Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials
NASA Technical Reports Server (NTRS)
Mcgill, Preston B.; Mount, Angela R.
1992-01-01
The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.
Batman-cracks. Observations and numerical simulations
NASA Astrophysics Data System (ADS)
Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.
1991-05-01
To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
A test matrix sequencer for research test facility automation
NASA Technical Reports Server (NTRS)
Mccartney, Timothy P.; Emery, Edward F.
1990-01-01
The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.
Ponterotto, Joseph G; Ruckdeschel, Daniel E
2007-12-01
The present article addresses issues in reliability assessment that are often neglected in psychological research such as acceptable levels of internal consistency for research purposes, factors affecting the magnitude of coefficient alpha (alpha), and considerations for interpreting alpha within the research context. A new reliability matrix anchored in classical test theory is introduced to help researchers judge adequacy of internal consistency coefficients with research measures. Guidelines and cautions in applying the matrix are provided.
A Basic Test Theory Generalizable to Tailored Testing. Technical Report No. 1.
ERIC Educational Resources Information Center
Cliff, Norman
Measures of consistency and completeness of order relations derived from test-type data are proposed. The measures are generalized to apply to incomplete data such as tailored testing. The measures are based on consideration of the items-plus-persons by items-plus-persons matrix as an adjacency matrix in which a 1 means that the row element…
The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix
NASA Technical Reports Server (NTRS)
Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.
1989-01-01
The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.
Microstructure, Friction and Wear of Aluminum Matrix Composites
NASA Astrophysics Data System (ADS)
Florea, R. M.
2018-06-01
MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.
Drábek, Jiří
2016-01-01
In this paper I tested whether Contradictory Matrix with 40 Inventive Principles, the simplest instrument from the Theory of Inventive Problem Solving (TRIZ), is a useful approach to a real-life PCR scenario. The PCR challenge consisted of standardization of fluorescence melting curve measurements in Competitive Amplification of Differentially Melting Amplicons (CADMA) PCR for multiple targets. Here I describe my way of using the TRIZ Matrix to generate seven alternative solutions from which I can choose the successful solution, consisting of repeated cycles of amplification and melting in a single PCR run.
Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials
NASA Technical Reports Server (NTRS)
Kessler, Jeff A.; Adams, Donald F.
1992-01-01
Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.
The First Flight of ATIC: Preliminary Results on Li, Be, B Nuclei
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The ATIC (Advanced Thin Ionization Calorimeter) balloon experiment had its first test flight which lasted for 16 days and brought it around Antarctica. The ATIC spectrometer consists of a fully active BGO (Bismuth Germanate) calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix consisted of 4480 pixels was used as a charge detector in the experiment. We discuss a possibility of the ATIC to measure individual energy spectra of Li, Be and B.
The Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2004-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long- duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei over a wide energy range from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2OO1 around the continent. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix, consisting of 4480 pixels, was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
Addressable Inverter Matrix Tests Integrated-Circuit Wafer
NASA Technical Reports Server (NTRS)
Buehler, Martin G.
1988-01-01
Addressing elements indirectly through shift register reduces number of test probes. With aid of new technique, complex test structure on silicon wafer tested with relatively small number of test probes. Conserves silicon area by reduction of area devoted to pads. Allows thorough evaluation of test structure characteristics and of manufacturing process parameters. Test structure consists of shift register and matrix of inverter/transmission-gate cells connected to two-by-ten array of probe pads. Entire pattern contained in square area having only 1.6-millimeter sides. Shift register is conventional static CMOS device using inverters and transmission gates in master/slave D flip-flop configuration.
Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Christl, M. J.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long-duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei in the wide range of their energy from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2001 around the South Pole. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix consisted of 4480 pixels was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
Pitting Initiation and Propagation of X70 Pipeline Steel Exposed to Chloride-Containing Environments
Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.
2017-01-01
Inclusion-induced pitting initiation mechanisms in X70 steel were investigated by scanning electron microscopy, scanning Kelvin probe force microscopy (SKPFM), immersion and electrochemical polarization tests in chloride-containing ion solutions. There are three inclusion types in the X70 steel. Corrosion test results indicated that pitting corrosion resistance of type A inclusion < type C inclusion < type B inclusion, i.e., (Mn, Ca)S < matrix < (Al, Ca)O. SKPFM test results show that the type A inclusion exhibited both lower and higher potentials than the matrix, while the type B inclusion exhibited higher potential than the matrix. The corrosion test and the SKPFM potential test results are consistent. Potentiodynamic polarization results indicate that the type A and C are active inclusions, while the type B is an inactive inclusion. Three kinds of possible mechanisms of inclusion-induced pitting corrosion are established for the X70 steel. PMID:28902156
Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite
NASA Technical Reports Server (NTRS)
Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.
1993-01-01
Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.
Communication: A difference density picture for the self-consistent field ansatz.
Parrish, Robert M; Liu, Fang; Martínez, Todd J
2016-04-07
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Communication: A difference density picture for the self-consistent field ansatz
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J.
2016-04-01
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Random matrix theory filters and currency portfolio optimisation
NASA Astrophysics Data System (ADS)
Daly, J.; Crane, M.; Ruskin, H. J.
2010-04-01
Random matrix theory (RMT) filters have recently been shown to improve the optimisation of financial portfolios. This paper studies the effect of three RMT filters on realised portfolio risk, using bootstrap analysis and out-of-sample testing. We considered the case of a foreign exchange and commodity portfolio, weighted towards foreign exchange, and consisting of 39 assets. This was intended to test the limits of RMT filtering, which is more obviously applicable to portfolios with larger numbers of assets. We considered both equally and exponentially weighted covariance matrices, and observed that, despite the small number of assets involved, RMT filters reduced risk in a way that was consistent with a much larger S&P 500 portfolio. The exponential weightings indicated showed good consistency with the value suggested by Riskmetrics, in contrast to previous results involving stocks. This decay factor, along with the low number of past moves preferred in the filtered, equally weighted case, displayed a trend towards models which were reactive to recent market changes. On testing portfolios with fewer assets, RMT filtering provided less or no overall risk reduction. In particular, no long term out-of-sample risk reduction was observed for a portfolio consisting of 15 major currencies and commodities.
Inelastic response of metal matrix composites under biaxial loading
NASA Technical Reports Server (NTRS)
Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.
1991-01-01
Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.
Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.
1996-01-01
Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchholz, Stuart A.
This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined,more » the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.« less
Passivation of pigment particles for thermal control coatings
NASA Technical Reports Server (NTRS)
Sancier, K. M.; Morrison, S. R.; Farley, E. P.
1975-01-01
The preparation of a matrix of 48 samples consisting of pigments and pigmented paints is described. The results obtained from testing these samples by electron spin resonance and by in situ spectral reflectance measurements in space simulation tests are presented. Conclusions and recommendations for further research are given.
Eigenvalue computations with the QUAD4 consistent-mass matrix
NASA Technical Reports Server (NTRS)
Butler, Thomas A.
1990-01-01
The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.
NASA Technical Reports Server (NTRS)
Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.
1986-01-01
Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.
Peterson, Chris J; Dosch, Jerald J; Carson, Walter P
2014-08-01
The nucleation hypothesis appears to explain widespread patterns of succession in tropical pastures, specifically the tendency for isolated trees to promote woody species recruitment. Still, the nucleation hypothesis has usually been tested explicitly for only short durations and in some cases isolated trees fail to promote woody recruitment. Moreover, at times, nucleation occurs in other key habitat patches. Thus, we propose an extension, the matrix discontinuity hypothesis: woody colonization will occur in focal patches that function to mitigate the herbaceous vegetation effects, thus providing safe sites or regeneration niches. We tested predictions of the classical nucleation hypothesis, the matrix discontinuity hypothesis, and a distance from forest edge hypothesis, in five abandoned pastures in Costa Rica, across the first 11 years of succession. Our findings confirmed the matrix discontinuity hypothesis: specifically, rotting logs and steep slopes significantly enhanced woody colonization. Surprisingly, isolated trees did not consistently significantly enhance recruitment; only larger trees did so. Finally, woody recruitment consistently decreased with distance from forest. Our results as well as results from others suggest that the nucleation hypothesis needs to be broadened beyond its historical focus on isolated trees or patches; the matrix discontinuity hypothesis focuses attention on a suite of key patch types or microsites that promote woody species recruitment. We argue that any habitat discontinuities that ameliorate the inhibition by dense graminoid layers will be foci for recruitment. Such patches could easily be manipulated to speed the transition of pastures to closed canopy forests.
Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Dickerson, Robert M.
1995-01-01
Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.
Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix
NASA Astrophysics Data System (ADS)
Caldwell, Kathleen L.; Murray, Kermit K.
1998-05-01
Matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained using a water and glycerol matrix with a tunable mid-infrared optical parametric oscillator. The matrix consists of a 1:1 mixture of water and glycerol deposited on a thin layer of nitrocellulose and cooled to -30°C. When exposed to vacuum, most of the water evaporates, leaving a matrix of glycerol with residual water. The peptide bradykinin and the protein bovine insulin were used to test this new matrix. Mass spectra were obtained for bradykinin between 2.76 and 3.1 μm with the maximum analyte signal at 2.8 μm. Mass resolution in excess of 2000 for bradykinin and 500 for insulin was obtained with delayed ion extraction and a linear time of flight mass spectrometer. The addition of nitrocellulose to the matrix resulted in exceptionally durable samples: more than 10,000 laser shots which produced analyte signal could be obtained from a single sample spot.
Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion
NASA Astrophysics Data System (ADS)
Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.
Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space.more » These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.« less
Extraction and quantitative analysis of iodine in solid and solution matrixes.
Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S
2005-11-01
129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.
Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J
1994-06-01
There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.
Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A
2007-08-15
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.
NASA Astrophysics Data System (ADS)
Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.
2007-08-01
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.
Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites
NASA Astrophysics Data System (ADS)
Zelenak, Steve; Radford, Donald W.; Dean, Michael W.
1993-04-01
The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.
A New Test of Linear Hypotheses in OLS Regression under Heteroscedasticity of Unknown Form
ERIC Educational Resources Information Center
Cai, Li; Hayes, Andrew F.
2008-01-01
When the errors in an ordinary least squares (OLS) regression model are heteroscedastic, hypothesis tests involving the regression coefficients can have Type I error rates that are far from the nominal significance level. Asymptotically, this problem can be rectified with the use of a heteroscedasticity-consistent covariance matrix (HCCM)…
NASA Technical Reports Server (NTRS)
Novak, R. C.
1976-01-01
Resin matrix composites having improved resistance to foreign object damage in gas turbine engine fan blade applications were developed. Materials evaluated include epoxy matrix graphite/glass and boron/glass hybrids, thermoplastic matrix boron/glass hybrids, and superhybrids consisting of graphite/epoxy, boron/aluminum, and titanium alloy sheets. Static, pendulum impact, and ballistic impact test results are reported for all materials. Superhybrid blade like specimens are shown to be capable of withstanding relatively severe ballistic impacts from gelatin spheres without fracture. The effects of ply configuration and projectile angle of incidence on impact behavior are described. Predictions of surface strains during ballistic impact are presented and shown to be in reasonable agreement with experimental measurements.
Spacecraft inertia estimation via constrained least squares
NASA Technical Reports Server (NTRS)
Keim, Jason A.; Acikmese, Behcet A.; Shields, Joel F.
2006-01-01
This paper presents a new formulation for spacecraft inertia estimation from test data. Specifically, the inertia estimation problem is formulated as a constrained least squares minimization problem with explicit bounds on the inertia matrix incorporated as LMIs [linear matrix inequalities). The resulting minimization problem is a semidefinite optimization that can be solved efficiently with guaranteed convergence to the global optimum by readily available algorithms. This method is applied to data collected from a robotic testbed consisting of a freely rotating body. The results show that the constrained least squares approach produces more accurate estimates of the inertia matrix than standard unconstrained least squares estimation methods.
An experimental test of matrix permeability and corridor use by an endemic understory bird.
Castellón, Traci D; Sieving, Kathryn E
2006-02-01
Because of widespread habitat fragmentation, maintenance of landscape connectivity has become a major focus of conservation planning, but empirical tests of animal movement in fragmented landscapes remain scarce. We conducted a translocation experiment to test the relative permeability of three landscape elements (open habitat, shrubby secondary vegetation, and wooded corridors) to movement by the Chucao Tapaculo (Scelorchilus rubecula), a forest understory bird endemic to South American temperate rainforest. Forty-one radio-tagged subjects were translocated (individually) to three landscape treatments consisting of small release patches that were either entirely surrounded by open habitat (pasture), entirely surrounded by dense shrubs, or linked to other patches by wooded corridors that were otherwise surrounded by open matrix. The number of days subjects remained in release patches before dispersal (a measure of habitat resistance) was significantly longer for patches surrounded by open habitat than for patches adjoining corridors or surrounded by dense shrubs. These results indicate that open habitat significantly constrains Chucao dispersal, in accord with expectation, but dispersal occurs equally well through wooded corridors and shrub-dominated matrix. Thus, corridor protection or restoration and management of vegetation in the matrix (to encourage animal movement) may be equally feasible alternatives for maintaining connectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D; Danielewicz, P
2002-03-15
This is the manual for a collection of programs that can be used to invert angled-averaged (i.e. one dimensional) two-particle correlation functions. This package consists of several programs that generate kernel matrices (basically the relative wavefunction of the pair, squared), programs that generate test correlation functions from test sources of various types and the program that actually inverts the data using the kernel matrix.
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
NASA Astrophysics Data System (ADS)
Prószyński, Witold; Kwaśniak, Mieczysław
2016-12-01
The paper presents the results of investigating the effect of increase of observation correlations on detectability and identifiability of a single gross error, the outlier test sensitivity and also the response-based measures of internal reliability of networks. To reduce in a research a practically incomputable number of possible test options when considering all the non-diagonal elements of the correlation matrix as variables, its simplest representation was used being a matrix with all non-diagonal elements of equal values, termed uniform correlation. By raising the common correlation value incrementally, a sequence of matrix configurations could be obtained corresponding to the increasing level of observation correlations. For each of the measures characterizing the above mentioned features of network reliability the effect is presented in a diagram form as a function of the increasing level of observation correlations. The influence of observation correlations on sensitivity of the w-test for correlated observations (Förstner 1983, Teunissen 2006) is investigated in comparison with the original Baarda's w-test designated for uncorrelated observations, to determine the character of expected sensitivity degradation of the latter when used for correlated observations. The correlation effects obtained for different reliability measures exhibit mutual consistency in a satisfactory extent. As a by-product of the analyses, a simple formula valid for any arbitrary correlation matrix is proposed for transforming the Baarda's w-test statistics into the w-test statistics for correlated observations.
Comparison of two Galerkin quadrature methods
Morel, Jim E.; Warsa, James; Franke, Brian C.; ...
2017-02-21
Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less
Comparison of two Galerkin quadrature methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, Jim E.; Warsa, James; Franke, Brian C.
Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurst, Janet; Brewer, David
1999-01-01
Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.
Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.
1991-01-01
A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.
Methods for converging correlation energies within the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc
2004-01-01
Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.
SiPM based readout system for PbWO4 crystals
NASA Astrophysics Data System (ADS)
Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.
2013-08-01
Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.
Study on the Algorithm of Judgment Matrix in Analytic Hierarchy Process
NASA Astrophysics Data System (ADS)
Lu, Zhiyong; Qin, Futong; Jin, Yican
2017-10-01
A new algorithm is proposed for the non-consistent judgment matrix in AHP. A primary judgment matrix is generated firstly through pre-ordering the targeted factor set, and a compared matrix is built through the top integral function. Then a relative error matrix is created by comparing the compared matrix with the primary judgment matrix which is regulated under the control of the relative error matrix and the dissimilar degree of the matrix step by step. Lastly, the targeted judgment matrix is generated to satisfy the requirement of consistence and the least dissimilar degree. The feasibility and validity of the proposed method are verified by simulation results.
NASA Technical Reports Server (NTRS)
Verrilli, Michael; Calomino, Anthony; Thomas, David J.; Robinson, R. Craig
2004-01-01
Vane subelements were fabricated from a silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite. A cross-sectional slice of an aircraft engine metal vane was the basis of the vane subelement geometry. To fabricate the small radius of the vane's trailing edge using stiff Sylramic SiC fibers, a unique SiC fiber architecture was developed. A test configuration for the vanes in a high pressure gas turbine environment was designed and fabricated. Testing was conducted using a pressure of 6 atm and combustion flow rate of 0.5 kg/sec, and consisted of fifty hours of steady state operation followed by 102 2-minute thermal cycles. A surface temperature of 1320 C was obtained for the EBC-coated SiC/SiC vane subelement. This paper will briefly discuss the vane fabrication, test configuration, and results of the vane testing. The emphasis of the paper is on characterization of the post-test condition of the vanes.
Gray, Dean; LeVanseler, Kerri; Pan, Meide
2008-01-01
A single laboratory validation (SLV) was completed for a method to determine the flavonol aglycones quercetin, kaempferol, and isorhamnetin in Ginkgo biloba products. The method calculates total glycosides based on these aglycones formed following acid hydrolysis. Nine matrixes were chosen for the study, including crude leaf material, standardized dry powder extract, single and multiple entity finished products, and ethanol and glycerol tinctures. For the 9 matrixes evaluated as part of this SLV, the method appeared to be selective and specific, with no observed interferences. The simplified 60 min oven heating hydrolysis procedure was effective for each of the matrixes studied, with no apparent or consistent differences between 60, 75, and 90 min at 90°C. A Youden ruggedness trial testing 7 factors with the potential to affect quantitative results showed that 2 factors (volume hydrolyzed and test sample extraction/hydrolysis weight) were the most important parameters for control during sample preparation. The method performed well in terms of precision, with 4 matrixes tested in triplicate over a 3-day period showing an overall repeatability (relative standard deviation, RSD) of 2.3%. Analysis of variance testing at α = 0.05 showed no significant differences among the within- or between-group sources of variation, although comparisons of within-day (Sw), between-day (Sb), and total (St) precision showed that a majority of the standard deviation came from within-day determinations for all matrixes. Accuracy testing at 2 levels (approximately 30 and 90% of the determined concentrations in standardized dry powder extract) from 2 complex negative control matrixes showed an overall 96% recovery and RSD of 1.0% for the high spike, and 94% recovery and RSD of 2.5% for the low spike. HorRat scores were within the limits for performance acceptability, ranging from 0.4 to 1.3. Based on the performance results presented herein, it is recommended that this method progress to the collaborative laboratory trial. PMID:16001841
Fracture toughness testing of polymer matrix composites
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
1992-01-01
A review of the interlaminar fracture indicates that a standard specimen geometry is needed to obtain consistent fracture toughness measurements in polymer matrix composites. In general, the variability of measured toughness values increases as the toughness of the material increases. This variability could be caused by incorrect sizing of test specimens and/or inconsistent data reduction procedures. A standard data reduction procedure is therefore needed as well, particularly for the tougher materials. Little work has been reported on the effects of fiber orientation, fiber architecture, fiber surface treatment or interlaminar fracture toughness, and the mechanisms by which the fibers increase fracture toughness are not well understood. The little data that is available indicates that woven fiber reinforcement and fiber sizings can significantly increase interlaminar fracture toughness.
E-beam generated holographic masks for optical vector-matrix multiplication
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Case, S. K.
1981-01-01
An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.
Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Cvitkovich, Michael K.; O'Brien, T. Kevin; Minguet, Pierre J.
2000-01-01
A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as observed in the experiments.
Testing and Analysis of Composite Skin/Stringer Debonding under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Cvitkovich, Michael; OBrien, Kevin; Minguet, Pierre J.
