Pratt and Whitney Overview and Advanced Health Management Program
NASA Technical Reports Server (NTRS)
Inabinett, Calvin
2008-01-01
Hardware Development Activity: Design and Test Custom Multi-layer Circuit Boards for use in the Fault Emulation Unit; Logic design performed using VHDL; Layout power system for lab hardware; Work lab issues with software developers and software testers; Interface with Engine Systems personnel with performance of Engine hardware components; Perform off nominal testing with new engine hardware.
Environmental qualification testing of payload G-534, the Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
NASA-STD-(I)-6016, Standard Materials and Processes Requirements for Spacecraft
NASA Technical Reports Server (NTRS)
Pedley, Michael; Griffin, Dennis
2006-01-01
This document is directed toward Materials and Processes (M&P) used in the design, fabrication, and testing of flight components for all NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements. All flight hardware is covered by the M&P requirements of this document, including vendor designed, off-the-shelf, and vendor furnished items. Materials and processes used in interfacing ground support equipment (GSE); test equipment; hardware processing equipment; hardware packaging; and hardware shipment shall be controlled to prevent damage to or contamination of flight hardware.
Energy efficient engine low-pressure compressor component test hardware detailed design report
NASA Technical Reports Server (NTRS)
Michael, C. J.; Halle, J. E.
1981-01-01
The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.
Hardware synthesis from DDL. [Digital Design Language for computer aided design and test of LSI
NASA Technical Reports Server (NTRS)
Shah, A. M.; Shiva, S. G.
1981-01-01
The details of the digital systems can be conveniently input into the design automation system by means of Hardware Description Languages (HDL). The Computer Aided Design and Test (CADAT) system at NASA MSFC is used for the LSI design. The Digital Design Language (DDL) has been selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. This paper addresses problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system.
FPGA Based Reconfigurable ATM Switch Test Bed
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Jones, Robert E.
1998-01-01
Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.
Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.; Long, David A.
1999-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (155). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.
Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing
NASA Technical Reports Server (NTRS)
Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael
2003-01-01
Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.
Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.
A Flexible Hardware Test and Demonstration Platform for the Fractionated System Architecture YETE
NASA Astrophysics Data System (ADS)
Kempf, Florian; Haber, Roland; Tzschichholz, Tristan; Mikschl, Tobias; Hilgarth, Alexander; Montenegro, Sergio; Schilling, Klaus
2016-08-01
This paper introduces a hardware-in-the loop test and demonstration platform for the YETE system architecture for fractionated spacecraft. It is designed for rapid prototyping and testing of distributed control approaches for the YETE architecture subject to varying network topologies and transmission channel properties between the individual YETE hardware nodes.
Organizational Analysis of the United States Army Evaluation Center
2014-12-01
analysis of qualitative or quantitative data obtained from design reviews, hardware inspections, M&S, hardware and software testing , metrics review... Research Development Test & Evaluation (RDT&E) appropriation account. The Defense Acquisition Portal ACQuipedia website describes RDT&E as “ one of the... research , design , development, test and evaluation, production, installation, operation, and maintenance; data collection; processing and analysis
Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)
NASA Technical Reports Server (NTRS)
Niewoehner, Kevin R.; Carter, John (Technical Monitor)
2001-01-01
The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.
MSFC Skylab structures and mechanical systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
A performance analysis for structural and mechanical major hardware systems and components is presented. Development background testing, modifications, and requirement adjustments are included. Functional narratives are provided for comparison purposes as are predicted design performance criterion. Each item is evaluated on an individual basis: that is, (1) history (requirements, design, manufacture, and test); (2) in-orbit performance (description and analysis); and (3) conclusions and recommendations regarding future space hardware application. Overall, the structural and mechanical performance of the Skylab hardware was outstanding.
Module generation for self-testing integrated systems
NASA Astrophysics Data System (ADS)
Vanriessen, Ronald Pieter
Hardware used for self test in VLSI (Very Large Scale Integrated) systems is reviewed, and an architecture to control the test hardware in an integrated system is presented. Because of the increase of test times, the use of self test techniques has become practically and economically viable for VLSI systems. Beside the reduction in test times and costs, self test also provides testing at operational speeds. Therefore, a suitable combination of scan path and macrospecific (self) tests is required to reduce test times and costs. An expert system that can be used in a silicon compilation environment is presented. The approach requires a minimum of testability knowledge from a system designer. A user friendly interface was described for specifying and modifying testability requirements by a testability expert. A reason directed backtracking mechanism is used to solve selection failures. Both the hierarchical testable architecture and the design for testability expert system are used in a self test compiler. The definition of a self test compiler was given. A self test compiler is a software tool that selects an appropriate test method for every macro in a design. The hardware to control a macro test will be included in the design automatically. As an example, the integration of the self-test compiler in a silicon compilation system PIRAMID was described. The design of a demonstrator circuit by self test compiler is described. This circuit consists of two self testable macros. Control of the self test hardware is carried out via the test access port of the boundary scan standard.
Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions
NASA Technical Reports Server (NTRS)
Kelly, Cody
2014-01-01
NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.
Energy Efficient Engine combustor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.
Development of robotics facility docking test hardware
NASA Technical Reports Server (NTRS)
Loughead, T. E.; Winkler, R. V.
1984-01-01
Design and fabricate test hardware for NASA's George C. Marshall Space Flight Center (MSFC) are reported. A docking device conceptually developed was fabricated, and two docking targets which provide high and low mass docking loads were required and were represented by an aft 61.0 cm section of a Hubble space telescope (ST) mockup and an upgrading of an existing multimission modular spacecraft (MSS) mockup respectively. A test plan is developed for testing the hardware.
Burn Resuscitation Decision Support System (BRDSS)
2013-09-01
effective for burn care in the deployed and en route care settings. In this period, we completed Human Factors studies, hardware testing , software design ... designated U.S. Army Institute of Surgical Research (USAISR) clinical team. Phase 1 System Requirements and Software Development Arcos will draft a...airworthiness testing . The hardware finalists will be sent to U.S. Army Aeromedical Research Laboratory (USAARL) for critical airworthiness testing . Phase
Door Hardware and Installations; Carpentry: 901894.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The curriculum guide outlines a course designed to provide instruction in the selection, preparation, and installation of hardware for door assemblies. The course is divided into five blocks of instruction (introduction to doors and hardware, door hardware, exterior doors and jambs, interior doors and jambs, and a quinmester post-test) totaling…
Testing Microgravity Flight Hardware Concepts on the NASA KC-135
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.
2001-01-01
This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.
[Network Design of the Spaceport Command and Control System
NASA Technical Reports Server (NTRS)
Teijeiro, Antonio
2017-01-01
I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.
NASA Ames Research Center R and D Services Directorate Biomedical Systems Development
NASA Technical Reports Server (NTRS)
Pollitt, J.; Flynn, K.
1999-01-01
The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.
Design Report for Low Power Acoustic Detector
2013-08-01
high speed integrated circuit (VHSIC) hardware description language ( VHDL ) implementation of both the HED and DCD detectors. Figures 4 and 5 show the...the hardware design, target detection algorithm design in both MATLAB and VHDL , and typical performance results. 15. SUBJECT TERMS Acoustic low...5 2.4 Algorithm Implementation ..............................................................................................6 3. Testing
Distributed digital signal processors for multi-body structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K.
1990-01-01
Several digital filter designs were investigated which may be used to process sensor data from large space structures and to design digital hardware to implement the distributed signal processing architecture. Several experimental tests articles are available at NASA Langley Research Center to evaluate these designs. A summary of some of the digital filter designs is presented, an evaluation of their characteristics relative to control design is discussed, and candidate hardware microcontroller/microcomputer components are given. Future activities include software evaluation of the digital filter designs and actual hardware inplementation of some of the signal processor algorithms on an experimental testbed at NASA Langley.
NASA Technical Reports Server (NTRS)
Shiva, S. G.; Shah, A. M.
1980-01-01
The details of digital systems can be conveniently input into the design automation system by means of hardware description language (HDL). The computer aided design and test (CADAT) system at NASA MSFC is used for the LSI design. The digital design language (DDL) was selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. Problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system are addressed.
Design and development of data acquisition system based on WeChat hardware
NASA Astrophysics Data System (ADS)
Wang, Zhitao; Ding, Lei
2018-06-01
Data acquisition system based on WeChat hardware provides methods for popularization and practicality of data acquisition. The whole system is based on WeChat hardware platform, where the hardware part is developed on DA14580 development board and the software part is based on Alibaba Cloud. We designed service module, logic processing module, data processing module and database module. The communication between hardware and software uses AirSync Protocal. We tested this system by collecting temperature and humidity data, and the result shows that the system can aquisite the temperature and humidity in real time according to settings.
Computerized atmospheric trace contaminant control simulation for manned spacecraft
NASA Technical Reports Server (NTRS)
Perry, J. L.
1993-01-01
Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.
NASA's Space Launch System Program Update
NASA Technical Reports Server (NTRS)
May, Todd; Lyles, Garry
2015-01-01
Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in the past year, including firing tests of both main propulsion elements, manufacturing of flight hardware, and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons (t) (154,000 pounds) of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 t (286,000 pounds) to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware, including flight hardware for Exploration Mission 1 (EM-1). This paper will provide an overview of the progress made over the past year and provide a glimpse of upcoming milestones on the way to a 2018 launch readiness date.
WRAP-RIB antenna technology development
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Garcia, N. F.; Iwamoto, H.
1985-01-01
The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.
High-pressure LOX/hydrocarbon preburners and gas generators
NASA Technical Reports Server (NTRS)
Huebner, A. W.
1981-01-01
The objective of the program was to conduct a small scale hardware test program to establish the technology base required for LOX/hydrocarbon preburners and gas generators. The program consisted of six major tasks; Task I reviewed and assessed the performance prediction models and defined a subscale test program. Task II designed and fabricated this subscale hardware. Task III tested and analyzed the data from this hardware. Task IV analyzed the hot fire results and formulated a preliminary design for 40K preburner assemblies. Task V took the preliminary design and detailed and fabricated three 40K size preburner assemblies, one each fuel-rich LOX/CH, and LOX/RP-1 and one oxidizer rich LOX/CH4. Task VI delivered these preburner assemblies to MSFC for subsequent evaluation.
Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2012-01-01
NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.
Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2012-01-01
NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.
Satellite Communication Hardware Emulation System (SCHES)
NASA Technical Reports Server (NTRS)
Kaplan, Ted
1993-01-01
Satellite Communication Hardware Emulator System (SCHES) is a powerful simulator that emulates the hardware used in TDRSS links. SCHES is a true bit-by-bit simulator that models communications hardware accurately enough to be used as a verification mechanism for actual hardware tests on user spacecraft. As a credit to its modular design, SCHES is easily configurable to model any user satellite communication link, though some development may be required to tailor existing software to user specific hardware.
Fifty Years of Observing Hardware and Human Behavior
NASA Technical Reports Server (NTRS)
McMann, Joe
2011-01-01
During this half-day workshop, Joe McMann presented the lessons learned during his 50 years of experience in both industry and government, which included all U.S. manned space programs, from Mercury to the ISS. He shared his thoughts about hardware and people and what he has learned from first-hand experience. Included were such topics as design, testing, design changes, development, failures, crew expectations, hardware, requirements, and meetings.
Innovations in dynamic test restraint systems
NASA Technical Reports Server (NTRS)
Fuld, Christopher J.
1990-01-01
Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.
Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators
NASA Technical Reports Server (NTRS)
Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.
2000-01-01
The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan
2013-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony
2012-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
Space vehicle onboard command encoder
NASA Technical Reports Server (NTRS)
1975-01-01
A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.
Hardware test program for evaluation of baseline range/range rate sensor concept
NASA Technical Reports Server (NTRS)
1985-01-01
The Hardware Test Program for evaluation of the baseline range/range rate sensor concept was initiated 11 September 1984. This ninth report covers the period 12 May through 11 June 1885. A contract amendment adding a second phase has extended the Hardware Test Program through 10 December 1985. The objective of the added program phase is to establish range and range measurement accuracy and radar signature characteristics for a typical spacecraft target. Phase I of the Hardware Test Program was designed to reduce the risks associated with the Range/Range Rate (R/R) Sensor baseline design approach. These risks are associated with achieving the sensor performance required for the two modes of operation, the Interrupted CW (ICW) mode for initial acquisition and tracking to close-in ranges, and the CW mode, providing coverage during the final docking maneuver. The risks associated with these modes of operation have to do with the realization of adequate sensitivity to operate to their individual maximum ranges.
Programs for Testing Processor-in-Memory Computing Systems
NASA Technical Reports Server (NTRS)
Katz, Daniel S.
2006-01-01
The Multithreaded Microbenchmarks for Processor-In-Memory (PIM) Compilers, Simulators, and Hardware are computer programs arranged in a series for use in testing the performances of PIM computing systems, including compilers, simulators, and hardware. The programs at the beginning of the series test basic functionality; the programs at subsequent positions in the series test increasingly complex functionality. The programs are intended to be used while designing a PIM system, and can be used to verify that compilers, simulators, and hardware work correctly. The programs can also be used to enable designers of these system components to examine tradeoffs in implementation. Finally, these programs can be run on non-PIM hardware (either single-threaded or multithreaded) using the POSIX pthreads standard to verify that the benchmarks themselves operate correctly. [POSIX (Portable Operating System Interface for UNIX) is a set of standards that define how programs and operating systems interact with each other. pthreads is a library of pre-emptive thread routines that comply with one of the POSIX standards.
Characterization of Volatiles Loss from Soil Samples at Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron
2017-01-01
Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.
Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.
2015-01-01
Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.
Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.
2014-01-01
Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.
ERIC Educational Resources Information Center
Chandramouli, Magesh; Chittamuru, Siva-Teja
2016-01-01
This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Young, R.
1974-01-01
The capability of the basic automated Biowaste Sampling System (ABSS) hardware was extended and improved through the design, fabrication and test of breadboard hardware. A preliminary system design effort established the feasibility of integrating the breadboard concepts into the ABSS.
Bistatic radar sea state monitoring system design
NASA Technical Reports Server (NTRS)
Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.
1975-01-01
Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.
The NASA Lewis Research Center Water Tunnel Facility
NASA Technical Reports Server (NTRS)
Wasserbauer, Charles A.
1997-01-01
A water tunnel facility specifically designed to investigate internal fluid duct flows has been built at the NASA Research Center. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints for future test hardware. The inlet chamber flow conditioning approach is also detailed. Instrumentation and data acquisition capabilities are discussed. The incoming flow quality has been documented for about one quarter of the current facility operating range. At that range, there is some scatter in the data in the turbulent boundary layer which approaches 10 percent of the duct radius leading to a uniform core.
Simulation verification techniques study: Simulation self test hardware design and techniques report
NASA Technical Reports Server (NTRS)
1974-01-01
The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.
NASA Technical Reports Server (NTRS)
1999-01-01
The full complement of EDOMP investigations called for a broad spectrum of flight hardware ranging from commercial items, modified for spaceflight, to custom designed hardware made to meet the unique requirements of testing in the space environment. In addition, baseline data collection before and after spaceflight required numerous items of ground-based hardware. Two basic categories of ground-based hardware were used in EDOMP testing before and after flight: (1) hardware used for medical baseline testing and analysis, and (2) flight-like hardware used both for astronaut training and medical testing. To ensure post-landing data collection, hardware was required at both the Kennedy Space Center (KSC) and the Dryden Flight Research Center (DFRC) landing sites. Items that were very large or sensitive to the rigors of shipping were housed permanently at the landing site test facilities. Therefore, multiple sets of hardware were required to adequately support the prime and backup landing sites plus the Johnson Space Center (JSC) laboratories. Development of flight hardware was a major element of the EDOMP. The challenges included obtaining or developing equipment that met the following criteria: (1) compact (small size and light weight), (2) battery-operated or requiring minimal spacecraft power, (3) sturdy enough to survive the rigors of spaceflight, (4) quiet enough to pass acoustics limitations, (5) shielded and filtered adequately to assure electromagnetic compatibility with spacecraft systems, (6) user-friendly in a microgravity environment, and (7) accurate and efficient operation to meet medical investigative requirements.
Hardware Design of the Energy Efficient Fall Detection Device
NASA Astrophysics Data System (ADS)
Skorodumovs, A.; Avots, E.; Hofmanis, J.; Korāts, G.
2016-04-01
Health issues for elderly people may lead to different injuries obtained during simple activities of daily living. Potentially the most dangerous are unintentional falls that may be critical or even lethal to some patients due to the heavy injury risk. In the project "Wireless Sensor Systems in Telecare Application for Elderly People", we have developed a robust fall detection algorithm for a wearable wireless sensor. To optimise the algorithm for hardware performance and test it in field, we have designed an accelerometer based wireless fall detector. Our main considerations were: a) functionality - so that the algorithm can be applied to the chosen hardware, and b) power efficiency - so that it can run for a very long time. We have picked and tested the parts, built a prototype, optimised the firmware for lowest consumption, tested the performance and measured the consumption parameters. In this paper, we discuss our design choices and present the results of our work.
Propulsion/flight control integration technology (PROFIT) design analysis status
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.
NASA Technical Reports Server (NTRS)
Jackola, Arthur S.; Hartjen, Gary L.
1992-01-01
The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.
Test program, helium II orbital resupply coupling
NASA Technical Reports Server (NTRS)
Hyatt, William S.
1991-01-01
The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.
Development of Enhanced Avionics Flight Hardware Selection Process
NASA Technical Reports Server (NTRS)
Smith, K.; Watson, G. L.
2003-01-01
The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.
Automated power distribution system hardware. [for space station power supplies
NASA Technical Reports Server (NTRS)
Anderson, Paul M.; Martin, James A.; Thomason, Cindy
1989-01-01
An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.
Application and design of solar photovoltaic system
NASA Astrophysics Data System (ADS)
Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang
2011-02-01
Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.
Lessons Learned from the Advanced Topographic Laser Altimeter System
NASA Technical Reports Server (NTRS)
Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave
2016-01-01
The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.
The NASA Lewis Research Center Internal Fluid Mechanics Facility
NASA Technical Reports Server (NTRS)
Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.
1991-01-01
An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.
Solid State Audio/Speech Processor Analysis.
1980-03-01
techniques. The techniques were demonstrated to be worthwhile in an efficient realtime AWR system. Finally, microprocessor architectures were designed to...do not include custom chip development, detailed hardware design , construction or testing. ITTDCD is very encouraged by the results obtained in this...California, Berkley, was responsible for furnishing the simulation data of OD speech analysis techniques and for the design and development of the hardware OD
2017-09-01
via visual sensors onboard the UAV. Both the hardware and software architecture design are discussed at length. Then, a series of tests that were...visual sensors onboard the UAV. Both the hardware and software architecture design are discussed at length. Then, a series of tests that were conducted...and representing the change in time . (1) Horn and Schunck (1981) further simplified this equation by taking the Taylor series
Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Hull, Patrick V.
2015-01-01
Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.
Portable Life Support System: PLSS 101
NASA Technical Reports Server (NTRS)
Thomas, Gretchen A.
2011-01-01
This presentation reviewed basic interfaces and considerations necessary for prototype suit hardware integration from an advanced spacesuit engineer perspective during the early design and test phases. The discussion included such topics such as the human interface, suit pass-throughs, keep-out zones, hardware form factors, subjective feedback from suit tests, and electricity in the suit.
Applying a Genetic Algorithm to Reconfigurable Hardware
NASA Technical Reports Server (NTRS)
Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim
2004-01-01
This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.
The NASA computer aided design and test system
NASA Technical Reports Server (NTRS)
Gould, J. M.; Juergensen, K.
1973-01-01
A family of computer programs facilitating the design, layout, evaluation, and testing of digital electronic circuitry is described. CADAT (computer aided design and test system) is intended for use by NASA and its contractors and is aimed predominantly at providing cost effective microelectronic subsystems based on custom designed metal oxide semiconductor (MOS) large scale integrated circuits (LSIC's). CADAT software can be easily adopted by installations with a wide variety of computer hardware configurations. Its structure permits ease of update to more powerful component programs and to newly emerging LSIC technologies. The components of the CADAT system are described stressing the interaction of programs rather than detail of coding or algorithms. The CADAT system provides computer aids to derive and document the design intent, includes powerful automatic layout software, permits detailed geometry checks and performance simulation based on mask data, and furnishes test pattern sequences for hardware testing.
ERIC Educational Resources Information Center
Sirakaya, Mustafa; Cakmak, Ebru Kilic
2018-01-01
This study aimed to test the impact of augmented reality (AR) use on student achievement and self-efficacy in vocational education and training. For this purpose, a marker-based AR application, called HardwareAR, was developed. HardwareAR provides information about characteristics of hardware components, ports and assembly. The research design was…
NASA Technical Reports Server (NTRS)
Slafer, Loren I.
1989-01-01
Realtime simulation and hardware-in-the-loop testing is being used extensively in all phases of the design, development, and testing of the attitude control system (ACS) for the new Hughes HS601 satellite bus. Realtime, hardware-in-the-loop simulation, integrated with traditional analysis and pure simulation activities is shown to provide a highly efficient and productive overall development program. Implementation of high fidelity simulations of the satellite dynamics and control system algorithms, capable of real-time execution (using applied Dynamics International's System 100), provides a tool which is capable of being integrated with the critical flight microprocessor to create a mixed simulation test (MST). The MST creates a highly accurate, detailed simulated on-orbit test environment, capable of open and closed loop ACS testing, in which the ACS design can be validated. The MST is shown to provide a valuable extension of traditional test methods. A description of the MST configuration is presented, including the spacecraft dynamics simulation model, sensor and actuator emulators, and the test support system. Overall system performance parameters are presented. MST applications are discussed; supporting ACS design, developing on-orbit system performance predictions, flight software development and qualification testing (augmenting the traditional software-based testing), mission planning, and a cost-effective subsystem-level acceptance test. The MST is shown to provide an ideal tool in which the ACS designer can fly the spacecraft on the ground.
Reliability achievement in high technology space systems
NASA Technical Reports Server (NTRS)
Lindstrom, D. L.
1981-01-01
The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.
A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System
NASA Technical Reports Server (NTRS)
Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)
2001-01-01
The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
NASA Technical Reports Server (NTRS)
Trabanino, Rudy; Murphy, George L.; Yakut, M. M.
1986-01-01
An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.
Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report
NASA Technical Reports Server (NTRS)
Loughead, T.
1996-01-01
This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).
Abradable compressor and turbine seals, volume 1. [for turbofan engines
NASA Technical Reports Server (NTRS)
Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.
1979-01-01
The application and advantages of abradable coatings as gas-path seals in a general aviation turbine engine were evaluated for use on the high-pressure compressor, the high-pressure turbine, and the low-pressure turbine shrouds. Topics covered include: (1) the initial selection of candidate materials for interim full-scale engine testing; (2) interim engine testing of the initially selected materials and additional candidate materials; (3) the design of the component required to adapt the hardware to permit full-scale engine testing of the most promising materials; (4) finalization of the fabrication methods used in the manufacture of engine test hardware; and (5) the manufacture of the hardware necessary to support the final full-scale engine tests.
International Space Station alpha remote manipulator system workstation controls test report
NASA Astrophysics Data System (ADS)
Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick
1994-05-01
Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.
