health seeking behavior, social exclusion and marginalization. The poverty indicators discussed shared commonalities but contrasted in the patterns of ranking per community. Conclusion The in-depth nature of the PWR process precludes it from being used for identification of the poor on a large national scale in a program such as the NHIS. However, PWR can provide valuable qualitative input to enrich discussions, development and implementation of policies, programs and tools for large scale interventions and targeting of the poor for social welfare programs such as premium exemption for health care. PMID:23497484

  4. Community concepts of poverty: an application to premium exemptions in Ghana's National Health Insurance Scheme.

    PubMed

    Aryeetey, Genevieve C; Jehu-Appiah, Caroline; Kotoh, Agnes M; Spaan, Ernst; Arhinful, Daniel K; Baltussen, Rob; van der Geest, Sjaak; Agyepong, Irene A

    2013-03-14

    Poverty is multi dimensional. Beyond the quantitative and tangible issues related to inadequate income it also has equally important social, more intangible and difficult if not impossible to quantify dimensions. In 2009, we explored these social and relativist dimension of poverty in five communities in the South of Ghana with differing socio economic characteristics to inform the development and implementation of policies and programs to identify and target the poor for premium exemptions under Ghana's National Health Insurance Scheme. We employed participatory wealth ranking (PWR) a qualitative tool for the exploration of community concepts, identification and ranking of households into socioeconomic groups. Key informants within the community ranked households into wealth categories after discussing in detail concepts and indicators of poverty. Community defined indicators of poverty covered themes related to type of employment, educational attainment of children, food availability, physical appearance, housing conditions, asset ownership, health seeking behavior, social exclusion and marginalization. The poverty indicators discussed shared commonalities but contrasted in the patterns of ranking per community. The in-depth nature of the PWR process precludes it from being used for identification of the poor on a large national scale in a program such as the NHIS. However, PWR can provide valuable qualitative input to enrich discussions, development and implementation of policies, programs and tools for large scale interventions and targeting of the poor for social welfare programs such as premium exemption for health care.

  5. Electron Microscopy Characterizations and Atom Probe Tomography of Intergranular Attack in Alloy 600 Exposed to PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    Detailed examinations of intergranular attack (IGA) in alloy 600 were performed after exposure to simulated PWR primary water at 325°C for 500 h. High-resolution analyses of IGA characteristics were conducted on specimens with either a 1 µm diamond or 1200-grit SiC surface finish using scanning electron microscopy, transmission electron microscopy and atom probe tomography techniques. The diamond-polish finish with very little preexisting subsurface damage revealed attack of high-energy grain boundaries that intersected the exposed surface to depths approaching 2 µm. In all cases, IGA from the surface is localized oxidation consisting of porous, nanocrystalline MO-structure and spinel particles along with regions of faceted wall oxidation. Surprisingly, this continuous IG oxidation transitions to discontinuous, discrete Cr-rich sulfide particles up to 50 nm in diameter. In the vicinity of the sulfides, the grain boundaries were severely Cr depleted (to <1 at%) and enriched in S. The 1200 grit SiC finish surface exhibited a preexisting highly strained recrystallized layer of elongated nanocrystalline matrix grains. Similar IG oxidation and leading sulfide particles were found, but the IGA depth was typically confined to the near-surface ( 400 nm) recrystallized region. Difference in IGA for the two surface finishes indicates that the formation of grain boundary sulfides occurs during the exposure to PWR primary water. The source of S remains unclear, however it is not present as sulfides in the bulk alloy nor is it segregated to bulk grain boundaries.

  6. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  7. K-TIF: a two-fluid computer program for downcomer flow dynamics. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsden, A.A.; Harlow, F.H.

    1977-10-01

    The K-TIF computer program has been developed for numerical solution of the time-varying dynamics of steam and water in a pressurized water reactor downcomer. The current status of physical and mathematical modeling is presented in detail. The report also contains a complete description of the numerical solution technique, a full description and listing of the computer program, instructions for its use, with a sample printout for a specific test problem. A series of calculations, performed with no change in the modeling parameters, shows consistent agreement with the experimental trends over a wide range of conditions, which gives confidence to themore » calculations as a basis for investigating the complicated physics of steam-water flows in the downcomer.« less

  8. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less

  9. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Test system care facilities. 792.43 Section 792.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.43 Test system care facilities...

  10. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  11. The NASA landing gear test airplane

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.

    1995-01-01

    A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.

  12. 38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  13. 37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING SOUTHWEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  14. Intersocietal Accreditation Commission Accreditation Status of Outpatient Cerebrovascular Testing Facilities Among Medicare Beneficiaries: The VALUE Study.

    PubMed

    Brown, Scott C; Wang, Kefeng; Dong, Chuanhui; Farrell, Mary Beth; Heller, Gary V; Gornik, Heather L; Hutchisson, Marge; Needleman, Laurence; Benenati, James F; Jaff, Michael R; Meier, George H; Perese, Susana; Bendick, Phillip; Hamburg, Naomi M; Lohr, Joann M; LaPerna, Lucy; Leers, Steven A; Lilly, Michael P; Tegeler, Charles; Katanick, Sandra L; Alexandrov, Andrei V; Siddiqui, Adnan H; Rundek, Tatjana