2000-01-01
A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as observed in the experiments.
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Crawford, C.; Fox, K.
More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for themore » expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.« less
Microvascularized 3D Breast Cancer Constructs for Drug Testing and Development
2014-10-01
bacterial cellulose , HuBiogel™, and combinations thereof. In embodiments of the 3D vascularized tissue constructs of the present disclosure, the gel matrix...the group consisting of: collagen, fibrin, elastin, keratin, Matrigel™, bacterial cellulose , HuBiogel™, and combinations thereof. 7. The 3D ...AWARD NUMBER: W81XWH-13-1-0291 TITLE: Microvascularized 3D Breast Cancer Constructs for Drug Testing and Development PRINCIPAL INVESTIGATOR
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin
This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gyanender P.; Gonczy, Steve T.; Deck, Christian P.
An interlaboratory round robin study was conducted on the tensile strength of SiC–SiC ceramic matrix composite (CMC) tubular test specimens at room temperature with the objective of expanding the database of mechanical properties of nuclear grade SiC–SiC and establishing the precision and bias statement for standard test method ASTM C1773. The mechanical properties statistics from the round robin study and the precision statistics and precision statement are presented herein. The data show reasonable consistency across the laboratories, indicating that the current C1773–13 ASTM standard is adequate for testing ceramic fiber reinforced ceramic matrix composite tubular test specimen. Furthermore, it wasmore » found that the distribution of ultimate tensile strength data was best described with a two–parameter Weibull distribution, while a lognormal distribution provided a good description of the distribution of proportional limit stress data.« less
Singh, Gyanender P.; Gonczy, Steve T.; Deck, Christian P.; ...
2018-04-19
An interlaboratory round robin study was conducted on the tensile strength of SiC–SiC ceramic matrix composite (CMC) tubular test specimens at room temperature with the objective of expanding the database of mechanical properties of nuclear grade SiC–SiC and establishing the precision and bias statement for standard test method ASTM C1773. The mechanical properties statistics from the round robin study and the precision statistics and precision statement are presented herein. The data show reasonable consistency across the laboratories, indicating that the current C1773–13 ASTM standard is adequate for testing ceramic fiber reinforced ceramic matrix composite tubular test specimen. Furthermore, it wasmore » found that the distribution of ultimate tensile strength data was best described with a two–parameter Weibull distribution, while a lognormal distribution provided a good description of the distribution of proportional limit stress data.« less
Khrapko, Konstantin R [Moscow, RU; Khorlin, Alexandr A [Moscow, RU; Ivanov, Igor B [Moskovskaya, RU; Ershov, Gennady M [Moscow, RU; Lysov, Jury P [Moscow, RU; Florentiev, Vladimir L [Moscow, RU; Mirzabekov, Andrei D [Moscow, RU
1996-09-03
A method for sequencing DNA by hybridization that includes the following steps: forming an array of oligonucleotides at such concentrations that either ensure the same dissociation temperature for all fully complementary duplexes or allows hybridization and washing of such duplexes to be conducted at the same temperature; hybridizing said oligonucleotide array with labeled test DNA; washing in duplex dissociation conditions; identifying single-base substitutions in the test DNA by analyzing the distribution of the dissociation temperatures and reconstructing the DNA nucleotide sequence based on the above analysis. A device for carrying out the method comprises a solid substrate and a matrix rigidly bound to the substrate. The matrix contains the oligonucleotide array and consists of a multiplicity of gel portions. Each gel portion contains one oligonucleotide of desired length. The gel portions are separated from one another by interstices and have a thickness not exceeding 30 .mu.m.
Mechanical Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy; Ellis, David L.; Miner, Robert V.
1997-01-01
The present investigation examines the in-plane mechanical behavior of a particular woven metal matrix composite (MMC); 8-harness (8H) satin carbon/copper (C/Cu). This is accomplished via mechanical testing as well as micromechanical modeling. While the literature is replete with experimental and modeling efforts for woven and braided polymer matrix composites, little work has been done on woven and braided MMC's. Thus, the development and understanding of woven MMC's is at an early stage. 8H satin C/Cu owes its existence to the high thermal conductivity of copper and low density and thermal expansion of carbon fibers. It is a candidate material for high heat flux applications, such as space power radiator panels. The experimental portion of this investigation consists of monotonic and cyclic tension, compression, and Iosipescu shear tests, as well as combined tension-compression tests. Tests were performed on composite specimens with three copper matrix alloy types: pure Cu, Cu-0.5 weight percent Ti (Cu-Ti), and Cu-0.7 weight percent Cr (Cu-Cr). The small alloying additions are present to promote fiber/matrix interfacial bonding. The analytical modeling effort utilizes an approach in which a local micromechanical model is embedded in a global micromechanical model. This approach differs from previously developed analytical models for woven composites in that a true repeating unit cell is analyzed. However, unlike finite element modeling of woven composites, the geometry is sufficiently idealized to allow efficient geometric discretization and efficient execution.
NASA Astrophysics Data System (ADS)
Maity, Joydeep; Pal, Tapan Kumar
2012-07-01
In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.
Tests of conformal field theory at the Yang-Lee singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wydro, Tomasz; McCabe, John F.
2009-12-14
This paper studies the Yang-Lee edge singularity of 2-dimensional (2D) Ising model based on a quantum spin chain and transfer matrix measurements on the cylinder. Based on finite-size scaling, the low-lying excitation spectrum is found at the Yang-Lee edge singularity. Based on transfer matrix techniques, the single structure constant is evaluated at the Yang-Lee edge singularity. The results of both types of measurements are found to be fully consistent with the predictions for the (A{sub 4}, A{sub 1}) minimal conformal field theory, which was previously identified with this critical point.
NASA Astrophysics Data System (ADS)
Mengis, Nadine; Keller, David P.; Oschlies, Andreas
2018-01-01
This study introduces the Systematic Correlation Matrix Evaluation (SCoMaE) method, a bottom-up approach which combines expert judgment and statistical information to systematically select transparent, nonredundant indicators for a comprehensive assessment of the state of the Earth system. The methods consists of two basic steps: (1) the calculation of a correlation matrix among variables relevant for a given research question and (2) the systematic evaluation of the matrix, to identify clusters of variables with similar behavior and respective mutually independent indicators. Optional further analysis steps include (3) the interpretation of the identified clusters, enabling a learning effect from the selection of indicators, (4) testing the robustness of identified clusters with respect to changes in forcing or boundary conditions, (5) enabling a comparative assessment of varying scenarios by constructing and evaluating a common correlation matrix, and (6) the inclusion of expert judgment, for example, to prescribe indicators, to allow for considerations other than statistical consistency. The example application of the SCoMaE method to Earth system model output forced by different CO2 emission scenarios reveals the necessity of reevaluating indicators identified in a historical scenario simulation for an accurate assessment of an intermediate-high, as well as a business-as-usual, climate change scenario simulation. This necessity arises from changes in prevailing correlations in the Earth system under varying climate forcing. For a comparative assessment of the three climate change scenarios, we construct and evaluate a common correlation matrix, in which we identify robust correlations between variables across the three considered scenarios.
Study on the repeatability of manufacturing nano-silica (SiO2) reinforced composite laminates
NASA Astrophysics Data System (ADS)
Prince Jeya Lal, L.; Ramesh, S.; Natarajan, Elango
2018-04-01
Repeatability to manufacture nano-silica reinforced composite laminates with consistent mechanical properties is studied. In this study, composite laminates are manufactured by hand layup and there after mechanical properties of the laminates are evaluated under tensile and flexural loading conditions. Composite laminates are fabricated and tested under equivalent conditions. Plain weave E-Glass fabric and epoxy LY556 are used as reinforcement and matrix. Nano-silica of size 17nm is used as filler. To enhance the reliability of composite characterization, utmost care is taken to avoid defects like voids, surface defects and under-saturations. Homogeneous distribution of nano silica in matrix is analyzed using TEM study. Inconsistencies in mechanical properties are quantified by coefficient of variation. In this study, the coefficient of variation is estimated in terms of break load for tensile test is 4.45 and for flexural test is 2.27 and is well within the limits.
NASA Astrophysics Data System (ADS)
Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika S.; Rohde, Magnus M.; Kerrn-Jespersen, Henriette; Bjerg, Poul L.; Binning, Philip J.; Broholm, Mette M.
2018-06-01
Limestone aquifers are of great interest as a drinking water resource in many countries. They often have a complex crushed and fractured geology, which makes the analysis and description of flow and transport processes in such aquifers a challenging task. In this study, the solute transport behavior including fracture-matrix interaction in hydrogeological units of a limestone aquifer in eastern Denmark was characterized by designing, conducting and interpreting six depth-specific tracer tests involving natural- and forced-gradient conditions with multiple tracers representing different diffusion properties. To determine flow parameters, the tracer tests were complemented by a comprehensive set of depth-specific borehole and hydraulic tests. Based on the tests, a new and stronger conceptual understanding was developed for the different aquifer units. The investigated limestone aquifer is composed of a glacially crushed unit and two fractured units, with calcarenitic and bryozoan limestone of similar hydraulic properties. Hydraulic tests revealed that the crushed unit has a lower hydraulic conductivity than the fractured limestone units, likely due to the crushed conditions with small limestone clusters and small-aperture fractures potentially filled with fine material. In the fractured limestone units, a distinct preferential flow and primary transport along major horizontal fractures was inferred from the tracer tests under forced-gradient conditions. The dominant horizontal fractures were identified on impeller flow logs and appear connected between wells, having an extent of up to several hundred meters. Connectivity between the aquifer units was investigated with a long-term pumping test and tracer tests, revealing restricted vertical flow and transport. A very pronounced hydraulic conductivity contrast between major fractures and matrix could also be inferred from the borehole and hydraulic tests, which is consistent with the findings from the tracer tests. The difference in the matrix diffusion behavior of the simultaneously injected tracers and a long tailing in the breakthrough curves revealed that matrix diffusion has a strong influence on the solute transport in the fractured limestone.
2016-09-01
investigated. The unitized composite consisted of a polymer matrix composite (PMC) co-cured with a ceramic matrix composite (CMC). The PMC portion...ply non- crimp 3D orthogonal weave composite consisting of a ceramic matrix reinforced with glass fibers. In order to assess the performance and...2.3 Ceramic Matrix Composites ...................................................................................5 2.4 2D vs 3D Reinforcement
2005-07-01
as an access graft is addressed using statistical methods below. Graft consistency can be defined statistically as the variance associated with the...addressed using statistical methods below. Graft consistency can be defined statistically as the variance associated with the sample of grafts tested in...measured using a refractometer (Brix % method). The equilibration data are shown in Graph 1. The results suggest the following equilibration scheme: 40% v/v
Polymer-ceramic nanocomposites for applications in the bone surgery
NASA Astrophysics Data System (ADS)
Stodolak, E.; Gadomska, K.; Lacz, A.; Bogun, M.
2009-01-01
The subject of this work was preparation and investigation of properties of a nanocomposite material based on polymer matrix modified with nanometric silica particles (SiO2). The composite matrix consisted of resorbable P(L/DL)LA polymer with certified biocompatibility. Nanometric silica was introduced into the matrix by means of ultrasonic homogenisation and/or mechanical stirring. The silica was introduced directly e.g. as nanoparticles or inside calcium alginate fibres which contained 3 wt.% of amorphous SiO2. Proper dispersion of nano-filliers was confirmed by means of thermal analysis (TG/DTA, DSC). It was observed, that the presence of inorganic nanoparticles influenced several surface parameters of the nanocomposites i.e. hydrophility (a decrease of surface energy) and topography (both in micro- and nano-scale). Additionally, the nanocomposites exhibited enhanced mechanical properties (Young's modulus, tensile strength) compared to the pure polymer. The nanocomposites were bioactive materials (SBF/3 days/37oC). Biological tests (MTT test) showed a good viability of human osteoblasts (hFOB 1.19) in contact with the nanocomposites surface. Results of preliminary biological tests carried out with the use of mother cells extracted from human bone marrow showed that the nanocomposites may provide differenation of bone cells.
NASA Technical Reports Server (NTRS)
Mirdamadi, M.; Johnson, W. S.
1994-01-01
Titanium matrix composites (TMC) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the (0/90)2s SCS-6/Timetal-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from -130 C to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. A micromechanics based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profile were well correlated using the predicted stress in 0 degree fibers.
Roux, C Z
2009-05-01
Short phylogenetic distances between taxa occur, for example, in studies on ribosomal RNA-genes with slow substitution rates. For consistently short distances, it is proved that in the completely singular limit of the covariance matrix ordinary least squares (OLS) estimates are minimum variance or best linear unbiased (BLU) estimates of phylogenetic tree branch lengths. Although OLS estimates are in this situation equal to generalized least squares (GLS) estimates, the GLS chi-square likelihood ratio test will be inapplicable as it is associated with zero degrees of freedom. Consequently, an OLS normal distribution test or an analogous bootstrap approach will provide optimal branch length tests of significance for consistently short phylogenetic distances. As the asymptotic covariances between branch lengths will be equal to zero, it follows that the product rule can be used in tree evaluation to calculate an approximate simultaneous confidence probability that all interior branches are positive.
[Characteristics, advantages, and limits of matrix tests].
Brand, T; Wagener, K C
2017-03-01
Deterioration of communication abilities due to hearing problems is particularly relevant in listening situations with noise. Therefore, speech intelligibility tests in noise are required for audiological diagnostics and evaluation of hearing rehabilitation. This study analyzed the characteristics of matrix tests assessing the 50 % speech recognition threshold in noise. What are their advantages and limitations? Matrix tests are based on a matrix of 50 words (10 five-word sentences with same grammatical structure). In the standard setting, 20 sentences are presented using an adaptive procedure estimating the individual 50 % speech recognition threshold in noise. At present, matrix tests in 17 different languages are available. A high international comparability of matrix tests exists. The German language matrix test (OLSA, male speaker) has a reference 50 % speech recognition threshold of -7.1 (± 1.1) dB SNR. Before using a matrix test for the first time, the test person has to become familiar with the basic speech material using two training lists. Hereafter, matrix tests produce constant results even if repeated many times. Matrix tests are suitable for users of hearing aids and cochlear implants, particularly for assessment of benefit during the fitting process. Matrix tests can be performed in closed form and consequently with non-native listeners, even if the experimenter does not speak the test person's native language. Short versions of matrix tests are available for listeners with a shorter memory span, e.g., children.
Field investigation into unsaturated flow and transport in a fault: Model analyses
Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.
2004-01-01
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.
Tisdale, Evgenia; Kennedy, Devin; Xu, Xiaodong; Wilkins, Charles
2014-01-15
The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr2) than is the pentafluorostyrene component distribution. Copyright © 2013 Elsevier B.V. All rights reserved.
Dunning, F Mark; Piazza, Timothy M; Zeytin, Füsûn N; Tucker, Ward C
2014-03-03
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Fabritius, Helge; Walther, Paul; Ziegler, Andreas
2005-05-01
Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.
Cumulative fatigue damage behavior of MAR M-247
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Halford, Gary R.; Kalluri, Sreeramesh
1991-01-01
The objective was to examine the room temperature fatigue and nonlinear cumulative fatigue damage behavior of the cast nickel-based superalloy, MAR M-247. The fatigue test matrix consisted of single-level, fully reversed fatigue experiments. Two series of tests were performed: one of the two baseline fatigue LCF (Low-Cycle Fatigue) life levels was used in the first loading block, and the HCF (High-Cycle Fatigue) baseline loading level was used in the second block in each series. For each series, duplicate tests were performed at each applied LCF life fraction.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.
IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.
Structures Division 1994 Annual Report
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.
Superallowed nuclear beta decay: Precision measurements for basic physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J. C.
2012-11-20
For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separatemore » superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.« less
ERIC Educational Resources Information Center
Meredith, Keith E.; Sabers, Darrell L.
Data required for evaluating a Criterion Referenced Measurement (CRM) is described with a matrix. The information within the matrix consists of the "pass-fail" decisions of two CRMs. By differentially defining these two CRMs, different concepts of reliability and validity can be examined. Indices suggested for analyzing the matrix are listed with…
Fabrication of angleply carbon-aluminum composites
NASA Technical Reports Server (NTRS)
Novak, R. C.
1974-01-01
A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.
Ceramic Matrix Composite Characterization Under a Combustion and Loading Environment
2009-03-01
work showed that the material is sensitive in fatigue to center holes above 84% UTS. Barth Boyer did fatigue and creep testing double edge notched...panel obtained for this test was also used in previous AFIT thesis work by Boyer . It is a 12 in x 12 in panel consisting of an eight harness satin...weave with a [0°/90°] fiber orientation. The panel number is 4569-2. The panel properties obtained by Boyer are in Table 3. 17 Table 3
The Principle of Energetic Consistency
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.
2009-01-01
A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of energetic consistency implies that, to precisely the extent that growing modes are important in data assimilation, this term is also important.
On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha
ERIC Educational Resources Information Center
Sijtsma, Klaas
2009-01-01
This discussion paper argues that both the use of Cronbach's alpha as a reliability estimate and as a measure of internal consistency suffer from major problems. First, alpha always has a value, which cannot be equal to the test score's reliability given the inter-item covariance matrix and the usual assumptions about measurement error. Second, in…
You, Daekeun; Kim, Michelle M; Aryal, Madhava P; Parmar, Hemant; Piert, Morand; Lawrence, Theodore S; Cao, Yue
2018-01-01
To create tumor "habitats" from the "signatures" discovered from multimodality metabolic and physiological images, we developed a framework of a processing pipeline. The processing pipeline consists of six major steps: (1) creating superpixels as a spatial unit in a tumor volume; (2) forming a data matrix [Formula: see text] containing all multimodality image parameters at superpixels; (3) forming and clustering a covariance or correlation matrix [Formula: see text] of the image parameters to discover major image "signatures;" (4) clustering the superpixels and organizing the parameter order of the [Formula: see text] matrix according to the one found in step 3; (5) creating "habitats" in the image space from the superpixels associated with the "signatures;" and (6) pooling and clustering a matrix consisting of correlation coefficients of each pair of image parameters from all patients to discover subgroup patterns of the tumors. The pipeline was applied to a dataset of multimodality images in glioblastoma (GBM) first, which consisted of 10 image parameters. Three major image "signatures" were identified. The three major "habitats" plus their overlaps were created. To test generalizability of the processing pipeline, a second image dataset from GBM, acquired on the scanners different from the first one, was processed. Also, to demonstrate the clinical association of image-defined "signatures" and "habitats," the patterns of recurrence of the patients were analyzed together with image parameters acquired prechemoradiation therapy. An association of the recurrence patterns with image-defined "signatures" and "habitats" was revealed. These image-defined "signatures" and "habitats" can be used to guide stereotactic tissue biopsy for genetic and mutation status analysis and to analyze for prediction of treatment outcomes, e.g., patterns of failure.
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1988-01-01
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1990-01-01
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.
A test of the hypothesis that correlational selection generates genetic correlations.
Roff, Derek A; Fairbairn, Daphne J
2012-09-01
Theory predicts that correlational selection on two traits will cause the major axis of the bivariate G matrix to orient itself in the same direction as the correlational selection gradient. Two testable predictions follow from this: for a given pair of traits, (1) the sign of correlational selection gradient should be the same as that of the genetic correlation, and (2) the correlational selection gradient should be positively correlated with the value of the genetic correlation. We test this hypothesis with a meta-analysis utilizing empirical estimates of correlational selection gradients and measures of the correlation between the two focal traits. Our results are consistent with both predictions and hence support the underlying hypothesis that correlational selection generates a genetic correlation between the two traits and hence orients the bivariate G matrix. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection
NASA Astrophysics Data System (ADS)
Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd
2015-02-01
Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.