International Space Station alpha remote manipulator system workstation controls test report
NASA Technical Reports Server (NTRS)
Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick
1994-01-01
Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.
Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture
NASA Technical Reports Server (NTRS)
Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.
2003-01-01
This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.
Apollo experience report: Battery subsystem
NASA Technical Reports Server (NTRS)
Trout, J. B.
1972-01-01
Experience with the Apollo command service module and lunar module batteries is discussed. Significant hardware development concepts and hardware test results are summarized, and the operational performance of batteries on the Apollo 7 to 13 missions is discussed in terms of performance data, mission constraints, and basic hardware design and capability. Also, the flight performance of the Apollo battery charger is discussed. Inflight data are presented.
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.
1998-01-01
The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.
Results of solar electric thrust vector control system design, development and tests
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1973-01-01
Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.
NASA Technical Reports Server (NTRS)
Tomes, Kristin; Long, David; Carter, Layne; Flynn, Michael
2007-01-01
The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.
Three Corner Sat Communications System
NASA Technical Reports Server (NTRS)
Anderson, Bobby; Horan, Stephen
2000-01-01
Three Corner Satellite is a constellation of three nanosatellites designed and built by students. New Mexico State University has taken on the design of the communications system for this constellation. The system includes the forward link, return link, and the crosslink. Due to size, mass, power, and financial constraints, we must design a small, light, power efficient, and inexpensive communications system. This thesis presents the design of a radio system to accomplish the data transmission requirements in light of the system constraints. In addition to the hardware design, the operational commands needed by the satellite's on-board computer to control and communicate with the communications hardware will be presented. In order for the hardware to communicate with the ground stations, we will examine the link budgets derived from the radiated power of the transmitters, link distance, data modulation, and data rate for each link. The antenna design for the constellation is analyzed using software and testing the physical antennas on a model satellite. After the analysis and testing, a combination of different systems will meet and exceed the requirements and constraints of the Three Corner Satellite constellation.
Long Duration Exposure Facility (LDEF) optical systems SIG summary and database
NASA Astrophysics Data System (ADS)
Bohnhoff-Hlavacek, Gail
1992-09-01
The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.
Long Duration Exposure Facility (LDEF) optical systems SIG summary and database
NASA Technical Reports Server (NTRS)
Bohnhoff-Hlavacek, Gail
1992-01-01
The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.
NASA Astrophysics Data System (ADS)
Kan, Brandon K.
A pulsed detonation rocket engine concept was explored through the use of hypergolic propellants in a fuel-centered pintle injector combustor. The combustor design yielded a simple open ended chamber with a pintle type injection element and pressure instrumentation. High-frequency pressure measurements from the first test series showed the presence of large pressure oscillations in excess of 2000 psia at frequencies between 400-600 hz during operation. High-speed video confirmed the high-frequency pulsed behavior and large amounts of after burning. Damaged hardware and instrumentation failure limited the amount of data gathered in the first test series, but the experiments met original test objectives of producing large over-pressures in an open chamber. A second test series proceeded by replacing hardware and instrumentation, and new data showed that pulsed events produced under expanded exhaust prior to pulsing, peak pressures around 8000 psi, and operating frequencies between 400-800 hz. Later hot-fires produced no pulsed behavior despite undamaged hardware. The research succeeded in producing pulsed combustion behavior using hypergolic fuels in a pintle injector setup and provided insights into design concepts that would assist future injector designs and experimental test setups.
A systems approach to solder joint fatigue in spacecraft electronic packaging
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1991-01-01
Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.
Leadership Development Program Final Project
NASA Technical Reports Server (NTRS)
Parrish, Teresa C.
2016-01-01
TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.
An overview of key technology thrusts at Bell Helicopter Textron
NASA Technical Reports Server (NTRS)
Harse, James H.; Yen, Jing G.; Taylor, Rodney S.
1988-01-01
Insight is provided into several key technologies at Bell. Specific topics include the results of ongoing research and development in advanced rotors, methodology development, and new configurations. The discussion on advanced rotors highlight developments on the composite, bearingless rotor, including the development and testing of full scale flight hardware as well as some of the design support analyses and verification testing. The discussion on methodology development concentrates on analytical development in aeromechanics, including correlation studies and design application. New configurations, presents the results of some advanced configuration studies including hardware development.
Development of a Self-contained Heat Rejection Module (SHRM), phase 1
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1976-01-01
The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.
Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design
NASA Technical Reports Server (NTRS)
O'Neal, Derek
2016-01-01
A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. The near-net shape DMLS parts have been delivered and final machining is underway. Fabrication of the traditionally manufactured hardware is also proceeding. Testing in liquid oxygen is planned for Q2 of FY2017. This topic explores the design of the turbopump along with fabrication and material testing of the DMLS hardware.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
2001-01-01
The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
NASA Technical Reports Server (NTRS)
1972-01-01
A long life assurance program for the development of design, process, test, and application guidelines for achieving reliable spacecraft hardware was conducted. The study approach consisted of a review of technical data performed concurrently with a survey of the aerospace industry. The data reviewed included design and operating characteristics, failure histories and solutions, and similar documents. The topics covered by the guidelines are reported. It is concluded that long life hardware is achieved through meticulous attention to many details and no simple set of rules can suffice.
Design Tools for Reconfigurable Hardware in Orbit (RHinO)
NASA Technical Reports Server (NTRS)
French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian
2004-01-01
The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.
AVR Microcontroller-based automated technique for analysis of DC motors
NASA Astrophysics Data System (ADS)
Kaur, P.; Chatterji, S.
2014-01-01
This paper provides essential information on the development of a 'dc motor test and analysis control card' using AVR series ATMega32 microcontroller. This card can be interfaced to PC and calculates parameters like motor losses, efficiency and plot characteristics for dc motors. Presently, there are different tests and methods available to evaluate motor parameters, but a single and universal user-friendly automated set-up has been discussed in this paper. It has been accomplished by designing a data acquisition and SCR bridge firing hardware based on AVR ATMega32 microcontroller. This hardware has the capability to drive the phase-controlled rectifiers and acquire real-time values of current, voltage, temperature and speed of motor. Various analyses feasible with the designed hardware are of immense importance for dc motor manufacturers and quality-sensitive users. Authors, through this paper aim to provide details of this AVR-based hardware which can be used for dc motor parameter analysis and also for motor control applications.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
CVT/GPL phase 3 integrated testing
NASA Technical Reports Server (NTRS)
Shurney, R. E.; Cantrell, E.; Maybee, G.; Schmitt, S.
1975-01-01
The hardware for 20 candidate shuttle program life sciences experiments was installed in the GPL and experiments were conducted during a 5-day simulated mission. The experiments involved humans, primates, rats, chickens, and marigold plants. All experiments were completed to the satisfaction of the experimenters. In addition to the scientific data gathered for each experiment, information was obtained concerning experiment hardware design and integration, experiment procedures, GPL support systems, and test operations. The results of the integrated tests are presented.
Energy Efficient Engine (E3) combustion system component technology performance report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.
J-2X Gas Generator Development Testing at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Reynolds, D. C.; Hormonzian, Carlo
2010-01-01
NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.
Skylab SO71/SO72 circadian periodicity experiment. [experimental design and checkout of hardware
NASA Technical Reports Server (NTRS)
Fairchild, M. K.; Hartmann, R. A.
1973-01-01
The circadian rhythm hardware activities from 1965 through 1973 are considered. A brief history of the programs leading to the development of the combined Skylab SO71/SO72 Circadian Periodicity Experiment (CPE) is given. SO71 is the Skylab experiment number designating the pocket mouse circadian experiment, and SO72 designates the vinegar gnat circadian experiment. Final design modifications and checkout of the CPE, integration testing with the Apollo service module CSM 117 and the launch preparation and support tasks at Kennedy Space Center are reported.
Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator
NASA Technical Reports Server (NTRS)
Bents, D. J.
1982-01-01
A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.
EMU processing - A myth dispelled
NASA Technical Reports Server (NTRS)
Peacock, Paul R.; Wilde, Richard C.; Lutz, Glenn C.; Melgares, Michael A.
1991-01-01
The refurbishment-and-checkout 'processing' activities entailed by the Space Shuttle Extravehicular Mobility Units (EMUs) are currently significantly more modest, at 1050 man-hours, than when Space Shuttle services began (involving about 4000 man-hours). This great improvement in hardware efficiency is due to the design or modification of test rigs for simplification of procedures, as well as those procedures' standardization, in conjunction with an increase in hardware confidence which has allowed the extension of inspection, service, and testing intervals. Recent simplification of the hardware-processing sequence could reduce EMU processing requirements to 600 man-hours in the near future.
A Software Defined Radio Based Airplane Communication Navigation Simulation System
NASA Astrophysics Data System (ADS)
He, L.; Zhong, H. T.; Song, D.
2018-01-01
Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.
Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon
NASA Technical Reports Server (NTRS)
Wood, J. J.; Middlemas, M. R.
2012-01-01
The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.
NASA's Space Launch System Program Update
NASA Technical Reports Server (NTRS)
May, Todd; Lyles, Garry
2015-01-01
Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in 2014 with more planned for 2015, including firing tests of both main propulsion elements and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will still deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 metric tons to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware. An RS-25 liquid propellant engine was hotfire-tested at NASA's Stennis Space Center, Miss. for the first time since 2009 exercising and validating the new engine controller, the renovated A-1 test stand, and the test teams. Four RS-25s will power the SLS core stage. A qualification five-segment solid rocket motor incorporating several design, material, and process changes was scheduled to be test-fired in March at the prime contractor's facility in Utah. The booster also successfully completed its Critical Design Review (CDR) validating the planned design. All six major manufacturing tools for the core stage are in place at the Michoud Assembly Facility in Louisiana, and have been used to build numerous pieces of confidence, qualification, and even flight hardware, including barrel sections, domes and rings used to assemble the world's largest rocket stage. SLS Systems Engineering accomplished several key tasks including vehicle avionics software and hardware build and testing, scale model acoustic and base heating tests. Construction of the Interim Cryogenic Propulsion Stage (ICPS) began. Advanced development provided a look into the future of SLS. Shell buckling knockdown factor testing refined decades-old design margins that added thousands of pounds to rocket payloads. Adaptive manufacturing and structured light scanning development promised to cut the cost and time associated with manufacturing and testing. This paper will provide an overview of the progress made over the past year and provide a glimpse of 2015 milestones and beyond on the way to the first launch in 2018.
Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.
2010-01-01
A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.
Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response
Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís
2016-01-01
The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers. PMID:27657087
Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response.
Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís
2016-09-21
The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers.
Exercise Countermeasure Hardware Evolution on ISS: The First Decade.
Korth, Deborah W
2015-12-01
The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases, the exercise unit with the most operational history was the unit installed on the ISS.
Design, Development, and Preliminary Validation for a BioContainment System for MSR
NASA Astrophysics Data System (ADS)
Fumagalli, A.; Spagnoli, B.; Terribile, A.; Indrigo, D.; Romstedt, J.; Vjendran, S.; Kminek, G.
2018-04-01
A bio-containment system was conceived, designed, and tested by Leonardo S.p.A. and partners under ESA development contract. Results achieved so far are presented, including reports of the several tests performed on development hardware.
Chan, W H; Chan, Alan H S
2003-01-01
This experiment studied strength and reversibility of direction-of-motion stereotypes and response times for different configurations of circular displays and rotary knobs. The effect of pointer position, instruction of turn direction, and control plane on movement compatibility was analyzed with precise quantitative measures of strength and reversibility index of stereotype. A comparison of results was made between a Computer Simulated Test and a Hardware Test with real rotary controls. There was consensus in the results of the two tests that strong and significantly reversible clockwise-for-clockwise (CC) and anticlockwise-for-anticlockwise (AA) stereotypes were obtained at the 12 o'clock position. Subjects' response times were found to be generally longer when there were no clear movement stereotypes. Nevertheless, differences of results were observed that while the CC and AA preferences were found to be dominant and reversible at all the planes and pointer positions in the Hardware Test, there was variation in the strength and reversibility of the two stereotypes amongst different testing configurations in the Simulated Test. This phenomenon was explained by the operating of the clockwise-for-right and anticlockwise-for-left principles, as shown in the analysis of contributions of component principles to the overall stereotype. The differences of results from the two tests were discussed with regard to simulation fidelity and it was suggested that a real Hardware Test should be used whenever possible for determination of design parameters of control panels in consideration of movement compatibility. Based on the Hardware Test, a pointer is recommended to be positioned at 12 o'clock position for check reading or resetting purpose, and the frontal plane is the best plane for positioning a rotary control with circular display. The results of this study provided significant implications for the industrial design of control panels used in man-machine interfaces for improved human performance.
Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.
2008-01-01
In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.
EVA Suit R and D for Performance Optimization
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar
2014-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations
Implementation of an experimental fault-tolerant memory system
NASA Technical Reports Server (NTRS)
Carter, W. C.; Mccarthy, C. E.
1976-01-01
The experimental fault-tolerant memory system described in this paper has been designed to enable the modular addition of spares, to validate the theoretical fault-secure and self-testing properties of the translator/corrector, to provide a basis for experiments using the new testing and correction processes for recovery, and to determine the practicality of such systems. The hardware design and implementation are described, together with methods of fault insertion. The hardware/software interface, including a restricted single error correction/double error detection (SEC/DED) code, is specified. Procedures are carefully described which, (1) test for specified physical faults, (2) ensure that single error corrections are not miscorrections due to triple faults, and (3) enable recovery from double errors.
NASA Technical Reports Server (NTRS)
Smith, T. B., III; Lala, J. H.
1984-01-01
The FTMP architecture is a high reliability computer concept modeled after a homogeneous multiprocessor architecture. Elements of the FTMP are operated in tight synchronism with one another and hardware fault-detection and fault-masking is provided which is transparent to the software. Operating system design and user software design is thus greatly simplified. Performance of the FTMP is also comparable to that of a simplex equivalent due to the efficiency of fault handling hardware. The FTMP project constructed an engineering module of the FTMP, programmed the machine and extensively tested the architecture through fault injection and other stress testing. This testing confirmed the soundness of the FTMP concepts.
NASA Technical Reports Server (NTRS)
Crump, William J.; Janik, Daniel S.; Thomas, L. Dale
1990-01-01
U.S. space missions have to this point used water either made on board or carried from earth and discarded after use. For Space Station Freedom, long duration life support will include air and water recycling using a series of physical-chemical subsystems. The Environmental Control and Life Support System (ECLSS) designed for this application must be tested extensively at all stages of hardware maturity. Human test subjects are required to conduct some of these tests, and the risks associated with the use of development hardware must be addressed. Federal guidelines for protection of human subjects require careful consideration of risks and potential benefits by an Institutional Review Board (IRB) before and during testing. This paper reviews the ethical principles guiding this consideration, details the problems and uncertainties inherent in current hardware testing, and presents an incremental approach to risk assessment for ECLSS testing.
Assessment Environment for Complex Systems Software Guide
NASA Technical Reports Server (NTRS)
2013-01-01
This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.
Science Operations Development for Field Analogs: Lessons Learned from the 2010 Desert RATS Test
NASA Technical Reports Server (NTRS)
Eppler, D. B.; Ming, D. W.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities.
Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Fox, Curtiss; Hadidi, Ramtin
2016-01-26
Historically, wind turbine prototypes were tested in the field, which was--and continues to be--a slow and expensive process. As a result, wind turbine dynamometer facilities were developed to provide a more cost-effective alternative to field testing. New turbine designs were tested and the design models were validated using dynamometers to drive the turbines in a controlled environment. Over the years, both wind turbine dynamometer testing and computer technology have matured and improved, and the two are now being joined to provide hardware-in-the-loop (HIL) testing. This type of testing uses a computer to simulate the items that are missing from amore » dynamometer test, such as grid stiffness, voltage, frequency, rotor, and hub. Furthermore, wind input and changing electric grid conditions can now be simulated in real time. This recent advance has greatly increased the utility of dynamometer testing for the development of wind turbine systems.« less
NASA Technical Reports Server (NTRS)
Vanvalkenburgh, C. N.
1984-01-01
Underwater simulations of EVA contingency operations such as manual jettison, payload disconnect, and payload clamp actuation were used to define crew aid needs and mockup pecularities and characteristics to verify the validity of simulation using the trainer. A set of mockup instrument pointing system tests was conducted and minor modifications and refinements were made. Flight configuration struts were tested and verified to be operable by the flight crew. Tasks involved in developing the following end items are described: IPS gimbal system, payload, and payload clamp assembly; the igloos (volumetric); spacelab pallets, experiments, and hardware; experiment, and hardware; experiment 7; and EVA hand tools, support hardware (handrails and foot restraints). The test plan preparation and test support are also covered.
Solid Rocket Booster (SRB) Flight System Integration at Its Best
NASA Technical Reports Server (NTRS)
Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
NASA Technical Reports Server (NTRS)
Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.
1994-01-01
This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.
NASA Astrophysics Data System (ADS)
Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.
1994-11-01
This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.
Design of efficient and simple interface testing equipment for opto-electric tracking system
NASA Astrophysics Data System (ADS)
Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao
2016-10-01
Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.
Large - scale Rectangular Ruler Automated Verification Device
NASA Astrophysics Data System (ADS)
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
Advanced photovoltaic solar array development
NASA Technical Reports Server (NTRS)
Kurland, Richard M.; Stella, Paul
1989-01-01
Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.
Design and fabrication of a basic mass analyzer and vacuum system
NASA Technical Reports Server (NTRS)
Judson, C. M.; Josias, C.; Lawrence, J. L., Jr.
1977-01-01
A two-inch hyperbolic rod quadrupole mass analyzer with a mass range of 400 to 200 amu and a sensitivity exceeding 100 packs per billion has been developed and tested. This analyzer is the basic hardware portion of a microprocessor-controlled quadrupole mass spectrometer for a Gas Analysis and Detection System (GADS). The development and testing of the hyperbolic-rod quadrupole mass spectrometer and associated hardware are described in detail.
Transparent superstrate terrestrial solar cell module
NASA Technical Reports Server (NTRS)
1977-01-01
The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.
History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program
NASA Technical Reports Server (NTRS)
VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett
2010-01-01
Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.
Design Language for Digital Systems
NASA Technical Reports Server (NTRS)
Shiva, S. G.
1985-01-01
Digital Systems Design Language (DDL) is convenient hardware description language for developing and testing digital designs and for inputting design details into design automation system. Describes digital systems at gate, register transfer, and combinational block levels. DDL-based programs written in FORTRAN IV for batch execution.
Electric power system test and verification program
NASA Technical Reports Server (NTRS)
Rylicki, Daniel S.; Robinson, Frank, Jr.
1994-01-01
Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.
Design, fabrication, testing, and delivery of improved beam steering devices
NASA Technical Reports Server (NTRS)
1973-01-01
The development, manufacture, and testing of an optical steerer intended for use in spaceborne optical radar systems are described. Included are design principles and design modifications made to harden the device against launch and space environments, the quality program and procedures developed to insure consistent product quality throughout the manufacturing phase, and engineering qualification model testing and evaluation. The delivered hardware design is considered conditionally qualified pending action on further recommended design modifications.
Formal functional test designs with a test representation language
NASA Technical Reports Server (NTRS)
Hops, J. M.
1993-01-01
The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim
1993-01-01
The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.
MSFC Skylab program engineering and integration
NASA Technical Reports Server (NTRS)
1974-01-01
A technical history and managerial critique of the MSFC role in the Skylab program is presented. The George C. Marshall Space Flight Center had primary hardware development responsibility for the Saturn Workshop Modules and many of the designated experiments in addition to the system integration responsibility for the entire Skylab Orbital Cluster. The report also includes recommendations and conclusions applicable to hardware design, test program philosophy and performance, and program management techniques with potential application to future programs.
JSC Metal Finishing Waste Minimization Methods
NASA Technical Reports Server (NTRS)
Sullivan, Erica
2003-01-01
THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.
VLSI 'smart' I/O module development
NASA Astrophysics Data System (ADS)
Kirk, Dan
The developmental history, design, and operation of the MIL-STD-1553A/B discrete and serial module (DSM) for the U.S. Navy AN/AYK-14(V) avionics computer are described and illustrated with diagrams. The ongoing preplanned product improvement for the AN/AYK-14(V) includes five dual-redundant MIL-STD-1553 channels based on DSMs. The DSM is a front-end processor for transferring data to and from a common memory, sharing memory with a host processor to provide improved 'smart' input/output performance. Each DSM comprises three hardware sections: three VLSI-6000 semicustomized CMOS arrays, memory units to support the arrays, and buffers and resynchronization circuits. The DSM hardware module design, VLSI-6000 design tools, controlware and test software, and checkout procedures (using a hardware simulator) are characterized in detail.
Support for Diagnosis of Custom Computer Hardware
NASA Technical Reports Server (NTRS)
Molock, Dwaine S.
2008-01-01
The Coldfire SDN Diagnostics software is a flexible means of exercising, testing, and debugging custom computer hardware. The software is a set of routines that, collectively, serve as a common software interface through which one can gain access to various parts of the hardware under test and/or cause the hardware to perform various functions. The routines can be used to construct tests to exercise, and verify the operation of, various processors and hardware interfaces. More specifically, the software can be used to gain access to memory, to execute timer delays, to configure interrupts, and configure processor cache, floating-point, and direct-memory-access units. The software is designed to be used on diverse NASA projects, and can be customized for use with different processors and interfaces. The routines are supported, regardless of the architecture of a processor that one seeks to diagnose. The present version of the software is configured for Coldfire processors on the Subsystem Data Node processor boards of the Solar Dynamics Observatory. There is also support for the software with respect to Mongoose V, RAD750, and PPC405 processors or their equivalents.
Polymorphic Electronic Circuits
NASA Technical Reports Server (NTRS)
Stoica, Adrian
2004-01-01
Polymorphic electronics is a nascent technological discipline that involves, among other things, designing the same circuit to perform different analog and/or digital functions under different conditions. For example, a circuit can be designed to function as an OR gate or an AND gate, depending on the temperature (see figure). Polymorphic electronics can also be considered a subset of polytronics, which is a broader technological discipline in which optical and possibly other information- processing systems could also be designed to perform multiple functions. Polytronics is an outgrowth of evolvable hardware (EHW). The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles. To recapitulate: The essence of EHW is to design, construct, and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The evolution is guided by a search-and-optimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by computational simulation (in which case the evolution is said to be extrinsic), tested in real hardware (in which case the evolution is said to be intrinsic), or tested in random sequences of computational simulation and real hardware (in which case the evolution is said to be mixtrinsic).
Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996
NASA Technical Reports Server (NTRS)
Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)
2005-01-01
Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.
A novel visual hardware behavioral language
NASA Technical Reports Server (NTRS)
Li, Xueqin; Cheng, H. D.
1992-01-01
Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.
Automated culture system experiments hardware: developing test results and design solutions.