    2016-09-01

    Accreditation of cerebrovascular ultrasound laboratories by the Intersocietal Accreditation Commission (IAC) and equivalent organizations is supported by the Joint Commission certification of stroke centers. Limited information exists on the accreditation status and geographic distribution of cerebrovascular testing facilities in the United States. Our study objectives were to identify the proportion of IAC-accredited outpatient cerebrovascular testing facilities used by Medicare beneficiaries, describe their geographic distribution, and identify variations in cerebrovascular testing procedure types and volumes by accreditation status. As part of the VALUE (Vascular Accreditation, Location, and Utilization Evaluation) Study, we examined the proportion of IAC-accredited facilities that conducted cerebrovascular testing in a 5% Centers for Medicare and Medicaid Services random Outpatient Limited Data Set in 2011 and investigated their geographic distribution using geocoding. Among 7327 outpatient facilities billing Medicare for cerebrovascular testing, only 22% (1640) were IAC accredited. The proportion of IAC-accredited cerebrovascular testing facilities varied by region (χ(2)[3] = 177.1; P < .0001), with 29%, 15%, 13%, and 10% located in the Northeast, South, Midwest, and West, respectively. However, of the total number of cerebrovascular outpatient procedures conducted in 2011 (38,555), 40% (15,410) were conducted in IAC-accredited facilities. Most cerebrovascular testing procedures were carotid duplex, with 40% of them conducted in IAC-accredited facilities. The proportion of facilities conducting outpatient cerebrovascular testing accredited by the IAC is low and varies by region. The growing number of certified stroke centers should be accompanied by more accredited outpatient vascular testing facilities, which could potentially improve the quality of stroke care.

  15. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  16. Coupled Facility/Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  17. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of anymore » cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.« less

  18. Derivation of the Korean radwaste scaling factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang Yong Jee; Hong Joo Ahn; Se Chul Sohn

    2007-07-01

    The concentrations of several radionuclides in low and intermediate level radioactive waste (LILW) drums have to be determined before shipping to disposal facilities. A notice, by the Ministry of Science and Technology (MOST) of the Korean Government, related to the disposal of LILW drums came into effect at the beginning of 2005, with regards to a radionuclide regulation inside a waste drum. MOST allows for an indirect radionuclide assay using a scaling factor to measure the inventories due to the difficulty of nondestructively measuring the essential {alpha} and {beta}-emitting nuclides inside a drum. That is, a scaling factor calculated throughmore » a correlation of the {alpha} or {beta}-emitting nuclide (DTM, Difficult-To-Measure) with a {gamma}-emitting nuclide (ETM, Easy-To-Measure) which has systematically similar properties with DTM nuclides. In this study, radioactive wastes, such as spent resin and dry active waste which were generated at different sites of a PWR and a site of a PHWR type Korean NPP, were partially sampled and analyzed for regulated radionuclides by using radiochemical methods. According to a reactor type and a waste form, the analysis results of each radionuclide were classified. Korean radwaste scaling factor was derived from database of radionuclide concentrations. (authors)« less

  19. An inventory of aeronautical ground research facilities. Volume 3: Structural

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    An inventory of test facilities for conducting acceleration, environmental, impact, structural shock, load, heat, vibration, and noise tests is presented. The facility is identified with a description of the equipment, the testing capabilities, and cost of operation. Performance data for the facility are presented in charts and tables.

  20. 46 CFR 162.050-15 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... This is the mean and standard deviation, respectively, of the differences between the known sample... sample analysis, and the materials necessary to perform the tests; (2) Each facility test rig must be of... facilities. (a) Each request for designation as a facility authorized to perform approval tests must be...

  1. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  2. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  3. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  4. Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen

    2012-01-01

    There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.

  5. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  6. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  7. Evaluating Past and Future USCG Use of Ohmsett Test Facility

    DTIC Science & Technology

    2016-10-01

    and Renewable Energy Test Facility, that was previously known as a fully capitalized acronym, Ohmsett. This facility is located on the U.S. Naval...Oil Spill Response Research and Renewable Energy Test Facility, that was previously known as a fully capitalized acronym, Ohmsett. This facility is...Incident Management Systems NSF National Strike Force NWS Naval Weapons Station Ohmsett National Oil Spill Response Research and Renewable Energy

  8. 49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Tests To Be Performed at the Bus Testing Facility... Part 665—Tests To Be Performed at the Bus Testing Facility The eight tests to be performed on each vehicle are required by SAFETEA-LU and are based in part on tests described in the FTA report “First...

  9. 49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Tests To Be Performed at the Bus Testing Facility... Part 665—Tests To Be Performed at the Bus Testing Facility The eight tests to be performed on each vehicle are required by SAFETEA-LU and are based in part on tests described in the FTA report “First...

  10. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  11. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  12. SSC Test Operations Contract Overview

    NASA Technical Reports Server (NTRS)

    Kleim, Kerry D.

    2010-01-01

    This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).

  13. Coupled Facility-Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael A.

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at National Aeronautics and Space Administration/Goddard Space Flight Center an analysis is performed to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combined dynamics of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA/Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  14. Universal opt-out screening for hepatitis C virus (HCV) within correctional facilities is an effective intervention to improve public health.