NASA Technical Reports Server (NTRS)
Evans, G. L.; Morey-Holton, E.; Turner, R. T.
1998-01-01
In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635
Laser transit anemometer software development program
NASA Technical Reports Server (NTRS)
Abbiss, John B.
1989-01-01
Algorithms were developed for the extraction of two components of mean velocity, standard deviation, and the associated correlation coefficient from laser transit anemometry (LTA) data ensembles. The solution method is based on an assumed two-dimensional Gaussian probability density function (PDF) model of the flow field under investigation. The procedure consists of transforming the data ensembles from the data acquisition domain (consisting of time and angle information) to the velocity space domain (consisting of velocity component information). The mean velocity results are obtained from the data ensemble centroid. Through a least squares fitting of the transformed data to an ellipse representing the intersection of a plane with the PDF, the standard deviations and correlation coefficient are obtained. A data set simulation method is presented to test the data reduction process. Results of using the simulation system with a limited test matrix of input values is also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
A. Dan Wilson; D.G. Lester
1997-01-01
A new electronic-nose device (AromaScan A32S), consisting of an organic matrix-coated polymer-type 32-detector array, was tested as a novel tool for the detection, identification, and discrimination of phytopathogenic microbes. The sensor array detects the unique mixture of volatile metabolites released by microbes growing on standardized growth media by measuring...
Inkjet Assisted Creation of Self-Healing Layers Between Composite Plies
2013-07-29
technology into a prepreg manufacturing process. The approach consisted of depositing novel thermoplastic low-viscosity microdroplets with chemically and...mechanically comparable properties to epoxy matrix in aerospace grade composites onto fiber-reinforced epoxy prepregs before curing using an ink-jet... prepreg Cycom977-2. Double cantilever beam (DCB) and short beam shear (SBS) tests were used to evaluate the self-healing efficiency. It was shown
Consistent forcing scheme in the cascaded lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Fei, Linlin; Luo, Kai Hong
2017-11-01
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
NON-GAUSSIANITIES IN THE LOCAL CURVATURE OF THE FIVE-YEAR WMAP DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudjord, Oeystein; Groeneboom, Nicolaas E.; Hansen, Frode K.
Using the five-year WMAP data, we re-investigate claims of non-Gaussianities and asymmetries detected in local curvature statistics of the one-year WMAP data. In Hansen et al., it was found that the northern ecliptic hemisphere was non-Gaussian at the {approx}1% level testing the densities of hill, lake, and saddle points based on the second derivatives of the cosmic microwave background temperature map. The five-year WMAP data have a much lower noise level and better control of systematics. Using these, we find that the anomalies are still present at a consistent level. Also the direction of maximum non-Gaussianity remains. Due to limitedmore » availability of computer resources, Hansen et al. were unable to calculate the full covariance matrix for the {chi}{sup 2}-test used. Here, we apply the full covariance matrix instead of the diagonal approximation and find that the non-Gaussianities disappear and there is no preferred non-Gaussian direction. We compare with simulations of weak lensing to see if this may cause the observed non-Gaussianity when using a diagonal covariance matrix. We conclude that weak lensing does not produce non-Gaussianity in the local curvature statistics at the scales investigated in this paper. The cause of the non-Gaussian detection in the case of a diagonal matrix remains unclear.« less
The imaging system design of three-line LMCCD mapping camera
NASA Astrophysics Data System (ADS)
Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da
2011-08-01
In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.
Surface enhancement of cold work tool steels by friction stir processing with a pinless tool
NASA Astrophysics Data System (ADS)
Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.
2014-03-01
The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.
NASA Technical Reports Server (NTRS)
Parker, Bradford H.
1992-01-01
An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.
Characterization of Fatigue Damage for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Paris, Isabelle; Cvitkovich, Michael; Krueger, Ronald
2008-01-01
The fatigue damage was characterized in specimens which consisted of a tapered composite flange bonded onto a composite skin. Quasi-static tension tests were performed first to determine the failure load. Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to evaluate the debonding mechanisms. For four specimens, the cycling loading was stopped at intervals. Photographs of the polished specimen edges were taken under a light microscope to document the damage. At two diagonally opposite corners of the flange, a delamination appeared to initiate at the flange tip from a matrix crack in the top 45deg skin ply and propagated at the top 45deg/-45deg skin ply interface. At the other two diagonally opposite corners, a delamination running in the bondline initiated from a matrix crack in the adhesive pocket. In addition, two specimens were cut longitudinally into several sections. Micrographs revealed a more complex pattern inside the specimen where the two delamination patterns observed at the edges are present simultaneously across most of the width of the specimen. The observations suggest that a more sophisticated nondestructive evaluation technique is required to capture the complex damage pattern of matrix cracking and multi-level delaminations.
Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A
2017-02-01
The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. Copyright © 2016. Published by Elsevier Inc.
Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.
2016-01-01
BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical end-points of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extra-cellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. PMID:27615441
Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
NASA Astrophysics Data System (ADS)
Aguilar, J. A.; Albert, A.; Ameli, F.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Denans, D.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Distefano, C.; Drogou, J.-F.; Druillole, F.; Engelen, J.; Ernenwein, J.-P.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Flaminio, V.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Graf, K.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kuch, S.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamare, P.; Languillat, J.-C.; Laschinsky, H.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Raia, G.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca-Blay, V.; Rolin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Salesa, F.; Salomon, K.; Saouter, S.; Sapienza, P.; Shanidze, R.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Valdy, P.; Valente, V.; Vallage, B.; Vernin, P.; Virieux, J.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zornoza, J. D.; Zúñiga, J.
2005-12-01
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a three-dimensional matrix of 900 large area photomultiplier tubes housed in pressure-resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the photomultiplier tube chosen for ANTARES.
Summary of Granulation Matrix Testing for the Plutonium Immobilization Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, C.C.
2001-10-19
In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testingmore » were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.« less
Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D
2013-01-01
American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis.
NASA Astrophysics Data System (ADS)
Skachkov, Dmitry; van Schilfgaarde, Mark; Lambrecht, Walter
The full-potential linearized muffin-tin orbital method allows for a real space representation of the GW or quasi-particle self-consistent (QS)GW self-energy ΣR , L ; R' + T , L'. This can be used to construct the self-energy matrix for a point defect system in a large supercell from that of the perfect crystal in the primitive cell and the self-energy of the defect site and its near neighborhood, obtained self-consistently in a smaller supercell. At the interface between both regions we can average the two types of ΣR , L ; R' + T , L' matrix blocks. The result relies on the limited range of the self-energy matrix in real space. It means that we can calculate the quasiparticle energy levels of the defect system at essentially the cost of a DFT calculation and a few QSGW calculations for relatively small systems. The approach presently focuses on quasiparticle energy levels of band structures of the defect system rather than total energies. We will present test results for AsGa\\ in GaAs, ZnGe in ZnGeN2, NO, VO, VZn, and NO - VZn in ZnO. Supported by the US-DOE-BES under Grant No. DE-SC0008933.
Rat liver mitochondrial intermediate peptidase (MIP): purification and initial characterization.
Kalousek, F; Isaya, G; Rosenberg, L E
1992-01-01
A number of nuclearly encoded mitochondrial protein precursors that are transported into the matrix and inner membrane are cleaved in two sequential steps by two distinct matrix peptidases, mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP). We have isolated and purified MIP from rat liver mitochondrial matrix. The enzyme, purified 2250-fold, is a monomer of 75 kDa and cleaves all tested mitochondrial intermediate proteins to their mature forms. About 20% of the final MIP preparation consists of equimolar amounts of two peptides of 47 kDa and 28 kDa, which are apparently the products of a single cleavage of the 75 kDa protein. These peptides are not separable from the 75 kDa protein, nor from each other, under any conditions used in the purification. The peptidase has a broad pH optimum between pH 6.6 and 8.9 and is inactivated by N-ethylmaleimide (NEM) and other sulfhydryl group reagents. The processing activity is divalent cation-dependent; it is stimulated by manganese, magnesium or calcium ions and reversibly inhibited by EDTA. Zinc, cobalt and iron strongly inhibit MIP activity. This pattern of cation dependence and inhibition is not clearly consistent with that of any known family of proteases. Images PMID:1322290
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua
2010-11-01
A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.
Dimensions of postconcussive symptoms in children with mild traumatic brain injuries.
Ayr, Lauren K; Yeates, Keith Owen; Taylor, H Gerry; Browne, Michael
2009-01-01
The dimensions of postconcussive symptoms (PCS) were examined in a prospective, longitudinal study of 186 8 to 15 year old children with mild traumatic brain injuries (TBI). Parents and children completed a 50-item questionnaire within 2 weeks of injury and again at 3 months after injury, rating the frequency of PCS on a 4-point scale. Common factor analysis with target rotation was used to rotate the ratings to four hypothesized dimensions, representing cognitive, somatic, emotional, and behavioral symptoms. The rotated factor matrix for baseline parent ratings was consistent with the target matrix. The rotated matrix for baseline child ratings was consistent with the target matrix for cognitive and somatic symptoms but not for emotional and behavioral symptoms. The rotated matrices for ratings obtained 3 months after injury were largely consistent with the target matrix derived from analyses of baseline ratings, except that parent ratings of behavioral symptoms did not cluster as before. Parent and child ratings of PCS following mild TBI yield consistent factors reflecting cognitive and somatic symptom dimensions, but dimensions of emotional and behavioral symptoms are less robust across time and raters. (JINS, 2009, 15, 19-30.).
Petrography and preliminary interpretations of the crystalline breccias from the Manson M-1 core
NASA Technical Reports Server (NTRS)
Bell, M. S.; Reagan, M. K.; Anderson, R. R.; Foster, C. T., Jr.
1993-01-01
The M-1 core was drilled on the eastern edge of the central uplift within the Manson Impact Structure in Iowa. The lower 107.9 m of the core consists of crystalline breccias. Twelve intervals of thin sections from this core have been studied for preliminary discussion. The breccias are divided into three units by matrix size and abundance. Unit 1 is characterized by a high volume fraction of matrix, and a decreasing proportion of matrix with depth. This matrix is nearly isotropic and consists of grains less than 0.005 to less than 0.02 mm in length. The matrix between 112 and 146 meters depth consists of a crystalline intergrowth of felsic and opaque minerals with or without chlorite. This was the hottest section of the core after impact, and may have undergone high temperature metamorphic recrystallization. Unit 2 is transitional between units 1 and 3, and is delineated by a rapid increase in grain size to .01-.04 mm and a decrease in matrix abundance to 10 percent. Unit 3 has a coarse, often porous matrix, whose abundance changes from about 10 percent at the top to about 2 percent at the base. Grain sizes range from 0.01-0.1 mm over this interval and coarsen with depth. Changes in the character of the matrix as well as the changes in clast lithology and abundance outlined below suggest that unit 3 is in-situ brecciated basement with injected melt and shale fragments; unit 1 is a crater veneer deposit consisting of transported basement materials and unit 2 is a mixed zone between units 1 and 3.
Interval-valued distributed preference relation and its application to group decision making
Liu, Yin; Xue, Min; Chang, Wenjun; Yang, Shanlin
2018-01-01
As an important way to help express the preference relation between alternatives, distributed preference relation (DPR) can represent the preferred, non-preferred, indifferent, and uncertain degrees of one alternative over another simultaneously. DPR, however, is unavailable in some situations where a decision maker cannot provide the precise degrees of one alternative over another due to lack of knowledge, experience, and data. In this paper, to address this issue, we propose interval-valued DPR (IDPR) and present its properties of validity and normalization. Through constructing two optimization models, an IDPR matrix is transformed into a score matrix to facilitate the comparison between any two alternatives. The properties of the score matrix are analyzed. To guarantee the rationality of the comparisons between alternatives derived from the score matrix, the additive consistency of the score matrix is developed. In terms of these, IDPR is applied to model and solve multiple criteria group decision making (MCGDM) problem. Particularly, the relationship between the parameters for the consistency of the score matrix associated with each decision maker and those for the consistency of the score matrix associated with the group of decision makers is analyzed. A manager selection problem is investigated to demonstrate the application of IDPRs to MCGDM problems. PMID:29889871
NASA Technical Reports Server (NTRS)
Whitmore, Stephen R.; Moes, Timothy R.
1991-01-01
The accuracy of a prototype nonintrusive airdata system derived for high-angle-of-attack measurements was demonstrated for quasi-steady maneuvers as great as 55 degrees during phase one of the F-18 high alpha research vehicle flight test program. This system consists of a matrix of nine pressure ports arranged in annular rings on the aircraft nose, and estimates the complete airdata set utilizing flow modeling and nonlinear regression. Particular attention is paid to the effects of acoustical distortions within the individual pressure sensors of the HI-FADS pressure matrix. A dynamic model to quantify these effects which describes acoustical distortion is developed and solved in closed form for frequency response.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2010-12-01
A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.
Strain rate effects on fracture behavior of Austempered Ductile Irons
NASA Astrophysics Data System (ADS)
Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico
2017-06-01
Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.
Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis
Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon
2016-01-01
The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931
NASA Astrophysics Data System (ADS)
Fleming, K. M.; Zschau, J.; Gasparini, P.; Modaressi, H.; Matrix Consortium
2011-12-01
Scientists, engineers, civil protection and disaster managers typically treat natural hazards and risks individually. This leads to the situation where the frequent causal relationships between the different hazards and risks, e.g., earthquakes and volcanos, or floods and landslides, are ignored. Such an oversight may potentially lead to inefficient mitigation planning. As part of their efforts to confront this issue, the European Union, under its FP7 program, is supporting the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project. The focus of MATRIX is on natural hazards, in particular earthquakes, landslides, volcanos, wild fires, storms and fluvial and coastal flooding. MATRIX will endeavour to develop methods and tools to tackle multi-type natural hazards and risks within a common framework, focusing on methodologies that are suited to the European context. The work will involve an assessment of current single-type hazard and risk assessment methodologies, including a comparison and quantification of uncertainties and harmonization of single-type methods, examining the consequence of cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and a series of test cases. Three test sites are being used to assess the methods developed within the project (Naples, Cologne, and the French West Indies), as well as a "virtual city" based on a comprehensive IT platform that will allow scenarios not represented by the test cases to be examined. In addition, a comprehensive dissemination program that will involve national platforms for disaster management, as well as various outreach activities, will be undertaken. The MATRIX consortium consists of ten research institutions (nine European and one Canadian), an end-user (i.e., one of the European national platforms for disaster reduction) and a partner from industry.
Combining and comparing neutrinoless double beta decay experiments using different nuclei
NASA Astrophysics Data System (ADS)
Bergström, Johannes
2013-02-01
We perform a global fit of the most relevant neutrinoless double beta decay experiments within the standard model with massive Majorana neutrinos. Using Bayesian inference makes it possible to take into account the theoretical uncertainties on the nuclear matrix elements in a fully consistent way. First, we analyze the data used to claim the observation of neutrinoless double beta decay in 76Ge, and find strong evidence (according to Jeffrey's scale) for a peak in the spectrum and moderate evidence for that the peak is actually close to the energy expected for the neutrinoless decay. We also find a significantly larger statistical error than the original analysis, which we include in the comparison with other data. Then, we statistically test the consistency between this claim with that of recent measurements using 136Xe. We find that the two data sets are about 40 to 80 times more probable under the assumption that they are inconsistent, depending on the nuclear matrix element uncertainties and the prior on the smallest neutrino mass. Hence, there is moderate to strong evidence of incompatibility, and for equal prior probabilities the posterior probability of compatibility is between 1.3% and 2.5%. If one, despite such evidence for incompatibility, combines the two data sets, we find that the total evidence of neutrinoless double beta decay is negligible. If one ignores the claim, there is weak evidence against the existence of the decay. We also perform approximate frequentist tests of compatibility for fixed ratios of the nuclear matrix elements, as well as of the no signal hypothesis. Generalization to other sets of experiments as well as other mechanisms mediating the decay is possible.
Teaching Improvement Model Designed with DEA Method and Management Matrix
ERIC Educational Resources Information Center
Montoneri, Bernard
2014-01-01
This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…
Multi-spectrometer calibration transfer based on independent component analysis.
Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong
2018-02-26
Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yiyi; Wang, Junli; Qi, Shengli
In this report, a series of composite films consisting of polyimide as the matrix and multi-wall carbon nanotubes as the filler (PI/MWCNTs) were prepared in a water-based method with the use of triethylamine. Their dielectric properties were tested under frequency of between 100 Hz and 10 MHz, and it was revealed that the permittivity value behaved interestingly around the percolation threshold (8.01% in volume). The water-based method ensured that fillers had high dispersibility in the matrix before percolation, which led to a relatively high dielectric constant (284.28). However, the overlapping caused by excess MWCNTs created pathways for electrons inside the matrix, turningmore » the permittivity to negative. The former phenomenon was highly congruent with the percolation power law, while the latter could be explained by the Drude Model. AC conductivity was measured for more supportive information. Additionally, scanning electron microscopy and transmission electron microscopy were employed to record MWCNTs' microscopic distribution and morphology at the percolation threshold.« less
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor)
1988-01-01
A set of addressable test structures, each of which uses addressing schemes to access individual elements of the structure in a matrix, is used to test the quality of a wafer before integrated circuits produced thereon are diced, packaged and subjected to final testing. The electrical characteristic of each element is checked and compared to the electrical characteristic of all other like elements in the matrix. The effectiveness of the addressable test matrix is in readily analyzing the electrical characteristics of the test elements and in providing diagnostic information.
Composite materials for space applications
NASA Technical Reports Server (NTRS)
Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.
1990-01-01
The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.
Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick
2008-01-01
To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests conducted in the Bullfrog and Tram intervals. Longitudinal dispersivity values in the Bullfrog and Tram Tuffs ranged from 1.83 to 2.6 meters, flow-porosity values from 0.072 to 0.099, and matrix-porosity values from 0.088 to 0.19. The flow-porosity values indicate that the pathways between boreholes UE-25 c#2 and UE-25 c#3 in the Bullfrog and Tram intervals are not connected well. Tracer testing in the Prow Pass interval indicates different transport characteristics than those obtained in the Bullfrog and Tram intervals. In the Prow Pass Tuff, longitudinal dispersivity was 0.27 meter, flow porosity was 4.5 ? 10?4, and matrix porosity was 0.01. This indicates that the flow network in the Prow Pass is dominated by interconnected fractures, whereas in the Bullfrog and Tram, the flow network is dominated by discontinuous fractures with connecting segments of matrix.
Low-level Laser Therapy for Traumatic Brain Injury
2014-10-01
performance and consists of a photodiode power sensor within a black plastic housing unit to confirm the output of each LED matrix in the helmet. We tested...could be significantly reversed by low level light therapy (LLLT) in vitro study. The effect of LLLT was furthered by a combination with metabolic...it will indicate both a mechanisms of action and provide a strategy for monitoring the effect of LLLT in clinical settings (for example, using
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less
A prototypic mathematical model of the human hair cycle.
Al-Nuaimi, Yusur; Goodfellow, Marc; Paus, Ralf; Baier, Gerold
2012-10-07
The human hair cycle is a complex, dynamic organ-transformation process during which the hair follicle repetitively progresses from a growth phase (anagen) to a rapid apoptosis-driven involution (catagen) and finally a relative quiescent phase (telogen) before returning to anagen. At present no theory satisfactorily explains the origin of the hair cycle rhythm. Based on experimental evidence we propose a prototypic model that focuses on the dynamics of hair matrix keratinocytes. We argue that a plausible feedback-control structure between two key compartments (matrix keratinocytes and dermal papilla) leads to dynamic instabilities in the population dynamics resulting in rhythmic hair growth. The underlying oscillation consists of an autonomous switching between two quasi-steady states. Additional features of the model, namely bistability and excitability, lead to new hypotheses about the impact of interventions on hair growth. We show how in silico testing may facilitate testing of candidate hair growth modulatory agents in human HF organ culture or in clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluation of matrix type mucoadhesive tablets containing indomethacin for buccal application.