Freddi, M; Covini, M; Tenconi, C; Ricci, C; Caprioli, M; Cotronei, V
2002-07-01
The experiment proposed by Prof. Ricci University of Milan is funded by ASI with Laben as industrial Prime Contractor. ACS-EH (Automated Culture System-Experiment Hardware) will support the multigenerational experiment on weightlessness with rotifers and nematodes within four Experiment Containers (ECs) located inside the European Modular Cultivation System (EMCS) facility..Actually the Phase B is in progress and a concept design solution has been defined. The most challenging aspects for the design of such hardware are, from biological point of view the provision of an environment which permits animal's survival and to maintain desiccated generations separated and from the technical point of view, the miniaturisation of the hardware itself due to the reduce EC provided volume (160mmx60mmx60mm). The miniaturisation will allow a better use of the available EMCS Facility resources (e.g. volume. power etc.) and to fulfil the experiment requirements. ACS-EH, will be ready to fly in the year 2005 on boar the ISS.
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
Digital Fly-By-Wire Flight Control Validation Experience
NASA Technical Reports Server (NTRS)
Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.
1978-01-01
The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.
Determination of minimum height and lateral design load for MASH test level 4 bridge rails.
DOT National Transportation Integrated Search
2011-12-01
The Manual for Assessing Safety Hardware (MASH) prescribes higher design vehicle impact speed and mass for test level 4 barriers compared to its predecessor National Cooperative Highway Research Program (NCHRP) Report 350. This has resulted in a 56 p...
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.
1993-01-01
A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.
EHW Approach to Temperature Compensation of Electronics
NASA Technical Reports Server (NTRS)
Stoica, Adrian
2004-01-01
Efforts are under way to apply the concept of evolvable hardware (EHW) to compensate for variations, with temperature, in the operational characteristics of electronic circuits. To maintain the required functionality of a given circuit at a temperature above or below the nominal operating temperature for which the circuit was originally designed, a new circuit would be evolved; moreover, to obtain the required functionality over a very wide temperature range, there would be evolved a number of circuits, each of which would satisfy the performance requirements over a small part of the total temperature range. The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles, namely, "Reconfigurable Arrays of Transistors for Evolvable Hardware" (NPO-20078), Vol. 25, No. 2 (February 2001), page 36; Evolutionary Automated Synthesis of Electronic Circuits (NPO- 20535), Vol. 26, No. 7 (July 2002), page 37; "Designing Reconfigurable Antennas Through Hardware Evolution" (NPO-20666), Vol. 26, No. 7 (July 2002), page 38; "Morphing in Evolutionary Synthesis of Electronic Circuits" (NPO-20837), Vol. 26, No. 8 (August 2002), page 31; "Mixtrinsic Evolutionary Synthesis of Electronic Circuits" (NPO-20773) Vol. 26, No. 8 (August 2002), page 32; and "Synthesis of Fuzzy-Logic Circuits in Evolvable Hardware" (NPO-21095) Vol. 26, No. 11 (November 2002), page 38. To recapitulate from the cited prior articles: EHW is characterized as evolutionary in a quasi-genetic sense. The essence of EHW is to construct and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The connection and disconnection can be effected by use of field-programmable transistor arrays (FPTAs). The evolution is guided by a search-andoptimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by mathematical modeling (that is, computational simulation) only, tested in real hardware, or tested in combinations of computational simulation and real hardware.
Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2002-01-01
The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and implemented using the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on multiple prototype boards.
2017-03-01
proposed. Expected profiles can incorporate a level of overdesign. Finally, the Design Integrity measuring techniques are applied to five Test Article ...Inserted into Test System Table 2 presents the results of the analysis applied to each of the test article designs. Each of the domains are...the lowest integrities. Based on the analysis, the DI metric shows measurable differentiation between all five Test Article Error Location Error
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina
2014-01-01
Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning process was used on these simply geometric specimens that resulted in what appears to be very smooth internal surfaces, when compared to other aerospace hardware cleaning methods.
Headway Separation Assurance Subsystem (HSAS)
DOT National Transportation Integrated Search
1975-07-01
This report discusses the design, fabrication, test and evaluation of a Headway Separation Assurance Subsystem (HSAS) capable of reliable, failsafe performance in PRT systems. The items designed include both hardware and software packages. These pack...
Computer-Based Arithmetic Test Generation
ERIC Educational Resources Information Center
Trocchi, Robert F.
1973-01-01
The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…
Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.
2009-01-01
Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in the planning stages.
Use of Heritage Hardware on MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2011-01-01
Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.
Test results and description of a 1-kW free-piston Stirling engine with a dashpot load
NASA Technical Reports Server (NTRS)
Schreiber, J.
1983-01-01
A 1 kW (1.33 hp) single cylinder free piston Stirling engine was installed in the test facilities at the Lewis laboratory. The engine was designed specifically for research of the dynamics of its operation. A more complete description of the engine and its instrumentation is provided in a prior NASA paper TM-82999 by J. G. Schreiber. Initial tests at Lewis showed the power level and efficiency of the engine to be below design level. Tests were performed to help determine the specific problems in the engine causing the below design level performance. Modifications to engine hardware and to the facility where performed in an effort to bring the power output and efficiency to their design values. As finally configured the engine generated more than 1250 watts of output power at an engine efficiency greater than 32 percent. This report presents the tests performed to help determine the specific problems, the results if the problem was eliminated, the fix performed to the hardware, and the test results after the engine was tested. In cases where the fix did not cause the anticipated effects, a possible explanation is given.
Building a GPS Receiver for Space Lessons Learned
NASA Technical Reports Server (NTRS)
Sirotzky, Steve; Heckler, G. W.; Boegner, G.; Roman, J.; Wennersten, M.; Butler, R.; Davis, M.; Lanham, A.; Winternitz, L.; Thompson, W.;
2008-01-01
Over the past 4 years the Component Systems and Hardware branch at NASA GSFC has pursued an inhouse effort to build a unique space-flight GPS receiver. This effort has resulted in the Navigator GPS receiver. Navigator's first flight opportunity will come with the STS-125 HST-SM4 mission in August 2008. This paper covers the overall hardware design for the receiver and the difficulties encountered during the transition from the breadboard design to the final flight hardware design. Among the different lessons learned, the paper stresses the importance of selecting and verifying parts that are appropriate for space applications, as well as what happens when these parts are not accurately characterized by their datasheets. Additionally, the paper discusses what analysis needs to be performed when deciding system frequencies and filters. The presentation also covers how to prepare for thermal vacuum testing, and problems that may arise during vibration testing. It also contains what criteria should be considered when determining which portions of a design to create in-house, and which portions to license from a third party. Finally, the paper shows techniques which have proven to be extraordinarily helpful in debugging and analysis.
Automated control and data acquisition for a tunable diode laser heterodyne spectrometer
NASA Technical Reports Server (NTRS)
Shull, T. S.; Rinsland, P. L.
1983-01-01
This paper describes the hardware and software design, development, and implementation of the control and data electronics of a laser heterodyne spectrometer instrument being built at NASA Langley Research Center for a technology demonstration. Functional partitioning, applied at all levels of hardware and software, has been found to provide expedient design, development, and testing of the instrument. The instrument is composed of distributed microprocessor-based units. A master/slave protocol is presented which can be simulated by a terminal for unit checkout. All but one of the units are implemented using a set of core boards, plus unique boards where necessary. This design has led to reduced hardware development, reduced parts inventory, and replication of software modules, while providing the flexibility needed for a development instrument. The development tools and documentation guidelines are discussed.
NASA Astrophysics Data System (ADS)
Zhou, Jun; Shen, Li; Zhang, Tianhong
2016-12-01
Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.
Apollo experience report: Command and service module communications subsystem
NASA Technical Reports Server (NTRS)
Lattier, E. E., Jr.
1974-01-01
The development of spacecraft communications hardware from design to operation is described. Programs, requirements, specifications, and design approaches for a variety of functions (such as voice, telemetry, television, and antennas) are reviewed. Equipment environmental problems such as vibration, extreme temperature variation, and zero gravity are discussed. A review of the development of managerial techniques used in refining the roles of prime and subcontractors is included. The hardware test program is described in detail as it progressed from breadboard design to manned flight system evaluations. Finally, a series of actions is recommended to managers of similar projects to facilitate administration.
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard
2011-01-01
This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.
VME rollback hardware for time warp multiprocessor systems
NASA Technical Reports Server (NTRS)
Robb, Michael J.; Buzzell, Calvin A.
1992-01-01
The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.
NASA Technical Reports Server (NTRS)
Mcfarland, R. H.
1981-01-01
Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.
Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements
NASA Technical Reports Server (NTRS)
Thaxton, Eric A.
2014-01-01
KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.
Design and test hardware for a solar array switching unit
NASA Technical Reports Server (NTRS)
Patil, A. R.; Cho, B. H.; Sable, D.; Lee, F. C.
1992-01-01
This paper describes the control of a pulse width modulated (PWM) type sequential shunt switching unit (SSU) for spacecraft applications. It is found that the solar cell output capacitance has a significant impact on SSU design. Shorting of this cell capacitance by the PWM switch causes input current surges. These surges are minimized by the use of a series filter inductor. The system with a filter is analyzed for ripple and the control to output-voltage transfer function. Stable closed loop design considerations are discussed. The results are supported by modeling and measurements of loop gain and of closed-loop bus impedance on test hardware for NASA's 120 V Earth Observation System (EOS). The analysis and modeling are also applicable to NASA's 160 V Space Station power system.
Testing and evaluation for astronaut extravehicular activity (EVA) operability.
Shields, N; King, L C
1998-09-01
Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions.
AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research
NASA Technical Reports Server (NTRS)
Laughter, Sean; Cox, David
2016-01-01
The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.
A novel method about detecting missing holes on the motor carling
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Tan, Hao; Li, Guirong
2018-03-01
After a deep analysis on how to use an image processing system to detect the missing holes on the motor carling, we design the whole system combined with the actual production conditions of the motor carling. Afterwards we explain the whole system's hardware and software in detail. We introduce the general functions for the system's hardware and software. Analyzed these general functions, we discuss the modules of the system's hardware and software and the theory to design these modules in detail. The measurement to confirm the area to image processing, edge detection, randomized Hough transform to circle detecting is explained in detail. Finally, the system result tested in the laboratory and in the factory is given out.
[Integrated Development of Full-automatic Fluorescence Analyzer].
Zhang, Mei; Lin, Zhibo; Yuan, Peng; Yao, Zhifeng; Hu, Yueming
2015-10-01
In view of the fact that medical inspection equipment sold in the domestic market is mainly imported from abroad and very expensive, we developed a full-automatic fluorescence analyzer in our center, presented in this paper. The present paper introduces the hardware architecture design of FPGA/DSP motion controlling card+PC+ STM32 embedded micro processing unit, software system based on C# multi thread, design and implementation of double-unit communication in detail. By simplifying the hardware structure, selecting hardware legitimately and adopting control system software to object-oriented technology, we have improved the precision and velocity of the control system significantly. Finally, the performance test showed that the control system could meet the needs of automated fluorescence analyzer on the functionality, performance and cost.
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Hahn, R. C.; Koss, M. B.; Tirmizi, S. H.; Selleck, M. E.; Velosa, A.; Winsa, E.
1991-01-01
The Isothermal Dendritic Growth Experiment (IDGE) has been designed to provide microgravity data on dendritic growth for a critical test of theory. This paper updates progress on constructing a crystal growth chamber suitable for space flight. The IDGE chamber is constructed from glass and stainless steel and is hermetically sealed by electron beam welds and glass-metal seals. Initial tests of the chambers sample's melting point plateau show that the new chamber design is capable of preserving the 99.9995 percent purity of succinonitrile. Dendrite growth can be initiated in the center of the IDGE chamber by means of thermo-electric coolers and a capillary injector tube (stinger). The new IDGE chamber is ready for fully integrated tests with the prototype IDGE engineering hardware at NASA's Lewis Research Center.
NASA Technical Reports Server (NTRS)
West, R. S.
1975-01-01
The system is described as a computer-based system designed to track the status of problems and corrective actions pertinent to space shuttle hardware. The input, processing, output, and performance requirements of the system are presented along with standard display formats and examples. Operational requirements, hardware, requirements, and test requirements are also included.
NAC Off-Vehicle Brake Testing Project
2007-05-01
disc pads/rotors and drum shoe assemblies/ drums - Must use vehicle “OEM” brake /hub-end hardware, or ESA... brake component comparison analysis (primary)* - brake system design analysis - brake system component failure analysis - (*) limited to disc pads...e.g. disc pads/rotors, drum shoe assemblies/ drums . - Not limited to “OEM” brake /hub-end hardware as there is none ! - Weight transfer, plumbing,
Composite Structures Damage Tolerance Analysis Methodologies
NASA Technical Reports Server (NTRS)
Chang, James B.; Goyal, Vinay K.; Klug, John C.; Rome, Jacob I.
2012-01-01
This report presents the results of a literature review as part of the development of composite hardware fracture control guidelines funded by NASA Engineering and Safety Center (NESC) under contract NNL04AA09B. The objectives of the overall development tasks are to provide a broad information and database to the designers, analysts, and testing personnel who are engaged in space flight hardware production.
A Small Acoustic Goniometer for General Purpose Research
Pook, Michael L.; Loo, Sin Ming
2016-01-01
Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563
Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.
2005-01-01
To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.
Developmental Flight Instrumentation System for the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Crawford, Kevin; Thomas, John
2006-01-01
The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.
Managing Science Operations During Planetary Surface: The 2010 Desert RATS Test
NASA Technical Reports Server (NTRS)
Eppler, Dean B.; Ming, D. W.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities. Desert RATS is a venue where new ideas can be tested, both individually and as part of an operation with multiple elements. By conducting operations over multiple yearly cycles, ideas that make the cut can be iterated and tested during follow-on years. This ultimately gives both the hardware and the personnel experience in the kind of multi-element integrated operations that will be necessary in future human planetary exploration.
Man-computer Inactive Data Access System (McIDAS). [design, development, fabrication, and testing
NASA Technical Reports Server (NTRS)
1973-01-01
A technical description is given of the effort to design, develop, fabricate, and test the two dimensional data processing system, McIDAS. The system has three basic sections: an access and data archive section, a control section, and a display section. Areas reported include hardware, system software, and applications software.
An adaptable, low cost test-bed for unmanned vehicle systems research
NASA Astrophysics Data System (ADS)
Goppert, James M.
2011-12-01
An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.
Use of Heritage Hardware on Orion MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2012-01-01
Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.
Halbach Magnetic Rotor Development
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.
2008-01-01
The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.
Refurbishment cost study of the thermal protection system of a space shuttle vehicle, phase 2
NASA Technical Reports Server (NTRS)
Haas, D. W.
1972-01-01
The labor costs and techniques associated with the refurbishment and maintenance of representative thermal protection system (TPS) components and their attachment concepts suitable for space shuttle application are defined, characterized, and evaluated from the results of an experimental test program. This program consisted of designing selected TPS concepts, fabricating and assembling test hardware, and performing a time and motion study of specific maintenance functions of the test hardware on a full-scale- mockup. Labor requirements and refurbishment techniques, as they relate to the maintenance functions of inspection, repair, removal, and replacement were identified.
NASA Astrophysics Data System (ADS)
Nguyen, Khoa Dang; Ha, Cheolkeun
2018-04-01
Hardware-in-the-loop simulation (HILS) is well known as an effective approach in the design of unmanned aerial vehicles (UAV) systems, enabling engineers to test the control algorithm on a hardware board with a UAV model on the software. Performance of HILS is determined by performances of the control algorithm, the developed model, and the signal transfer between the hardware and software. The result of HILS is degraded if any signal could not be transferred to the correct destination. Therefore, this paper aims to develop a middleware software to secure communications in HILS system for testing the operation of a quad-rotor UAV. In our HILS, the Gazebo software is used to generate a nonlinear six-degrees-of-freedom (6DOF) model, sensor model, and 3D visualization for the quad-rotor UAV. Meanwhile, the flight control algorithm is designed and implemented on the Pixhawk hardware. New middleware software, referred to as the control application software (CAS), is proposed to ensure the connection and data transfer between Gazebo and Pixhawk using the multithread structure in Qt Creator. The CAS provides a graphical user interface (GUI), allowing the user to monitor the status of packet transfer, and perform the flight control commands and the real-time tuning parameters for the quad-rotor UAV. Numerical implementations have been performed to prove the effectiveness of the middleware software CAS suggested in this paper.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink(R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2015-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia Mae; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
Testing to Transition the J-2X from Paper to Hardware
NASA Technical Reports Server (NTRS)
Byrd, Tom
2010-01-01
The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer water flow, turbine air flow, turbopump seal testing, main injector and gas generator, injector testing, augmented spark igniter testing, nozzle side loads cold flow testing, nozzle extension film cooling flow testing, control system testing with hardware in the loop, and nozzle extension emissivity coating tests. In parallel with hardware manufacturing, work is progressing on the new A-3 test stand to support full duration altitude testing. The Stennis A-2 test stand is scheduled to be turned over to the Constellation Program in September 2010 to be modified for J-2X testing also. As the structural steel was rising on the A-3 stand, work was under way in the nearby E complex on the chemical steam generator and subscale diffuser concepts to be used to evacuate the A-3 test cell and simulate altitude conditions.
Pressure fed thrust chamber technology program
NASA Technical Reports Server (NTRS)
Dunn, Glenn M.
1992-01-01
This is the final report for the Pressure Fed Technology Program. It details the design, fabrication and testing of subscale hardware which successfully characterized LOX/RP combustion for a low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved by this testing, and details the low risk development requirements for a low cost engine for future Expendable Launch Vehicles (ELVi).
Apollo experience report: Television system
NASA Technical Reports Server (NTRS)
Coan, P. P.
1973-01-01
The progress of the Apollo television systems from the early definition of requirements through the development and inflight use of color television hardware is presented. Television systems that have been used during the Apollo Program are discussed, beginning with a description of the specifications for each system. The document describes the technical approach taken for the development of each system and discusses the prototype and engineering hardware built to test the system itself and to perform the testing to verify compatibility with the spacecraft systems. Problems that occurred during the design and development phase are described. Finally, the flight hardware, operational characteristics, and performance during several Apollo missions are described, and specific recommendations for the remaining Apollo flights and future space missions are made.
Testing for the J-2X Upper Stage Engine
NASA Technical Reports Server (NTRS)
Buzzell, James C.
2010-01-01
NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.
NASA Technical Reports Server (NTRS)
Jandura, Louise
2010-01-01
The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
Digital avionics design and reliability analyzer
NASA Technical Reports Server (NTRS)
1981-01-01
The description and specifications for a digital avionics design and reliability analyzer are given. Its basic function is to provide for the simulation and emulation of the various fault-tolerant digital avionic computer designs that are developed. It has been established that hardware emulation at the gate-level will be utilized. The primary benefit of emulation to reliability analysis is the fact that it provides the capability to model a system at a very detailed level. Emulation allows the direct insertion of faults into the system, rather than waiting for actual hardware failures to occur. This allows for controlled and accelerated testing of system reaction to hardware failures. There is a trade study which leads to the decision to specify a two-machine system, including an emulation computer connected to a general-purpose computer. There is also an evaluation of potential computers to serve as the emulation computer.
2012-02-17
Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
Real-time operating system for a multi-laser/multi-detector system
NASA Technical Reports Server (NTRS)
Coles, G.
1980-01-01
The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.
High-Speed Isolation Board for Flight Hardware Testing
NASA Technical Reports Server (NTRS)
Yamamoto, Clifford K.; Goodpasture, Richard L.
2011-01-01
There is a need to provide a portable and cost-effective galvanic isolation between ground support equipment and flight hardware such that any unforeseen voltage differential between ground and power supplies is eliminated. An interface board was designed for use between the ground support equipment and the flight hardware that electrically isolates all input and output signals and faithfully reproduces them on each side of the interface. It utilizes highly integrated multi-channel isolating devices to minimize size and reduce assembly time. This single-board solution provides appropriate connector hardware and breakout of required flight signals to individual connectors as needed for various ground support equipment. The board utilizes multi-channel integrated circuits that contain transformer coupling, thereby allowing input and output signals to be isolated from one another while still providing high-fidelity reproduction of the signal up to 90 MHz. The board also takes in a single-voltage power supply input from the ground support equipment and in turn provides a transformer-derived isolated voltage supply to power the portion of the circuitry that is electrically connected to the flight hardware. Prior designs used expensive opto-isolated couplers that were required for each signal to isolate and were time-consuming to assemble. In addition, these earlier designs were bulky and required a 2U rack-mount enclosure. The new design is smaller than a piece of 8.5 11-in. (.22 28-mm) paper and can be easily hand-carried where needed. The flight hardware in question is based on a lineage of existing software-defined radios (SDRs) that utilize a common interface connector with many similar input-output signals present. There are currently four to five variations of this SDR, and more upcoming versions are planned based on the more recent design.
Design of a signal conditioner for the Fermilab Magnet Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannelli, Pietro
2012-01-01
This thesis describes the design of a remotely-programmable signal conditioner for the harmonic measurement of accelerator magnets. A 10-channel signal conditioning circuit featuring bucking capabilities was designed from scratch and implemented to the level of the printed circuit board layout. Other system components were chosen from those available on the market. Software design was started with the definition of routine procedures. This thesis is part of an upgrade project for replacing obsolescent automated test equipment belonging to the Fermilab Magnet Test Facility. The design started with a given set of requirements. Using a top-down approach, all the circuits were designedmore » and their expected performances were theoretically predicted and simulated. A limited prototyping phase followed. The printed circuit boards were laid out and routed using a CAD software and focusing the design on maximum electromagnetic interference immunity. An embedded board was selected for controlling and interfacing the signal conditioning circuitry with the instrumentation network. Basic low level routines for hardware access were defined. This work covered the entire design process of the signal conditioner, resulting in a project ready for manufacturing. The expected performances are in line with the requirements and, in the cases where this was not possible, approval of trade-offs was sought and received from the end users. Part I deals with the global structure of the signal conditioner and the subdivision in functional macro-blocks. Part II treats the hardware design phase in detail, covering the analog and digital circuits, the printed circuit layouts, the embedded controller and the power supply selection. Part III deals with the basic hardware-related routines to be implemented in the final software.« less
NASA Technical Reports Server (NTRS)
Caplin, R. S.; Royer, E. R.
1978-01-01
Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1980-01-01
Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.
ICESat-2 laser technology development
NASA Astrophysics Data System (ADS)
Edwards, Ryan; Sawruk, Nick W.; Hovis, Floyd E.; Burns, Patrick; Wysocki, Theodore; Rudd, Joe; Walters, Brooke; Fakhoury, Elias; Prisciandaro, Vincent
2013-09-01
A number of ICESat-2 system requirements drove the technology evolution and the system architecture for the laser transmitter Fibertek has developed for the mission.. These requirements include the laser wall plug efficiency, laser reliability, high PRF (10kHz), short-pulse (<1.5ns), relatively narrow spectral line-width, and wave length tunability. In response to these requirements Fibertek developed a frequency-doubled, master oscillator/power amplifier (MOPA) laser that incorporates direct pumped diode pumped Nd:YVO4 as the gain media, Another guiding force in the system design has been extensive hardware life testing that Fibertek has completed. This ongoing hardware testing and development evolved the system from the original baseline brass board design to the more robust flight laser system. The final design meets or exceeds all NASA requirements and is scalable to support future mission requirements.
Software design for automated assembly of truss structures
NASA Technical Reports Server (NTRS)
Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.