    PubMed

    Morris, Meghan D; Brown, Brandon; Allen, Scott A

    2017-09-11

    Purpose Worldwide efforts to identify individuals infected with the hepatitis C virus (HCV) focus almost exclusively on community healthcare systems, thereby failing to reach high-risk populations and those with poor access to primary care. In the USA, community-based HCV testing policies and guidelines overlook correctional facilities, where HCV rates are believed to be as high as 40 percent. This is a missed opportunity: more than ten million Americans move through correctional facilities each year. Herein, the purpose of this paper is to examine HCV testing practices in the US correctional system, California and describe how universal opt-out HCV testing could expand early HCV detection, improve public health in correctional facilities and communities, and prove cost-effective over time. Design/methodology/approach A commentary on the value of standardizing screening programs across facilities by mandating all facilities (universal) to implement opt-out testing policies for all prisoners upon entry to the correctional facilities. Findings Current variability in facility-level testing programs results in inconsistent testing levels across correctional facilities, and therefore makes estimating the actual number of HCV-infected adults in the USA difficult. The authors argue that universal opt-out testing policies ensure earlier diagnosis of HCV among a population most affected by the disease and is more cost-effective than selective testing policies. Originality/value The commentary explores the current limitations of selective testing policies in correctional systems and provides recommendations and implications for public health and correctional organizations.

  15. Electronic Systems Test Laboratory (ESTL) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Robinson, Neil

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. Structures Test Laboratory (STL). User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Zipay, John J.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the STL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  17. Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  18. Recent Upgrades at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Rominsky, Mandy

    2016-03-01

    The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.

  19. Past and Present Large Solid Rocket Motor Test Capabilities

    NASA Technical Reports Server (NTRS)

    Kowalski, Robert R.; Owen, David B., II

    2011-01-01

    A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.

  20. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    NASA Technical Reports Server (NTRS)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  1. International Space Station United States Orbital Segment Oxygen Generation System On-Orbit Operational Experience

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.

    2008-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  2. Modeling local chemistry in PWR steam generator crevices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less

  3. Progress in understanding fission-product behaviour in coated uranium-dioxide fuel particles

    NASA Astrophysics Data System (ADS)

    Barrachin, M.; Dubourg, R.; Kissane, M. P.; Ozrin, V.

    2009-03-01

    Supported by results of calculations performed with two analytical tools (MFPR, which takes account of physical and chemical mechanisms in calculating the chemical forms and physical locations of fission products in UO2, and MEPHISTA, a thermodynamic database), this paper presents an investigation of some important aspects of the fuel microstructure and chemical evolutions of irradiated TRISO particles. The following main conclusions can be identified with respect to irradiated TRISO fuel: first, the relatively low oxygen potential within the fuel particles with respect to PWR fuel leads to chemical speciation that is not typical of PWR fuels, e.g., the relatively volatile behaviour of barium; secondly, the safety-critical fission-product caesium is released from the urania kernel but the buffer and pyrolytic-carbon coatings could form an important chemical barrier to further migration (i.e., formation of carbides). Finally, significant releases of fission gases from the urania kernel are expected even in nominal conditions.

  4. GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST FACILITY. THIS TEST FACILITY WAS DESIGNED TO RESIST THE 12 MILLION POUNDES OF THRUST GENERATED BY THE THE SATURN V FIRST STAGE ENGINE CLUSTER. - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL

  5. Calibration and use of filter test facility orifice plates

    NASA Astrophysics Data System (ADS)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  6. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  7. Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie

    2006-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.

  8. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  9. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  10. GENERAL VIEW OF THE NORTH SECTION OF THE EAST TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF THE NORTH SECTION OF THE EAST TEST AREA. THE SATURN V TEST FACILITY (BLDG. 4550) IS TO THE LEFT IN THE PHOTO. THE SATURN I TEST FACILITY (BLDG. 4557) IS IN THE CENTER, THE COLD CALIBRATION TEST STAND (BLDG. 4588) IS THE SHORT STEEL FRAMED STRUCTURE TO THE RIGHT IN THE PHOTO AND THE TURBO PUMP / HIGH VOLUME FLOW FACILITY (BLDG. 4548) IS THE TALL STEEL FRAMED STRUCTURE IN THE RIGHT SIDE OF THE PHOTOGRAPHIC IMAGE. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  11. Socio-economic determinants of HIV testing and counselling: a comparative study in four African countries.

    PubMed

    Obermeyer, Carla Makhlouf; Neuman, Melissa; Hardon, Anita; Desclaux, Alice; Wanyenze, Rhoda; Ky-Zerbo, Odette; Cherutich, Peter; Namakhoma, Ireen

    2013-09-01

    Research indicates that individuals tested for HIV have higher socio-economic status than those not tested, but less is known about how socio-economic status is associated with modes of testing. We compared individuals tested through provider-initiated testing and counselling (PITC), those tested through voluntary counselling and testing (VCT) and those never tested. Cross-sectional surveys were conducted at health facilities in Burkina Faso, Kenya, Malawi and Uganda, as part of the Multi-country African Testing and Counselling for HIV (MATCH) study. A total of 3659 clients were asked about testing status, type of facility of most recent test and socio-economic status. Two outcome measures were analysed: ever tested for HIV and mode of testing. We compared VCT at stand-alone facilities and PITC, which includes integrated facilities where testing is provided with medical care, and prevention of mother-to-child transmission (PMTCT) facilities. The determinants of ever testing and of using a particular mode of testing were analysed using modified Poisson regression and multinomial logistic analyses. Higher socio-economic status was associated with the likelihood of testing at VCT rather than other facilities or not testing. There were no significant differences in socio-economic characteristics between those tested through PITC (integrated and PMTCT facilities) and those not tested. Provider-initiated modes of testing make testing accessible to individuals from lower socio-economic groups to a greater extent than traditional VCT. Expanding testing through PMTCT reduces socio-economic obstacles, especially for women. Continued efforts are needed to encourage testing and counselling among men and the less affluent. © 2013 John Wiley & Sons Ltd.