Ikeuchi-Takahashi, Yuri; Sasatsu, Masanaho; Onishi, Hiraku
2013-09-10
Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered for pain relief from oral mucositis. However, the systemic administration of NSAIDs is limited due to systemic side effects. To avoid these side effects and treat local lesions effectively, a matrix type mucoadhesive tablet was developed. A mixture of hard fat, ethylcellulose (EC) and polyethylene glycol (PEG) was used as a matrix base, and indomethacin (IMC) was used as the principal agent. In tablets consisting of hard fat, EC and IMC, the drug release was sustained. In tablets consisting of hard fat, EC, considerable amounts of PEG and IMC, the drug release was relatively increased and IMC existed as the molecular phase or in an amorphous state. The in vitro adhesive force of the tablets consisting of hard fat, EC, considerable amounts of PEG and IMC was significantly increased as compared with the tablets consisting of hard fat and IMC. A significantly high tissue concentration and significantly low plasma concentration were observed after buccal administration of this matrix type mucoadhesive tablet as compared with that after oral administration of IMC. Thus, the matrix type mucoadhesive tablet has good potential as a preparation for the treatment of pain due to oral aphtha. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature
NASA Astrophysics Data System (ADS)
Crochon, Thibaut
Use of Polymer Matrix Composite Materials (PMCMs) in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behavior dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical aging. These various parameters need to be taken into consideration for the designer to be able to predict the material behavior over the service life of the components. The main objective of this thesis was to study the viscoelastic behavior of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behavior for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS. Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent fit of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples masses, volume and tensile properties were recorded after 1, 4, 9 and 17 months. The results of those tests showed that after 17 months, the matrix lost about 5% of its mass and volume and as much as 19%, 30% and 10% of its Young's modulus, stress and strain at break, respectively. The second step consisted in studying the viscoelastic behavior of the matrix under various conditions and develop a constitutive theory to model its mechanical behavior. That theory was developed using the framework laid out by Schapery in 1964, using the Thermodynamics of Irreversible Processes. The main advantage of Schapery-type constitutive theories is that the effects of various parameters such as stresses, temperature and physical ageing can be taken into account by using user-defined explicit nonlinearizing functions. Tensile samples of the material were tested at service temperature using strain gages rosettes in order to study the matrix 3D behavior. It was found that the Poisson's ratio was time-independent, meaning that its retardation times spectrum was the same as the compliance function. Furthermore, at this temperature, it was found that the viscoelastic behavior was independent of the stress level. Those two observations led to the conclusion that the material was linearly viscoelastic and could be represented with a 1D constitutive theory. From this conclusion, and also due to the scarcity of material available, it was decided to use 3-point bending tests for studying the impact of temperature and physical ageing. Following Struik's methodology, the material was heated at ageing temperature and then series of creep tests at increasing intervals were performed. It was found that the material became stiffer as the ageing time increased, but it also became softer for increasing temperatures. A model was developed in which Schapery's nonlinearizing functions were obtained from experimental data. The model was validated with complex thermo-mechanical histories comprising several creep tests as well as temperature up- and down-jumps. The experimental data were predicted with excellent accuracy. Finally, the last step consisted in implementing the constitutive theory into a finite-element software. To that end, a new procedure was developed. Instead of the classical methods which deal with Schapery's hereditary integral, the method went back to the evolution equations which are the basis of the integral. The evolution equations were solved with well-known finite-difference schemes such as Backward-Euler, Crank-Nicholson or Runge-Kutta. The numerical model thus obtained could then easily be implemented into finite-element software. In this thesis, a thorough examination of the mechanical properties of a polyimide matrix was conducted. It was found that for such materials, the service temperature is so elevated that chemical ageing has a defining importance on components life. Furthermore, it was found that viscoelastic behavior was only dependent on temperature and physical ageing, but not on the stress levels. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1986-01-01
The third in a series of 4kW stacks, consisting of 24 cells of the 13 inch x 23 inch cell size, has been on test for about 1600 hours. This stack is similar to the first two stacks, which ran 7000 and 8400 hours, respectively. The present stack incorporates technology improvements relating to the electrolyte-matrix, the current-collector assembly, and a reduction in the number of cooling plates. Performance is currently averaging about 0.64 per cell at 161 mA sq cm.
The Use of Matrix Training to Promote Generative Language with Children with Autism
ERIC Educational Resources Information Center
Frampton, Sarah E.; Wymer, Sarah C.; Hansen, Bethany; Shillingsburg, M. Alice
2016-01-01
Matrix training consists of planning instruction by arranging components of desired skills across 2 axes. After training with diagonal targets that each combine 2 unique skill components, responses to nondiagonal targets, consisting of novel combinations of the components, may emerge. A multiple-probe design across participants was used to…
Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A
2013-04-01
The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.
NASA Astrophysics Data System (ADS)
Ochsenfeld, Christian; Head-Gordon, Martin
1997-05-01
To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.
Liquid-Solid Self-Lubricated Coatings
NASA Astrophysics Data System (ADS)
Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.
2013-02-01
Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.
Beam-tracing model for predicting sound fields in rooms with multilayer bounding surfaces
NASA Astrophysics Data System (ADS)
Wareing, Andrew; Hodgson, Murray
2005-10-01
This paper presents the development of a wave-based room-prediction model for predicting steady-state sound fields in empty rooms with specularly reflecting, multilayer surfaces. A triangular beam-tracing model with phase, and a transfer-matrix approach to model the surfaces, were involved. Room surfaces were modeled as multilayers of fluid, solid, or porous materials. Biot theory was used in the transfer-matrix formulation of the porous layer. The new model consisted of the transfer-matrix model integrated into the beam-tracing algorithm. The transfer-matrix model was validated by comparing predictions with those by theory, and with experiment. The test surfaces were a glass plate, double drywall panels, double steel panels, a carpeted floor, and a suspended-acoustical ceiling. The beam-tracing model was validated in the cases of three idealized room configurations-a small office, a corridor, and a small industrial workroom-with simple boundary conditions. The number of beams, the reflection order, and the frequency resolution required to obtain accurate results were investigated. Beam-tracing predictions were compared with those by a method-of-images model with phase. The model will be used to study sound fields in rooms with local- or extended-reaction multilayer surfaces.
Polat, Zahra; Bulut, Erdoğan; Ataş, Ahmet
2016-09-01
Spoken word recognition and speech perception tests in quiet are being used as a routine in assessment of the benefit which children and adult cochlear implant users receive from their devices. Cochlear implant users generally demonstrate high level performances in these test materials as they are able to achieve high level speech perception ability in quiet situations. Although these test materials provide valuable information regarding Cochlear Implant (CI) users' performances in optimal listening conditions, they do not give realistic information regarding performances in adverse listening conditions, which is the case in the everyday environment. The aim of this study was to assess the speech intelligibility performance of post lingual CI users in the presence of noise at different signal-to-noise ratio with the Matrix Test developed for Turkish language. Cross-sectional study. The thirty post lingual implant user adult subjects, who had been using implants for a minimum of one year, were evaluated with Turkish Matrix test. Subjects' speech intelligibility was measured using the adaptive and non-adaptive Matrix Test in quiet and noisy environments. The results of the study show a correlation between Pure Tone Average (PTA) values of the subjects and Matrix test Speech Reception Threshold (SRT) values in the quiet. Hence, it is possible to asses PTA values of CI users using the Matrix Test also. However, no correlations were found between Matrix SRT values in the quiet and Matrix SRT values in noise. Similarly, the correlation between PTA values and intelligibility scores in noise was also not significant. Therefore, it may not be possible to assess the intelligibility performance of CI users using test batteries performed in quiet conditions. The Matrix Test can be used to assess the benefit of CI users from their systems in everyday life, since it is possible to perform intelligibility test with the Matrix test using a material that CI users experience in their everyday life and it is possible to assess their difficulty in speech discrimination in noisy conditions they have to cope with.
Towards a multiconfigurational method of increments
NASA Astrophysics Data System (ADS)
Fertitta, E.; Koch, D.; Paulus, B.; Barcza, G.; Legeza, Ö.
2018-06-01
The method of increments (MoI) allows one to successfully calculate cohesive energies of bulk materials with high accuracy, but it encounters difficulties when calculating dissociation curves. The reason is that its standard formalism is based on a single Hartree-Fock (HF) configuration whose orbitals are localised and used for the many-body expansion. In situations where HF does not allow a size-consistent description of the dissociation, the MoI cannot be guaranteed to yield proper results either. Herein, we address the problem by employing a size-consistent multiconfigurational reference for the MoI formalism. This leads to a matrix equation where a coupling derived by the reference itself is employed. In principle, such an approach allows one to evaluate approximate values for the ground as well as excited states energies. While the latter are accurate close to the avoided crossing only, the ground state results are very promising for the whole dissociation curve, as shown by the comparison with density matrix renormalisation group benchmarks. We tested this two-state constant-coupling MoI on beryllium rings of different sizes and studied the error introduced by the constant coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidenaar, W.A.
1992-12-01
Centrally notched (hole), cross-ply, ((0/90) sub 2) sub s, and unidirectional, (0) sub 8 laminates of Silicon Carbide fiber-reinforced Aluminosilicate glass, SiC/1723, were fatigue tested under tension-compression loading with a load ratio of -1. Damage accumulated continuously for both lay-ups, leading to eventual failure and a reduced fatigue life. Critical damage in the cross-ply consisted of longitudinal cracks in the 90 deg plies growing and combining with transverse cracks to effectively eliminate the 90 deg plies' load carrying capability and allowing the specimen to buckle. Critical damage in the unidirectional lay-up consisted of longitudinal cracks which initiated at the shearmore » stress concentration points on the hole periphery. Reversed cyclic loading caused continued crack growth at maximum stresses below the tension-tension fatigue limit. The cross-ply lay-up appeared insensitive to the hole, while critical damage in the unidirectional lay-up was dependent on the shear stress concentrations at the hole.... Ceramic matrix composite, Tension-compression fatigue, Notched specimen.« less
Biofilms inducing ultra-low friction on titanium.
Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A
2010-12-01
Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.
Interface effects on mechanical properties of particle-reinforced composites.
Debnath, S; Ranade, R; Wunder, S L; McCool, J; Boberick, K; Baran, G
2004-09-01
Effective bonding between the filler and matrix components typically improves the mechanical properties of polymer composites containing inorganic fillers. The aim of this study was to test the hypothesis that composite flexural modulus, flexure strength, and toughness are directly proportional to filler-matrix interfacial shear strength. The resin matrix component of the experimental composite consisted of a 60:40 blend of BisGMA:TEGDMA. Two levels of photoinitiator components were used: 0.15, and 0.5%. Raman spectroscopy was used to determine degree of cure, and thermogravimetry (TGA) was used to quantify the degree of silane, rubber, or polymer attachment to silica and glass particles. Filler-matrix interfacial shear strengths were measured using a microbond test. Composites containing glass particles with various surface treatments were prepared and the modulus, flexure strength, and fracture toughness of these materials obtained using standard methods. Mechanical properties were measured on dry and soaked specimens. The interfacial strength was greatest for the 5% MPS treated silica, and it increased for polymers prepared with 0.5% initiator compared with 0.15% initiator concentrations. For the mechanical properties measured, the authors found that: (1) the flexural modulus was independent of the type of filler surface treatment, though flexural strength and toughness were highest for the silanated glass; (2) rubber at the interface, whether bonded to the filler and matrix or not, did not improve toughness; (3) less grafting of resin to silanated filler particles was observed when the initiator concentration decreased. These findings suggest that increasing the strength of the bond between filler and matrix will not result in improvements in the mechanical properties of particulate-reinforced composites in contrast to fiber-reinforced composites. Also, contraction stresses in the 0.5 vs 0.15% initiator concentration composites may be responsible for increases in interfacial shear strengths, moduli, and flexural strengths.
Radionuclide Transport in Fracture-Granite Interface Zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Q; Mori, A
In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less
Yang, Yuanheng; Lin, Hang; Shen, He; Wang, Bing; Lei, Guanghua; Tuan, Rocky S
2018-03-15
Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for xenogenic scaffolds, and suboptimal cartilage formation. We present here a novel technique that utilizes adult stem cell-derived extracellular matrix, as a culture substrate and/or encapsulation scaffold for human adult chondrocytes, for the repair of cartilage defects. Chondrocytes cultured in stem cell-derived matrix showed higher proliferation, better chondrocytic phenotype, and improved redifferentiation ability upon in vitro culture expansion. Most importantly, 3-dimensional constructs formed from chondrocytes folded within stem cell matrix manifested excellent cartilage formation both in vitro and in vivo. These findings demonstrate the suitability of stem cell-derived extracellular matrix as a culture substrate for chondrocyte expansion as well as a candidate bioactive matrix for cartilage regeneration. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A model to predict thermal conductivity of irradiated U-Mo dispersion fuel
NASA Astrophysics Data System (ADS)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
A model to predict thermal conductivity of irradiated U–Mo dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less
NASA Astrophysics Data System (ADS)
Li, Fengfu; Carlsson, David; Lohmann, Chris; Suuronen, Erik; Vascotto, Sandy; Kobuch, Karin; Sheardown, Heather; Munger, Rejean; Nakamura, Masatsugu; Griffith, May
2003-12-01
Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs' corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required. regenerative medicine | tissue engineering | cornea | implantation | innervation
Atmospheric Probe Model: Construction and Wind Tunnel Tests
NASA Technical Reports Server (NTRS)
Vogel, Jerald M.
1998-01-01
The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.
Thermal shock resistance of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Carper, D. M.; Nied, H. F.
1993-01-01
The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.
Matrix management in hospitals: testing theories of matrix structure and development.
Burns, L R
1989-09-01
A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.
A Multi-Scale Framework for Multi-Field Analyses of Smart Composites
2015-01-15
purchased from Advanced Cerametrics Incorporated, consist of PZT 5A fibers dispersed in an epoxy matrix. Kapton layers and electrode fingers are placed...tests in the longitudinal fiber direction, at different rates and temperatures: 25oC, 50oC, and 75oC. Figure 2 shows examples of PZT Positive... PZT and active fiber composites at various frequencies at temperatures 25oC and 75oC. Figure 4 Hysteretic polarization at room temperature with
1996-09-01
Generalized Likelihood Ratio (GLR) and voting techniques. The third class consisted of multiple hypothesis filter detectors, specifically the MMAE. The...vector version, versus a tensor if we use the matrix version of the power spectral density estimate. Using this notation, we will derive an...as MATLAB , have an intrinsic sample covariance computation available, which makes this method quite easy to implement. In practice, the mean for the
NASA Astrophysics Data System (ADS)
Hamed, Haikel Ben; Bennacer, Rachid
2008-08-01
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).
Generation of physical random numbers by using homodyne detection
NASA Astrophysics Data System (ADS)
Hirakawa, Kodai; Oya, Shota; Oguri, Yusuke; Ichikawa, Tsubasa; Eto, Yujiro; Hirano, Takuya; Tsurumaru, Toyohiro
2016-10-01
Physical random numbers generated by quantum measurements are, in principle, impossible to predict. We have demonstrated the generation of physical random numbers by using a high-speed balanced photodetector to measure the quadrature amplitudes of vacuum states. Using this method, random numbers were generated at 500 Mbps, which is more than one order of magnitude faster than previously [Gabriel et al:, Nature Photonics 4, 711-715 (2010)]. The Crush test battery of the TestU01 suite consists of 31 tests in 144 variations, and we used them to statistically analyze these numbers. The generated random numbers passed 14 of the 31 tests. To improve the randomness, we performed a hash operation, in which each random number was multiplied by a random Toeplitz matrix; the resulting numbers passed all of the tests in the TestU01 Crush battery.
Fahimipour, Farahnaz; Dashtimoghadam, Erfan; Rasoulianboroujeni, Morteza; Yazdimamaghani, Mostafa; Khoshroo, Kimia; Tahriri, Mohammadreza; Yadegari, Amir; Gonzalez, Jose A; Vashaee, Daryoosh; Lobner, Douglas C; Jafarzadeh Kashi, Tahereh S; Tayebi, Lobat
2018-02-01
A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs). The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix. The β-TCP precursor formulations were investigated for their flow-ability at various temperatures, which optimized for fabrication of 3D printed scaffolds with interconnected porosity. The hybrid constructs were characterized by 3D laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and compressive strength testing. The in vitro characterization of scaffolds revealed that the hybrid β-TCP/Collagen constructs offer superior DPCs proliferation and alkaline phosphatase (ALP) activity compared to the 3D-printed β-TCP scaffold over three weeks. Moreover, it was found that the incorporation of TCP into the Collagen matrix improves the ALP activity. The presented results converge to suggest the developed 3D-printed β-TCP/Collagen hybrid constructs as a new platform for osteoblastic differentiation of DPCs for craniomaxillofacial bone regeneration. Copyright © 2017. Published by Elsevier Ltd.
Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature
NASA Astrophysics Data System (ADS)
Wilkinson, M. P.; Ruggles-Wrenn, M. B.
2017-12-01
Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.
Novel Entries in a Fungal Biofilm Matrix Encyclopedia
Zarnowski, Robert; Westler, William M.; Lacmbouh, Ghislain Ade; Marita, Jane M.; Bothe, Jameson R.; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D.; Ntambi, James M.; Nett, Jeniel E.; Mitchell, Aaron P.
2014-01-01
ABSTRACT Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. PMID:25096878
Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D.
2013-01-01
American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis. PMID:23762370
Wolfers, Mireille; de Zwart, Onno; Kok, Gerjo
2012-05-01
This article describes the development of ROsafe, an intervention to promote sexually transmitted infection (STI) testing at vocational schools in the Netherlands. Using the planning model of intervention mapping (IM), an educational intervention was designed that consisted of two lessons, an Internet site, and sexual health services at the school sites. IM is a stepwise approach for theory- and evidence-based development and implementation of interventions. It includes six steps: needs assessment, specification of the objectives in matrices, selection of theoretical methods and practical strategies, program design, implementation planning, and evaluation. The processes and outcomes that are performed during Steps 1 to 4 of IM are presented, that is, literature review and qualitative and quantitative research in needs assessment, leading to the definition of the desired behavioral outcomes and objectives. The matrix of change objectives for STI-testing behavior is presented, and then the development of theory into program is described, using examples from the program. Finally, the planning for implementation and evaluation is discussed. The educational intervention used methods that were derived from the social cognitive theory, the elaboration likelihood model, the persuasive communication matrix, and theories about risk communication. Strategies included short movies, discussion, knowledge quiz, and an interactive behavioral self-test through the Internet.
Tension fracture of laminates for transport fuselage. Part 1: Material screening
NASA Technical Reports Server (NTRS)
Walker, T. H.; Avery, W. B.; Ilcewicz, L. B.; Poe, C. C., Jr.; Harris, C. E.
1992-01-01
Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Application of composites to fuselage structures requires a data base and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity, (2) evaluate composite failure criteria, and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in load bearing plies. Parameters for conventional fracture criteria were found to increase with the crack length of the smallest notch sizes studied. Most materials and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Results indicate that a range of notch sizes must be tested to determine notch sensitivity.
Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites
NASA Astrophysics Data System (ADS)
Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.
2016-10-01
Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.
Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu
2017-08-15
Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.