1992-01-01
Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.
New Single Piece Blast Hardware design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Andri; Steinzig, Michael Louis; Aragon, Daniel Adrian
W, Q and PF engineers and machinists designed and fabricated, on the new Mazak i300, the first Single Piece Blast Hardware (unclassified design shown) reducing fabrication and inspection time by over 50%. The first DU Single Piece is completed and will be used for Hydro Test 3680. Past hydro tests used a twopiece assembly due to a lack of equipment capable of machining the complex saddle shape in a single piece. The i300 provides turning and milling 5-axis machining on one machine. The milling head on the i300 can machine past 90 relative to the spindle axis. This makes itmore » possible to machine the complex saddle surface on a single piece. Going to a single piece eliminates tolerance problems, such as tilting and eccentricity, that typically occurred when assembling the two pieces together« less
Cancellation Circuit for Transmit-Receive Isolation
2010-09-01
non -ideal hardware, and the performance of the circuit is limited. One of the major problems is the leakage from the circulator. The leakage disrupts...cancellation circuit was investigated by a series of simulations using Agilent ADS (Agilent Advanced Design System), and hardware tests were conducted to...developed in the WDDPA application, allowing coherent processing of the data from all elements. There are limitations encountered due to non -ideal
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration
Losada, Diego P.; Fernández, Joaquín L.; Paz, Enrique; Sanz, Rafael
2017-01-01
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead. PMID:28467381
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration.
Losada, Diego P; Fernández, Joaquín L; Paz, Enrique; Sanz, Rafael
2017-05-03
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead.
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Meyn, Larry
2016-01-01
Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.
Software Design Improvements. Part 1; Software Benefits and Limitations
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom
1997-01-01
Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?
NASA Astrophysics Data System (ADS)
Glicksman, M. E.; Hahn, R. C.; Koss, M. B.; Tirmizi, S. H.; Selleck, M. E.; Velosa, A.; Winsa, E.
The Isothermal Dendritic Growth Experiment (IDGE) has been designed to provide microgravity data on dendritic growth for a critical test of theory. This paper updates our progress on constructing a crystal growth chamber suitable for space flight. The IDGE chamber is constructed from glass and stainless steel and is hermetically sealed by electron beam welds and glass-metal seals. Initial tests of the chambers sample's melting point plateau show that the new chamber design is capable of preserving the 99.9995 pct purity of succinonitrile (SCN). One can initiate dendrite growth in the center of the IDGE chamber by means of thermo-electric coolers and a capillary injector tube (stinger). The new IDGE chamber is ready for fully integrated tests with the prototype IDGE engineering hardware at NASA's Lewis Research Center.
Results of the Stable Microgravity Vibration Isolation Flight Experiment
NASA Technical Reports Server (NTRS)
Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean
1996-01-01
This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.
Mars oxygen production system design
NASA Technical Reports Server (NTRS)
Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.
1989-01-01
The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.
Mars oxygen production system design
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes the design and construction of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere has been assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer data acquisition and control instrumentation is continuing.
2015-01-27
placed on the user by the required tasks. Design areas that are of concern include seating , input and output device location and design , ambient...software, hardware, and workspace design for the test function of operability that influence operator performance in a computer-based system. 15...PRESENTATION ................... 23 APPENDIX A. SAMPLE DESIGN CHECKLISTS ...................................... A-1 B. SAMPLE TASK CHECKLISTS
Preliminary design of flight hardware for two-phase fluid research
NASA Technical Reports Server (NTRS)
Hustvedt, D. C.; Oonk, R. L.
1982-01-01
This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.
High-Power Microwave Transmission and Mode Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Ronald J.
2015-08-14
This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less
Recent Developments in Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Luquette, Richard J.
2005-01-01
The Formation Flying Test-Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-tc-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on many recent improvements. Two significant upgrades to the FFTB are a message-oriented middleware (MOM) architecture, and a software crosslink for inter-spacecraft ranging. The MOM architecture provides a common messaging bus for software agents, easing integration, arid supporting the GSFC Mission Services Evolution Center (GMSEC) architecture via software bridge. Additionally, the FFTB s hardware capabilities are expanding. Recently, two Low-Power Transceivers (LPTs) with ranging capability have been introduced into the FFTB. The LPT crosslinks will be connected to a modified Crosslink Channel Simulator (CCS), which applies realistic space-environment effects to the Radio Frequency (RF) signals produced by the LPTs.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kankam, David (Technical Monitor)
2003-01-01
A laboratory implementation of a fuzzy logic-tracking controller using a low cost Motorola MC68HC11E9 microprocessor is described in this report. The objective is to design the most optimal yet practical controller that can be implemented and marketed, and which gives respectable performance, even when the system loads, inertia and parameters are varying. A distinguishing feature of this work is the by-product goal of developing a marketable, simple, functional and low cost controller. Additionally, real-time nonlinearities are not ignored, and a mathematical model is not required. A number of components have been designed, built and tested individually, and in various combinations of hardware and software segments. These components have been integrated with a brushless motor to constitute the drive system. A microprocessor-based FLC is incorporated to provide robust speed and position control. Design objectives that are difficult to express mathematically can be easily incorporated in a fuzzy logic-based controller by linguistic information (in the form of fuzzy IF-THEN rules). The theory and design are tested in the laboratory using a hardware setup. Several test cases have been conducted to confirm the effectiveness of the proposed controller. The results indicate excellent tracking performance for both speed and position trajectories. For the purpose of comparison, a bang-bang controller has been tested. The fuzzy logic controller performs significantly better than the traditional bang-bang controller. The bang-bang controller has been shown to be relatively inaccurate and lacking in robustness. Description of the implementation hardware system is also given.
Design and Performance Frameworks for Constructing Problem-Solving Simulations
ERIC Educational Resources Information Center
Stevens, Rons; Palacio-Cayetano, Joycelin
2003-01-01
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks…
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.
2007-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.
Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Electro-Mechanical Systems for Extreme Space Environments
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg
2011-01-01
Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller form factor was designed to surround or be at the actuator. Communication with the slave controllers is accomplished by a bus, thus limiting the number of wires that must be routed to the extremity locations. Efforts have also been made to increase the power capability of these electronics for the ability to power and control actuators up to 2.5KW and still meet the environmental challenges. For commutation and control of the actuator, a resolver was integrated and tested with the actuator. Testing of this resolver demonstrated temperature limitations. Subsequent failure analysis isolated the low temperature failure mechanism and a design solution was negotiated with the manufacturer. Several years of work have resulted in specialized electro-mechanical hardware to meet extreme space exploration environments, a test history that verifies and finds limitations of the designs and a growing knowledge base that can be leveraged by future space exploration missions.
Cobalt: A GPU-based correlator and beamformer for LOFAR
NASA Astrophysics Data System (ADS)
Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.
2018-04-01
For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.
An Environmental for Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
NASA Technical Reports Server (NTRS)
Smith, Russ; Hagen, Richard
2015-01-01
In support of the Deep Space Habitat project a number of composite rack prototypes were developed, designed, fabricated and tested to various extents ( with the International Standard Payload Rack configuration, or crew quarters, as a baseline). This paper focuses specifically on a composite rack prototype with a direct tie in to Space Station hardware. The outlined prototype is an all composite construction, excluding metallic fasteners, washers, and their associated inserts. The rack utilizes braided carbon composite tubing for the frame with the sidewalls, backwall and flooring sections utilizing aircraft grade composite honeycomb sandwich panels. Novel additively manufactured thermoplastic joints and tube inserts were also developed in support of this effort. Joint and tube insert screening tests were conducted at a preliminary level. The screening tests allowed for modification, and enhancement, of the fabrication and design approaches, which will be outlined. The initial joint tests did not include mechanical fasteners. Adhesives were utilized at the joint to composite tube interfaces, along with mechanical fasteners during final fabrication (thus creating a stronger joint than the adhesive only variant). In general the prototype was focused on a potential in-space assembly approach, or kit-of-parts construction concept, which would not necessarily require the inclusion of an adhesive in the joint regions. However, given the tie in to legacy Station hardware (and potential flight loads with imbedded hardware mass loadings), the rack was built as stiff and strong as possible. Preliminary torque down tests were also conducted to determine the feasibility of mounting the composite honeycomb panels to the composite tubing sections via the additively manufactured tube inserts. Additional fastener torque down tests were also conducted with inserts (helicoils) imbedded within the joints. Lessons learned are also included and discussed.
A study for hypergolic vapor sensor development
NASA Technical Reports Server (NTRS)
Stetter, J. R.; Tellefsen, K.
1977-01-01
In summary, the following tasks were completed within the scope of this work: (1) a portable Monomethylhydrazine analyzer was developed, designed, fabricated and tested. (2) A portable NO2 analyzer was developed, designed, fabricated and tested. (3) Sampling probes and accessories were designed and fabricated for this instrumentation. (4) Improvements and modifications were made to the model 7630 Ecolyzer in preparation for field testing. (5) Instrument calibration procedures and hydrazine handling techniques necessary to the successful application of this hardware were developed.
F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Fischer, Michael C.
1999-01-01
The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.
Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing
NASA Astrophysics Data System (ADS)
Farinholt, Kevin M.; Taylor, Stuart G.; Park, Gyuhae; Ammerman, Curtt M.
2012-04-01
This paper overviews the test setup and experimental methods for structural health monitoring (SHM) of two 9-meter CX-100 wind turbine blades that underwent fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, which was manufactured to standard specifications for the CX-100 design. The second blade was manufactured for the University of Massachusetts, Lowell with intentional simulated defects within the fabric layup. Each blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. The blades underwent harmonic excitation at their first natural frequency using the Universal Resonant Excitation (UREX) system at NREL. Blades were initially excited at 25% of their design load, and then with steadily increasing loads until each blade reached failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured over multi-scale frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed at Los Alamos National Laboratory (LANL). The hardware systems were evaluated for their aptness in data collection for effective application of SHM methods to the blades. The results of this assessment will inform the selection of acquisition hardware and sensor types to be deployed on a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.
NASA Astrophysics Data System (ADS)
Kelly, Jamie S.; Bowman, Hiroshi C.; Rao, Vittal S.; Pottinger, Hardy J.
1997-06-01
Implementation issues represent an unfamiliar challenge to most control engineers, and many techniques for controller design ignore these issues outright. Consequently, the design of controllers for smart structural systems usually proceeds without regard for their eventual implementation, thus resulting either in serious performance degradation or in hardware requirements that squander power, complicate integration, and drive up cost. The level of integration assumed by the Smart Patch further exacerbates these difficulties, and any design inefficiency may render the realization of a single-package sensor-controller-actuator system infeasible. The goal of this research is to automate the controller implementation process and to relieve the design engineer of implementation concerns like quantization, computational efficiency, and device selection. We specifically target Field Programmable Gate Arrays (FPGAs) as our hardware platform because these devices are highly flexible, power efficient, and reprogrammable. The current study develops an automated implementation sequence that minimizes hardware requirements while maintaining controller performance. Beginning with a state space representation of the controller, the sequence automatically generates a configuration bitstream for a suitable FPGA implementation. MATLAB functions optimize and simulate the control algorithm before translating it into the VHSIC hardware description language. These functions improve power efficiency and simplify integration in the final implementation by performing a linear transformation that renders the controller computationally friendly. The transformation favors sparse matrices in order to reduce multiply operations and the hardware necessary to support them; simultaneously, the remaining matrix elements take on values that minimize limit cycles and parameter sensitivity. The proposed controller design methodology is implemented on a simple cantilever beam test structure using FPGA hardware. The experimental closed loop response is compared with that of an automated FPGA controller implementation. Finally, we explore the integration of FPGA based controllers into a multi-chip module, which we believe represents the next step towards the realization of the Smart Patch.
Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments
NASA Technical Reports Server (NTRS)
Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.
2011-01-01
The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.
Ground station hardware for the ATS-F millimeter wave experiment
NASA Technical Reports Server (NTRS)
Duffield, T. L.
1973-01-01
The results are presented of a program to design, fabricate, test, and install a primary ATS-F millimeter wave ground receiving station. Propagation parameters at millimeter waves are discussed along with the objective of the overall experiment. A general description is given of the receiving system and its function in the experiment. Typical receiver characteristics are presented which show that the experiment is entirely feasible from a link SNR standpoint. The receiving system hardware designs are discussed with separate treatment given to the propagation and the radiometer receiver designs. The modification and relocation are described of an existing 15-ft antenna to meet the ATS-F requirements. The design of a dual frequency feed subsystem and self calibration equipment is included.
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
Pressure fed thrust chamber technology program
NASA Technical Reports Server (NTRS)
Dunn, Glen M.
1992-01-01
This is the final report for the Pressure Fed Technology Program. It details the design, fabrication, and testing of subscale hardware which successfully characterized Liquid Oxygen Rocket Propulsion (LOX/RP) combustion for low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved in this testing, and details the low risk development requirements for low cost engines for future Expandable Launch Vehicles (ELV).
Advanced information processing system: Fault injection study and results
NASA Technical Reports Server (NTRS)
Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.
1992-01-01
The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.
NASA Technical Reports Server (NTRS)
Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.
2015-01-01
High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.
Performance Measurement of Advanced Stirling Convertors (ASC-E3)
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2013-01-01
NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing data of the Advanced Stirling Convertor (ASC). The latest version of the ASC (ASC-E3, to represent the third cycle of engineering model test hardware) is of a design identical to the forthcoming flight convertors. For this generation of hardware, a joint Sunpower and GRC effort was initiated to improve and standardize the test support hardware. After this effort was completed, the first pair of ASC-E3 units was produced by Sunpower and then delivered to GRC in December 2012. GRC has begun operation of these units. This process included performance verification, which examined the data from various tests to validate the convertor performance to the product specification. Other tests included detailed performance mapping that encompassed the wide range of operating conditions that will exist during a mission. These convertors were then transferred to Lockheed Martin for controller checkout testing. The results of this latest convertor performance verification activity are summarized here.
Kant, Nasir Ali; Dar, Mohamad Rafiq; Khanday, Farooq Ahmad
2015-01-01
The output of every neuron in neural network is specified by the employed activation function (AF) and therefore forms the heart of neural networks. As far as the design of artificial neural networks (ANNs) is concerned, hardware approach is preferred over software one because it promises the full utilization of the application potential of ANNs. Therefore, besides some arithmetic blocks, designing AF in hardware is the most important for designing ANN. While attempting to design the AF in hardware, the designs should be compatible with the modern Very Large Scale Integration (VLSI) design techniques. In this regard, the implemented designs should: only be in Metal Oxide Semiconductor (MOS) technology in order to be compatible with the digital designs, provide electronic tunability feature, and be able to operate at ultra-low voltage. Companding is one of the promising circuit design techniques for achieving these goals. In this paper, 0.5 V design of Liao's AF using sinh-domain technique is introduced. Furthermore, the function is tested by implementing inertial neuron model. The performance of the AF and inertial neuron model have been evaluated through simulation results, using the PSPICE software with the MOS transistor models provided by the 0.18-μm Taiwan Semiconductor Manufacturer Complementary Metal Oxide Semiconductor (TSM CMOS) process.
Phosphoric and electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. I.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1984-01-01
The advancement of electric utility cell stack technology and reduction of cell stack cost was initiated. The cell stack has a nominal 10 ft (2) active area and operates at 120 psia/405(0)F. The program comprises six parallel phases, which culminate in a full height, 10-ft(2) stack verification test: (1) provides the information and services needed to manage the effort, including definition of the prototype commercial power plant; (2) develops the technical base for long term improvements to the cell stack; (3) develops materials and processing techniques for cell stack components incorporating the best available technology; (4) provides the design of hardware and conceptual processing layouts, and updates the power plant definition of Phase 1 to reflect the results of Phases 2 and 3; Phase 5 manufactures the hardware to verify the achievements of Phases 2 and 3, and analyzes the cost of this hardware; and Phase 6 tests the cell stacks assembled from the hardware of Phase 5 to assess the state of development.
SSME Main Combustion Chamber (MCC) hot oil dewaxing
NASA Technical Reports Server (NTRS)
Akpati, Anthony U.
1995-01-01
In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax (R) casting compound. Rigidax (R) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.
SSME Main Combustion Chamber (MCC) 'Hot Oil' Dewaxing
NASA Technical Reports Server (NTRS)
Akpati, Anthony U.
1994-01-01
In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax(registered mark) casting compound. Rigidax(registered mark) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.
Health Maintenance System (HMS) Hardware Research, Design, and Collaboration
NASA Technical Reports Server (NTRS)
Gonzalez, Stefanie M.
2010-01-01
The Space Life Sciences division (SLSD) concentrates on optimizing a crew member's health. Developments are translated into innovative engineering solutions, research growth, and community awareness. This internship incorporates all those areas by targeting various projects. The main project focuses on integrating clinical and biomedical engineering principles to design, develop, and test new medical kits scheduled for launch in the Spring of 2011. Additionally, items will be tagged with Radio Frequency Interference Devices (RFID) to keep track of the inventory. The tags will then be tested to optimize Radio Frequency feed and feed placement. Research growth will occur with ground based experiments designed to measure calcium encrusted deposits in the International Space Station (ISS). The tests will assess the urine calcium levels with Portable Clinical Blood Analyzer (PCBA) technology. If effective then a model for urine calcium will be developed and expanded to microgravity environments. To support collaboration amongst the subdivisions of SLSD the architecture of the Crew Healthcare Systems (CHeCS) SharePoint site has been redesigned for maximum efficiency. Community collaboration has also been established with the University of Southern California, Dept. of Aeronautical Engineering and the Food and Drug Administration (FDA). Hardware disbursements will transpire within these communities to support planetary surface exploration and to serve as an educational tool demonstrating how ground based medicine influenced the technological development of space hardware.
Zero-G life support for Space Station Freedom
NASA Technical Reports Server (NTRS)
Kolodney, Matthew; Dall-Bauman, L.
1992-01-01
Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.
One Step Closer to the Marketplace for State-of-the-Art Wind Turbine
engineer and project lead Jonathan Keller, the technology is meeting design projections and working as drivetrain design. The Energy Department funded more than half of the project's $3 million design, build, and test budget. The industry partners supplied expertise, hardware design, development and fabrication
Study of Plasma Motor Generator (PMG) tether system for orbit reboost
NASA Technical Reports Server (NTRS)
1987-01-01
Detailed designs were produced for a 2 kW plasma motor generator tether system based largely on existing hardware and hardware designs. Specifically, the hollow cathode design and electronics are derived from ion propulsion equipment. A prototype tether was constructed and will be tested for deployment, strength, resistance to breakage and abrasion and electrical properties. In addition, laboratory development models of the electronics will be used to operate two plasma motor generator hollow cathode assemblies with this tether to verify electrical performance parameters for the complete system. Results show that a low cost demonstration of a plasma motor generator tether system appears to be feasible by the middle of the 1990s.
NASA Technical Reports Server (NTRS)
Reddell, Brandon
2015-01-01
Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.
NASA Technical Reports Server (NTRS)
Glazer, Stuart; Comber, Brian (Inventor)
2016-01-01
The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results; lists problems encountered during testing and lessons learned.
MSFC Skylab Apollo Telescope Mount. [a technical history and management critique
NASA Technical Reports Server (NTRS)
Morse, A. R.
1974-01-01
A technical history and management critique of the Skylab Apollo Telescope Mount (ATM) from initial conception through the design, manufacturing, testing and prelaunch phases is presented. A mission performance summary provides a general overview of the ATM's achievements in relationship to its design goals. Recommendations and conclusions applicable to hardware design, test program philosophy and performance, and program management techniques for the ATM with potential application to future programs are also discussed.
Computerized Adaptive Testing System Design: Preliminary Design Considerations.
1982-07-01
the administrative or operational requirements of CAT and presented - # k*----.,ku nh-n.-utu (IPOI efi~g.2me (PMU tQ7q. vim NPRDC TR 82-52 July 1982...design model for a computerized adaptive testing ( CAT ) system was developed and presented through a series of hierarchy plus input-process-output (HIPO...physical system was addressed through brief discussions of hardware, software, interfaces, and personnel requirements. Further steps in CAT system
Hardware acceleration and verification of systems designed with hardware description languages (HDL)
NASA Astrophysics Data System (ADS)
Wisniewski, Remigiusz; Wegrzyn, Marek
2005-02-01
Hardware description languages (HDLs) allow creating bigger and bigger designs nowadays. The size of prototyped systems very often exceeds million gates. Therefore verification process of the designs takes several hours or even days. The solution for this problem can be solved by hardware acceleration of simulation.
ISWE: A Case Study of Technology Utilization
NASA Technical Reports Server (NTRS)
Benfield, M. P.; Mitchell, D. P.; Vanhooser, M. T.; Landrum, D. B.
1998-01-01
The International Space Welding Experiment is a joint project between the E.O. Paton Welding Institute of Kiev, Ukraine and the George C. Marshall Space Flight Center in Huntsville, Alabama. When an international partner is involved in a project, differences in design and testing philosophy can become a factor in the development of the hardware. This report addresses selected issues that arose during the ISWE hardware development as well as the solutions the ISWE team made.
Design verification test matrix development for the STME thrust chamber assembly
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.
1993-01-01
This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.
Relative gravimeter prototype based on micro electro mechanical system
NASA Astrophysics Data System (ADS)
Rozy, A. S. A.; Nugroho, H. A.; Yusuf, M.
2018-03-01
This research to make gravity measurement system by utilizing micro electro mechanical system based sensor in Gal order. System design consists of three parts, design of hardware, software, and interface. The design of the hardware include of designing the sensor design to measure the value of a stable gravity acceleration. The ADXL345 and ADXL335 sensors are tuned to obtain stable measurements. The design of the instrumentation system the next stage by creating a design to integrate between the sensor, microcontroller, and GPS. The design of programming algorithm is done with Arduino IDE software. The interface design uses a 20x4 LCD display to display the gravity acceleration value and store data on the storage media. The system uses a box made of iron and plate leveling to minimize measurement errors. The sensor test shows the ADXL345 sensor has a more stable value. The system is examined by comparing with gravity measurement of gravimeter A-10 results in Bandung observation post. The result of system test resulted the average of system correction value equal to 0.19 Gal. The system is expected to use for mineral exploration, water supply analyze, and earthquake precursor.
NASA Technical Reports Server (NTRS)
Pavlock, Kate M.
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.
On the use of inexact, pruned hardware in atmospheric modelling
Düben, Peter D.; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V.; Palmer, T. N.
2014-01-01
Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz ‘96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models. PMID:24842031
DDL:Digital systems design language
NASA Technical Reports Server (NTRS)
Shival, S. G.
1980-01-01
Hardware description languages are valuable tools in such applications as hardware design, system documentation, and logic design training. DDL is convenient medium for inputting design details into hardware-design automation system. It is suitable for describing digital systems at gate, register transfer, and major combinational block level.
Hardware and Programmatic Progress on the Ares I-X Flight Test
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will execute the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle; which, together with the Ares V cargo launch vehicle (Figure 1), will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and, in some cases, already fabricating vehicle hardware in preparation for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.
Magnetic Field Apparatus (MFA) Hardware Test
NASA Technical Reports Server (NTRS)
Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave
1999-01-01
The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.