  12. A Testing Service for Industry

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A small isolated NASA facility provides assistance to industry in the design, testing, and operation of oxygen systems. White Sands Test Facility (WSTF) was originally established to test rocket propulsion systems for the Apollo program. The facility's role was later expanded into testing characterization, flammability and toxicity characteristics of materials. Its materials and components test methods were adopted by the American society for Testing and Materials. When research and testing results became known, industry requested assistance, and in 1980, NASA authorized WSTF to open its facility to private firms, a valuable service, as oxygen systems testing is often too expensive and too hazardous for many companies. Today, some of the best known American industries utilize White Sands testing capabilities.

  13. Specialized Environmental Chamber Test Complex: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Michael E.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  14. 10 CFR Appendix U to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Ceiling Fans

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...

  15. 10 CFR Appendix U to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Ceiling Fans

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...

  16. 10 CFR Appendix U to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Ceiling Fans

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...

  17. 10 CFR Appendix U to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Ceiling Fans

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...

  18. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    NASA Astrophysics Data System (ADS)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  19. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    In the Reliability and Quality Engineering Test Laboratory at the NASA Lewis Research Center a nondestructive, corona-vacuum test facility for testing power system components was developed using commercially available hardware. The test facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. This facility is being used to test various high voltage power system components.

  20. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  1. Audio Development Laboratory (ADL) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Romero, Andy

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ADL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  2. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  3. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  4. 21 CFR 58.31 - Testing facility management.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  5. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  6. A facility for testing 10 to 100-kWe space power reactors

    NASA Astrophysics Data System (ADS)

    Carlson, William F.; Bitten, Ernest J.

    1993-01-01

    This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural features that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.

  7. One Dimensional Cold Rolling Effects on Stress Corrosion Crack Growth in Alloy 690 Tubing and Plate Materials

    NASA Astrophysics Data System (ADS)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    Stress corrosion crack-growth experiments have been performed on cold-rolled alloy 690 materials in simulated PWR primary water at 360°C. Extruded alloy 690 CRDM tubing in two conditions, thermally treated (TT) and solution annealed (SA), was cold rolled (CR) in one direction to several reductions reaching a maximum of 31% and tested in the S-L orientation. High stress corrosion cracking (SCC) propagation rates ( 8x10-8 mm/s) were observed for the 31%CR alloy 690TT material, while the 31%CR alloy 690SA exhibited 10X lower rates. The difference in intergranular SCC susceptibility appears to be related to grain boundary carbide distribution before cold rolling. SCC growth rates were found to depend on test temperature and hydrogen concentration. Tests were also performed on two alloy 690 plate heats, one CR to a reduction of 26% and the other to 20%. SCC growth rates at 360°C were similar to that measured for the 31%CR alloy 690TT CRDM tubing. Comparisons will be made to other results on CR alloy 690 materials.

  8. Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.

    PubMed

    Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo

    2008-01-01

    Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.

  9. DOE LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  10. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    PubMed Central

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. de A. e; Omoto, Celso

    2016-01-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants. PMID:27721425

  11. Spelling Well Despite Developmental Language Disorder: What Makes it Possible?

    PubMed Central

    Rakhlin, Natalia; Cardoso-Martins, Cláudia; Kornilov, Sergey A.; Grigorenko, Elena L.

    2013-01-01

    The goal of the study was to investigate the overlap between Developmental Language Disorder (DLD) and Developmental Dyslexia, identified through spelling difficulties (SD), in Russian-speaking children. In particular, we studied the role of phoneme awareness (PA), rapid automatized naming (RAN), pseudoword repetition (PWR), morphological (MA) and orthographic awareness (OA) in differentiating between children with DLD who have SD from children with DLD who are average spellers by comparing the two groups to each other, to typically developing children as well as children with SD but without spoken language deficits. One hundred forty nine children, aged 10.40 to 14.00, participated in the study. The results indicated that the SD, DLD, and DLD/SD groups did not differ from each other on PA and RAN Letters and underperformed in comparison to the control groups. However, whereas the children with written language deficits (SD and DLD/SD groups) underperformed on RAN Objects and Digits, PWR, OA and MA, the children with DLD and no SD performed similarly to the children from the control groups on these measures. In contrast, the two groups with spoken language deficits (DLD and DLD/SD) underperformed on RAN Colors in comparison to the control groups and the group of children with SD only. The results support the notion that those children with DLD who have unimpaired PWR and RAN skills are able to overcome their weaknesses in spoken language and PA and acquire basic literacy on a par with their age peers with typical language. We also argue that our findings support a multifactorial model of developmental language disorders (DLD). PMID:23860907

  12. EMERALD REV.1. PWR Accident Activity Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunot, W.K.; Fray, R.R.; Gillespie, S.G.

    1975-10-01

    The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less

  13. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    NASA Astrophysics Data System (ADS)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  14. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Stokes, LeBarian

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A corona vacuum test facility for nondestructive testing of power system components was built in the Reliability and Quality Engineering Test Laboratories at the NASA Lewis Research Center. The facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. The facility is being used to test various high-voltage power system components.

  17. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  18. NIST Document Sharing Test Facility

    Science.gov Websites

    NIST Document Sharing Test Facility This site supports the IHE effort in Document Sharing as part . This test facility is based on the IHE IT Infrastructure Technical Framework. All testing done against that Patient IDs be pre-registered before submitting metadata about them. To allocate new patient IDs

  19. 10 CFR 61.81 - Tests at land disposal facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...