Fingerprint test data report: FM 5064J (Kaiser) lots No. 1 (K) - No. 4 (K). [resin matrix composites
NASA Technical Reports Server (NTRS)
1986-01-01
Quality control tests are presented for resin matrix and carbon-carbon composites. Tests performed are filler test, resin test, prepregs test, and fabric test. The test results are presented in chart form.
Use of implantable pellets to administer low levels of methyl mercury to fish
Arnold, B.S.; Jagoe, C.H.; Gross, T.S.
1999-01-01
Implantable pellets of methyl mercury chloride were tested in Nile Tilapia (Oreochromis niloticus) to appraise the effectiveness of the method for chronic studies of mercury. Two dosing regimes of 15 and 1.5 grams/CH3HgCl pellet (test 1) and 1 and 0.1 grams/pellet (test 2-3) of methyl mercury chloride were used in three tests. Additional pellets containing only matrix were used as controls. The pellets were inserted into the peritoneal cavity along with a microchip for identification. Three methods of incision closure: sutures and two types of surgical glue, were tested. Pellets used in test one released the dose too fast, resulting in premature death of the fish. Results from test 2 and 3 show blood mercury concentrations over time and tissue levels at necropsy consistent with dose suggesting that this is a viable method of dosing fish.
Hypothesis testing for band size detection of high-dimensional banded precision matrices.
An, Baiguo; Guo, Jianhua; Liu, Yufeng
2014-06-01
Many statistical analysis procedures require a good estimator for a high-dimensional covariance matrix or its inverse, the precision matrix. When the precision matrix is banded, the Cholesky-based method often yields a good estimator of the precision matrix. One important aspect of this method is determination of the band size of the precision matrix. In practice, crossvalidation is commonly used; however, we show that crossvalidation not only is computationally intensive but can be very unstable. In this paper, we propose a new hypothesis testing procedure to determine the band size in high dimensions. Our proposed test statistic is shown to be asymptotically normal under the null hypothesis, and its theoretical power is studied. Numerical examples demonstrate the effectiveness of our testing procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotte, F.P.; Doughty, C.; Birkholzer, J.
2010-11-01
The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computationmore » of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.« less
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix
Zhang, Min; Wang, Hai; Liu, Yan
2017-01-01
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time. PMID:28420121
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix.
Zhang, Min; Wang, Hai; Liu, Yan
2017-04-14
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time.
Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas
2002-05-01
In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.
Novel entries in a fungal biofilm matrix encyclopedia.
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R
2014-08-05
Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed for protection from antifungal drugs. The availability of these biochemical analyses provides a unique resource for further functional investigation of the biofilm matrix, a defining trait of this lifestyle. Copyright © 2014 Zarnowski et al.
NASA Astrophysics Data System (ADS)
Osterrothová, Kateřina; Jehlička, Jan
2009-08-01
Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO 4·2H 2O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg -1 was obtained in the powdered mineral matrix and 5 g kg -1 when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.
Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.
Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh
2017-10-01
Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.
Fingerprint test data report: FM 5834 test lots No. 1, 3, 4, and 5. [resin matrix composites
NASA Technical Reports Server (NTRS)
1986-01-01
Quality control testing is presented for various lots of resin matrix composites. The tests conducted were filler test, resin test, fabric test, and prepreg test for lots 1, 3, 4, and 5. The results of the tests are presented in chart forms.
NASA Astrophysics Data System (ADS)
Kim, Woo Chul; Kim, Kang Chul; Na, Min Young; Jeong, Seok Hoan; Kim, Won Tae; Kim, Do Hyang
2017-11-01
The microstructural evolution and mechanical properties of Zr-Co-Al alloys, with compositions of (Zr50Co50)x (Zr56Co26Al18)1-x (x = 1/6, 2/6, 3/6, 4/6, 5/6, 1) and Zr54Co35Al11, (referred to as Z1, Z2, Z3, Z4, Z5, Z6, and Z4.5), were investigated. Alloys Z1-Z3 consisted of crystalline phases, while alloys Z4 and Z4.5 consisted of crystalline phase particles ( 3 vol% and 35 vol%, respectively) embedded within the glassy matrix. Alloys Z5 and Z6 consisted of a monolithic glass phase. The crystalline phase of alloys Z1-Z4.5 consisted of primary B2-ZrCo dendrite and an interdendritic B2-ZrCo/Zr6CoAl2 eutectic phase. The B2-ZrCo dendritic phase exhibited a high work-hardening rate, which originated from the deformation-induced B2-to-B33 martensitic transformation. However, when the brittle interdendritic B2-ZrCo/Zr6CoAl2 eutectic phase fraction increased, the work-hardening rate significantly decreased. The ductility of the glass-matrix composites was significantly impaired by the presence of the interdendritic eutectic phase in the crystalline phase. The results indicate that the design of the crystalline particle microstructure is important with regard to enhancing the plasticity of glass-matrix composites.
Wen, Demin; Androjna, Caroline; Vasanji, Amit; Belovich, Joanne; Midura, Ronald J.
2010-01-01
In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts. PMID:19967451
NASA Astrophysics Data System (ADS)
Zhang, Fanyong; He, Jining; Chen, Kai; Qin, Yanfang; Li, Chao; Yin, Fuxing
2018-01-01
Nanostructured TiCN based composite coatings with various Cr content were prepared by reactive plasma spray (RPS) from mixed powder (Ti-graphite + Cr) under nitrogen atmosphere. Results showed that composite coatings consisted mainly of TiC0.7N0.3 phase and residual metal Cr. Metal Cr plates were homogeneously embedded in TiCN matrix with good interface bond. The TiCN-Cr composite coatings exhibited lower porosity than TiCN coatings, but increasing porosity with excess Cr addition (30 wt.%). The TiCN-20 wt.% Cr coating showed the highest hardness (1309 HV0.2) among composite coatings, slight lower than the TiCN matrix coating (1526 HV0.2). Compared with the TiCN matrix coating, the TiCN-Cr composite coatings showed higher variability in surface microhardness distribution. The TiCN-Cr composite coatings showed slight higher friction coefficients (0.4-0.6) than TiCN matrix coating (0.35). The wear resistance of TiCN-Cr composite coatings was improved with less mass loss compared with TiCN coating under the test load of 400 N. The TiCN-Cr composite coatings with high Cr content showed the mixture of abrasive and adhesive wear.
Watanabe, Takahiro; Sekino, Ayako; Shiramasa, Yuko; Matsuda, Rieko; Maitani, Tamio
2008-08-01
It is very important to examine the effect of non-genetically modified (non-GM) soy varieties, which constitute the matrix of the testing sample used to quantify GM soy (RRS), on the measured value of RRS by quantitative PCR methods. Therefore, we quantified the amount of RRS in powder-mixed samples containing 1 or 5% RRS prepared by using 10 different varieties of non-GM soy as the matrix. The results revealed that the measured values were not in agreement with the powder-mixing levels and that the extent of the difference depended on the variety of non-GM soy used as the matrix. The yields of DNA extracted differed among the soy varieties. On the other hand, analysis of DNA-mixed samples, that were prepared with the DNAs extracted from RRS and non-GM soy varieties, showed that the measured values of RRS were in agreement with the DNA-mixing levels. These results strongly suggest that the proportions of DNA derived from RRS and non-GM soy were not consistent with the powder-mixing ratio in the case of some non-GM soy varieties used as a matrix, resulting in the discrepancy between the measured values and the powder-mixing levels.
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.
Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen
2014-01-01
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice.
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes
Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen
2014-01-01
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455
NASA Astrophysics Data System (ADS)
Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong
2018-01-01
Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.
Electric and Magnetic Manipulation of Biological Systems
NASA Astrophysics Data System (ADS)
Lee, H.; Hunt, T. P.; Liu, Y.; Ham, D.; Westervelt, R. M.
2005-06-01
New types of biological cell manipulation systems, a micropost matrix, a microelectromagnet matrix, and a microcoil array, were developed. The micropost matrix consists of post-shaped electrodes embedded in an insulating layer. With a separate ac voltage applied to each electrode, the micropost matrix generates dielectrophoretic force to trap and move individual biological cells. The microelectromagnet matrix consists of two arrays of straight wires aligned perpendicular to each other, that are covered with insulating layers. By independently controlling the current in each wire, the microelectromagnet matrix creates versatile magnetic fields to manipulate individual biological cells attached to magnetic beads. The microcoil array is a set of coils implemented in a foundry using a standard silicon fabrication technology. Current sources to the coils, and control circuits are integrated on a single chip, making the device self-contained. Versatile manipulation of biological cells was demonstrated using these devices by generating optimized electric or magnetic field patterns. A single yeast cell was trapped and positioned with microscopic resolution, and multiple yeast cells were trapped and independently moved along the separate paths for cell-sorting.
Proposed test program and data base for LDEF polymer matrix composites
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; George, Pete; Steckel, Gary L.; Zimcik, D. G.
1992-01-01
A survey of the polymer matrix composite materials that were flown on Long Duration Exposure Facility (LDEF) is presented with particular attention to the effect of circumferential location (alpha) on the measured degradation and property changes. Specifically, it is known that atomic oxygen fluence (AO), VUV radiation dose, and number of impacts by micrometeoroids/debris vary with alpha. Thus, it is possible to assess material degradation and property damage changes with alpha for those materials that are common to three or more locations. Once the alpha-dependence functions were defined, other material samples will provide data that can readily be used to predict damage and property changes as a function of alpha as well. What data can be realistically obtained from these materials, how this data can be obtained, and the scientific/design value of the data to the user community is summarized. Finally, a proposed test plan is presented with recommended characterization methodologies that should be employed by all investigators to ensure consistency in the data base that will result from this exercise.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William
2010-01-01
NASA is studying the effects of long-term space radiation on potential multifunctional composite materials for habitats to better determine their characteristics in the harsh space environment. Two composite materials were selected for the study and were placed in a test stand that simulated the stresses of a pressure vessel wall on the material. The samples in the test stand were exposed to radiation at either a fast dose rate or a slow dose rate, and their strain and temperature was recorded during the exposure. It was found that during a fast dose rate exposure the materials saw a decreased strain with time, or a shrinking of the materials. Given previous radiation studies of polymers, this is believed to be a result of crosslinking occurring in the matrix material. However, with a slow dose rate, the materials saw an increase in strain with time, or a stretching of the materials. This result is consistent with scission or degradation of the matrix occurring, possibly due to oxidative degradation.
Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Sprissler, B.
1990-01-01
Elevated temperature compression testing has been conducted in air at 1200 and 1300 K with strain rates varying from about 10 to the -4th to about 10 to the -7th/sec on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50 at. pct Al matrix and from 0 to 30 vol pct of approximately 1- micron diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and TEM microstructures of as-received and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional TEM indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.
Knedlitschek, G; Schneider, F; Gottwald, E; Schaller, T; Eschbach, E; Weibezahn, K F
1999-02-01
Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.
A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials
NASA Technical Reports Server (NTRS)
Nettles, A. T
2000-01-01
As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calcaterra, J.R.; Johnson, W.S.; Neu, R.W.
1997-12-31
Several methodologies have been developed to predict the lives of titanium matrix composites (TMCs) subjected to thermomechanical fatigue (TMF). This paper reviews and compares five life prediction models developed at NASA-LaRC. Wright Laboratories, based on a dingle parameter, the fiber stress in the load-carrying, or 0{degree}, direction. The two other models, both developed at Wright Labs. are multi-parameter models. These can account for long-term damage, which is beyond the scope of the single-parameter models, but this benefit is offset by the additional complexity of the methodologies. Each of the methodologies was used to model data generated at NASA-LeRC. Wright Labs.more » and Georgia Tech for the SCS-6/Timetal 21-S material system. VISCOPLY, a micromechanical stress analysis code, was used to determine the constituent stress state for each test and was used for each model to maintain consistency. The predictive capabilities of the models are compared, and the ability of each model to accurately predict the responses of tests dominated by differing damage mechanisms is addressed.« less
Neurologic abnormalities in murderers.
Blake, P Y; Pincus, J H; Buckner, C
1995-09-01
Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.
The Preparation and Characterization of INTEC HAW Phase I Composition Variation Study Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, C. A.; Peeler, D. K.; Piepel, G. F.
1999-03-01
A glass composition variation study (CVS) is in progress to define formulations for the vitrification of high activity waste (HAW) proposed to be separated from dissolved calcine stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Estimates of calcine and HAW compositions prepared in FY97 were used to define test matrix glasses. The HAW composition is of particular interest because high aluminum, zirconium, phosphorous and potassium, and low iron and sodium content places it outside the realm of vitrification experience in the Department of Energy (DOE) complex. Through application of statistical techniques, a test matrix was defined for Phasemore » 1 of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to homogeneity, viscosity, liquidus temperature (TL), and leaching response when subjected to the Product Consistency Test (PCT). Based on the properties determined, certain formulations appear suitable for further development including use in planning Phase 2 of the study. It is recommended that glasses to be investigated in Phase 2 be limited to 3-5 wt % phosphate. The results of characterizing the Phase 1 glasses are presented in this document. A full analysis of the composition-property relationships of glasses being developed for immobilizing HAWs will be performing at the completion of CVS phases. This analysis will be needed for the optimization of the glass formulations of vitrifying HAW. Contributions were made to this document by personnel working at the INEEL, Pacific Northwest National Laboratories (PNNL), and the Savannah River Technology Center (SRTC).« less
ASTM and VAMAS activities in titanium matrix composites test methods development
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.
1994-01-01
Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.
Baginska, Ewelina; Haiß, Annette; Kümmerer, Klaus
2015-01-01
Biodegradation is the most important attenuation process for most of organic chemicals in the environment. This process decides whether the organic substance itself or its degradation products rests in the environment and should be considered for a further risk assessment. This work presents the development of a water sediment screening test, based on OECD guideline 308, with a high significance to environmental conditions and with a good reproducibility and consistency of results. The increased reproducibility was achieved by creating an artificial and standardized medium, based on the existing OECD guidelines OECD 302C, 301D and 218. Each test consisted of five different series: blank, quality control, test, toxicity control and abiotic control. Biodegradation was assessed by measurement of pressure difference in closed vessels using the OxiTop(®) system. Aniline, diethylene glycol and sodium acetate were used to optimize and validate test conditions. Additionally, two pharmaceuticals: Acetaminophen and ciprofloxacin (CIP) were tested as an example of possible test application. Acetaminophen was mainly removed from the system by biodegradation whereas CIP was removed from water phase by sorption onto sediment. Water sediment test proved to be a promising tool for the biodegradation investigation of chemicals in the water-sediment interface. Copyright © 2014 Elsevier Ltd. All rights reserved.
2015-01-01
Since the food matrix determines β-carotene availability for intestinal absorption, food matrix effects on the bioaccessibility of β-carotene from two diets were investigated in vitro and compared with in vivo data. The “mixed diet” consisted of β-carotene-rich vegetables, and the “oil diet” contained β-carotene-low vegetables with supplemental β-carotene. The application of extrinsically labeled β-carotene was also investigated. The bioaccessibility of β-carotene was 28 μg/100 μg β-carotene from the mixed diet and 53 μg/100 μg β-carotene from the oil diet. This ratio of 1.9:1 was consistent with in vivo data, where the apparent absorption was 1.9-fold higher in the oil diet than in the mixed diet. The labeled β-carotene was not equally distributed over time. In conclusion, the food matrix effects on bioaccessibility of β-carotene could be measured using an in vitro model and were consistent with in vivo data. The application of extrinsically labeled β-carotene was not confirmed. PMID:24397305
NASA Technical Reports Server (NTRS)
Vyhnal, Richard F.
1993-01-01
Long Duration Exposure Facility (LDEF) Experiment A0175 involved the non-instrumented exposure of seven carbon-fiber reinforced resin-matrix advanced composite panels contained in two trays - A7 and A1. These two trays were located, respectively, on the leading and trailing faces of LDEF, obliquely oriented to the RAM (Row 9) and WAKE (Row 3) directions. The identity and location of the seven panels, which consisted of six flat laminates of the following material systems are shown: carbon/epoxy (T300/934), carbon/bismaleimide (T300/F178), and carbon/polyimide (C6000/LARC-160 and C6000/PMR-15), plus one bonded honeycomb sandwich panel (T300/934 face sheets and Nomex core) patterned after the Space Shuttle payload bay door construction. These material systems were selected to represent a range of then-available matrix resins which, by virtue of their differing polymer chemistry, could conceivably exhibit differing susceptibility to the low-earth orbit (LEO) environment. The principal exposure conditions of the LDEF environment at these tray locations are shown. Noteworthy to some of the observations discussed is the four-orders-of magnitude difference in the atomic oxygen (AO) fluence, which made a shallow incidence angle (approximately 22 deg) to Tray A7, while Tray A1 on the trailing face was essentially shielded from AO exposure. This evaluation focused on determining the individual and relative suitability of a variety of resin-matrix composite systems for long-term space structural applications. This was accomplished primarily by measuring and comparing a range of engineering mechanical properties on over 300 test coupons sectioned from the flight panels and from identical control panels, and tested at ambient and elevated temperatures. This testing was supported by limited physical characterization, involving visual examination of flight panel surface features, measurements of weight loss and warpage, and examination for changes in internal integrity (micro cracking, delamination) by ultrasonic c-scan and polished cross-sections.
NASA Astrophysics Data System (ADS)
Köck, T.; Brendel, A.; Bolt, H.
2007-05-01
Novel copper matrix composites reinforced with silicon carbide fibres are considered as a new generation of heat sink materials for the divertor of future fusion reactors. The divertor is exposed to intense particle bombardment and heat loads of up to 15 MW m-2. This component consists of the plasma-facing material which is bonded to the actively cooled heat sink. Due to its high thermal conductivity of about 400 W m-1 K-1 copper is a promising material for the heat sink. To increase the mechanical properties of copper at working temperature (823 K), silicon carbide fibres with a diameter of 140 μm are used to reinforce the interface area between the plasma-facing material and the heat sink. Push-out tests show that the adhesion between SiC fibre and Cu matrix without any interlayer is very low. To increase the fibre-matrix bonding the fibres are coated with Cr and W with a thickness of 300-400 nm before Cu deposition by magnetron sputtering. Push-out tests on these modified fibres show a significant increase in adhesion compared to the fibres without interlayer. XRD investigations after a heat treatment at 923 K show a chromium carbide (Cr23C6, Cr3C2) formation and the absence of chromium silicides. In the case of a W interlayer a W2C formation is detected and also no tungsten silicides. Single-fibre tensile tests were performed to investigate the influence of the reaction zone on the ultimate tensile strength of the fibres. The ultimate tensile strength for fibres without interlayer remains constant at about 2200 MPa after annealing at 923 K. The fibres with chromium and tungsten interlayers, respectively, show a decrease of about 30% of the ultimate tensile strength after the heat treatment at 923 K.
Háková, Martina; Havlíková, Lucie Chocholoušová; Chvojka, Jiří; Erben, Jakub; Solich, Petr; Švec, František; Šatínský, Dalibor
2018-09-06
Three different approaches has been used to obtain nano/micro fibers and their diversity and extraction properties were examined. The effect of their structure on stability in an ultra-high-performance liquid chromatography (UHPLC) system during on-line SPE procedure was monitored. Five types of various nano/micro fiber polymers were used as sorbents: polyamide 6 nanofibers, polyvinylidene difluoride nanofibers, polyethylene microfibers, and two new polycaprolactone microfiber/nanofiber and polycaprolactone microfibers/polyvinylidene difluoride nanofibers composite polymers. The fiber polymers were filled in a cartridge directly connected to the UHPLC system and tested. For each polymer, the optimal conditions of the on-line extraction were found and potential applicability on real samples was tested. The determination of ochratoxin A (OTA) in beer matrix was chosen as a case study. Relevant factors such as the mechanical and chemical stability of the nano/microfibers, filling the cartridges, fiber reusability and the possibility and the repeatability of all processes were involved in the proposed study. A new nano/micro composite sorbent consisting of polycaprolactone microfibers/polyvinylidene difluoride nanofibers was chosen as the most suitable sorbent for the on-line extraction of OTA from a beer matrix. The tested validation parameters had the value of intra-day precision lower than 1.48%, linearity in the range from 0.5 to 100 μg L -1 with r 2 ≥ 0.9999 for standard and matrix calibration curve, and recovery in the range 99.1-103.9% at five concentration levels. Long-term precision evaluated for 31 analyses over the period of three months did not exceed 2.9% RSD. It confirmed the column reusability and perfect stability of nano/micro composite sorbent in the presence of organic solvents and after repeated injection of a complex beer matrix. Copyright © 2018 Elsevier B.V. All rights reserved.