Crash test and evaluation of the TxDOT T631 bridge rail.
DOT National Transportation Integrated Search
2014-01-01
In August 2010, Midwest Roadside Safety Facility (MwRSF) developed and crash tested a low-cost, energy-absorbing bridge rail for the Manual for Assessing Safety Hardware (MASH) TL-3 applications. This low-cost bridge rail was designed to be compatibl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
ERMI, A.M.
2000-01-24
This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
NASA Technical Reports Server (NTRS)
1976-01-01
Full size Tug LO2 and LH2 tank configurations were defined, based on selected tank geometries. These configurations were then locally modeled for computer stress analysis. A large subscale test tank, representing the selected Tug LO2 tank, was designed and analyzed. This tank was fabricated using procedures which represented production operations. An evaluation test program was outlined and a test procedure defined. The necessary test hardware was also fabricated.
NASA Technical Reports Server (NTRS)
Bowman, R. N.; Steele, M. K.; Sun, S. (Technical Monitor)
2002-01-01
The European Modular Cultivation System (EMCS) is an European Space Agency-developed facility designed to support plant research in microgravity on the IS NASA is responsible for providing US specific hardware to use within the EMCS. In preparation for flight, research will be developed and tested at Ames Research Center in the EMCS ground test hardware, the Experiment Reference Module (ERM) In order to determine the acceptability of the ERM for such purposes, biocompatibility tests will be performed to determine that the hardware functions as intended and successfully supports the' growth of plants. In this report, we describe the development of procedures and the collection of baseline data against which to compare ERM function, e.g. biocompatibility testing. A simple and robust system was developed to grow whole Arabidopsis thaliana plants within the confined volumes characteristic of spaceflight hardware. Our system for growing plants eliminated the necessity of a water/nutrient delivery system and allowed for quantifiable assessment of individual plants, as well as entire population dynamics. To insure uniform germination, seeds were started in small straw segments and transplanted into modified scintillation vials. Seedlings were selected prior to transplantation to decrease genetic variability. Plants were grown for a total of 24 days in standard laboratory plant growth chambers under controlled conditions. Sequential digital still images were taken on a daily basis. Analysis of these images allowed for the quantification of even minute environmental effect, on growth dynamics whole plants. The data collected provide reliable growth curves against which to compare plants grown in the ERM.
NASA Astrophysics Data System (ADS)
Swift, Jonathan J.; Bottom, Michael; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Barnes, Stuart I.; Gibson, Steven R.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H.; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew
2015-04-01
The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b-a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015.
Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit
NASA Technical Reports Server (NTRS)
French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory
2005-01-01
The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.
NASA Technical Reports Server (NTRS)
Miller, Darcy
2000-01-01
Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.
Non-Pilot Protection of the HVDC Grid
NASA Astrophysics Data System (ADS)
Badrkhani Ajaei, Firouz
This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.
Design, Activation, and Operation of the J2-X Subscale Simulator (JSS)
NASA Technical Reports Server (NTRS)
Saunders, Grady P.; Raines, Nickey G.; Varner, Darrel G.
2009-01-01
The purpose of this paper is to give a detailed description of the design, activation, and operation of the J2-X Subscale Simulator (JSS) installed in Cell 1 of the E3 test facility at Stennis Space Center, MS (SSC). The primary purpose of the JSS is to simulate the installation of the J2-X engine in the A3 Subscale Rocket Altitude Test Facility at SSC. The JSS is designed to give aerodynamically and thermodynamically similar plume properties as the J2-X engine currently under development for use as the upper stage engine on the ARES I and ARES V spacecraft. The JSS is a scale pressure fed, LOX/GH fueled rocket that is geometrically similar to the J2-X from the throat to the nozzle exit plane (NEP) and is operated at the same oxidizer to fuel ratios and chamber pressures. This paper describes the heritage hardware used as the basis of the JSS design, the newly designed rocket hardware, igniter systems used, and the activation and operation of the JSS.
NASA Technical Reports Server (NTRS)
Davis, D. J.; Linse, D. J.; Suikat, R.; Entz, D. P.
1986-01-01
The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation.
IDEAS and App Development Internship in Hardware and Software Design
NASA Technical Reports Server (NTRS)
Alrayes, Rabab D.
2016-01-01
In this report, I will discuss the tasks and projects I have completed while working as an electrical engineering intern during the spring semester of 2016 at NASA Kennedy Space Center. In the field of software development, I completed tasks for the G-O Caching Mobile App and the Asbestos Management Information System (AMIS) Web App. The G-O Caching Mobile App was written in HTML, CSS, and JavaScript on the Cordova framework, while the AMIS Web App is written in HTML, CSS, JavaScript, and C# on the AngularJS framework. My goals and objectives on these two projects were to produce an app with an eye-catching and intuitive User Interface (UI), which will attract more employees to participate; to produce a fully-tested, fully functional app which supports workforce engagement and exploration; to produce a fully-tested, fully functional web app that assists technicians working in asbestos management. I also worked in hardware development on the Integrated Display and Environmental Awareness System (IDEAS) wearable technology project. My tasks on this project were focused in PCB design and camera integration. My goals and objectives for this project were to successfully integrate fully functioning custom hardware extenders on the wearable technology headset to minimize the size of hardware on the smart glasses headset for maximum user comfort; to successfully integrate fully functioning camera onto the headset. By the end of this semester, I was able to successfully develop four extender boards to minimize hardware on the headset, and assisted in integrating a fully-functioning camera into the system.
Experiment S-191 visible and infrared spectrometer
NASA Technical Reports Server (NTRS)
Linnell, E. R.
1974-01-01
The design, development, fabrication test, and utilization of the visible and infrared spectrometer portion of the S-191 experiment, part of the Earth Resources Experiment Package, on board Skylab is discussed. The S-191 program is described, as well as conclusions and recommendations for improvement of this type of instrument for future applications. Design requirements, instrument design approaches, and the test verification program are presented along with test results, including flight hardware calibration data. A brief discussion of operation during the Skylab mission is included. Documentation associated with the program is listed.
International Space Station (ISS)
2000-02-01
A section of the International Space Station truss assembly arrived at the Marshall Space Flight Center on NASA's Super Guppy cargo plane for structural and design testing as well as installation of critical flight hardware.
Design and control of compliant tensegrity robots through simulation and hardware validation
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity (‘tensile–integrity’) structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. PMID:24990292
NASA Technical Reports Server (NTRS)
Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.
1992-01-01
Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.
The design and implementation of postprocessing for depth map on real-time extraction system.
Tang, Zhiwei; Li, Bin; Li, Huosheng; Xu, Zheng
2014-01-01
Depth estimation becomes the key technology to resolve the communications of the stereo vision. We can get the real-time depth map based on hardware, which cannot implement complicated algorithm as software, because there are some restrictions in the hardware structure. Eventually, some wrong stereo matching will inevitably exist in the process of depth estimation by hardware, such as FPGA. In order to solve the problem a postprocessing function is designed in this paper. After matching cost unique test, the both left-right and right-left consistency check solutions are implemented, respectively; then, the cavities in depth maps can be filled by right depth values on the basis of right-left consistency check solution. The results in the experiments have shown that the depth map extraction and postprocessing function can be implemented in real time in the same system; what is more, the quality of the depth maps is satisfactory.
1987-12-01
1985:55; Nash, 1984:18). Because of this, the Department of Defense began a program , VHDL, to standardize a hardware description language for VHSIC... Deitel , 1984:507-508). This operating system (or environment) is in general use in the commercial world. Universities, given the responsibility to ...though not necessarily exhaustive) test suite designed to exercise each VHDL grammar rule and associated program modules as thor- oughly as possible. The
RotCFD Analysis of the AH-56 Cheyenne Hub Drag
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen
2016-01-01
In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.
Proceedings of the Symposium on Long-Life Hardware for Space
NASA Technical Reports Server (NTRS)
1970-01-01
Two-volume edition of the papers of the symposium is described. It is divided into six sections - parts, materials, management, system testing, component design, and system test. Material presented focuses attention on problems created by the increased complexity of technology and long-term mission requirements.
Solid-State Lighting Module (SSLM)
NASA Technical Reports Server (NTRS)
2008-01-01
The project's goal was to build a light-emitting-diode (LED)-based light fixture that is identical in fit, form, and function to the existing International Space Station (ISS) General Luminaire Assembly (GLA) light fixture and fly it on the ISS in early FY 2008 as a Station Detailed Test Objective (SDTO). Our design offers the following strengths: proven component hardware: Our design uses components flown in other KSC-developed hardware; heat path thermal pad: LED array heat is transferred from the circuit board by silicon pad, negating the need for a cooling fan; variable colorimetry: The output light color can be changed by inserting different LED combinations.
NASA Technical Reports Server (NTRS)
Rieker, Lorra L.; Haraburda, Francis M.
1989-01-01
Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.
NASA Technical Reports Server (NTRS)
1976-01-01
The results of the spread spectrum despreader project are reported and three principal products are designed and tested. The products are, (1) a spread spectrum despreader breadboard, (2) associated test equipment consisting of a spectrum spreader and bit reconstruction/error counter and (3) paper design of a Ku-band receiver which would incorporate the despreader as a principal subsystem. The despreader and test set are designed for maximum flexibility. A choice of unbalanced quadriphase or biphase shift keyed data modulation is available. Selectable integration time and threshold voltages on the despreader further lend true usefulness as laboratory test equipment to the delivered hardware.
Design and assembly considerations for Redox cells and stacks
NASA Technical Reports Server (NTRS)
Stalnaker, D. K.; Lieberman, A.
1981-01-01
Individual redox flow cells are arranged electrically in series and hydraulically in parallel to form a single assembly called a stack. The hardware currently being tested in the laboratory has an active electrode area of either 310 sq cm or 929 sq cm. Four 310 sq cm stacks, each consisting of 39 active cells, were incorporated into a 1.0 kW preprototype system. The physical design of the stack is very critical to the performance and efficiency of the redox storage sytem. This report will discuss the mechanical aspects of the cell and stack design for the current Redox hardware, with regard to sealing the stack internally as well as externally, minimizing shunt currents and minimizing the electrical resistance of the stack.
First Light with the NRAO Transient Event Capture Hardware
NASA Astrophysics Data System (ADS)
Langston, Glen; Rumberg, B.; Brandt, P.
2007-12-01
The design, implementation and testing of the first NRAO Event Capture data acquisition system is presented. The NRAO in Green Bank is developing a set of new data acquisition systems based on the U.C. Berkeley CASPER IBOB/ADC/BEE2 hardware. We describe the hardware configuration and initial experiences with the development system. We present first astronomical tests of the Event Capture system, using the 43m telescope (140ft). These observations were carried out at 900 MHz. The observations were made on 2007 July 8 and 9 towards the Crab pulsar, the galactic center, the Moon and two test observations while the 43m was pointed at Zenith (straight up). The Event Capture is one of several on-going FPGA based data acquisition projects being implemented for the Robert C. Byrd Green Bank Telescope (GBT) and for the 43m telescopes. The NRAO Configurable Instrument Collaboration for Agile Data Acquisition (CICADA) program is described at: http://wikio.nrao.edu/bin/view/CICADA
Space shuttle solid rocket booster recovery subsystem
NASA Technical Reports Server (NTRS)
Runkle, R. E.
1981-01-01
The studies, the development, and the testing program that led to the design and delivery of all flight hardware are described. Special emphasis was placed on the recovery parachutes. The parachutes were designed to deploy in a severe environment and safely lower to Earth an 85 ton rocket motor casing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Forrest; Incandela, Joseph
This project was slated to design and develop Rad-Hard IP components for 1Gb/s links and supporting hardware designs such as PLL, SER/DES, pad drivers and receivers and custom protocol hardware for the 1Gb/s channel. Also included in the proposal was a study of a hardened memory to be used as a packet buffer for channel and data concentrator components to meet the 1 Gb/s specification. Over the course of the proposal, technology change and innovation of hardware designs lead us away from the 1 Gb/s goal to contemplate much higher performance link IP which, we believed better met the goalsmore » of physics experiments. Note that CERN microelectronics had managed to create a 4.7 Gb/s link designed to drive optical fibers and containing infrastructure for connecting much lower bandwidth front-end devices. Our own work to that point had shown the possibility of constructing a link with much lower power, lower physical overhead but of equivalent performance that could be designed to integrate directly onto the front-end ASIC (ADC and data encoding) designs. Substantial overall power savings and experimental simplicity could be achieved by eliminating data transmission to data concentrators and data concentrators and related hardened buffering themselves, with conversion to optical media at a removed distance from the experiment core. We had already developed and tested Rad-Hard SER/DES components (1Gb in 130nm standard cells) and redundant Pad Drivers/Receivers (3+ Gb/s designed and measured performance), and had a viable 1Gb/s link design based on redundant a stuttered clock receiver and classical PLL, so the basic goals of the proposal had been achieved. Below, in chronological order, are the products and tools we constructed, as well as our tests and publications.« less
Loopback Radio Frequency Translator For The Acts Mobile Terminal
NASA Technical Reports Server (NTRS)
Davis, John F.
1993-01-01
This paper summarizes the system design and performance measurements of the Loopback Translator, a satellite simulator to be used in testing the fixed and mobile terminal hardware prior to the ACTS launch.
Open-source hardware for medical devices
2016-01-01
Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device. PMID:27158528
Open-source hardware for medical devices.
Niezen, Gerrit; Eslambolchilar, Parisa; Thimbleby, Harold
2016-04-01
Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device.
Veggie and the VEG-01 Hardware Validation Test
NASA Technical Reports Server (NTRS)
Massa, Gioia; wheeler, Ray; Smith, Trent
2015-01-01
This presentation presents a brief overview of KSC plant science hardware for space and then details the Veggie hardware and the VEG-01 hardware validation test. The test results and future plans are discussed.
Boeing's STAR-FODB test results
NASA Astrophysics Data System (ADS)
Fritz, Martin E.; de la Chapelle, Michael; Van Ausdal, Arthur W.
1995-05-01
Boeing has successfully concluded a 2 1/2 year, two phase developmental contract for the STAR-Fiber Optic Data Bus (FODB) that is intended for future space-based applications. The first phase included system analysis, trade studies, behavior modeling, and architecture and protocal selection. During this phase we selected AS4074 Linear Token Passing Bus (LTPB) protocol operating at 200 Mbps, along with the passive, star-coupled fiber media. The second phase involved design, build, integration, and performance and environmental test of brassboard hardware. The resulting brassboard hardware successfully passed performance testing, providing 200 Mbps operation with a 32 X 32 star-coupled medium. This hardware is suitable for a spaceflight experiment to validate ground testing and analysis and to demonstrate performace in the intended environment. The fiber bus interface unit (FBIU) is a multichip module containing transceiver, protocol, and data formatting chips, buffer memory, and a station management controller. The FBIU has been designed for low power, high reliability, and radiation tolerance. Nine FBIUs were built and integrated with the fiber optic physical layer consisting of the fiber cable plant (FCP) and star coupler assembly (SCA). Performance and environmental testing, including radiation exposure, was performed on selected FBIUs and the physical layer. The integrated system was demonstrated with a full motion color video image transfer across the bus while simultaneously performing utility functions with a fiber bus control module (FBCM) over a telemetry and control (T&C) bus, in this case AS1773.
First incremental buy for Increment 2 of the Space Transportation System (STS)
NASA Technical Reports Server (NTRS)
1989-01-01
Thiokol manufactured and delivered 9 flight motors to KSC on schedule. All test flights were successful. All spent SRMs were recovered. Design, development, manufacture, and delivery of required transportation, handling, and checkout equipment to MSFC and to KSC were completed on schedule. All items of data required by DPD 400 were prepared and delivered as directed. In the system requirements and analysis area, the point of departure from Buy 1 to the operational phase was developed in significant detail with a complete set of transition documentation available. The documentation prepared during the Buy 1 program was maintained and updated where required. The following flight support activities should be continued through other production programs: as-built materials usage tracking on all flight hardware; mass properties reporting for all flight hardware until sample size is large enough to verify that the weight limit requirements were met; ballistic predictions and postflight performance assessments for all production flights; and recovered SRM hardware inspection and anomaly identification. In the safety, reliability, and quality assurance area, activities accomplished were assurance oriented in nature and specifically formulated to prevent problems and hardware failures. The flight program to date has adequately demonstrated the success of this assurance approach. The attention focused on details of design, analysis, manufacture, and inspection to assure the production of high-quality hardware has resulted in the absence of flight failures. The few anomalies which did occur were evaluated, design or manufacturing changes incorporated, and corrective actions taken to preclude recurrence.
Planetary Suit Hip Bearing Model for Predicting Design vs. Performance
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar
2011-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective, the suited performance trends were comparable between the model and the suited subjects. With the three off-nominal bearing configurations compared to the nominal bearing configurations, human subjects showed decreases in hip flexion of 64%, 6%, and 13% and in hip abduction of 59%, 2%, and 20%. Likewise the solid model showed decreases in hip flexion of 58%, 1%, and 25% and in hip abduction of 56%, 0%, and 30%, under the same condition changes from the nominal configuration. Differences seen between the model predictions and the human subject performance data could be attributed to the model lacking dynamic elements and performing kinematic analysis only, the level of fit of the subjects with the suit, the levels of the subject s suit experience.
NASA Technical Reports Server (NTRS)
1989-01-01
The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.
Development of drive mechanism for an oscillating airfoil
NASA Technical Reports Server (NTRS)
Sticht, Clifford D.
1988-01-01
The design and development of an in-draft wind tunnel test section which will be used to study the dynamic stall of airfoils oscillating in pitch is described. The hardware developed comprises a spanned airfoil between schleiren windows, a four bar linkage, flywheels, a drive system and a test section structure.
Optical fiber dispersion characterization study
NASA Technical Reports Server (NTRS)
Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.
1979-01-01
The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.
Ignition Characterization Tests of the LOX/Ethanol Propellant Combination
NASA Technical Reports Server (NTRS)
Popp, Christopher G.; Robinson, Philip J.; Veith, Eric M.
2004-01-01
A series of contracts have been issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) to explore candidate technologies considered to be important for the Next Generation Launch Technology (NGLT) effort. One aspect of the NGLT effort is to explore the potential of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 has been issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilizes liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporates a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. Aerojet has designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successfid ignition from GOX to LOX, encompassing potential two-phase flow conditions. The workhorse igniter was designed to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the inherent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the inherent heat of the test hardware would be removed and the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. Pressure and temperature instrumentation permitted oxygen state points to be determined, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, MR(sub c). Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 173 R LOX to 480 R GQX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5.
Reducing the Time and Cost of Testing Engines
NASA Technical Reports Server (NTRS)
2004-01-01
Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.
EMU Suit Performance Simulation
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar
2014-01-01
Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based on individual anthropometry
Topex Microwave Radiometer thermal control - Post-system-test modifications and on-orbit performance
NASA Technical Reports Server (NTRS)
Lin, Edward I.
1993-01-01
The Topex Microwave Radiometer has had an excellent thermal performance since launch. The instrument, however, went through a hardware modification right before launch to correct for a thermal design inadequacy that was uncovered during the spacecraft thermal vacuum test. This paper reports on how the initially obscure problem was tracked down, and how the thermal models were revised, validated, and utilized to investigate the solution options and guide the hardware modification decisions. Details related to test data interpretation, analytical uncertainties, and model-prediction vs. test-data correlation, are documented. Instrument/spacecraft interface issues, where the problem originated and where in general pitfalls abound, are dealt with specifically. Finally, on-orbit thermal performance data are presented, which exhibit good agreement with flight predictions, and lessons learned are discussed.
Current efforts on developing an HWIL synthetic environment for LADAR sensor testing at AMRDEC
NASA Astrophysics Data System (ADS)
Kim, Hajin J.; Cornell, Michael C.; Naumann, Charles B.
2005-05-01
Efforts in developing a synthetic environment for testing LADAR sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center (AMRDEC) of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on developing the optical projection hardware portion of the synthetic environment. These activities range from system level design down to component level testing. Of particular interest have been schemes for generating the optical signals representing the individual pixels of the projection. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's Advanced Simulation Center (ASC).
Using Innovative Techniques for Manufacturing Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy
2011-01-01
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef
2004-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Technical Reports Server (NTRS)
1993-01-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Astrophysics Data System (ADS)
1993-10-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Hardware and software status of QCDOC
NASA Astrophysics Data System (ADS)
Boyle, P. A.; Chen, D.; Christ, N. H.; Clark, M.; Cohen, S. D.; Cristian, C.; Dong, Z.; Gara, A.; Joó, B.; Jung, C.; Kim, C.; Levkova, L.; Liao, X.; Liu, G.; Mawhinney, R. D.; Ohta, S.; Petrov, K.; Wettig, T.; Yamaguchi, A.
2004-03-01
QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation.
NASA Astrophysics Data System (ADS)
Casselman, Steve; Schewel, John
2002-07-01
Success in the marketplace may well depend upon the ability to upgrade and test hardware designs instantly around the world. An upgrade management strategy requires more than just the bitstream file, email or a JTAG cable. A well-managed methodology, capable of transmitting bitstreams directly into targeted FPGAs over the network or internet is an essential element for a successful FPGA based product strategy. Virtual Computer Corporation"s HOTMan, Bitstream Management Environment combines a feature rich cross-platform API with an Object Oriented Bitstream technique for Remote Upgrading of Hardware over the Internet.
Assurance of COTS Boards for Space Flight. Part 1
NASA Technical Reports Server (NTRS)
Plante, Jeannette; Helmold, Norm; Eveland, Clay
1998-01-01
Space Flight hardware and software designers are increasingly turning to Commercial-Off-the-Shelf (COTS) products in hopes of meeting the demands imposed on them by projects with short development cycle times. The Technology Validation Assurance (TVA) team at NASA GSFC has embarked on applying a method for inserting COTS hardware into the Spartan 251 spacecraft. This method includes Procurement, Characterization, Ruggedization/Remediation and Verification Testing process steps which are intended to increase the uses confidence in the hardware's ability to function in the intended application for the required duration. As this method is refined with use, it has the potential for becoming a benchmark for industry-wide use of COTS in high reliability systems.
Integration of MSFC Usability Lab with Usability Testing
NASA Technical Reports Server (NTRS)
Cheng, Yiwei; Richardson, Sally
2010-01-01
As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.
Shuttle Entry Air Data System (SEADS) hardware development. Volume 1: Summary
NASA Technical Reports Server (NTRS)
While, D. M.
1983-01-01
Hardware development of the Shuttle Entry Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests include plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.
Shuttle Entry Air Data System (SEADS) hardware development. Volume 2: History
NASA Technical Reports Server (NTRS)
While, D. M.
1983-01-01
Hardware development of the Shuttle Entry Air Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests included plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.
Burbank uses the Neurospat hardware in the Columbus Module
2012-03-15
ISS030-E-177227 (15 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Burbank uses the Neurospat hardware in the Columbus Module
2012-03-15
ISS030-E-177225 (15 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
NASA Technical Reports Server (NTRS)
Jedrziewski, S.
1976-01-01
The emission problem or source points were defined and new materials, hardware, or operational procedures were developed to exercise the trends defined by the data collected. The programs to reduce the emission output of aircraft powerplants were listed. Continued establishment of baseline emissions for various engine models, continued characterization of effect of production tolerances on emissions, carbureted engine development and flight tests, and cylinder cooling/fin design programs were several of the programs investigated.