  20. 10 CFR 61.81 - Tests at land disposal facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...

  1. 10 CFR 61.81 - Tests at land disposal facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...

  2. Hopkins during ITCS PWR Retrieval

    NASA Image and Video Library

    2014-01-31

    ISS038-E-040140 (31 Jan. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses the Fluid Servicing System (FSS) to refill Internal Thermal Control System (ITCS) loops with fresh coolant in the Destiny laboratory of the International Space Station.

  3. Hopkins during ITCS PWR Retrieval

    NASA Image and Video Library

    2014-01-31

    ISS038-E-040139 (31 Jan. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses the Fluid Servicing System (FSS) to refill Internal Thermal Control System (ITCS) loops with fresh coolant in the Destiny laboratory of the International Space Station.

  4. Pavement testing facility : effects of tire pressure on flexible pavement response performance

    DOT National Transportation Integrated Search

    1989-08-01

    The effects of tire pressure on flexible pavement response and performance were evaluated using data from the first phase of research at the Federal Highway Administration's Pavement Testing Facility. The Accelerated Loading Facility testing machine ...

  5. 34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND TOP OF TEST BAY, LOOKING NORTHEAST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  6. 33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND UPPER LEVEL OF TEST BAY, LOOKING NORTH - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  7. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  8. The Use of Environmental Test Facilities for Purposes Beyond Their Original Design

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; Marner, W. J.

    2000-01-01

    Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.

  9. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less

  10. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less

  11. Data summary report for fission product release test VI-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, M.F.; Collins, J.L.; Lorenz, R.A.

    The first in a series of high-temperature fission product release test in a new vertical test apparatus was conducted in flowing steam. The test specimen was a 15.2-cm-long section of a fuel rod from the Oconee 1 PWR; it had been irradiated to a burnup of /approximately/42 MWd/kg. Using an induction furnace, it was heated under simulated LWR accident conditions -- 20 min at 2000 K and 20 min at 2300 K -- in a hot cell-mounted test apparatus. Posttest inspection showed severe oxidation but only minimal fragmentation of the fuel specimen; cladding melting was apparent only near the topmore » end. Based on fission product measured in the fuel and/or calculated by ORIGEN, analyses of test components showed total releases from the fuel of 47% for /sup 85/Kr, 33% for /sup 125/Sb, 37% for /sup 129/I, 84% for /sup 110m/Ag, and 63% for /sup 137/Cs. Large fractions (36% and 30%, respectively) of the released /sup 110m/Ag and /sup 125/Sb were retained in the furnace above the fuel. Pretest and posttest analysis of the fuel specimen indicated a /sup 134/Cs release of 65%, which is very good agreement with the /sup 137/Cs value. 21 refs., 24 figs., 16 tabs.« less

  12. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  13. Spent fuel burnup estimation by Cerenkov glow intensity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki

    1994-10-01

    The Cerenkov glow images from irradiated fuel assemblies of boiling-water reactors (BWR) and pressurized-water reactors (PWR) are generally used for inspections. For this purpose, a new UV-I.I. CVD (ultra-violet light image intensifier Cerenkov viewing device), has been developed. This new device can measure the intensity of the Cerenkov glow from a spent fuel assembly, thus making it possible to estimate the burnup of the fuel assembly by comparing the Cerenkov glow intensity to the reference intensity. The experiment was carried out on BWR spent fuel assemblies and the results show that burnups are estimated within 20% accuracy compared to themore » declared burnups for the tested spent fuel assemblies for cooling times ranging from 900--2.000 d.« less

  14. Thermal treatment, grain boundary composition and intergranular attack resistance of Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.J.; Stratton, R.P.

    1992-12-31

    Commercial Alloy 690 PWR steam generator tubes and experimentally produced alloys with varying amounts of carbon, aluminium and titanium have been examined. After simulated mill annealing and thermal treatment, the microstructure and corrosion behaviour in corrosion tests have been investigated. Stress corrosion resistance of selected alloy 690 tubes and experimental alloys has been examined with environments based on pure water, sodium hydroxide and sodium hydroxide + sodium sulphate solutions. Effects of aluminium content and the thermal treatments on the susceptibility to intergranular attack have been examined, although they appear not to be very significant to the amounts of IGA. Samplesmore » used in thermal treatments have been further examined with a dedicated scanning transmission electron microscope to show compositional changes at grain boundaries.« less

  15. The DFVLR wind-energy test facility 'Ulrich Huetter' on Schnittlinger Berg

    NASA Astrophysics Data System (ADS)

    Kussmann, Alfred

    1986-11-01

    The DFVLR test facility for wind-energy systems (named after Ulrich Huetter, the designer of the 100-kW GFRP-rotor W 34 wind turbine first manufactured and tested in the 1950s) is described and illustrated with photographs. The history of the facility is traced, and current operations in gathering, archiving, processing, interpreting, and documenting performance-test data are outlined. The facility includes instrumentation for rotor telemetry, gondola motion measurements, and ground measurements and provides testing services to private users on both contract and leasing bases.