Development, implementation, and test results on integrated optics switching matrix
NASA Technical Reports Server (NTRS)
Rutz, E.
1982-01-01
A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.
NASA Astrophysics Data System (ADS)
Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.
2017-05-01
A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.
Collagen-coated cellulose sponge: three dimensional matrix for tissue culture of Walker tumor 256.
Leighton, J; Justh, G; Esper, M; Kronenthal, R L
1967-03-10
Three-dimensional growth of large populations of cells in vitro has been observed in the interstices of a matrix consisting of collagen-coated cellu lose sponge. The growth of Walker tumor 256 in this composite matrix is com pared with that found in a matrix composed of either cellulose sponge alone or collagen sponge alone. The composite matrix is superior to either one. Collagen coated cellulose sponge may provide a simple tool for the study of social interaction of cells in the formation of organized elementary tissue structures.
Modified Process For Formation Of Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1996-01-01
Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.
Adaptive composites with embedded NiTiCu wires
NASA Astrophysics Data System (ADS)
Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.
2001-07-01
Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.
Information matrix estimation procedures for cognitive diagnostic models.
Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei
2018-03-06
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.
Repair process and a repaired component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, III, Herbert Chidsey; Simpson, Stanley F.
Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component,more » and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.« less
Attractive electron-electron interactions within robust local fitting approximations.
Merlot, Patrick; Kjærgaard, Thomas; Helgaker, Trygve; Lindh, Roland; Aquilante, Francesco; Reine, Simen; Pedersen, Thomas Bondo
2013-06-30
An analysis of Dunlap's robust fitting approach reveals that the resulting two-electron integral matrix is not manifestly positive semidefinite when local fitting domains or non-Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four-center two-electron integrals based on the resolution-of-the-identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair-atomic resolution-of-the-identity (PARI) approach, atomic-orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree-Fock and Kohn-Sham calculations, the indefinite integral matrix causes nonconvergence in the self-consistent-field iterations. In these cases, the two-electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb-metric RI method. The speed-up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple-zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky-decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. Copyright © 2013 Wiley Periodicals, Inc.
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Optimization of mechanical strength of titania fibers fabricated by direct drawing
NASA Astrophysics Data System (ADS)
Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis
2013-11-01
Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ∘C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.
Tungsten wire-nickel base alloy composite development
NASA Technical Reports Server (NTRS)
Brentnall, W. D.; Moracz, D. J.
1976-01-01
Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.
Assessment of two-dimensional induced accelerations from measured kinematic and kinetic data.
Hof, A L; Otten, E
2005-11-01
A simple algorithm is presented to calculate the induced accelerations of body segments in human walking for the sagittal plane. The method essentially consists of setting up 2x4 force equations, 4 moment equations, 2x3 joint constraint equations and two constraints related to the foot-ground interaction. Data needed for the equations are, next to masses and moments of inertia, the positions of ankle, knee and hip. This set of equations is put in the form of an 18x18 matrix or 20x20 matrix, the solution of which can be found by inversion. By applying input vectors related to gravity, to centripetal accelerations or to muscle moments, the 'induced' accelerations and reaction forces related to these inputs can be found separately. The method was tested for walking in one subject. Good agreement was found with published results obtained by much more complicated three-dimensional forward dynamic models.
Laser notching ceramics for reliable fracture toughness testing
Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; ...
2015-09-19
A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less
Sulfur Solubility Testing and Characterization of Hanford LAW Phase 2, Inner Layer Matrix Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K. M.; Edwards, T. B.; Caldwell, M. E.
In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated low activity waste (LAW) glass compositions. A procedure developed at the Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study. These data will be used in the developmentmore » of improved sulfur solubility models for LAW glass.« less
Foreign Bodies in Dried Mushrooms Marketed in Italy.
Schiavo, Maria Rita; Manno, Claudia; Zimmardi, Antonina; Vodret, Bruna; Tilocca, Maria Giovanna; Altissimi, Serena; Haouet, Naceur M
2015-11-02
The presence of foreign bodies in mushrooms affects their marketability and may result in health risks to consumers. The inspection of fresh or dried mushrooms today is very important in view of the increased consumption of this kind of food. Ten samples of dried mushrooms collected in supermarkets were examined for evidence of entomological contamination by macro and microscopic analytical methods, the so-called filth-test . A total of 49 46 determinations, comprising 15 g of the vegetable matrix, were made. The microscopic filth test consistently detected an irregular distribution of physical contaminants following repeated determinations of the same sample. Visual examination, on the other hand, was not sufficient to ensure a product free of contaminants.
A Sparse Matrix Approach for Simultaneous Quantification of Nystagmus and Saccade
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Stone, Lee; Boyle, Richard D.
2012-01-01
The vestibulo-ocular reflex (VOR) consists of two intermingled non-linear subsystems; namely, nystagmus and saccade. Typically, nystagmus is analysed using a single sufficiently long signal or a concatenation of them. Saccade information is not analysed and discarded due to insufficient data length to provide consistent and minimum variance estimates. This paper presents a novel sparse matrix approach to system identification of the VOR. It allows for the simultaneous estimation of both nystagmus and saccade signals. We show via simulation of the VOR that our technique provides consistent and unbiased estimates in the presence of output additive noise.
Cosmic shear measurements with Dark Energy Survey Science Verification data
Becker, M. R.
2016-07-06
Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulationsmore » to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper.« less
Muscle synergies during bench press are reliable across days.
Kristiansen, Mathias; Samani, Afshin; Madeleine, Pascal; Hansen, Ernst Albin
2016-10-01
Muscle synergies have been investigated during different types of human movement using nonnegative matrix factorization. However, there are not any reports available on the reliability of the method. To evaluate between-day reliability, 21 subjects performed bench press, in two test sessions separated by approximately 7days. The movement consisted of 3 sets of 8 repetitions at 60% of the three repetition maximum in bench press. Muscle synergies were extracted from electromyography data of 13 muscles, using nonnegative matrix factorization. To evaluate between-day reliability, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the first test session were recomputed, using the fixed synergy components from the second test session. Two muscle synergies accounted for >90% of the total variance, and reflected the concentric and eccentric phase, respectively. The cross-correlation values were strong to very strong (r-values between 0.58 and 0.89), while the cross-validation values ranged from substantial to almost perfect (ICC3, 1 values between 0.70 and 0.95). The present findings revealed that the same general structure of the muscle synergies was present across days and the extraction of muscle synergies is thus deemed reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J.
2013-01-01
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories. PMID:23678074
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1990-01-01
Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1991-01-01
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report
2018-04-01
Technical Report ARWSB-TR-18025 Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report Lucas B...1. REPORT DATE (DD-MM-YYYY) April 2018 2. REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Hydraulic Testing of...Polymer Matrix Composite 102mm Tube Section Technical Report 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
Spacecraft structural system identification by modal test
NASA Technical Reports Server (NTRS)
Chen, J.-C.; Peretti, L. F.; Garba, J. A.
1984-01-01
A structural parameter estimation procedure using the measured natural frequencies and kinetic energy distribution as observers is proposed. The theoretical derivation of the estimation procedure is described and its constraints and limitations are explained. This procedure is applied to a large complex spacecraft structural system to identify the inertia matrix using modal test results. The inertia matrix is chosen after the stiffness matrix has been updated by the static test results.
Characterization of Hypervelocity Impact Debris from the DebriSat Tests
NASA Astrophysics Data System (ADS)
Adams, P. M.; Sheaffer, P. M.; Lingley, Z.; Radhakrishnan, G.
The DebriSat program consisted of 3 hypervelocity impact tests conducted in 2 Torr of air with 7 km/s, 600 g aluminum projectiles. In the first test, Pre Preshot, the target consisted of multiple layers of fiberglass, stainless steel and Kevlar fabric. No soft catch foam was used. The subsequent two tests, DebrisLV and DebriSat, were designed to simulate hypervelocity impacts with a launch vehicle upper stage and a modern LEO satellite, respectively. The interior of the chamber was lined with soft catch foam to trap break-up fragments. In all three tests, witness plates were placed near the target to sample impact debris and determine its reflectance, composition and spectral properties. Reflectance measurements are important for calculating the size of orbital hypervelocity impact fragments. The debris from the Pre Preshot test consisted of a two-phase mixture formed from solidified molten silicate and steel droplets. Individual droplets ranged from 100 μm to 10 nm. The reflectance of witness plates dropped from 95% to 20-30% as a result of the debris. Debris collected on witness plates in the DebrisLV and DebriSat tests consisted of μm to nm-sized solidified molten metallic droplets in a matrix of condensed vaporized soft catch. Disordered graphitic carbon was also detected. The reflectance of debris-covered witness plates dropped from 95% to 5%. The dramatic decrease in reflectance for hypervelocity impact debris is attributed to the effect of scattering from μm to nm sized solidified molten metallic droplets and the presence of graphitic carbon, when organics are present. The presence of soft catch in the later tests and the high organic content with graphitic carbon in the debris appear to be responsible for this much lower post-test reflectance. Understanding orbital debris reflectance is critical for estimating size and determining debris detectability.
Runkel, Anthony C.; Tipping, R.G.; Alexander, E.C.; Alexander, S.C.
2006-01-01
The Upper Cambrian interval of strata in the cratonic interior of North America has a long history of inconsistent hydrogeologic classification and a reputation for marked and unpredictable variability in hydraulic properties. We employed a hydrostratigraphic approach that requires hydraulic data to be interpreted within the context of a detailed characterization of the distribution of porosity and permeability to arrive at a better understanding of these rocks. As a first step, we constructed a framework of hydrostratigraphic attributes that is a depiction of the spatial distribution of both rock matrix and secondary porosity, independent of hydraulic data such as pumping-test results. The locations of hundreds of borehole geophysical logs and laboratory measurements of rock sample matrix porosity and permeability were mapped on detailed (mostly 1:100,000 or greater), conventional, lithostratigraphic maps. Stratigraphic cross-sections, based on hundreds of natural gamma logs and thousands of water-well records, have provided a markedly improved depiction of the regional distribution of rock matrix hydrostratigraphic components. Borehole, core and outcrop observations of secondary porosity were also tied to detailed stratigraphic sections and interpolated regionally. As a second step, we compiled and conducted a large number of hydraulic tests (e.g., packer tests and borehole flowmeter logs) and analyzed thousands of specific capacity tests (converted to hydraulic conductivity). Interpretation of these data within the context of the hydrostratigraphic attributes allowed us to produce a new hydrogeologic characterization for this stratigraphic interval and gain important insights into geologic controls on hydraulic variability. There are a number of assumptions in herent in most previous hydrogeologic investigations of these strata, such as equivalency of lithostratigraphic and hydrogeologic units and the dominance of intergranular flow in sandstone, that are not consistent with our results. A particularly important outcome of our study is recognition of regionally extensive bedding-plane fracture clusters. Such exceptionally high hydraulic conductivity features dominate the hydraulics of aquifers and confining units in these siliciclastic-dominated strata, including within intervals consisting largely of friable sandstone with high intergranular conductivity. Furthermore, our results provide some measure of fracture predictability, by correlating their abundance and hydraulic importance to specific stratigraphic positions and particular depths of burial beneath younger bedrock. A discrete, consistent stratigraphic interval of fine-grained siliciclastic beds also is apparently resistant to the development of vertically interconnected fractures, making the location of this regionally extensive confining unit predictable. Our more rigorous approach of interpreting typical hydraulic tests as well as relatively new techniques of borehole flowmeter logging, within the context of a hydrostratigraphic framework, results in improved definition of individual aquifers and confining units. It also enables quantification of their hydraulic properties, which leads to improved prediction of groundwater flow paths and time-of-travel. ?? 2005 Elsevier B.V. All rights reserved.
Post irradiation analysis of RERTR-7A, 7B and RERTR-8 tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofman, G.L.; Kim, Yeon Soo; Shevlyakov, G.V.
2008-07-15
Addition of 2 wt% or more of silicon in the Al matrix for U-Mo/Al dispersion fuel has proved to be effective in reducing interaction layer growth from the RERTR-7A test to a burnup of {approx}100 at% U-235 (LEU equivalent). The recent RERTR-8 test also showed the consistent results. In this paper, we present the post irradiation analysis results of these tests. A considerable number of monolithic fuel plates were irradiated in the RERTR-7A and RERTR-8 tests. The post irradiation results of these plates are also included. The RERTR-7B test was a lower burnup test with similar power to the RERTR-7A.more » In this test, dispersion fuel plates with U-7Mo-1Ti and U- 7Mo-2Zr in Al-5Si were irradiated. The post irradiation results of these plates are also covered. (author)« less
Structural characterization of high temperature composites
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.
1991-01-01
Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.
1991-01-01
The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.
The Foote House (10-AA-96), An Historic Archaeological Complex in the Boise River Canyon, Idaho.
1982-01-01
into four or perhaps five basic rooms, three of which opened into one another (Paul 1972:293). The main front entrance faced west, and consisted of low...sediments were dry screened through 1/4 in. hardward mesh. Four areas in or adjacent to the Foote House were tested to provide structural and (if possible...down into the soil matrix through the first excavation level, to 10 cm depth. At this level, in the northwest quadrant of the unit, a thin layer of
Pattern classification using charge transfer devices
NASA Technical Reports Server (NTRS)
1980-01-01
The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.
Kinetic release of hydrogen peroxide from different whitening products.
da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte
2012-01-01
The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations.
Kim, Hyoungrae; Jang, Cheongyun; Yadav, Dharmendra K; Kim, Mi-Hyun
2017-03-23
The accuracy of any 3D-QSAR, Pharmacophore and 3D-similarity based chemometric target fishing models are highly dependent on a reasonable sample of active conformations. Since a number of diverse conformational sampling algorithm exist, which exhaustively generate enough conformers, however model building methods relies on explicit number of common conformers. In this work, we have attempted to make clustering algorithms, which could find reasonable number of representative conformer ensembles automatically with asymmetric dissimilarity matrix generated from openeye tool kit. RMSD was the important descriptor (variable) of each column of the N × N matrix considered as N variables describing the relationship (network) between the conformer (in a row) and the other N conformers. This approach used to evaluate the performance of the well-known clustering algorithms by comparison in terms of generating representative conformer ensembles and test them over different matrix transformation functions considering the stability. In the network, the representative conformer group could be resampled for four kinds of algorithms with implicit parameters. The directed dissimilarity matrix becomes the only input to the clustering algorithms. Dunn index, Davies-Bouldin index, Eta-squared values and omega-squared values were used to evaluate the clustering algorithms with respect to the compactness and the explanatory power. The evaluation includes the reduction (abstraction) rate of the data, correlation between the sizes of the population and the samples, the computational complexity and the memory usage as well. Every algorithm could find representative conformers automatically without any user intervention, and they reduced the data to 14-19% of the original values within 1.13 s per sample at the most. The clustering methods are simple and practical as they are fast and do not ask for any explicit parameters. RCDTC presented the maximum Dunn and omega-squared values of the four algorithms in addition to consistent reduction rate between the population size and the sample size. The performance of the clustering algorithms was consistent over different transformation functions. Moreover, the clustering method can also be applied to molecular dynamics sampling simulation results.
Genesis of highland basalt breccias - A view from 66095
NASA Technical Reports Server (NTRS)
Garrison, J. R., Jr.; Taylor, L. A.
1980-01-01
Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.
FRCM and FRP composites for the repair of damaged PC girders.
DOT National Transportation Integrated Search
2015-01-01
Fabric-reinforced-cementitious-matrix (FRCM) and fiber-reinforced polymer (FRP) composites have : emerged as novel strengthening technologies. FRCM is a composite material consisting of a sequence of : one or more layers of cement-based matrix reinfo...
Design verification test matrix development for the STME thrust chamber assembly
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.
1993-01-01
This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.
Ackerman, Jessica E.; Geary, Michael B.; Orner, Caitlin A.; Bawany, Fatima
2017-01-01
Type II Diabetes (T2DM) dramatically impairs the tendon healing response, resulting in decreased collagen organization and mechanics relative to non-diabetic tendons. Despite this burden, there remains a paucity of information regarding the mechanisms that govern impaired healing of diabetic tendons. Mice were placed on either a high fat diet (T2DM) or low fat diet (lean) and underwent flexor tendon transection and repair surgery. Healing was assessed via mechanical testing, histology and changes in gene expression associated with collagen synthesis, matrix remodeling, and macrophage polarization. Obese/diabetic tendons healed with increased scar formation and impaired mechanical properties. Consistent with this, prolonged and excess expression of extracellular matrix (ECM) components were observed in obese/T2DM tendons. Macrophages are involved in both inflammatory and matrix deposition processes during healing. Obese/T2DM tendons healed with increased expression of markers of pro-inflammatory M1 macrophages, and elevated and prolonged expression of M2 macrophages markers that are involved in ECM deposition. Here we demonstrate that tendons from obese/diabetic mice heal with increased scar formation and increased M2 polarization, identifying excess M2 macrophage activity and matrix synthesis as a potential mechanism of the fibrotic healing phenotype observed in T2DM tendons, and as such a potential target to improve tendon healing in T2DM. PMID:28686669
SparRec: An effective matrix completion framework of missing data imputation for GWAS
NASA Astrophysics Data System (ADS)
Jiang, Bo; Ma, Shiqian; Causey, Jason; Qiao, Linbo; Hardin, Matthew Price; Bitts, Ian; Johnson, Daniel; Zhang, Shuzhong; Huang, Xiuzhen
2016-10-01
Genome-wide association studies present computational challenges for missing data imputation, while the advances of genotype technologies are generating datasets of large sample sizes with sample sets genotyped on multiple SNP chips. We present a new framework SparRec (Sparse Recovery) for imputation, with the following properties: (1) The optimization models of SparRec, based on low-rank and low number of co-clusters of matrices, are different from current statistics methods. While our low-rank matrix completion (LRMC) model is similar to Mendel-Impute, our matrix co-clustering factorization (MCCF) model is completely new. (2) SparRec, as other matrix completion methods, is flexible to be applied to missing data imputation for large meta-analysis with different cohorts genotyped on different sets of SNPs, even when there is no reference panel. This kind of meta-analysis is very challenging for current statistics based methods. (3) SparRec has consistent performance and achieves high recovery accuracy even when the missing data rate is as high as 90%. Compared with Mendel-Impute, our low-rank based method achieves similar accuracy and efficiency, while the co-clustering based method has advantages in running time. The testing results show that SparRec has significant advantages and competitive performance over other state-of-the-art existing statistics methods including Beagle and fastPhase.