A digital controller for variable thrust liquid rocket engines
NASA Astrophysics Data System (ADS)
Feng, X.; Zhang, Y. L.; Chen, Q. Z.
1993-06-01
The paper describes the design and development of a built-in digital controller (BDC) for the variable thrust liquid rocket engine (VTLRE). Particular attention is given to the function requirements of the BDC, the hardware and software configuration, and the testing process, as well as to the VTLRE real-time computer simulation system used for the development of the BDC. A diagram of the VLTRE control system is presented as well as block diagrams illustrating the hardware and software configuration of the BDC.
1974-12-01
urbofan engine performance. An AiKesearch Model TFE731 -2 Turbofan Engine was modified to incorporate production-type variable-geometry hardware...reliability was shown for the variable- geometry components. The TFE731 , modified to include variable geometry, proved to be an inexpensive...Atm at a Met Thrust of 3300 LBF 929 85 Variable-Cycle Engine TFE731 Exhaust-Nozzle Performance 948 86 Analytical Model Comparisons, Aerodynamic
Conceptual design for spacelab two-phase flow experiments
NASA Technical Reports Server (NTRS)
Bradshaw, R. D.; King, C. D.
1977-01-01
KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.
Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.
2016-01-01
Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.
A Nonlinear Digital Control Solution for a DC/DC Power Converter
NASA Technical Reports Server (NTRS)
Zhu, Minshao
2002-01-01
A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.
NASA Technical Reports Server (NTRS)
Burt, Adam O.; Tinker, Michael L.
2014-01-01
In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.
Space biology initiative program definition review. Trade study 4: Design modularity and commonality
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.
HSCT Sector Combustor Hardware Modifications for Improved Combustor Design
NASA Technical Reports Server (NTRS)
Greenfield, Stuart C.; Heberling, Paul V.; Moertle, George E.
2005-01-01
An alternative to the stepped-dome design for the lean premixed prevaporized (LPP) combustor has been developed. The new design uses the same premixer types as the stepped-dome design: integrated mixer flameholder (IMFH) tubes and a cyclone swirler pilot. The IMFH fuel system has been taken to a new level of development. Although the IMFH fuel system design developed in this Task is not intended to be engine-like hardware, it does have certain characteristics of engine hardware, including separate fuel circuits for each of the fuel stages. The four main stage fuel circuits are integrated into a single system which can be withdrawn from the combustor as a unit. Additionally, two new types of liner cooling have been designed. The resulting lean blowout data was found to correlate well with the Lefebvre parameter. As expected, CO and unburned hydrocarbons emissions were shown to have an approximately linear relationship, even though some scatter was present in the data, and the CO versus flame temperature data showed the typical cupped shape. Finally, the NOx emissions data was shown to agree well with a previously developed correlation based on emissions data from Configuration 3 tests performed at GEAE. The design variations of the cyclone swirler pilot that were investigated in this study did not significantly change the NOx emissions from the baseline design (GEAE Configuration 3) at supersonic cruise conditions.
Environmental Conditions for Space Flight Hardware: A Survey
NASA Technical Reports Server (NTRS)
Plante, Jeannette; Lee, Brandon
2005-01-01
Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have only the environmental requirement numbers needed to do their jobs but do not necessarily have a programmatic-level understanding of how all of the environmental requirements fit together.
Hardware design for the Autonomous Visibility Monitoring (AVM) observatory
NASA Technical Reports Server (NTRS)
Cowles, K.
1993-01-01
The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.
The detection error of thermal test low-frequency cable based on M sequence correlation algorithm
NASA Astrophysics Data System (ADS)
Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin
2018-04-01
The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.
Design verification tests for an axial gap permanent magnet compressor motor
NASA Astrophysics Data System (ADS)
Hawsey, R. A.; Bailey, J. M.
1987-07-01
A 30-hp, direct-drive, permanent magnet motor (PMM) has been constructed. The motor is to operate at 15,000 rpm and is designed to drive a Worthington compressor at the US DOE-owned gaseous diffusion plants. The PMM prevents traditional dynamometer testing, including locked rotor current, voltage, and torque measurements. A test plan is presented for data acquisition on the dynamometer test stand in order to calculate the equivalent circuit for the motor. A description of the hardware required for these measurements is included in the plan.
Renewable Energy Generation and Storage Models | Grid Modernization | NREL
-the-loop testing Projects Generator, Plant, and Storage Modeling, Simulation, and Validation NREL power plants. Power Hardware-in-the-Loop Testing NREL researchers are developing software-and-hardware -combined simulation testing methods known as power hardware-in-the-loop testing. Power hardware in the loop
Issues Related to Large Flight Hardware Acoustic Qualification Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.
2011-01-01
The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.
Design, testing, and delivery of an interactive graphics display subsystem
NASA Technical Reports Server (NTRS)
Holmes, B.
1973-01-01
An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included.
Caging Mechanism for a drag-free satellite position sensor
NASA Technical Reports Server (NTRS)
Hacker, R.; Mathiesen, J.; Debra, D. B.
1976-01-01
A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described.
NASA Technical Reports Server (NTRS)
Allard, R.; Mack, B.; Bayoumi, M. M.
1989-01-01
Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure.
Design and Testing of Space Telemetry SCA Waveform
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.
2006-01-01
A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.
2012-01-01
As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.
Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor
NASA Technical Reports Server (NTRS)
1972-01-01
The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.
Using Innovative Technologies for Manufacturing Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.
2011-01-01
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.
Feature-based component model for design of embedded systems
NASA Astrophysics Data System (ADS)
Zha, Xuan Fang; Sriram, Ram D.
2004-11-01
An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.
Ares I-X Flight Test - On the Fast Track to the Future
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Robinson, Kimberly F.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
Portable oxygen subsystem. [design analysis and performance tests
NASA Technical Reports Server (NTRS)
1975-01-01
The concept and design of a portable oxygen device for use in the space shuttle orbiter is presented. Hardware fabrication and acceptance tests (i.e., breadboard models) are outlined and discussed. Optimization of the system (for weight, volume, safety, costs) is discussed. The device is of the rebreather type, and provides a revitalized breathing gas supply to a crewman for denitrogenization and emergency activities. Engineering drawings and photographs of the device are shown.
Research on starlight hardware-in-the-loop simulator
NASA Astrophysics Data System (ADS)
Zhang, Ying; Gao, Yang; Qu, Huiyang; Liu, Dongfang; Du, Huijie; Lei, Jie
2016-10-01
The starlight navigation is considered to be one of the most important methods for spacecraft navigation. Starlight simulation system is a high-precision system with large fields of view, designed to test the starlight navigation sensor performance on the ground. A complete hardware-in-the-loop simulation of the system has been built. The starlight simulator is made up of light source, light source controller, light filter, LCD, collimator and control computer. LCD is the key display component of the system, and is installed at the focal point of the collimator. For the LCD cannot emit light itself, so light source and light source power controller is specially designed for the brightness demanded by the LCD. Light filter is designed for the dark background which is also needed in the simulation.
High speed bus technology development
NASA Astrophysics Data System (ADS)
Modrow, Marlan B.; Hatfield, Donald W.
1989-09-01
The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.
NASA Technical Reports Server (NTRS)
Dugala, Gina M.
2009-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.
Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.
1986-01-01
The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.
NASA Technical Reports Server (NTRS)
Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.
1992-01-01
An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.
Design and demonstration of an advanced data collection/position location system
NASA Technical Reports Server (NTRS)
1977-01-01
The final report on a breadboard evaluation and demonstration program is reported concerning the applicability of MSK modulation and chirp-z transformer technology in Advanced Data Collection/Position Location (ADC/PL) systems. The program effort consisted of three phases - design, testing, and evaluation. Section 2 describes the breadboard hardware built during the design phase of the program, Section 3 describes the tests conducted on the breadboard and the results of the tests, and Section 4 presents a brief analysis and summary of the findings of the breadboard tests and develops a sample ADC/PL system which incorporates both MSK modulation and a chirp-z transformer.
Development of a preprototype vapor compression distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Johnson, K. L.
1978-01-01
The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.
Data management system advanced development
NASA Technical Reports Server (NTRS)
Douglas, Katherine; Humphries, Terry
1990-01-01
The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.
Developing Sustainable Spacecraft Water Management Systems
NASA Technical Reports Server (NTRS)
Thomas, Evan A.; Klaus, David M.
2009-01-01
It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.
NASA Technical Reports Server (NTRS)
Yanosy, J. L.; Rowell, L. F.
1985-01-01
Efforts to make increasingly use of suitable computer programs in the design of hardware have the potential to reduce expenditures. In this context, NASA has evaluated the benefits provided by software tools through an application to the Environmental Control and Life Support (ECLS) system. The present paper is concerned with the benefits obtained by an employment of simulation tools in the case of the Air Revitalization System (ARS) of a Space Station life support system. Attention is given to the ARS functions and components, a computer program overview, a SAND (solid amine water desorbed) bed model description, a model validation, and details regarding the simulation benefits.
Open ISEmeter: An open hardware high-impedance interface for potentiometric detection.
Salvador, C; Mesa, M S; Durán, E; Alvarez, J L; Carbajo, J; Mozo, J D
2016-05-01
In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA(+)-DS(-)). The experimental measures of emf indicate Nernstian behaviour with the CTA(+) content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.
A CLIPS based personal computer hardware diagnostic system
NASA Technical Reports Server (NTRS)
Whitson, George M.
1991-01-01
Often the person designated to repair personal computers has little or no knowledge of how to repair a computer. Described here is a simple expert system to aid these inexperienced repair people. The first component of the system leads the repair person through a number of simple system checks such as making sure that all cables are tight and that the dip switches are set correctly. The second component of the system assists the repair person in evaluating error codes generated by the computer. The final component of the system applies a large knowledge base to attempt to identify the component of the personal computer that is malfunctioning. We have implemented and tested our design with a full system to diagnose problems for an IBM compatible system based on the 8088 chip. In our tests, the inexperienced repair people found the system very useful in diagnosing hardware problems.
Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core
NASA Technical Reports Server (NTRS)
Martin, James J.; Reid, Robert S.
2004-01-01
A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.
Engineering of the LISA Pathfinder mission—making the experiment a practical reality
NASA Astrophysics Data System (ADS)
Warren, Carl; Dunbar, Neil; Backler, Mike
2009-05-01
LISA Pathfinder represents a unique challenge in the development of scientific spacecraft—not only is the LISA Test Package (LTP) payload a complex integrated development, placing stringent requirements on its developers and the spacecraft, but the payload also acts as the core sensor and actuator for the spacecraft, making the tasks of control design, software development and system verification unusually difficult. The micro-propulsion system which provides the remaining actuation also presents substantial development and verification challenges. As the mission approaches the system critical design review, flight hardware is completing verification and the process of verification using software and hardware simulators and test benches is underway. Preparation for operations has started, but critical milestones for LTP and field effect electric propulsion (FEEP) lie ahead. This paper summarizes the status of the present development and outlines the key challenges that must be overcome on the way to launch.
Constellation's First Flight Test: Ares I-X
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce R.
2010-01-01
On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.
Parameterized hardware description as object oriented hardware model implementation
NASA Astrophysics Data System (ADS)
Drabik, Pawel K.
2010-09-01
The paper introduces novel model for design, visualization and management of complex, highly adaptive hardware systems. The model settles component oriented environment for both hardware modules and software application. It is developed on parameterized hardware description research. Establishment of stable link between hardware and software, as a purpose of designed and realized work, is presented. Novel programming framework model for the environment, named Graphic-Functional-Components is presented. The purpose of the paper is to present object oriented hardware modeling with mentioned features. Possible model implementation in FPGA chips and its management by object oriented software in Java is described.
Lunar Polar Environmental Testing: Regolith Simulant Conditioning
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie
2014-01-01
As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.
New Ways Of Doing Business (NWODB) cost quantification analysis
NASA Technical Reports Server (NTRS)
Hamaker, Joseph W.; Rosmait, Russell L.
1992-01-01
The cost of designing, producing, and operating typical aerospace flight hardware is necessarily more expensive than most other human endeavors. Because of the more stringent environment of space, hardware designed to operate there will probably always be more expensive than similar hardware which is designed for less taxing environments. It is the thesis of this study that there are very significant improvements that can be made in the cost of aerospace flight hardware.
Hardware description languages
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.
1994-01-01
Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.
NASA Technical Reports Server (NTRS)
1990-01-01
This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized.
AP-102/104 Retrieval control system qualification test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
RIECK, C.A.
1999-05-18
This Qualification Test Procedure documents the results of the qualification testing that was performed on the Project W-211, ''Initial Tank Retrieval Systems,'' retrieval control system (RCS) for tanks 241-AP-102 and 241-AP-104. The results confirm that the RCS has been programmed correctly and that the two related hardware enclosures have been assembled in accordance with the design documents.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
Real Time Target Tracking Using Dedicated Vision Hardware
NASA Astrophysics Data System (ADS)
Kambies, Keith; Walsh, Peter
1988-03-01
This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.
Designing for Reliability and Robustness
NASA Technical Reports Server (NTRS)
Svetlik, Randall G.; Moore, Cherice; Williams, Antony
2017-01-01
Long duration spaceflight has a negative effect on the human body, and exercise countermeasures are used on-board the International Space Station (ISS) to minimize bone and muscle loss, combatting these effects. Given the importance of these hardware systems to the health of the crew, this equipment must continue to be readily available. Designing spaceflight exercise hardware to meet high reliability and availability standards has proven to be challenging throughout the time the crewmembers have been living on ISS beginning in 2000. Furthermore, restoring operational capability after a failure is clearly time-critical, but can be problematic given the challenges of troubleshooting the problem from 220 miles away. Several best-practices have been leveraged in seeking to maximize availability of these exercise systems, including designing for robustness, implementing diagnostic instrumentation, relying on user feedback, and providing ample maintenance and sparing. These factors have enhanced the reliability of hardware systems, and therefore have contributed to keeping the crewmembers healthy upon return to Earth. This paper will review the failure history for three spaceflight exercise countermeasure systems identifying lessons learned that can help improve future systems. Specifically, the Treadmill with Vibration Isolation and Stabilization System (TVIS), Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), and the Advanced Resistive Exercise Device (ARED) will be reviewed, analyzed, and conclusions identified so as to provide guidance for improving future exercise hardware designs. These lessons learned, paired with thorough testing, offer a path towards reduced system down-time.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.
Design and control of compliant tensegrity robots through simulation and hardware validation.
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-09-06
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ('tensile-integrity') structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Mission Possible: BioMedical Experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Bopp, E.; Kreutzberg, K.
2011-01-01
Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.
Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development
NASA Technical Reports Server (NTRS)
Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu
2008-01-01
The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.
2013-12-12
JASON ELDRIDGE, AN ERC INCORPORATED EMPLOYEE SUPPORTING THE MATERIALS & PROCESSES LABORATORY AT NASA'S MARSHALL SPACE FLIGHT CENTER, SIGNS HIS NAME ON THE INTERIOR OF THE ADAPTER THAT WILL CONNECT THE ORION SPACECRAFT TO A UNITED LAUNCH ALLIANCE DELTA IV ROCKET FOR EXPLORATION FLIGHT TEST (EFT)-1. MARSHALL CENTER TEAM MEMBERS WHO WERE INVOLVED IN THE DESIGN, CONSTRUCTION AND TESTING OF THE ADAPTER HAD THE OPPORTUNITY TO AUTOGRAPH IT BEFORE THE HARDWARE IS SHIPPED TO NASA'S KENNEDY SPACE CENTER IN FEBRUARY. ELDRIDGE WAS ON A TEAM THAT PERFORMED ULTRASONIC INSPECTIONS ON THE ADAPTER'S WELDS -- ENSURING THEY ARE STRUCTURALLY SOUND. EFT-1, SCHEDULED FOR 2014, WILL PROVIDE EARLY EXPERIENCE FOR NASA SPACE LAUNCH SYSTEM (SLS) HARDWARE AHEAD OF THE ROCKET'S FIRST FLIGHT IN 2017.
The role of simulation in the development and flight test of the HiMAT vehicle
NASA Technical Reports Server (NTRS)
Evans, M. B.; Schilling, L. J.
1984-01-01
Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.
Satellite servicing mission preliminary cost estimation model
NASA Technical Reports Server (NTRS)
1987-01-01
The cost model presented is a preliminary methodology for determining a rough order-of-magnitude cost for implementing a satellite servicing mission. Mission implementation, in this context, encompassess all activities associated with mission design and planning, including both flight and ground crew training and systems integration (payload processing) of servicing hardward with the Shuttle. A basic assumption made in developing this cost model is that a generic set of servicing hardware was developed and flight tested, is inventoried, and is maintained by NASA. This implies that all hardware physical and functional interfaces are well known and therefore recurring CITE testing is not required. The development of the cost model algorithms and examples of their use are discussed.
Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions
NASA Technical Reports Server (NTRS)
Steuber, Thomas J.
2004-01-01
Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.
Initial Back-to-Back Fission Chamber Testing in ATRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin Chase; Troy Unruh; Joy Rempe
2014-06-01
Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to providemore » calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.« less
COTD: Reference-free Hardware Trojan Detection in Gate-level Netlist
2017-03-01
modern designs , the constraint of time- to-market window, and the cost restriction of final product highly drive the horizontal design process. The...third-party intellectual properties (3PIPs) are widely used while they expose a design to hardware Trojans (HTs) that may tamper with the design and...activated. Some work have investigated hardware Trojans in early design stages and several techniques have been proposed to study the switching
The Art of Space Flight Exercise Hardware: Design and Implementation
NASA Technical Reports Server (NTRS)
Beyene, Nahom M.
2004-01-01
The design of space flight exercise hardware depends on experience with crew health maintenance in a microgravity environment, history in development of flight-quality exercise hardware, and a foundation for certifying proper project management and design methodology. Developed over the past 40 years, the expertise in designing exercise countermeasures hardware at the Johnson Space Center stems from these three aspects of design. The medical community has steadily pursued an understanding of physiological changes in humans in a weightless environment and methods of counteracting negative effects on the cardiovascular and musculoskeletal system. The effects of weightlessness extend to the pulmonary and neurovestibular system as well with conditions ranging from motion sickness to loss of bone density. Results have shown losses in water weight and muscle mass in antigravity muscle groups. With the support of university-based research groups and partner space agencies, NASA has identified exercise to be the primary countermeasure for long-duration space flight. The history of exercise hardware began during the Apollo Era and leads directly to the present hardware on the International Space Station. Under the classifications of aerobic and resistive exercise, there is a clear line of development from the early devices to the countermeasures hardware used today. In support of all engineering projects, the engineering directorate has created a structured framework for project management. Engineers have identified standards and "best practices" to promote efficient and elegant design of space exercise hardware. The quality of space exercise hardware depends on how well hardware requirements are justified by exercise performance guidelines and crew health indicators. When considering the microgravity environment of the device, designers must consider performance of hardware separately from the combined human-in-hardware system. Astronauts are the caretakers of the hardware while it is deployed and conduct all sanitization, calibration, and maintenance for the devices. Thus, hardware designs must account for these issues with a goal of minimizing crew time on orbit required to complete these tasks. In the future, humans will venture to Mars and exercise countermeasures will play a critical role in allowing us to continue in our spirit of exploration. NASA will benefit from further experimentation on Earth, through the International Space Station, and with advanced biomechanical models to quantify how each device counteracts specific symptoms of weightlessness. With the continued support of international space agencies and the academic research community, we will usher the next frontier in human space exploration.
Commercial Aircraft Maintenance Experience Relating to Engine External Hardware
NASA Technical Reports Server (NTRS)
Soditus, Sharon M.
2006-01-01
Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
NASA Technical Reports Server (NTRS)
Haddad, Michael E.
2008-01-01
On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Barbee, Brent W.; Baldwin, Philip J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility continues to evolve as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on recent improvements. With the most recent improvement, in support of Technology Readiness Level (TRL) 6 testing of the Inter-spacecraft Ranging and Alarm System (IRAS) for the Magnetospheric Multiscale (MMS) mission, the FFTB has significantly expanded its ability to perform realistic simulations that require Radio Frequency (RF) ranging sensors for relative navigation with the Path Emulator for RF Signals (PERFS). The PERFS, currently under development at NASA GSFC, modulates RF signals exchanged between spacecraft. The RF signals are modified to accurately reflect the dynamic environment through which they travel, including the effects of medium, moving platforms, and radiated power.
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
NASA Astrophysics Data System (ADS)
Zierer, Joseph J.; Beno, Joseph H.; Weeks, Damon A.; Soukup, Ian M.; Good, John M.; Booth, John A.; Hill, Gary J.; Rafal, Marc D.
2012-09-01
Engineers from The University of Texas at Austin Center for Electromechanics and McDonald Observatory have designed, built, and laboratory tested a high payload capacity, precision hexapod for use on the Hobby-Eberly telescope as part of the HETDEX Wide Field Upgrade (WFU). The hexapod supports the 4200 kg payload which includes the wide field corrector, support structure, and other optical/electronic components. This paper provides a recap of the hexapod actuator mechanical and electrical design including a discussion on the methods used to help determine the actuator travel to prevent the hexapod payload from hitting any adjacent, stationary hardware. The paper describes in detail the tooling and methods used to assemble the full hexapod, including many of the structures and components which are supported on the upper hexapod frame. Additionally, details are provided on the installation of the hexapod onto the new tracker bridge, including design decisions that were made to accommodate the lift capacity of the Hobby- Eberly Telescope dome crane. Laboratory testing results will be presented verifying that the performance goals for the hexapod, including positioning, actuator travel, and speeds have all been achieved. This paper may be of interest to mechanical and electrical engineers responsible for the design and operations of precision hardware on large, ground based telescopes. In summary, the hexapod development cycle from the initial hexapod actuator performance requirements and design, to the deployment and testing on the newly designed HET tracker system is all discussed, including lessons learned through the process.
ERIC Educational Resources Information Center
Kirby, Paul J.; And Others
The design, development, test, and evaluation of an electronic hardware device interfacing a commercially available slide projector with a plasma panel computer terminal is reported. The interface device allows an instructional computer program to select slides for viewing based upon the lesson student situation parameters of the instructional…
Space Shuttle Lightning Protection
NASA Technical Reports Server (NTRS)
Suiter, D. L.; Gadbois, R. D.; Blount, R. L.
1979-01-01
The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.
Real-time computing platform for spiking neurons (RT-spike).
Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael
2006-07-01
A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.
NASA Astrophysics Data System (ADS)
Urriza, Isidro; Barragan, Luis A.; Artigas, Jose I.; Garcia, Jose I.; Navarro, Denis
1997-11-01
Image compression plays an important role in the archiving and transmission of medical images. Discrete cosine transform (DCT)-based compression methods are not suitable for medical images because of block-like image artifacts that could mask or be mistaken for pathology. Wavelet transforms (WTs) are used to overcome this problem. When implementing WTs in hardware, finite precision arithmetic introduces quantization errors. However, lossless compression is usually required in the medical image field. Thus, the hardware designer must look for the optimum register length that, while ensuring the lossless accuracy criteria, will also lead to a high-speed implementation with small chip area. In addition, wavelet choice is a critical issue that affects image quality as well as system design. We analyze the filters best suited to image compression that appear in the literature. For them, we obtain the maximum quantization errors produced in the calculation of the WT components. Thus, we deduce the minimum word length required for the reconstructed image to be numerically identical to the original image. The theoretical results are compared with experimental results obtained from algorithm simulations on random test images. These results enable us to compare the hardware implementation cost of the different filter banks. Moreover, to reduce the word length, we have analyzed the case of increasing the integer part of the numbers while maintaining constant the word length when the scale increases.