  16. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  17. Energy Systems Test Area (ESTA) Pyrotechnic Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Hacker, Scott

    2012-01-01

    The Johnson Space Center (JSC) has created and refined innovative analysis, design, development, and testing techniques that have been demonstrated in all phases of spaceflight. JSC is uniquely positioned to apply this expertise to components, systems, and vehicles that operate in remote or harsh environments. We offer a highly skilled workforce, unique facilities, flexible project management, and a proven management system. The purpose of this guide is to acquaint Test Requesters with the requirements for test, analysis, or simulation services at JSC. The guide includes facility services and capabilities, inputs required by the facility, major milestones, a roadmap of the facility s process, and roles and responsibilities of the facility and the requester. Samples of deliverables, facility interfaces, and inputs necessary to define the cost and schedule are included as appendices to the guide.

  18. Facilities and support systems for a 90-day test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Malin, R. L.

    1972-01-01

    A 90-day test is reported of a regenerative life support system which was completed in a space station simulator. The long duration of the test and the fact that it was manned, imposed rigid reliability and safety requirements on the facility. Where adequate reliability could not be built into essential facility systems, either backup systems or components were provided. Awareness was intensified by: (1) placing signs on every piece of equipment that could affect the test, (2) painting switches on all breaker panels a bright contrasting color, (3) restricting access to the test control area, and (4) informing personnel in the facility (other than test personnel) of test activities. It is concluded that the basic facility is satisfactory for conducting long-duration manned tests, and it is recommended that all monitor and alarm functions be integrated into a single operation.

  19. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less

  20. An environmental testing facility for Space Station Freedom power management and distribution hardware

    NASA Technical Reports Server (NTRS)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  1. Using the NPSS Environment to Model an Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Owen, Albert K.; Huffman, Brian C.

    2013-01-01

    An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.

  2. Space power distribution system technology. Volume 3: Test facility design

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  3. 7. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  4. Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2012-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  5. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  6. Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit

    NASA Technical Reports Server (NTRS)

    Arnett, Lori

    2016-01-01

    The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).

  7. SP-100 ground engineering system test site description and progress update

    NASA Astrophysics Data System (ADS)

    Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.

    1991-01-01

    The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.

  8. Current status and some future test directions for the U.S. National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.

    1992-01-01

    The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of the tunnel systems were performed over the following two years. In August 1984, the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamics calibration and testing to commence. Since 1984 several operational problems have been identified and successfully solved which is demonstrated by the fact that the facility has operated the last year with no significant facility down times. Also during this time period, development of test techniques and instrumentation has continued. This paper will review some of the recent test techniques and instrumentation developments, and will briefly review the status of the facility.

  9. KSC-2014-4149

    NASA Image and Video Library

    2014-09-25

    CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 make the first run past the Orbiter Processing Facility and Thermal Protection System Facility in Launch Complex 39 at NASA’s Kennedy Space Center in Florida during the Rail Vibration Test for the Canaveral Port Authority. Seismic monitors are collecting data as the train passes by. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper

  10. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  11. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  12. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  13. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  14. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure... a room or area by housing them separately in different chambers or aquaria. Separation of species is... testing facility shall have a number of animal rooms or other test system areas separate from those...

  15. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure... a room or area by housing them separately in different chambers or aquaria. Separation of species is... testing facility shall have a number of animal rooms or other test system areas separate from those...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tendera, P.

    At present there are two NPPs equipped with PWR units in Czech Republic. The Dukovany NPP is about ten years in operation (four units 440 MW - WWER model 213) and Temelin NPP is under construction (two units 1000 MW-WWER model 320). Both NPPs were built to Soviet design and according to Soviet regulations and standards but most of equipment for primary circuits was supplied by home manufactures. The objective for the Czech LBB programme is to prove the LBB status of the primary piping systems of these NPPs and the LBB concept is a part of strategy to meetmore » western style safety standards. The reason for the Czech LBB project is a lack of some standard safety facilities, too. For both Dukovany and Temolin NPPs a full LBB analysis should be carried out. The application of LBB to the piping system should be also a cost effective means to avoid installations of pipe whip restraints and jet shields. The Czech regulatory body issued non-mandatory requirement {open_quotes}Leak Before Break{close_quotes} which is in compliance with national legal documents and which is based on the US NRC Regulatory Procedures and US standards (ASME, CODE, ANSI). The requirement has been published in the document {open_quotes}Safety of Nuclear Facilities{close_quotes} No. 1/1991 as {open_quotes}Requirements on the Content and Format of Safety Reports and their Supplements{close_quotes} and consists of two parts (1) procedure for obtaining proof of evidence {open_quotes}Leak Before Break{close_quotes} (2) leak detection systems for the pressurized reactor primary circuit. At present some changes concerning both parts of the above document will be introduced. The reasons for this modifications will be presented.« less

  17. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  18. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  19. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  20. A simulated lightning effects test facility for testing live and inert missiles and components

    NASA Technical Reports Server (NTRS)

    Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.

    1991-01-01

    Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.

  1. 3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  2. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  3. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  4. Team Update on North American Proton Facilities for Radiation Testing

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  5. The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.

    1997-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.

  6. 40 CFR 160.45 - Test system supply facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth chambers, light banks, and fields. (c) When appropriate, facilities for aquatic animal tests shall be... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...

  7. 9. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. 10. Historic photo of rendering of rocket engine test facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. 8. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. 21 CFR 58.31 - Testing facility management.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Organization and Personnel § 58.31 Testing facility management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study...

  11. A radiant heating test facility for space shuttle orbiter thermal protection system certification

    NASA Technical Reports Server (NTRS)

    Sherborne, W. D.; Milhoan, J. D.

    1980-01-01

    A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.