General Population Job Exposure Matrix Applied to a Pooled Study of Prevalent Carpal Tunnel Syndrome
Dale, Ann Marie; Zeringue, Angelique; Harris-Adamson, Carisa; Rempel, David; Bao, Stephen; Thiese, Matthew S.; Merlino, Linda; Burt, Susan; Kapellusch, Jay; Garg, Arun; Gerr, Fred; Hegmann, Kurt T.; Eisen, Ellen A.; Evanoff, Bradley
2015-01-01
A job exposure matrix may be useful for the study of biomechanical workplace risk factors when individual-level exposure data are unavailable. We used job title–based exposure data from a public data source to construct a job exposure matrix and test exposure-response relationships with prevalent carpal tunnel syndrome (CTS). Exposures of repetitive motion and force from the Occupational Information Network were assigned to 3,452 active workers from several industries, enrolled between 2001 and 2008 from 6 studies. Repetitive motion and force exposures were combined into high/high, high/low, and low/low exposure groupings in each of 4 multivariable logistic regression models, adjusted for personal factors. Although force measures alone were not independent predictors of CTS in these data, strong associations between combined physical exposures of force and repetition and CTS were observed in all models. Consistent with previous literature, this report shows that workers with high force/high repetition jobs had the highest prevalence of CTS (odds ratio = 2.14–2.95) followed by intermediate values (odds ratio = 1.09–2.27) in mixed exposed jobs relative to the lowest exposed workers. This study supports the use of a general population job exposure matrix to estimate workplace physical exposures in epidemiologic studies of musculoskeletal disorders when measures of individual exposures are unavailable. PMID:25700886
Swanson, William H; Dul, Mitchell W; Horner, Douglas G; Liu, Tiffany; Tran, Irene
2014-01-20
To develop perimetric stimuli for which sensitivities are more resistant to reduced retinal illumination than current clinical perimeters. Fifty-four people free of eye disease were dilated and tested monocularly. For each test, retinal illumination was attenuated with neutral density (ND) filters, and a standard adaptation model was fit to derive mean and SEM for the adaptation parameter (NDhalf). For different stimuli, t-tests on NDhalf were used to assess significance of differences in consistency with Weber's law. Three experiments used custom Gaussian-windowed contrast sensitivity perimetry (CSP). Experiment 1 used CSP-1, with a Gaussian temporal pulse, a spatial frequency of 0.375 cyc/deg (cpd), and SD of 1.5°. Experiment 1 also used the Humphrey Matrix perimeter, with the N-30 test using 0.25 cpd and 25 Hz flicker. Experiment 2 used a rectangular temporal pulse, SDs of 0.25° and 0.5°, and spatial frequencies of 0.0 and 1.0 cpd. Experiment 3 used CSP-2, with 5-Hz flicker, SDs from 0.5° to 1.8°, and spatial frequencies from 0.14 to 0.50 cpd. In Experiment 1, CSP-1 was more consistent with Weber's law (NDhalf ± SEM = 1.86 ± 0.08 log unit) than N-30 (NDhalf = 1.03 ± 0.03 log unit; t > 9, P < 0.0001). All stimuli used in Experiments 2 and 3 had comparable consistency with Weber's law (NDhalf = 1.49-1.69 log unit; t < 2). Perimetric sensitivities were consistent with Weber's law when higher temporal frequencies were avoided.
Novel test procedure to evaluate the treatability of wastewater with ozone.
Schindler Wildhaber, Yael; Mestankova, Hana; Schärer, Michael; Schirmer, Kristin; Salhi, Elisabeth; von Gunten, Urs
2015-05-15
Organic micropollutants such as pharmaceuticals, estrogens or pesticides enter the environment continuously through the effluent of municipal wastewater treatment plants (WWTPs). Enhanced treatment of wastewater (WW) by ozone (O3) is probably one of the simplest measures for abatement of organic micropollutants to avoid their discharge to the aquatic environment. During ozonation most organic micropollutants present in treated WW are oxidized either by a direct reaction with O3 or by secondarily formed hydroxyl radicals (OH). However, undesired oxidation by-products from the oxidative transformation of matrix components can also be formed. A modular laboratory decision tool based on the findings of previous investigations is presented to test the feasibility of ozonation as an option to upgrade specific WWTPs. These modules consist of investigations to assess (i) the matrix effects on ozone stability, (ii) the efficiency of micropollutant removal, (iii) the oxidation by-product formation, as well as (iv) bioassays to measure specific and unspecific toxicity of the treated WWs. Matrix effects on ozone stability (quantified as O3 and OH exposures) can give first indications on the suitability of an ozonation step. Ozonation of WWs yielding O3 and OH exposures and micropollutant abatement similar to reference values evoked a significant improvement of the water quality as indicated by a broad range of bioassays. Irregular behavior of the ozonation points towards unknown compounds, possibly leading to the formation of undesired degradation products. It has been observed that in such WWs ozonation partly enhanced toxicity. In summary, the presented tiered laboratory test procedure represents a relatively cheap and straight-forward methodology to evaluate the feasibility of ozonation to upgrade specific WWTPs for micropollutant removal based on chemical and biological measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toward Interpreting Failure in Sintered-Silver Interconnection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Waters, Shirley B
2016-01-01
The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silvermore » interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.« less
Molybdenum disilicide alloy matrix composite
Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.
1991-12-03
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix
NASA Astrophysics Data System (ADS)
Ruggles-Wrenn, M. B.; Pope, M. T.
2014-02-01
Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16-22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.
Chemical-mechanical stability of the hierarchical structure of shell nacre
NASA Astrophysics Data System (ADS)
Sun, Jinmei; Guo, Wanlin
2010-02-01
The hierarchical structure and mechanical property of shell nacre are experimentally investigated from the new aspects of chemical stability and chemistry-mechanics coupling. Through chemical deproteinization or demineralization methods together with characterization techniques at micro/nano scales, it is found that the nacre of abalone, haliotis discus hannai, contains a hierarchical structure stacked with irregular aragonite platelets and interplatelet organic matrix thin layers. Yet the aragonite platelet itself is a nanocomposite consisting of nanoparticles and intraplatelet organic matrix framework. The mean diameter of the nanoparticles and the distribution of framework are quite different for different platelets. Though the interplatelet and intraplatelet organic matrix can be both decomposed by sodium hydroxide solution, the chemical stability of individual aragonite platelets is much higher than that of the microstructure stacked with them. Further, macroscopic bending test or nanoindentation experiment is performed on the micro/nanostructure of nacre after sodium hydroxide treatment. It is found that the Young’s modulus of both the stacked microstructure and nanocomposite platelet reduced. The reduction of the microstructure is more remark than that of the platelet. Therefore the chemical-mechanical stability of the nanocomposite platelet itself is much higher than that of the stacked microstructure of nacre.
Lactic acid bacterial extract as a biogenic mineral growth modifier
NASA Astrophysics Data System (ADS)
Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal
2009-04-01
The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.
Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha
2015-01-01
Efficient preparation of food samples, comprising sampling and homogenization, for microbiological testing is an essential, yet largely neglected, component of foodstuff control. Salmonella enterica spiked chicken breasts were used as a surface contamination model whereas salami and meat paste acted as models of inner-matrix contamination. A systematic comparison of different homogenization approaches, namely, stomaching, sonication, and milling by FastPrep-24 or SpeedMill, revealed that for surface contamination a broad range of sample pretreatment steps is applicable and loss of culturability due to the homogenization procedure is marginal. In contrast, for inner-matrix contamination long treatments up to 8 min are required and only FastPrep-24 as a large-volume milling device produced consistently good recovery rates. In addition, sampling of different regions of the spiked sausages showed that pathogens are not necessarily homogenously distributed throughout the entire matrix. Instead, in meat paste the core region contained considerably more pathogens compared to the rim, whereas in the salamis the distribution was more even with an increased concentration within the intermediate region of the sausages. Our results indicate that sampling and homogenization as integral parts of food microbiology and monitoring deserve more attention to further improve food safety.
Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha
2015-01-01
Efficient preparation of food samples, comprising sampling and homogenization, for microbiological testing is an essential, yet largely neglected, component of foodstuff control. Salmonella enterica spiked chicken breasts were used as a surface contamination model whereas salami and meat paste acted as models of inner-matrix contamination. A systematic comparison of different homogenization approaches, namely, stomaching, sonication, and milling by FastPrep-24 or SpeedMill, revealed that for surface contamination a broad range of sample pretreatment steps is applicable and loss of culturability due to the homogenization procedure is marginal. In contrast, for inner-matrix contamination long treatments up to 8 min are required and only FastPrep-24 as a large-volume milling device produced consistently good recovery rates. In addition, sampling of different regions of the spiked sausages showed that pathogens are not necessarily homogenously distributed throughout the entire matrix. Instead, in meat paste the core region contained considerably more pathogens compared to the rim, whereas in the salamis the distribution was more even with an increased concentration within the intermediate region of the sausages. Our results indicate that sampling and homogenization as integral parts of food microbiology and monitoring deserve more attention to further improve food safety. PMID:26539462
Test method development for structural characterization of fiber composites at high temperatures
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.; Edwards, B.
1985-01-01
Test methods used for structural characterization of polymer matrix composites can be applied to glass and ceramic matrix composites only at low temperatures. New test methods are required for tensile, compressive, and shear properties of fiber composites at high temperatures. A tensile test which should be useful to at least 1000 C has been developed and used to characterize the properties of a Nicalon/glass composite up to the matrix limiting temperature of 600 C. Longitudinal and transverse unidirectional composite data are presented and discussed.
Neuroprotective effects of collagen matrix in rats after traumatic brain injury.
Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward
2015-01-01
In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.
Application of Executable Architectures in Early Concept Evaluation
2015-12-01
xi List of Tables Page Table 1: Confusion Matrix Format (with example threshold values) ............................... 37 Table 2: Confusion... Matrix Logic Example ...................................................................... 37 Table 3: Test Case Matrix ...43 Table 4: Sensor Low Target Detection Threshold Confusion Matrix
Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J
2009-06-01
Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.
Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard
2016-02-01
The fish ear stones (otoliths) consist mainly of calcium carbonate and have lower amounts of a proteinous matrix. This matrix consists of macromolecules, which directly control the biomineralization process. We analyzed the composition of this proteinous matrix by mass spectrometry in a shotgun approach. For this purpose, an enhanced protein purification technique was developed that excludes any potential contamination of proteins from body fluids. Using this method we identified eight proteins in the inner ear of Oreochromis mossambicus. These include the common otolith matrix proteins (OMP-1, otolin-1, neuroserpin, SPARC and otoconin), and three proteins (alpha tectorin, otogelin and transferrin) not previously localized to the otoliths. Moreover, we were able to exclude the occurrence of two matrix proteins (starmaker and pre-cerebellin-like protein) known from other fish species. In further analyses, we show that the absence of the OMP starmaker corresponds to calcitic otoliths and that pre-cerebellin-like protein is not present at any stage during the development of the otoliths of the inner ear. This study shows O. mossambicus does not have all of the known otolith proteins indicating that the matrix proteins in the inner ear of fish are not the same across species. Further functional studies of the novel proteins we identified during otolith development are required. © 2015 Wiley Periodicals, Inc.
Turbine component, turbine blade, and turbine component fabrication process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert
A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less
NASA Astrophysics Data System (ADS)
Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath
2015-07-01
The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.
3D model of a matrix source of negative ions: RF driving by a large area planar coil
NASA Astrophysics Data System (ADS)
Demerdzhiev, A.; Lishev, St.; Tarnev, Kh.; Shivarova, A.
2015-04-01
Based on three-dimensional (3D) modeling, different manners of a planar-coil inductive discharge driving of a plasma source completed as a matrix of small-radius hydrogen discharges are studied regarding a proper choice of an efficient and alike rf power deposition into the separate discharges of the matrix. Driving the whole matrix by a single coil and splitting it to blocks of discharge tubes, with single coil driving of each block, are the two cases considered. The results from the self-consistent model presented for a block of discharge tubes show its reliability in ensuring the same spatial distribution of the plasma parameters in the discharges completing the block. Since regarding the construction of the matrix, its driving as a whole by a single coil is the most reasonable decision, three modifications of the coil design have been tested: two zigzag coils with straight conductors passing, respectively, between and through the bottoms of the discharge tubes and a coil with an "omega" shaped conductor on the bottom of each tube. Among these three configurations, the latter ‒ a coil with an Ω-shaped conductor on the bottom of each tube ‒ shows up with the highest rf efficiency of an inductive discharge driving, shown by results for the rf current induced in the discharges obtained from an electrodynamical description. In all the cases considered the spatial distribution of the induced current density is analysed based on the manner of the penetration into the plasma of the wave field sustaining the inductive discharges.
Statistical Refinement of the Q-Matrix in Cognitive Diagnosis
ERIC Educational Resources Information Center
Chiu, Chia-Yi
2013-01-01
Most methods for fitting cognitive diagnosis models to educational test data and assigning examinees to proficiency classes require the Q-matrix that associates each item in a test with the cognitive skills (attributes) needed to answer it correctly. In most cases, the Q-matrix is not known but is constructed from the (fallible) judgments of…
2009-06-01
typically consists of a thermoset or thermoplastic polymer matrix reinforced with fibers that are much stronger and stiffer than the matrix. The PMCs are...high thermal or electrical conductivity, stealth characteristics , the ability to self-heal, communication, and sensor capabilities. The multi...have factual evidence of limitations and characteristics so as to utilize the material in a manner consistent with its strengths and weaknesses
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
NASA Astrophysics Data System (ADS)
Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.
2018-02-01
In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.
A Method of Q-Matrix Validation for the Linear Logistic Test Model
Baghaei, Purya; Hohensinn, Christine
2017-01-01
The linear logistic test model (LLTM) is a well-recognized psychometric model for examining the components of difficulty in cognitive tests and validating construct theories. The plausibility of the construct model, summarized in a matrix of weights, known as the Q-matrix or weight matrix, is tested by (1) comparing the fit of LLTM with the fit of the Rasch model (RM) using the likelihood ratio (LR) test and (2) by examining the correlation between the Rasch model item parameters and LLTM reconstructed item parameters. The problem with the LR test is that it is almost always significant and, consequently, LLTM is rejected. The drawback of examining the correlation coefficient is that there is no cut-off value or lower bound for the magnitude of the correlation coefficient. In this article we suggest a simulation method to set a minimum benchmark for the correlation between item parameters from the Rasch model and those reconstructed by the LLTM. If the cognitive model is valid then the correlation coefficient between the RM-based item parameters and the LLTM-reconstructed item parameters derived from the theoretical weight matrix should be greater than those derived from the simulated matrices. PMID:28611721
Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures
2010-01-01
angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2015-09-01
Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Sgorbini, Barbara; David, Frank; Sandra, Pat; Rubiolo, Patrizia
2007-09-14
Dual phase twisters (DP twisters), consisting of a polydimethylsiloxane (PDMS) outer coating and a second complementary (ad)sorbent as inner packing, have recently been shown to extend the applicability of headspace sorptive extraction (HSSE). In comparison to HSSE using PDMS only, the recovery of analytes from the headspace of a solid or liquid matrix is increased by combining the concentration capabilities of two sampling materials operating on different mechanisms (sorption and adsorption). This study compares the performance of DP twisters consisting of different PDMS outer coatings and different packing materials, including Tenax GC, a bisphenol-PDMS copolymer, Carbopack coated with 5% of Carbowax and beta-cyclodextrin, for the analysis of the headspace of roasted Arabica coffee, dried sage leaves and an aqueous test mixture containing compounds with different water solubility, acidity, polarity and volatility as test samples. In general, DP twisters showed a higher concentration capability than the corresponding conventional PDMS twisters for the analytes considered. The highest recoveries were obtained with DP twisters consisting of 0.2mm thick PDMS coating combined with Tenax GC, a bisphenol-PDMS copolymer and Carbopack coated with 5% of Carbowax as inner adsorption phase.
Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm
2008-09-01
In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.
Manipulation of biological cells using a microelectromagnet matrix
NASA Astrophysics Data System (ADS)
Lee, H.; Purdon, A. M.; Westervelt, R. M.
2004-08-01
Noninvasive manipulation of biological cells inside a microfluidic channel was demonstrated using a microelectromagnet matrix. The matrix consists of two layers of straight Au wires, aligned perpendicular to each other, that are covered by insulating layers. By adjusting the current in each independent wire, the microelectromagnet matrix can create versatile magnetic field patterns to control the motion of individual cells in fluid. Single or multiple yeast cells attached to magnetic beads were trapped, continuously moved and rotated, and a viable cell was separated from nonviable cells for cell sorting.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14076-000 would consist of: (1) Up to 376 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14089-000 would consist of: (1) Up to 260 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14091-000 would consist of: (1) Up to 400 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... would consist of the following: (1) Up to 120 TREK generating units installed in a matrix on the bottom...) shielded underwater cables would convey each matrix power to a substation; and (4) a transmission line...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
...-000 would consist of: (1) Up to 400 TREK generating units installed in a matrix on the bottom of the... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14090-000 would consist of: (1) Up to 200 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix's power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14074-000 would consist of: (1) Up to 376 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14081-000 would consist of: (1) Up to 50 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14093-000 would consist of: (1) Up to 160 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14072-000 would consist of: (1) Up to 150 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14092-000 would consist of: (1) Up to 180 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14099-000 would consist of: (1) Up to 380 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
.... 14096-000 would consist of: (1) Up to 340 TREK generating units installed in a matrix on the bottom of... underwater cables would convey each matrix power to a substation; and (4) a transmission line would...
NASA Astrophysics Data System (ADS)
Nelson, M. J.; Newsom, H.
2005-05-01
The matrix in the Yaxcopoil 1 drill core produced by the Chicxulub event is semi-amorphous, containing clays and evidence for elemental mobility. We analyzed matrix in impact melt and suevitic breccia samples from the drill hole to detect mineralogical and chemical variability with depth in upper and lower core samples. SEM, microprobe, Cameca 4f ion probe, and XRD were used to determine chemical mobility and variation, and clay structure in several YAX samples, covering the top five units, at a depth range of about 61m. We investigated the possibility of glass, clay, and metastable eutectic dehydroxylates as components in the matrix. Matrix in upper suevite is not optically distinct, but a type of groundmass, with an admixture of calcite, crystallites, and several melt phases with melt texture indicative of simultaneous formation. With an increase in depth, flow tex-ture in the melt matrix is obvious around clasts on all scales, indicating a different temporal relationship than in the upper suevite. Chemically, the matrix is Si and Mg rich in most samples. With an increase in depth, the bulk matrix contains a strong linear increase of Mg, and a decrease of Al. With depth, the increasingly Mg-rich matrix exhibits a stronger flow texture. Aluminum also appears mobile, with enrichments mostly around clasts and veins. In addition, Li and B are strongly correlated, and decrease linearly with depth. The matrix contains materials that appear to be chemically and structurally consistent with smectites at all depths. The compositions range from that of an average montmorillonite in the uppermost units to that of a magnesium rich saponite in the lower units. Aside from the exis-tence of clays, we are considering the possibility that the matrix could contain metastable condensates from the im-pact dust cloud. As an introductory step to test this, matrix compositions were plotted among metastable eutectic dehydroxylate (MED) end members. This produced a remarkably co-linear trend with the join between MED pyro-phyllite and MED serpentine. High resolution equipment will be used to follow up on this idea. The matrix in lower samples had more element mobility, and likely more chemical reactions occurring among phases. An increase in mobility and transport of Mg could help explain this bulk enrichment in lower samples. In addition, variations in the original target material would logically contribute to chemical variations in the matrix. Dolomite and mafic minerals present at greater depth could react with matrix in the melt breccia, while dust and clay may exist in variable amounts within the drill core samples. The linear trend toward metastable dehydroxylate eutec-tic compositions is an encouraging first step to further investigate the possible existence of condensates from the impact cloud within the matrix.
Refractive index inversion based on Mueller matrix method
NASA Astrophysics Data System (ADS)
Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao
2016-03-01
Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.