1988-06-30
casting. 68 Figure 1-9: Line printer representation of roll solidification. 69 Figure I1-1: Test casting model. 76 Figure 11-2: Division of test casting...writing new casting analysis and design routines. The new routines would take advantage of advanced criteria for predicting casting soundness and cast...properties and technical advances in computer hardware and software. 11 2. CONCLUSIONS UPCAST, a comprehensive software package, has been developed for
Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Boyda, R. B.
1995-01-01
This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.
Naval Remote Ocean Sensing System (NROSS) study
NASA Technical Reports Server (NTRS)
1983-01-01
A set of hardware similar to the SEASAT A configuration requirement, suitable for installation and operation aboard a NOAA-D bus and a budgetary cost for one (1) protoflight model was provided. The scatterometer sensor is conceived as one of several sensors for the Navy Remote Ocean Sensing System (NROSS) Satellite Program. Deliverables requested were to include a final report with appropriate sketches and block diagrams showing the scatterometer design/configuration and a budgetary cost for all labor and materials to design, fabricate, test, and integrate this hardware into a NOAA-D satellite bus. This configuration consists of two (2) hardware assembles - a transmitter/receiver (T/R) assembly and an integrated electronics assembly (IEA). The T/R assembly as conceived is best located at the extreme opposite end of the satellite away from the solar array assembly and oriented in position to enable one surface of the assembly to have unobstructed exposure to space. The IEA is planned to be located at the bottom (Earth viewing) side of the satellite and requires a radiating plate.
NASA Astrophysics Data System (ADS)
Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.
2016-05-01
This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.
UAS-Systems Integration, Validation, and Diagnostics Simulation Capability
NASA Technical Reports Server (NTRS)
Buttrill, Catherine W.; Verstynen, Harry A.
2014-01-01
As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.
NASA Technical Reports Server (NTRS)
1985-01-01
Fundamentally, the volumes of the oxidizer and fuel propellant scavenged from the orbiter and external tank determine the size and weight of the scavenging system. The optimization of system dimensions and weights is stimulated by the requirement to minimize the use of partial length of the orbiter payload bay. Thus, the cost estimates begin with weights established for the optimum design. Both the design, development, test, and evaluation and theoretical first unit hardware production costs are estimated from parametric cost weight scaling relations for four subsystems. For cryogenic propellants, the widely differing characteristics of the oxidizer and the fuel lead to two separate tank subsystems, in addition to the electrical and instrumentation subsystems. Hardwares costs also involve quantity, as an independent variable, since the number of production scavenging systems is not firm. For storable propellants, since the tankage volume of the oxidizer and fuel are equal, the hardware production costs for developing these systems are lower than for cryogenic propellants.
NASA Technical Reports Server (NTRS)
Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.
1991-01-01
A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.
NASA Astrophysics Data System (ADS)
Brereton, Margot Felicity
A series of short engineering exercises and design projects was created to help students learn to apply abstract knowledge to physical experiences with hardware. The exercises involved designing machines from kits of materials and dissecting and analyzing familiar household products. Students worked in teams. During the activities students brought their knowledge of engineering fundamentals to bear. Videotape analysis was used to identify and characterize the ways in which hardware contributed to learning fundamental concepts. Structural and qualitative analyses of videotaped activities were undertaken. Structural analysis involved counting the references to theory and hardware and the extent of interleaving of references in activity. The analysis found that there was much more discussion linking fundamental concepts to hardware in some activities than in others. The analysis showed that the interleaving of references to theory and hardware in activity is observable and quantifiable. Qualitative analysis was used to investigate the dialog linking concepts and hardware. Students were found to advance their designs and their understanding of engineering fundamentals through a negotiation process in which they pitted abstract concepts against hardware behavior. Through this process students sorted out theoretical assumptions and causal relations. In addition they discovered design assumptions, functional connections and physical embodiments of abstract concepts in hardware, developing a repertoire of familiar hardware components and machines. Hardware was found to be integral to learning, affecting the course of inquiry and the dynamics of group interaction. Several case studies are presented to illustrate the processes at work. The research illustrates the importance of working across the boundary between abstractions and experiences with hardware in order to learn engineering and physical sciences. The research findings are: (a) the negotiation process by which students discover fundamental concepts in hardware (and three central causes of negotiation breakdown); (b) a characterization of the ways that material systems contribute to learning activities, (the seven roles of hardware in learning); (c) the characteristics of activities that support discovering fundamental concepts in hardware (plus several engineering exercises); (d) a research methodology to examine how students learn in practice.
NASA Technical Reports Server (NTRS)
Depauw, J. F.; Reader, K. E.; Staskus, J. V.
1976-01-01
The test program is described for the 200 watt transmitter experiment package and the variable conductance heat pipe system which are components of the high-power transponder aboard the Communications Technology Satellite. The program includes qualification tests to demonstrate design adequacy, acceptance tests to expose latent defects in flight hardware, and development tests to integrate the components into the transponder system and to demonstrate compatibility.
Designing Test Suites for Software Interactions Testing
2004-01-01
the annual cost of insufficient software testing methods and tools in the United States is between 22.2 to 59.5 billion US dollars [13, 14]. This study...10 (2004), 1–29. [21] Cheng, C., Dumitrescu, A., and Schroeder , P. Generating small com- binatorial test suites to cover input-output relationships... Proceedings of the Conference on the Future of Software Engineering (May 2000), pp. 61 – 72. [51] Hartman, A. Software and hardware testing using
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Ferguson, Michael I.
2003-01-01
Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a second generation Field Programmable Transistor Array (FPTA2). The performance of an evolved controller is compared to that of a conventional proportional-integral (PI) controller. It is shown that hardware evolution is able to create a compact design that provides good performance, while using considerably less functional electronic components than the conventional design. Additionally, the use of hardware evolution to provide fault tolerance by reconfiguring the design is explored. Experimental results are presented showing that significant recovery of capability can be made in the face of damaging induced faults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, John
Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.
Horton, Emily L; Renganathan, Ramkesh; Toth, Bryan N; Cohen, Alexa J; Bajcsy, Andrea V; Bateman, Amelia; Jennings, Mathew C; Khattar, Anish; Kuo, Ryan S; Lee, Felix A; Lim, Meilin K; Migasiuk, Laura W; Zhang, Amy; Zhao, Oliver K; Oliveira, Marcio A
2017-01-01
To lay the groundwork for devising, improving, and implementing new technologies to meet the needs of individuals with visual impairments, a systematic literature review was conducted to: a) describe hardware platforms used in assistive devices, b) identify their various applications, and c) summarize practices in user testing conducted with these devices. A search in relevant EBSCO databases for articles published between 1980 and 2014 with terminology related to visual impairment, technology, and tactile sensory adaptation yielded 62 articles that met the inclusion criteria for final review. It was found that while earlier hardware development focused on pin matrices, the emphasis then shifted toward force feedback haptics and accessible touch screens. The inclusion of interactive and multimodal features has become increasingly prevalent. The quantity and consistency of research on navigation, education, and computer accessibility suggest that these are pertinent areas of need for the visually impaired community. Methodologies for usability testing ranged from case studies to larger cross-sectional studies. Many studies used blindfolded sighted users to draw conclusions about design principles and usability. Altogether, the findings presented in this review provide insight on effective design strategies and user testing methodologies for future research on assistive technology for individuals with visual impairments.
Desert Rats 2010 Operations Tests: Insights from the Geology Crew Members
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Hurtado, J. M., Jr.; Young, K. E.; Rice, J.; Garry, W. B.; Eppler, D.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of NASA hardware and operations deployed in the high desert of Arizona. Conducted annually since 1997, these activities exercise planetary surface hardware and operations in relatively harsh conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems, they also stress communications and operations systems and enable testing of science operations approaches that advance human and robotic surface exploration capabilities. Desert RATS 2010 tested two crewed rovers designed as first-generation prototypes of small pressurized vehicles, consistent with exploration architecture designs. Each rover provided the internal volume necessary for crewmembers to live and work for periods up to 14 days, as well as allowing for extravehicular activities (EVAs) through the use of rear-mounted suit ports. The 2010 test was designed to simulate geologic science traverses over a 14-day period through a volcanic field that is analogous to volcanic terrains observed throughout the Solar System. The test was conducted between 31 August and 13 September 2010. Two crewmembers lived in and operated each rover for a week with a "shift change" on day 7, resulting in a total of eight test subjects for the two-week period. Each crew consisted of an engineer/commander and an experienced field geologist. Three of the engineer/commanders were experienced astronauts with at least one Space Shuttle flight. The field geologists were drawn from the scientific community, based on funded and published field expertise.
An Application Development Platform for Neuromorphic Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Mark; Chan, Jason; Daffron, Christopher
2016-01-01
Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.
Orbiter CIU/IUS communications hardware evaluation
NASA Technical Reports Server (NTRS)
Huth, G. K.
1979-01-01
The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.
Parallel Processing with Digital Signal Processing Hardware and Software
NASA Technical Reports Server (NTRS)
Swenson, Cory V.
1995-01-01
The assembling and testing of a parallel processing system is described which will allow a user to move a Digital Signal Processing (DSP) application from the design stage to the execution/analysis stage through the use of several software tools and hardware devices. The system will be used to demonstrate the feasibility of the Algorithm To Architecture Mapping Model (ATAMM) dataflow paradigm for static multiprocessor solutions of DSP applications. The individual components comprising the system are described followed by the installation procedure, research topics, and initial program development.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, Mohammed Omair
2012-01-01
Our simulation was able to mimic the results of 30 tests on the actual hardware. This shows that simulations have the potential to enable early design validation - well before actual hardware exists. Although simulations focused around data processing procedures at subsystem and device level, they can also be applied to system level analysis to simulate mission scenarios and consumable tracking (e.g. power, propellant, etc.). Simulation engine plug-in developments are continually improving the product, but handling time for time-sensitive operations (like those of the remote engineering unit and bus controller) can be cumbersome.
NASA Technical Reports Server (NTRS)
Woodfill, J. R.; Thomson, F. J.
1979-01-01
The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.
Impact of flight systems integration on future aircraft design
NASA Technical Reports Server (NTRS)
Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.
1984-01-01
Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.
Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft, volume 1
NASA Technical Reports Server (NTRS)
Shane, S. J.
1985-01-01
A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is explored. An energy-absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests were conducted. The vertical drop tests were used to obtain comparative data between the energy-absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series.
ERIC Educational Resources Information Center
Sieverts, Eric G.; And Others
1993-01-01
Reports on tests evaluating nine microcomputer software packages designed for information storage and retrieval: BRS-Search, dtSearch, InfoBank, Micro-OPC, Q&A, STN-PFS, Strix, TINman, and ZYindex. Tables and narrative evaluations detail results related to security, hardware, user features, search capability, indexing, input, maintenance of files,…
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
6DOF Testing of the SLS Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Geohagan, Kevin; Bernard, Bill; Oliver, T. Emerson; Leggett, Jared; Strickland, Dennis
2018-01-01
The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). Because the navigation architecture for the SLS Block 1 vehicle is a purely inertial system, the accuracy of the achieved orbit relative to mission requirements is very sensitive to initial alignment accuracy. The assessment of this sensitivity and many others via simulation is a part of the SLS Model-Based Design and Model-Based Requirements approach. As a part of the aforementioned, 6DOF Monte Carlo simulation is used in large part to develop and demonstrate verification of program requirements. To facilitate this and the GN&C flight software design process, an SLS-Program-controlled Design Math Model (DMM) of the SLS INS was developed by the SLS Navigation Team. The SLS INS model implements all of the key functions of the hardware-namely, GCA, inertial navigation, and FDIR (Fault Detection, Isolation, and Recovery)-in support of SLS GN&C design requirements verification. Despite the strong sensitivity to initial alignment, GCA accuracy requirements were not verified by test due to program cost and schedule constraints. Instead, the system relies upon assessments performed using the SLS INS model. In order to verify SLS program requirements by analysis, the SLS INS model is verified and validated against flight hardware. In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.
Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Creech, Stephen D.
2016-01-01
Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations program is transforming Kennedy Space Center into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton (t) Block 1 configuration, and will then evolve to an ultimate capability of 130 t. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS -- Exploration Mission-1 (EM-1), an un-crewed mission to orbit the moon and return. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.
An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation
NASA Technical Reports Server (NTRS)
Burns, Rich
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.
CRASHWORTHY TROOP SEAT INVESTIGATION
1974-12-01
helicopter structure and landing gear. Newly de - signed helicopters will have landing gear designed to with- stand high sink rates and structure whioh provides...when there is no ___ ditb i- the-restrant s tystem s p§’-Hardware components sAiall carry the restraint harness design loads without permanent de ...Specification can be accepted, a troop seat design must be tested to demonstrate compliance with the proposed draft General Military Specification. Such
Preliminary Component Integration Using Rapid Prototyping Techniques
NASA Technical Reports Server (NTRS)
Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)
2001-01-01
Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
Sensing Methods for Detecting Analog Television Signals
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi
This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
Implementation of Autonomous Control Technology for Plant Growth Chambers
NASA Technical Reports Server (NTRS)
Costello, Thomas A.; Sager, John C.; Krumins, Valdis; Wheeler, Raymond M.
2002-01-01
The Kennedy Space Center has significant infrastructure for research using controlled environment plant growth chambers. Such research supports development of bioregenerative life support technology for long-term space missions. Most of the existing chambers in Hangar L and Little L will be moved to the new Space Experiment Research and Processing Laboratory (SERPL) in the summer of 2003. The impending move has created an opportunity to update the control system technologies to allow for greater flexibility, less labor for set-up and maintenance, better diagnostics, better reliability and easier data retrieval. Part of these improvements can be realized using hardware which communicates through an ethernet connection to a central computer for supervisory control but can be operated independently of the computer during routine run-time. Both the hardware and software functionality of an envisioned system were tested on a prototype plant growth chamber (CEC-4) in Hangar L. Based upon these tests, recommendations for hardware and software selection and system design for implementation in SERPL are included.
Development of the Hawk/Nike Hawk sounding rocket vehicles
NASA Technical Reports Server (NTRS)
Flowers, B. J.
1976-01-01
A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.
NASA Technical Reports Server (NTRS)
Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan
2010-01-01
Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.
2001-07-01
hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model
Development of a Universal Waste Management System
NASA Technical Reports Server (NTRS)
Stapleton, Thomas J.; Baccus, Shelley; Broyan, James L., Jr.
2013-01-01
NASA is working with a number of commercial companies to develop the next low Earth orbit spacecraft. The hardware volume and weight constraints are similar to or greater than those of the Apollo era. This, coupled with the equally demanding cost challenge of the proposed commercial vehicles, causes much of the Environmental Control and Life Support System (ECLSS) designs to be reconsidered. The Waste Collection System (WCS) is within this group of ECLSS hardware. The development to support this new initiative is discussed within. A WCS concept - intended to be common for all the vehicle platforms currently on the drawing board - is being developed. The new concept, referred to as the Universal Waste Management System (UWMS), includes favorable features from previous designs while improving on other areas on previous Space Shuttle and the existing International Space Station (ISS) WCS hardware, as needed. The intent is to build a commode that requires less crew time, improved cleanliness, and a 75% reduction in volume and weight compared to the previous US ISS/Extended Duration Orbitor WCS developed in the 1990s. The UWMS is most similar to the ISS Development Test Objective (DTO) WCS design. It is understood that the most dramatic cost reduction opportunity occurs at the beginning of the design process. To realize this opportunity, the cost of each similar component between the UWMS and the DTO WCS was determined. The comparison outlined were the design changes that would result with the greatest impact. The changes resulted in simplifying the approach or eliminating components completely. This initial UWMS paper will describe the system layout approach and a few key features of major components. Future papers will describe the UWMS functionality, test results, and components as they are developed.
Design, Fabrication, and Testing of a Hopper Spacecraft Simulator
NASA Astrophysics Data System (ADS)
Mucasey, Evan Phillip Krell
A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.
Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems
NASA Astrophysics Data System (ADS)
van Dyke, Melissa
2004-02-01
Through hardware based design and testing, the EFF-TF investigates fission power and propulsion component, subsystems, and integrated system design and performance. Through demonstration of systems concepts (designed by Sandia and Los Alamos National Laboratories) in relevant environments, previous non-nuclear tests in the EFF-TF have proven to be a highly effective method (from both cost and performance standpoint) to identify and resolve integration issues. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. This paper describes the current efforts for 2003.
Programming time-multiplexed reconfigurable hardware using a scalable neuromorphic compiler.
Minkovich, Kirill; Srinivasa, Narayan; Cruz-Albrecht, Jose M; Cho, Youngkwan; Nogin, Aleksey
2012-06-01
Scalability and connectivity are two key challenges in designing neuromorphic hardware that can match biological levels. In this paper, we describe a neuromorphic system architecture design that addresses an approach to meet these challenges using traditional complementary metal-oxide-semiconductor (CMOS) hardware. A key requirement in realizing such neural architectures in hardware is the ability to automatically configure the hardware to emulate any neural architecture or model. The focus for this paper is to describe the details of such a programmable front-end. This programmable front-end is composed of a neuromorphic compiler and a digital memory, and is designed based on the concept of synaptic time-multiplexing (STM). The neuromorphic compiler automatically translates any given neural architecture to hardware switch states and these states are stored in digital memory to enable desired neural architectures. STM enables our proposed architecture to address scalability and connectivity using traditional CMOS hardware. We describe the details of the proposed design and the programmable front-end, and provide examples to illustrate its capabilities. We also provide perspectives for future extensions and potential applications.
S-band range tracker and Surveillance Lab interface
NASA Astrophysics Data System (ADS)
Bush, B. D.
1983-09-01
This report documents the design, construction, test and laboratory integration of the range tracker and associated subsystems for the RADC/OC Surveillance Laboratory's S-Band tracking radar. This development was accomplished over the period from December 1981 to November 1983 and was designed, constructed and tested entirely in-house. This report contains information on the use of the range tracker, its interfaces to other laboratory equipment, the philosophy behind its design, the detailed design of the hardware (including schematics, timing and cabling diagrams), the detailed software design (including flowcharts), and the mathematical description of its algorithms. The range tracker will be used in conjunction with other equipment in the OC Surveillance Lab in the taking and recording of radar data during flight tests.
Space Biology Initiative. Trade Studies, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Space Biology Initiative. Trade Studies, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
NASA Astrophysics Data System (ADS)
Sun, Yun-Ping; Ju, Jiun-Yan; Liang, Yen-Chu
2008-12-01
Since the unmanned aerial vehicles (UAVs) bring forth many innovative applications in scientific, civilian, and military fields, the development of UAVs is rapidly growing every year. The on-board autopilot that reliably performs attitude and guidance control is a vital part for out-of-sight flights. However, the control law in autopilot is designed according to a simplified plant model in which the dynamics of real hardware are usually not taken into consideration. It is a necessity to develop a test-bed including real servos to make real-time control experiments for prototype autopilots, so called hardware-in-the-loop (HIL) simulation. In this paper on the basis of the graphical application software LabVIEW, the real-time HIL simulation system is realized efficiently by the virtual instrumentation approach. The proportional-integral-derivative (PID) controller in autopilot for the pitch angle control loop is experimentally determined by the classical Ziegler-Nichols tuning rule and exhibits good transient and steady-state response in real-time HIL simulation. From the results the differences between numerical simulation and real-time HIL simulation are also clearly presented. The effectiveness of HIL simulation for UAV autopilot design is definitely confirmed
Development of a hardware-based AC microgrid for AC stability assessment
NASA Astrophysics Data System (ADS)
Swanson, Robert R.
As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef
2003-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.
Space Technology 5: Changing the Mission Design without Changing the Hardware
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. The validation objectives are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop, test and flight-validate three capable micro-satellites with new technologies. A three-month flight demonstration phase is planned, beginning in March 2006. This year, the mission was re-planned for a Pegasus XL dedicated launch into an elliptical polar orbit (instead of the Originally-planned Geosynchronous Transfer Orbit.) The re-plan allows the mission to achieve the same high-level technology validation objectives with a different launch vehicle. The new mission design involves a revised science validation strategy, a new orbit and different communication strategy, while minimizing changes to the ST-5 spacecraft itself. The constellation operations concepts have also been refined. While the system engineers, orbit analysts, and operations teams were re-planning the mission, the implementation team continued to make progress on the flight hardware. Most components have been delivered, and the first spacecraft is well into integration and test.
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
Human Machine Interface Programming and Testing
NASA Technical Reports Server (NTRS)
Foster, Thomas Garrison
2013-01-01
Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.
SEDS experiment design definition
NASA Technical Reports Server (NTRS)
Carroll, Joseph A.; Alexander, Charles M.; Oldson, John C.
1990-01-01
The Small Expendable-tether Deployment System (SEDS) was developed to design, build, integrate, fly, and safely deploy and release an expendable tether. A suitable concept for an on-orbit test of SEDS was developed. The following tasks were performed: (1) Define experiment objectives and requirements; (2) Define experiment concepts to reach those objectives; (3) Support NASA in experiment concept selection and definition; (4) Perform analyses and tests of SEDS hardware; (5) Refine the selected SEDS experiment concept; and (6) Support interactive SEDS system definition process. Results and conclusions are given.
SS/RCS surface tension propellant acquisition/expulsion tankage technology
NASA Technical Reports Server (NTRS)
1975-01-01
The analysis, design, fabrication, and testing of a propellant tank that satisfies the requirements of the space shuttle is presented. This mission presents very stringent and sometimes conflicting requirements. A compartmented-tank device was developed and various ground and drop tower test techniques were employed to verify the design using both subscale and full-scale hardware. Performance was established with scale models and further substantiation was obtained with the full-scale tankage. Fabrication, acceptance, fill and drain, inspection, and other ground handling procedures were developed.
Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki
2012-01-01
The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.
Hardware architecture design of image restoration based on time-frequency domain computation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Jing; Jiao, Zipeng
2013-10-01
The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.
NASA Technical Reports Server (NTRS)
Jain, A.; Man, G. K.
1993-01-01
This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.
Instrumentation & Data Acquisition System (D AS) Engineer
NASA Technical Reports Server (NTRS)
Jackson, Markus Deon
2015-01-01
The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.
Piromalis, Dimitrios; Arvanitis, Konstantinos
2016-08-04
Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture.
Development and characteristics of the hardware for Skylab experiment S015
NASA Technical Reports Server (NTRS)
Thirolf, R. G.