  12. Costs of facility-based HIV testing in Malawi, Zambia and Zimbabwe

    PubMed Central

    Mwenge, Lawrence; Sande, Linda; Mangenah, Collin; Ahmed, Nurilign; Kanema, Sarah; d’Elbée, Marc; Sibanda, Euphemia; Kalua, Thokozani; Ncube, Gertrude; Johnson, Cheryl C.; Hatzold, Karin; Cowan, Frances M.; Corbett, Elizabeth L.; Ayles, Helen; Maheswaran, Hendramoorthy

    2017-01-01

    Background Providing HIV testing at health facilities remains the most common approach to ensuring access to HIV treatment and prevention services for the millions of undiagnosed HIV-infected individuals in sub-Saharan Africa. We sought to explore the costs of providing these services across three southern African countries with high HIV burden. Methods Primary costing studies were undertaken in 54 health facilities providing HIV testing services (HTS) in Malawi, Zambia and Zimbabwe. Routinely collected monitoring and evaluation data for the health facilities were extracted to estimate the costs per individual tested and costs per HIV-positive individual identified. Costs are presented in 2016 US dollars. Sensitivity analysis explored key drivers of costs. Results Health facilities were testing on average 2290 individuals annually, albeit with wide variations. The mean cost per individual tested was US$5.03.9 in Malawi, US$4.24 in Zambia and US$8.79 in Zimbabwe. The mean cost per HIV-positive individual identified was US$79.58, US$73.63 and US$178.92 in Malawi, Zambia and Zimbabwe respectively. Both cost estimates were sensitive to scale of testing, facility staffing levels and the costs of HIV test kits. Conclusions Health facility based HIV testing remains an essential service to meet HIV universal access goals. The low costs and potential for economies of scale suggests an opportunity for further scale-up. However low uptake in many settings suggests that demand creation or alternative testing models may be needed to achieve economies of scale and reach populations less willing to attend facility based services. PMID:29036171

  13. The Testing Behind the Test Facility: the Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.

  14. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.

  15. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  16. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  17. LPT. Aerial of low power test (TAN640 and 641) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test (TAN-640 and -641) and shield test (TAN-645 and -646) facilities. Camera facing north west. Low power test facility at right. Shield test facility at left. Flight engine test area in background at center left of view. Administrative and A&M areas at right. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-991 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Surface evaluation of UV-degraded contamination

    NASA Technical Reports Server (NTRS)

    Connatser, Robert; Hadaway, James B.

    1992-01-01

    Three different areas of work were accomplished under this contract: (1) contamination testing and evaluation; (2) UV irradiation testing; and (3) surface evaluation testing. Contamination testing was generally performed in the In-Situ Contamination Effects Facility at Marshall Space Flight Center (MSFC). UV irradiation testing was also performed primarily at MSFC, utilizing facilities there. Finally, the surface evaluation was done at facilities at UAH Center for Applied Optics.

  19. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  20. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  1. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  2. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  3. The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Willis, Brian P.

    2001-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.

  4. 1. Credit PSR. This view displays the north and west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  5. A New Large Vibration Test Facility Concept for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug

    2014-01-01

    The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.

  6. Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower

    NASA Image and Video Library

    1966-05-25

    An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A. This test vehicle, designated the Apollo/Saturn 500-F, is being used to verify launch facilities, train launch crews, and develop test and checkout procedures.

  7. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  8. FY11 Facility Assessment Study for Aeronautics Test Program

    NASA Technical Reports Server (NTRS)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  9. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Facilities for handling test, control, and reference substances. 160.47 Section 160.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.47 Facilities...

  10. 40 CFR 792.45 - Test system supply facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be..., facilities for aquatic animal tests shall be provided. These include but are not limited to aquaria, holding...

  11. 40 CFR 160.15 - Inspection of a testing facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inspection of a testing facility. 160.15 Section 160.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS General Provisions § 160.15 Inspection of a testing facility...

  12. 6. Historic photo of rocket engine test facility Building 202 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. 13. Historic drawing of rocket engine test facility layout, including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  14. SGSLR Testing Facility at GGAO

    NASA Technical Reports Server (NTRS)

    Hoffman, Evan

    2016-01-01

    This document describes the SGSLR Test Facility at Goddards Geophysical and Astronomical Observatory (NASA Goddard area 200) and its features are described at a high level for users. This is the facility that the Contractor will be required to use for the Testing and Verification of all SGSLR systems.

  15. 40 CFR 160.15 - Inspection of a testing facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Inspection of a testing facility. 160.15 Section 160.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS General Provisions § 160.15 Inspection of a testing facility...

  16. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, D.; Carcagno, R.; Nogiec, J.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less

  17. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  18. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley P.

    2004-01-01

    Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.

  19. Monte Carlo characterization of PWR spent fuel assemblies to determine the detectability of pin diversion

    NASA Astrophysics Data System (ADS)

    Burdo, James S.

    This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the difference was less than 1.00, allowing for the existence of the difference within the margin of error. The second was whether the difference between the two values was big enough to prevent their error bars from overlapping. Error analysis was performed both using a one second count and pseudo-Maxwell statistics for a projected 60 second count, giving four criteria for detection. The number of guide tubes meeting these criteria was compared and graphed for each case. Further analysis at extremes of high and low enrichment and long and short burnup times was done using data from assemblies at the Beaver Valley 1 and 2 PWR. In all neutron flux cases, at least two guide tube locations meet all the criteria for detection of pin diversion. At least one location in almost all of the gamma flux cases does. These results show that placing detectors in the empty guide tubes of spent fuel bundles to identify possible pin diversion is feasible.

  20. Cryogenic testing of Planck sorption cooler test facility

    NASA Technical Reports Server (NTRS)

    Zhang, B.; Pearson, D.; Borders, J.; Franklin, B.; Prina, M.; Hardy, J.; Crumb, D.

    2004-01-01

    A test facility has been upgraded in preparation for testing of two hydrogen sorption cryocoolers operating at 18/20 K. these sorption coolers are currently under development at the Jet Propulsion Laboratory. This work summarizes the scope of the test facility upgrade, including design for cryogenic cooling power delivery, system thermal management, insulation schemes, and data acquisition techniques. Ground support equipment for the sorption coolers, structural features of the test chamber, and the vacuum system involved for system testing will also be described in detail.

  1. 49 CFR 665.11 - Testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... braking performance, Structural Integrity, Fuel Economy, Noise, and Emissions; (c) If the new bus model... testing facility shall develop a test plan for the testing of vehicles at the facility. The test plan...

  2. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  3. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  4. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  5. Buffet test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  6. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  7. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  8. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  9. Australian national networked tele-test facility for integrated systems

    NASA Astrophysics Data System (ADS)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  10. Large space structures testing

    NASA Technical Reports Server (NTRS)

    Waites, Henry; Worley, H. Eugene

    1987-01-01

    There is considerable interest in the development of testing concepts and facilities that accurately simulate the pathologies believed to exist in future spacecraft. Both the Government and Industry have participated in the development of facilities over the past several years. The progress and problems associated with the development of the Large Space Structure Test Facility at the Marshall Flight Center are presented. This facility was in existence for a number of years and its utilization has run the gamut from total in-house involvement, third party contractor testing, to the mutual participation of other goverment agencies in joint endeavors.

  11. Langley Mach 4 scramjet test facility

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.

    1985-01-01

    An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.

  12. The NASA atomic oxygen effects test program

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.

    1988-01-01

    The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported.

  13. Operational summary of an electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G. E.; James, E. L.; Bechtel, R. T.

    1982-01-01

    An automated test facility capable of simultaneously operating three 2.5 kW, 30-cm mercury ion thrusters and their power processors is described, along with a test program conducted for the documentation of thruster characteristics as a function of time. Facility controls are analog, with full redundancy, so that in the event of malfunction the facility automaticcally activates a backup mode and notifies an operator. Test data are recorded by a central data collection system and processed as daily averages. The facility has operated continuously for a period of 37 months, over which nine mercury ion thrusters and four power processor units accumulated a total of over 14,500 hours of thruster operating time.

  14. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  15. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  16. Diagnostic accuracy of blood centers in the screening of blood donors for viral markers

    PubMed Central

    Dogbe, Elliot Eli; Arthur, Fareed

    2015-01-01

    Introduction Blood transfusion still remains a life saving intervention in almost all healthcare facilities worldwide. Screening of blood donors/blood units is done in almost every blood bank facility before the blood units/blood components are transfused to prevent transfusion-transmissible infections. The kind of testing kits or the methods used by a facility and the technical expertise of the personnel greatly affects the screening results of a facility. This study was aimed at evaluating the diagnostic accuracy of five hospital-based blood bank testing facilities (Komfo Anokye Teaching Hospital KNUST, Kwame Nkrumah University of Science and Technology, Agogo, Bekwai and Sunyani) that used rapid immunochromatograhic assays (RIA) in screening blood donors/blood units in Ghana. Methods Blood samples (300) from the five testing facilities and their screening results for hepatitis B surface antigen (HBsAg), antibodies to hepatitis C virus (HCV) and human immunodeficiency virus (HIV) using RIAs were obtained. All the samples were then analysed for the three viral markers using 3rd generational enzyme linked immunosorbent assay (ELISA) kit as the gold standard. Results The mean false positive for HBsAg was 2.2% with Bekwai testing facility having the highest of 4.4%. For HCV, the mean false positive was 2.8% with Agogo and Bekwai testing facilities having the highest of 8.7% respectively. For HIV screening, the mean false positive was 11.1% with Bekwai testing facility having the highest of 28.0%. The mean false negative for the facilities were 3.0% for HBV, 75.0% for HCV and 0.0% for HIV with KATH having the highest of 6.3% for HBV, Bekwai having the highest of 100% for HCV and no facility showing false negative for HIV. Mean sensitivity of the screening procedure for the facilities was 97.0%, 25.0% and 100.0% whilst the mean specificity was 97.8%, 97.2% and 88.9% for HBV, HCV and HIV respectively. Statistical comparison among the testing facilities showed no significant differences among the various testing centres for HBV screening; however, significant differences were obtained for HCV and HIV screening. Conclusion This study has shown that there is no standardised screening procedure for blood bank testing facilities in the country. There is therefore an urgent need for an internal and external control body to oversee screening procedures in blood banks across the country. PMID:26090067

  17. EMERALD REVISION 1; PWR accident activity release. [IBM360,370; FORTRAN IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T.B.; Tobias, M.L.; Fox, J.N.

    The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370 (IBM360,370); 520K bytes of memory are required..« less

  18. Effects of materials and design on the criticality and shielding assessment of canister concepts for the disposal of spent nuclear fuel.

    PubMed

    Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas

    2018-05-19

    According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Probabilistic analysis on the failure of reactivity control for the PWR

    NASA Astrophysics Data System (ADS)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  20. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

Top