1975-01-01
Details are given regarding the hardware for the Skylab S015 experiment, which was designed to detect the effects of zero gravity on cell growth rates. Experience gained in hardware-related considerations is presented for use of researchers concerned with future research of this type and further study of the S015 results. Brief descriptions are given of the experiment hardware, the hardware configuration for the critical design review, the major configuration changes, the final configuration, and the postflight review and analysis. An appendix describes pertinent documentation, film, and hardware that are available to qualified researchers; sources for additional or special information are given.
Integration Process for the Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott
2010-01-01
The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of presently unanticipated systems Results of the HDU field tests will influence future designs of habitat systems.
NASA Astrophysics Data System (ADS)
Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore
2016-08-01
ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.
NASA's Space Launch System Takes Shape
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Robinson, Kimberly F.
2017-01-01
Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.
The ERDA/LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Forestieri, A. F.
1977-01-01
A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.
NASA Astrophysics Data System (ADS)
Mukherjee, S.; von der Heydt, M.; Hanson, C.; Jandura, L.
2009-12-01
The Mars Science Laboratory mission is scheduled to launch in 2011 with an extensive suite of in situ science instruments. Acquiring, processing and delivering appropriate samples of rock and martian regolith to the instruments is a critical component in realizing the science capability of these payload elements. However, there are a number of challenges in validating the design of these systems. In particular, differences in the environment (atmospheric pressure and composition, temperature, gravity), target materials (variation in rock and soil properties), and state of the hardware (electrical potential, particulate coatings) may effect sampling performance. To better understand the end-to-end system and allow development of mitigation strategies if necessary, early testing of high-fidelity engineering models of the hardware in the solid sample chain is being conducted. The components of the sample acquisition, processing & delivery chain that will be tested are the drill, scoop, sieves, portioners, and instrument inlet funnels. An evaluation of the environmental parameter space was conducted to identify a subset that may have significant effects on sampling performance and cannot be well bounded by analysis. Accordingly, support equipment to enable testing at Mars surface pressures (5-10 Torr), with carbon dioxide was designed and built. A description of the testing set-up, investigations, and preliminary results will be presented.
Rover Low Gain Antenna Qualification for Deep Space Thermal Environments
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.
2013-01-01
A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2008-01-01
Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.
Application of Kingview and PLC in friction durability test system
NASA Astrophysics Data System (ADS)
Gao, Yinhan; Cui, Jing; Yang, Kaiyu; Ke, Hui; Song, Bing
2013-01-01
Using PLC and Kingview software, a friction durability test system is designed. The overall program, hardware configuration, software structure and monitoring interface are described in detail. PLC ensures the stability of data acquisition, and the KingView software makes the HMI easy to manipulate. The practical application shows that the proposed system is cheap, economical and highly reliable.
Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger
NASA Technical Reports Server (NTRS)
Desjardins, L. F.; Hooper, J.
1973-01-01
System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.
[Results of testing of MINISKAN mobile gamma-ray camera and specific features of its design].
Utkin, V M; Kumakhov, M A; Blinov, N N; Korsunskiĭ, V N; Fomin, D K; Kolesnikova, N V; Tultaev, A V; Nazarov, A A; Tararukhina, O B
2007-01-01
The main results of engineering, biomedical, and clinical testing of MINISKAN mobile gamma-ray camera are presented. Specific features of the camera hardware and software, as well as the main technical specifications, are described. The gamma-ray camera implements a new technology based on reconstructive tomography, aperture encoding, and digital processing of signals.
NASA Technical Reports Server (NTRS)
1974-01-01
The technical aspects of the Skylab-Orbital Workshop are discussed. Original concepts, goals, design philosophy, hardware, and testing are reported. The final flight configuration, overall test program, and mission performance are analyzed. The systems which are examined are: (1) the structural system, (2) the meteoroid shield systems, and (3) the environmental/thermal control subsystem.
NASA Astrophysics Data System (ADS)
Kalyankar-Narwade, Supriya; Kumar, C. Ramesh; Patil, Sanjay A.
2017-11-01
Engine Management ECU plays a vital role in controlling different important features related to the engine performance. ECU is an embedded system which includes hardware and firmware platform for control logics. However, it is necessary to verify its smooth performance by its functionality testing in the Electromagnetic environment for approval. If these requirements are not known at earlier stages, then ECU may not fulfil functional requirements during required automotive electronic test standards. Hence, focusing on EMS ECU, this paper highlights hardware, layout and software guidelines for solving problems related with Electromagnetic Interference (EMI) to comply ISO 7637, CISPR 25 standard, Electromagnetic Compatibility (EMC) to comply ISO 11452-4,5 standard, Electrostatic Discharge (ESD) to comply ISO 10605 standard and Environmental Testing to comply standards as per IEC standards. This paper specifies initially the importance, need and guidelines for reducing the EMI effect on PCB i.e. making ECU more electromagnetically compatible as per automotive standards. The guidelines are useful for the designers to avoid pitfalls at the later stage. After mentioned modifications in the paper, ECU successfully passed the requirements for all standard tests.
Lithium Circuit Test Section Design and Fabrication
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Garber, Anne
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.
Lithium Circuit Test Section Design and Fabrication
NASA Astrophysics Data System (ADS)
Godfroy, Thomas; Garber, Anne; Martin, James
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Hilburger, Mark W.
2010-01-01
The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.
Object oriented design (OOD) in real-time hardware-in-the-loop (HWIL) simulations
NASA Astrophysics Data System (ADS)
Morris, Joe; Richard, Henri; Lowman, Alan; Youngren, Rob
2006-05-01
Using Object Oriented Design (OOD) concepts in AMRDEC's Hardware-in-the Loop (HWIL) real-time simulations allows the user to interchange parts of the simulation to meet test requirements. A large-scale three-spectral band simulator connected via a high speed reflective memory ring for time-critical data transfers to PC controllers connected by non real-time Ethernet protocols is used to separate software objects from logical entities close to their respective controlled hardware. Each standalone object does its own dynamic initialization, real-time processing, and end of run processing; therefore it can be easily maintained and updated. A Resource Allocation Program (RAP) is also utilized along with a device table to allocate, organize, and document the communication protocol between the software and hardware components. A GUI display program lists all allocations and deallocations of HWIL memory and hardware resources. This interactive program is also used to clean up defunct allocations of dead processes. Three examples are presented using the OOD and RAP concepts. The first is the control of an ACUTRONICS built three-axis flight table using the same control for calibration and real-time functions. The second is the transportability of a six-degree-of-freedom (6-DOF) simulation from an Onyx residence to a Linux-PC. The third is the replacement of the 6-DOF simulation with a replay program to drive the facility with archived run data for demonstration or analysis purposes.
Three axis electronic flight motion simulator real time control system design and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua
2014-12-15
A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.
Three axis electronic flight motion simulator real time control system design and implementation.
Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua
2014-12-01
A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
NASA Technical Reports Server (NTRS)
Ellis, David L.; Calder, James; Siamidis, John
2011-01-01
A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.
Anthropometry and Biomechanics Facility Presentation to Open EVA Research Forum
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar
2017-01-01
NASA is required to accommodate individuals who fall within a 1st to 99th percentile range on a variety of critical dimensions. The hardware the crew interacts with must therefore be designed and verified to allow these selected individuals to complete critical mission tasks safely and at an optimal performance level. Until now, designers have been provided simpler univariate critical dimensional analyses. The multivariate characteristics of intra-individual and inter-individual size variation must be accounted for, since an individual who is 1st percentile in one body dimension will not be 1st percentile in all other dimensions. A more simplistic approach, assuming every measurement of an individual will fall within the same percentile range, can lead to a model that does not represent realistic members of the population. In other words, there is no '1st percentile female' or '99th percentile male', and designing for these unrealistic body types can lead to hardware issues down the road. Furthermore, due to budget considerations, designers are normally limited to providing only 1 size of a prototype suit, thus requiring other possible means to ensure that a given suit architecture would yield the necessary suit sizes to accommodate the entire user population. Fortunately, modeling tools can be used to more accurately model the types of human body sizes and shapes that will be encountered in a population. Anthropometry toolkits have been designed with a variety of capabilities, including grouping the population into clusters based on critical dimensions, providing percentile information given test subject measurements, and listing measurement ranges for critical dimensions in the 1st-99th percentile range. These toolkits can be combined with full body laser scans to allow designers to build human models that better represent the astronaut population. More recently, some rescaling and reposing capabilities have been developed, to allow reshaping of these static laser scans in more representative postures, such as an abducted shoulder. All of the hardware designed for use with the crew must be sized to accommodate the user population, but the interaction between subject size and hardware fit is complicated with multi-component, complex systems like a space suit. Again, prototype suits are normally only provided in a limited size range, and suited testing is an expensive endeavor; both of these factors limit the number and size of people who can be used to benchmark a spacesuit. However, modeling tools for assessing suit-human interaction can allow potential issues to be modeled and visualized. These types of modeling tools can be used for analysis of a larger combination of anthropometries and hardware types than could feasibly be done with actual human subjects and physical mockups.
NASA Technical Reports Server (NTRS)
Kavi, K. M.
1984-01-01
There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.
Development of on line automatic separation device for apple and sleeve
NASA Astrophysics Data System (ADS)
Xin, Dengke; Ning, Duo; Wang, Kangle; Han, Yuhang
2018-04-01
Based on STM32F407 single chip microcomputer as control core, automatic separation device of fruit sleeve is designed. This design consists of hardware and software. In hardware, it includes mechanical tooth separator and three degree of freedom manipulator, as well as industrial control computer, image data acquisition card, end effector and other structures. The software system is based on Visual C++ development environment, to achieve localization and recognition of fruit sleeve with the technology of image processing and machine vision, drive manipulator of foam net sets of capture, transfer, the designated position task. Test shows: The automatic separation device of the fruit sleeve has the advantages of quick response speed and high separation success rate, and can realize separation of the apple and plastic foam sleeve, and lays the foundation for further studying and realizing the application of the enterprise production line.
MUMEDALA--An Approach to Multi-Media Authoring.
ERIC Educational Resources Information Center
Baker, Philip G.
1984-01-01
Discusses pedagogical factors influencing design and construction of sophisticated educational multimedia workstations, and presents an overview of the Multi-Media Authoring Language system, an experimental test vehicle providing a framework in which to conduct hardware, software, and interfacing experiments necessary to produce a solution to…
Safe to Fly: Certifying COTS Hardware for Spaceflight
NASA Technical Reports Server (NTRS)
Fichuk, Jessica L.
2011-01-01
Providing hardware for the astronauts to use on board the Space Shuttle or International Space Station (ISS) involves a certification process that entails evaluating hardware safety, weighing risks, providing mitigation, and verifying requirements. Upon completion of this certification process, the hardware is deemed safe to fly. This process from start to finish can be completed as quickly as 1 week or can take several years in length depending on the complexity of the hardware and whether the item is a unique custom design. One area of cost and schedule savings that NASA implements is buying Commercial Off the Shelf (COTS) hardware and certifying it for human spaceflight as safe to fly. By utilizing commercial hardware, NASA saves time not having to develop, design and build the hardware from scratch, as well as a timesaving in the certification process. By utilizing COTS hardware, the current detailed certification process can be simplified which results in schedule savings. Cost savings is another important benefit of flying COTS hardware. Procuring COTS hardware for space use can be more economical than custom building the hardware. This paper will investigate the cost savings associated with certifying COTS hardware to NASA s standards rather than performing a custom build.
A low-cost machine vision system for the recognition and sorting of small parts
NASA Astrophysics Data System (ADS)
Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.
2018-04-01
An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.
The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine
NASA Astrophysics Data System (ADS)
Liu, Yuan; Zhang, Xin; Zhang, Tianhong
2017-11-01
A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.
Open ISEmeter: An open hardware high-impedance interface for potentiometric detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador, C.; Carbajo, J.; Mozo, J. D., E-mail: jdaniel.mozo@diq.uhu.es
In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA{sup +}-DS{supmore » −}). The experimental measures of emf indicate Nernstian behaviour with the CTA{sup +} content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.« less
Magnesium Alloys for Space Hardware Design
NASA Technical Reports Server (NTRS)
Aroh, Joseph
2017-01-01
There have been advances in magnesium alloy development that NASA has not taken into consideration for space hardware because of a lack of test data. Magnesium alloys offer excellent weight reduction, specific strength, and deep space radiation mitigation. Traditionally, magnesium has been perceived as having too poor of a flammability resistance and corrosion resistance to be used for flight. Recent developments in magnesium alloying has led to the formation of two alloys, WE43 and Elektron 21, which are self-extinguishing and significantly less flammable because of their composition. Likewise, an anodizing process called Tagnite was formulated to deter any concern with galvanic and saltwater corrosion. The Materials Science Branch at Kennedy Space Center is currently researching these new alloys and treatments to better understand how they behave in the harsh environment of space. Successful completion of the proposed testing should result in a more thorough understanding of modern aerospace materials and processes, and possibly the permission to use magnesium alloys in future NASA designs.
Hardware Implementation of a MIMO Decoder Using Matrix Factorization Based Channel Estimation
NASA Astrophysics Data System (ADS)
Islam, Mohammad Tariqul; Numan, Mostafa Wasiuddin; Misran, Norbahiah; Ali, Mohd Alauddin Mohd; Singh, Mandeep
2011-05-01
This paper presents an efficient hardware realization of multiple-input multiple-output (MIMO) wireless communication decoder that utilizes the available resources by adopting the technique of parallelism. The hardware is designed and implemented on Xilinx Virtex™-4 XC4VLX60 field programmable gate arrays (FPGA) device in a modular approach which simplifies and eases hardware update, and facilitates testing of the various modules independently. The decoder involves a proficient channel estimation module that employs matrix factorization on least squares (LS) estimation to reduce a full rank matrix into a simpler form in order to eliminate matrix inversion. This results in performance improvement and complexity reduction of the MIMO system. Performance evaluation of the proposed method is validated through MATLAB simulations which indicate 2 dB improvement in terms of SNR compared to LS estimation. Moreover complexity comparison is performed in terms of mathematical operations, which shows that the proposed approach appreciably outperforms LS estimation at a lower complexity and represents a good solution for channel estimation technique.
Primary and secondary electrical space power based on advanced PEM systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.
1993-01-01
For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.
Highly Loaded Composite Strut Test Development
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.
2011-01-01
Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.
Firing Room Remote Application Software Development
NASA Technical Reports Server (NTRS)
Liu, Kan
2015-01-01
The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.
EMI / EMC Design for Class D Payloads (Resource Prospector / NIRVSS)
NASA Technical Reports Server (NTRS)
Forgione, Josh; Benton, Joshua Eric; Thompson, Sarah; Colaprete, Anthony
2015-01-01
EMI/EMC techniques are applied to a Class D instrument (NIRVSS) to achieve low noise performance and reduce risk of EMI/EMC testing failures and/or issues during system integration and test. Basic techniques are not terribly expensive or complex, but do require close coordination between electrical and mechanical staff early in the design process. Low-cost methods to test subsystems on the bench without renting an EMI chamber are discussed. This method was applied to the NIRVSS instrument and achieved improvements up to 59dB on conducted emissions measurements between hardware revisions.
Space shuttle L-tube radiator testing
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1976-01-01
A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.
Hybrid Rocket Experiment Station for Capstone Design
NASA Technical Reports Server (NTRS)
Conley, Edgar; Hull, Bethanne J.
2012-01-01
Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.
High temperature antenna development for space shuttle, volume 1
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given.
Design of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.
NASA Technical Reports Server (NTRS)
Tobin, R. D.
1974-01-01
Test hardware, facilities, and procedures are described along with results of electrically heated tube and channel tests conducted to determine adverse operating condition limits for convectively cooled chambers typical of Space Shuttle Orbit Manuevering Engine designs. Hot-start tests were conducted with corrosion resistant steel and nickel tubes with both monomethylhydrazine and 50-50 coolants. Helium ingestion, in both bubble and froth form, was studied in tubular test sections. Helium bubble ingestion and burn-out limits in rectangular channels were also investigated.
Ares I-X Flight Test--The Future Begins Here
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Tuma, Margaret L.; Heitzman, Keith
2007-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.
Software Safety Assurance of Programmable Logic
NASA Technical Reports Server (NTRS)
Berens, Kalynnda
2002-01-01
Programmable Logic (PLC, FPGA, ASIC) devices are hybrids - hardware devices that are designed and programmed like software. As such, they fall in an assurance gray area. Programmable Logic is usually tested and verified as hardware, and the software aspects are ignored, potentially leading to safety or mission success concerns. The objective of this proposal is to first determine where and how Programmable Logic (PL) is used within NASA and document the current methods of assurance. Once that is known, raise awareness of the PL software aspects within the NASA engineering community and provide guidance for the use and assurance of PL form a software perspective.
A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response
NASA Technical Reports Server (NTRS)
Ferguson, Michael I.; MacDonald, Eric; Foor, David
2005-01-01
We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
Design and implementation of a general main axis controller for the ESO telescopes
NASA Astrophysics Data System (ADS)
Sandrock, Stefan; Di Lieto, Nicola; Pettazzi, Lorenzo; Erm, Toomas
2012-09-01
Most of the real-time control systems at the existing ESO telescopes were developed with "traditional" methods, using general purpose VMEbus electronics, and running applications that were coded by hand, mostly using the C programming language under VxWorks. As we are moving towards more modern design methods, we have explored a model-based design approach for real-time applications in the telescope area, and used the control algorithm of a standard telescope main axis as a first example. We wanted to have a clear work-flow that follows the "correct-by-construction" paradigm, where the implementation is testable in simulation on the development host, and where the testing time spent by debugging on target is minimized. It should respect the domains of control, electronics, and software engineers in the choice of tools. It should be a targetindependent approach so that the result could be deployed on various platforms. We have selected the Mathworks tools Simulink, Stateflow, and Embedded Coder for design and implementation, and LabVIEW with NI hardware for hardware-in-the-loop testing, all of which are widely used in industry. We describe how these tools have been used in order to model, simulate, and test the application. We also evaluate the benefits of this approach compared to the traditional method with respect to testing effort and maintainability. For a specific axis controller application we have successfully integrated the result into the legacy platform of the existing VLT software, as well as demonstrated how to use the same design for a new development with a completely different environment.
X-38 Bolt Retractor Subsystem Separation Demonstration
NASA Technical Reports Server (NTRS)
Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.
2002-01-01
The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.
MER : from landing to six wheels on Mars ... twice
NASA Technical Reports Server (NTRS)
Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris
2005-01-01
Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
2012-01-01
As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions
Design and implementation of H.264 based embedded video coding technology
NASA Astrophysics Data System (ADS)
Mao, Jian; Liu, Jinming; Zhang, Jiemin
2016-03-01
In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].
Cost Optimization and Technology Enablement COTSAT-1
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Lindsay, Michael C.; Klupar, Peter Damian; Swank, Aaron J.
2010-01-01
Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The space industry was a hot bed of innovation and development at its birth. Many new technologies were developed for and first demonstrated in space. In the recent past this trend has reversed with most of the new technology funding and research being driven by the private industry. Most of the recent advances in spaceflight hardware have come from the cell phone industry with a lag of about 10 to 15 years from lab demonstration to in space usage. NASA has started a project designed to address this problem. The prototype spacecraft known as Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) and CheapSat work to reduce these issues. This paper highlights the approach taken by NASA Ames Research center to achieve significant subsystem cost reductions. The COSTAT-1 research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing spacecraft. The COTSAT-1 team demonstrated building a fully functional spacecraft for $500K parts and $2.0M labor. The COTSAT-1 system, including a selected science payload, is described within this paper. Many of the advancements identified in the process of cost reduction can be attributed to the use of a one-atmosphere pressurized structure to house the spacecraft components. By using COTS hardware, the spacecraft program can utilize investments already made by commercial vendors. This ambitious project development philosophy/cycle has yielded the COTSAT-1 flight hardware. This paper highlights the advancements of the COTSAT-1 spacecraft leading to the delivery of the current flight hardware that is now located at NASA Ames Research Center. This paper also addresses the plans for COTSAT-2.
ELIPS: Toward a Sensor Fusion Processor on a Chip
NASA Technical Reports Server (NTRS)
Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James
1998-01-01
The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.
Framework for a space shuttle main engine health monitoring system
NASA Technical Reports Server (NTRS)
Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey
1990-01-01
A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebel, J
2004-02-27
Without stable hardware any program will fail. The frustration and expense of supporting bad hardware can drain an organization, delay progress, and frustrate everyone involved. At Stanford Linear Accelerator Center (SLAC), we have created a testing method that helps our group, SLAC Computer Services (SCS), weed out potentially bad hardware and purchase the best hardware at the best possible cost. Commodity hardware changes often, so new evaluations happen periodically each time we purchase systems and minor re-evaluations happen for revised systems for our clusters, about twice a year. This general framework helps SCS perform correct, efficient evaluations. This article outlinesmore » SCS's computer testing methods and our system acceptance criteria. We expanded the basic ideas to other evaluations such as storage, and we think the methods outlined in this article has helped us choose hardware that is much more stable and supportable than our previous purchases. We have found that commodity hardware ranges in quality, so systematic method and tools for hardware evaluation were necessary. This article is based on one instance of a hardware purchase, but the guidelines apply to the general problem of purchasing commodity computer systems for production computational work.« less
High-fidelity real-time maritime scene rendering
NASA Astrophysics Data System (ADS)
Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin
2011-06-01
The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.
Co-design of software and hardware to implement remote sensing algorithms
NASA Astrophysics Data System (ADS)
Theiler, James P.; Frigo, Janette R.; Gokhale, Maya; Szymanski, John J.
2002-01-01
Both for offline searches through large data archives and for onboard computation at the sensor head, there is a growing need for ever-more rapid processing of remote sensing data. For many algorithms of use in remote sensing, the bulk of the processing takes place in an ``inner loop'' with a large number of simple operations. For these algorithms, dramatic speedups can often be obtained with specialized hardware. The difficulty and expense of digital design continues to limit applicability of this approach, but the development of new design tools is making this approach more feasible, and some notable successes have been reported. On the other hand, it is often the case that processing can also be accelerated by adopting a more sophisticated algorithm design. Unfortunately, a more sophisticated algorithm is much harder to implement in hardware, so these approaches are often at odds with each other. With careful planning, however, it is sometimes possible to combine software and hardware design in such a way that each complements the other, and the final implementation achieves speedup that would not have been possible with a hardware-only or a software-only solution. We will in particular discuss the co-design of software and hardware to achieve substantial speedup of algorithms for multispectral image segmentation and for endmember identification.
Thermal/vacuum vs. thermal atmospheric testing of space flight electronic assemblies
NASA Technical Reports Server (NTRS)
Gibbel, Mark
1990-01-01
For space flight hardware, the thermal vacuum environmental test is the best test of a system's flight worthiness. Substituting an atmospheric pressure thermal test for a thermal/vacuum test can effectively reduce piece part temperatures by 20 C or more, even for low power density designs. Similar reductions in test effectiveness can also result from improper assembly level T/V test boundary conditions. The net result of these changes may reduce the effective test temperatures to the point where there is zero or negative margin over the flight thermal environment.
Piromalis, Dimitrios; Arvanitis, Konstantinos
2016-01-01
Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture. PMID:27527180
Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2013-09-01
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.
The design of 1-wire net meteorological observatory for 2.4 m telescope
NASA Astrophysics Data System (ADS)
Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei
2005-03-01
The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.