Rocketdyne LOX bearing tester program
NASA Technical Reports Server (NTRS)
Keba, J. E.; Beatty, R. F.
1988-01-01
The cause, or causes, for the Space Shuttle Main Engine ball wear were unknown, however, several mechanisms were suspected. Two testers were designed and built for operation in liquid oxygen to empirically gain insight into the problems and iterate solutions in a timely and cost efficient manner independent of engine testing. Schedules and test plans were developed that defined a test matrix consisting of parametric variations of loading, cooling or vapor margin, cage lubrication, material, and geometry studies. Initial test results indicated that the low pressure pump thrust bearing surface distress is a function of high axial load. Initial high pressure turbopump bearing tests produced the wear phenomenon observed in the turbopump and identified an inadequate vapor margin problem and a coolant flowrate sensitivity issue. These tests provided calibration data of analytical model predictions to give high confidence in the positive impact of future turbopump design modification for flight. Various modifications will be evaluated in these testers, since similar turbopump conditions can be produced and the benefit of the modification will be quantified in measured wear life comparisons.
Investigation of compression behavior of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
2017-10-01
The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago
2000-01-01
An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
Goykhburg, M V; Bakhshinyan, V V; Petrova, I P; Wazybok, A; Kollmeier, B; Tavartkiladze, G A
The deterioration of speech intelligibility in the patients using cochlear implantation (CI) systems is especially well apparent in the noisy environment. It explains why phrasal speech tests, such as a Matrix sentence test, have become increasingly more popular in the speech audiometry during rehabilitation after CI. The Matrix test allows to estimate speech perception by the patients in a real life situation. The objective of this study was to assess the effectiveness of audiological rehabilitation of CI patients using the Russian-language version of the matrix test (RUMatrix) in free field in the noisy environment. 33 patients aged from 5 to 40 years with a more than 3 year experience of using cochlear implants inserted at the National Research Center for Audiology and Hearing Rehabilitation were included in our study. Five of these patients were implanted bilaterally. The results of our study showed a statistically significant improvement of speech intelligibility in the noisy environment after the speech processor adjustment; dynamics of the signal-to-noise ratio changes was -1.7 dB (p<0.001). The RUMatrix test is a highly efficient method for the estimation of speech intelligibility in the patients undergoing clinical investigations in the noisy environment. The high degree of comparability of the RUMatrix test with the Matrix tests in other languages makes possible its application in international multicenter studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... consist of: (1) Up to 75 TREK generating units installed in a matrix on the bottom of the river; (2) the... convey each matrix power to a substation; and (4) a transmission line would interconnect with the power...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... consist of: (1) Up to 677 TREK generating units installed in a matrix on the bottom of the river; (2) the... would convey each matrix power to a substation; and (4) a transmission line would interconnect with the...
Viscoplastic deformations and compressive damage in an A359/SiC{sub p} metal-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ramesh, K.T.; Chin, E.S.C.
2000-04-19
Recent work by the authors has examined the high-strain-rate compression of a metal-matrix composite consisting of an A359 Al alloy matrix reinforced by 20 vol.% of silicon carbide particulates (SiC{sub p}). The work-hardening that is observed in the experiments is much lower than that predicted by analytical and computational models which assume perfect particle-matrix interfaces and undamaged particles. In this work, the authors show that the discrepancy is a result of particle damage that develops within the A359/SiC{sub p} composite under compression. The evolution of particle damage has been characterized using quantitative microscopy, and is shown to be a functionmore » of the applied strain. A simple analytical model that incorporates evolving damage within the composite is proposed, and it is shown that the analytical predictions are consistent with the experimental observations over a wide range of strain rates.« less
Two-Phase Flow and Compaction Within and Outside a Sphere under Pure Shear
NASA Astrophysics Data System (ADS)
Hier-Majumder, S.
2017-12-01
This work presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consist of an interconnected load bearing matrix phase and an inviscid interstitial fluid phase. This work outlines techniques for building analytical solutions for velocity, pressure, and compaction within each domain, subject to boundary conditions of continuity of matrix velocity and normal traction at the interface between the two domains. The solutions indicate that the flow is strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of 40, after which, the velocity within the sphere becomes relatively insensitive to the increase in the viscosity contrast.
Correlating PMC-MMC Bonded Joint 3D FEA with Test
NASA Technical Reports Server (NTRS)
Jacobson, Mindy; Rodini, Benjamin; Chen, Wayne C.; Flom, Yury A.; Posey, Alan J.
2005-01-01
A viewgraph presentation on the correlation of Polymer Matrix Composites (PMC) and Metal Matrix Composites (MMC) bonded joints using three dimensional finite element analyses with materials tests is shown.
The organic matrix of gallstones
Sutor, D. June; Wooley, Susan E.
1974-01-01
Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981
Lee, Kiju; Jeong, Donghwa; Schindler, Rachael C; Hlavaty, Laura E; Gross, Susan I; Short, Elizabeth J
2018-01-01
Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games) for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach. Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept) were also administered. Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.
Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation
Lee, Kiju; Jeong, Donghwa; Schindler, Rachael C.; Hlavaty, Laura E.; Gross, Susan I.; Short, Elizabeth J.
2018-01-01
Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games) for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach. Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept) were also administered. Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously. PMID:29868520
Tension fracture of laminates for transport fuselage. Part 1: Material screening
NASA Technical Reports Server (NTRS)
Walker, T. H.; Avery, W. B.; Ilcewicz, L. B.; Poe, C. C., Jr.; Harris, C. E.
1992-01-01
Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Applications of composites to fuselage structures require a database and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity; (2) evaluate composite failure criteria; and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in major load bearing plies. Parameters for conventional fracture criteria were found to increase with crack length for the smallest notch sizes studied. Most material and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Traitional methods of correcting for specimen finite width were found to be lacking. Results indicate that a range of notch sizes must be tested to determine notch sensitivity. Data for a single small notch size (0.25 in. diameter) was found to give no indication of the sensitivity of a particular material and laminate layup to larger notch sizes.
An analysis of fiber-matrix interface failure stresses for a range of ply stress states
NASA Technical Reports Server (NTRS)
Crews, J. H.; Naik, R. A.; Lubowinski, S. J.
1993-01-01
A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.
Samsung Salmonella Detection Kit. AOAC Performance Tested Method(SM) 021203.
Li, Jun; Cheung, Win Den; Opdyke, Jason; Harvey, John; Chong, Songchun; Moon, Cheol Gon
2012-01-01
Salmonella, one of the most common causes of foodborne illness, is a significant public health concern worldwide. There is a need in the food industry for methods that are simple, rapid, and sensitive for the detection of foodborne pathogens. In this study, the Samsung Salmonella Detection Kit, a real-time PCR assay for the detection of Salmonella, was evaluated according to the current AOAC guidelines. The validation consisted of lot-to-lot consistency, stability, robustness, and inclusivity/exclusivity studies, as well as a method comparison of 10 different food matrixes. In the validation, the Samsung Salmonella Detection Kit was used in conjunction with the Applied Biosystems StepOnePlus PCR system and the Samsung Food Testing Software for the detection of Salmonella species. The performance of the assays was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG) 4.05: Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish and the and U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference methods. The validation was conducted using an unpaired study design for detection of Salmonella spp. in raw ground beef, raw pork, raw ground pork, raw chicken wings, raw salmon, alfalfa sprouts, pasteurized orange juice, peanut butter, pasteurized whole milk, and shell eggs. The Samsung Salmonella Detection Kit demonstrated lot-to-lot consistency among three independent lots as well as ruggedness with minor modifications to changes in enrichment incubation time, enrichment incubation temperature, and DNA sample volume for PCR reaction. Stability was observed for 13 months at -20 degrees C and 3 months at 5 degrees C. For the inclusivity/exclusivity study, the Samsung Salmonella Detection Kit correctly identified 147 Salmonella species isolates out of 147 isolates tested from each of three different enrichment broths (a total of 441 isolates detected), and correctly excluded all 31 nontarget strains analyzed. For the method comparison, statistical analysis was conducted according to the Mantel-Haenszel Chi-square formula for unpaired test portions, and there was no significant difference in the number of positive samples detected between the Samsung Salmonella Detection Kit and the USDA/FSIS-MLG and FDA/BAM reference methods for all 10 food matrixes.
Wu, Suo-Wei; Chen, Tong; Pan, Qi; Wei, Liang-Yu; Wang, Qin; Li, Chao; Song, Jing-Chen; Luo, Ji
2018-06-05
The development and application of medical technologies reflect the medical quality and clinical capacity of a hospital. It is also an effective approach in upgrading medical service and core competitiveness among medical institutions. This study aimed to build a quantitative medical technology evaluation system through questionnaire survey within medical institutions to perform an assessment to medical technologies more objectively and accurately, and promote the management of medical quality technologies and ensure the medical safety of various operations among the hospitals. A two-leveled quantitative medical technology evaluation system was built through a two-round questionnaire survey of chosen experts. The Delphi method was applied in identifying the structure of evaluation system and indicators. The judgment of the experts on the indicators was adopted in building the matrix so that the weight coefficient and maximum eigenvalue (λ max), consistency index (CI), and random consistency ratio (CR) could be obtained and collected. The results were verified through consistency tests, and the index weight coefficient of each indicator was conducted and calculated through analytical hierarchy process. Twenty-six experts of different medical fields were involved in the questionnaire survey, 25 of whom successfully responded to the two-round research. Altogether, 4 primary indicators (safety, effectiveness, innovativeness, and benefits), as well as 13 secondary indicators, were included in the evaluation system. The matrix is built to conduct the λ max, CI, and CR of each expert in the survey, and the index weight coefficients of primary indicators were 0.33, 0.28, 0.27, and 0.12, respectively, and the index weight coefficients of secondary indicators were conducted and calculated accordingly. As the two-round questionnaire survey of experts and statistical analysis were performed and credibility of the results was verified through consistency evaluation test, the study established a quantitative medical technology evaluation system model and assessment indicators within medical institutions based on the Delphi method and analytical hierarchy process. Moreover, further verifications, adjustments, and optimizations of the system and indicators will be performed in follow-up studies.
A test for interfacial effects and stress transfer in ceramic matrix composites
NASA Technical Reports Server (NTRS)
1988-01-01
A test specimen was devised for measuring stress transfer between a high modulus fiber and a ceramic matrix. Single filaments of SiC were embedded in chemically vapor deposited SiC on a thin plate of molybdenum. The CVD overcoating which encapsulated the fiber was continuous with a coating of SiC on the molybdenum. When placed in a microtensile test device and loaded in the fiber direction, the fiber fracture characteristics provide information on the fiber/matrix adhesion and stress transfer. Problems were encountered due to the formation of a weak boundary between the SiC and the molybdenum which obviated any meaningful tensile tests. Also, the high CVD temperature used in fabricating these specimens restrict the fiber, matrix (and substrate) to materials having similar thermal coefficients of expansion in order to minimize thermal stresses.
Flexible matrix composite laminated disk/ring flywheel
NASA Technical Reports Server (NTRS)
Gupta, B. P.; Hannibal, A. J.
1984-01-01
An energy storage flywheel consisting of a quasi-isotropic composite disk overwrapped by a circumferentially wound ring made of carbon fiber and a elastometric matrix is proposed. Through analysis it was demonstrated that with an elastomeric matrix to relieve the radial stresses, a laminated disk/ring flywheel can be designed to store a least 80.3 Wh/kg or about 68% more than previous disk/ring designs. at the same time the simple construction is preserved.
van Aggelen, Helen; Verstichel, Brecht; Bultinck, Patrick; Van Neck, Dimitri; Ayers, Paul W; Cooper, David L
2011-02-07
Variational second order density matrix theory under "two-positivity" constraints tends to dissociate molecules into unphysical fractionally charged products with too low energies. We aim to construct a qualitatively correct potential energy surface for F(3)(-) by applying subspace energy constraints on mono- and diatomic subspaces of the molecular basis space. Monoatomic subspace constraints do not guarantee correct dissociation: the constraints are thus geometry dependent. Furthermore, the number of subspace constraints needed for correct dissociation does not grow linearly with the number of atoms. The subspace constraints do impose correct chemical properties in the dissociation limit and size-consistency, but the structure of the resulting second order density matrix method does not exactly correspond to a system of noninteracting units.
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
[The speech audiometry using the matrix sentence test].
Boboshko, M Yu; Zhilinskaia, E V; Warzybok, A; Maltseva, N V; Zokoll, M; Kollmeier, B
The matrix sentence test in which the five-word semantically unpredictable sentences presented under the background noise conditions are used as the speech material was designed and validated for many languages. The objective of the present study was to evaluate the Russian version of the matrix sentence test (RuMatrix test) in the listeners of different ages with normal hearing. At the first stage of the study, 35 listeners at the age from 18 to 33 year were examined. The results of the estimation of the training effect dictated the necessity of conducting two training tracks before carrying out the RuMatrix test proper. The signal-to-noise ratio at which 50% speech recognition (SRT50) was obtained was found to be -8.8±0.8 dB SNR. A significant effect of exposure to the background noise was demonstrated: the noise level of 80 and 75 Db SPL led to a considerably lower intelligibility than the noise levels in the range from 45 to 70 dB SPL; in the subsequent studies, the noise level of 65 dB SPL was used. The high test-retest reliability of the RuMatrix test was proved. At the second stage of the study, 20 young (20-40 year old) listeners and 20 aged (62-74 year old) ones were examined. The mean SRT50 in the aged patients was found to be -6.9±1.1 dB SNR which was much worse than the mean STR50 in the young subjects (-8.7±0.9 dB SNR). It is concluded that, bearing in mind the excellent comparability of the results of the RUMat rix test across different languages, it can be used as a universal tool in international research projects.
Influence of fibre and filler reinforcement of plastic brackets: an in vitro study.
Faltermeier, Andreas; Rosentritt, Martin; Faltermeier, Rupert; Müssig, Dieter
2007-06-01
In spite of their popularity in fulfilling aesthetic requirements, plastic brackets still present some disadvantages because of their low elastic modulus, decreased fracture toughness, and reduced wear resistance. Fibre-reinforced composites are well established in dentistry and consist of a polymer matrix in which reinforcing fibres are embedded. Stress is transferred from the polymer matrix to the fibres which present a high tensile strength. Hence, the mechanical properties of polymers could be improved. The purpose of this study was to compare fracture strength, fracture toughness and flexural strength of an experimental fibre-reinforced bracket material, an SiO(2) filler-reinforced bracket and an unfilled plastic bracket material (control group). Experimental brackets and specialized bars were manufactured. Tests were performed after thermal cycling (5 degrees C/55 degrees C) the samples in an artificial oral environment of a device to simulate mastication. Statistical evaluation was undertaken. The median, 25th and 75th percentiles were calculated and a Mann-Whitney U-test was performed. In this study two findings were obvious. (1) Filler reinforcement of plastic brackets improved fracture strength and fracture toughness in comparison with the unfilled bracket material. (2) Glass fibre reinforcement of orthodontic bracket materials resulted in the greatest enhancement of the mechanical properties in comparison with the other test groups. Therefore, the application of glass fibres in plastic brackets is a successful method to enhance fracture strength.
Brouyère, Serge; Dassargues, Alain; Hallet, Vincent
2004-08-01
This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2016-01-01
Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.
Emerging Educational Institutional Decision-Making Matrix
ERIC Educational Resources Information Center
Ashford-Rowe, Kevin H.; Holt, Marnie
2011-01-01
The "emerging educational institutional decision-making matrix" is developed to allow educational institutions to adopt a rigorous and consistent methodology of determining which of the myriad of emerging educational technologies will be the most compelling for the institution, particularly ensuring that it is the educational or pedagogical but…
Creation and Evolution of Particle Number Asymmetry in an Expanding Universe
NASA Astrophysics Data System (ADS)
Morozumi, T.; Nagao, K. I.; Adam, A. S.; Takata, H.
2017-03-01
We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes charge parity (CP) violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.
ATIC Experiment: Elemental Spectra from the Flight in 2000
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a silicon matrix charge detector, a 0.75 nuclear interaction length graphite target, 3 scintillator strip hodoscopes, and an 18 radiation length thick BGO calorimeter to measure the cosmic ray composition and energy spectra from approximately 30 GeV to near 100 TeV. In this paper, we present preliminary results from the first flight, which was a test flight that lasted for 16 days, starting on 12/28/00.
NASA Astrophysics Data System (ADS)
Laksimi, Abdelouahed; Bounouas, Lahsen; Benmedakhene, Salim; Azari, Zitoun; Imad, Abdellatif
To obtain good mechanical performance of the composite material, it is important to optimise the fibres ratio as well as the fibre/matrix interface quality which have influence on the damage. The main objective of this study is to determine the structural parameters influence on damage evolution concerning two types of polypropylene glass fibres composites. With a classical approach of damage mechanical theory which consists of load-unload tensile tests, acoustic emission permits to detect and follow damage mechanisms during loading. Fractographic analysis highlights the different assumptions and conclusions for this study.
An Archaeometallurgical Investigation of a Steel Sword from the Safavid Dynasty
NASA Astrophysics Data System (ADS)
Dini, Ghasem
2018-02-01
In this study, a steel sword belonging to the Safavid dynasty was investigated to identify its chemistry, microstructure, mechanical properties, and processing. To this aim, chemical and phase analyses, optical microscopy investigations and a hardness test were conducted. The results indicated that the sword blade material was plain carbon steel containing 1.42 wt.% C. The microstructure consisted of spheroidal cementite particles in a ferrite matrix, facilitating the formation of a curved sword. It seemed that a combination of heat treatment and metal-forming techniques (thermo-mechanical process) was utilized to obtain this microstructure.
An Archaeometallurgical Investigation of a Steel Sword from the Safavid Dynasty
NASA Astrophysics Data System (ADS)
Dini, Ghasem
2017-12-01
In this study, a steel sword belonging to the Safavid dynasty was investigated to identify its chemistry, microstructure, mechanical properties, and processing. To this aim, chemical and phase analyses, optical microscopy investigations and a hardness test were conducted. The results indicated that the sword blade material was plain carbon steel containing 1.42 wt.% C. The microstructure consisted of spheroidal cementite particles in a ferrite matrix, facilitating the formation of a curved sword. It seemed that a combination of heat treatment and metal-forming techniques (thermo-mechanical process) was utilized to obtain this microstructure.
A new plan quality index for nasopharyngeal cancer SIB IMRT.
Jin, X; Yi, J; Zhou, Y; Yan, H; Han, C; Xie, C
2014-02-01
A new plan quality index integrating dosimetric and radiobiological indices was proposed to facilitate the evaluation and comparison of simultaneous integrated boost (SIB) intensity modulated radiotherapy (IMRT) plans for nasopharyngeal cancer (NPC) patients. Ten NPC patients treated by SIB-IMRT were enrolled in the study. Custom software was developed to read dose-volume histogram (DVH) curves from the treatment planning system (TPS). A plan filtering matrix was introduced to filter plans that fail to satisfy treatment protocol. Target plan quality indices and organ at risk (OAR) plan quality indices were calculated for qualified plans. A unique composite plan quality index (CPQI) was proposed based on the relative weight of these indices to evaluate and compare competing plans. Plan ranking results were compared with detailed statistical analysis, radiation oncology quality system (ROQS) scoring results and physician's evaluation results to verify the accuracy of this new plan quality index. The average CPQI values for plans with OAR priority of low, normal, high, and PTV only were 0.22 ± 0.08, 0.49 ± 0.077, 0.71 ± 0.062, and -0.21 ± 0.16, respectively. There were significant differences among these plan quality indices (One-way ANOVA test, p < 0.01). This was consistent with statistical analysis, ROQS results and physician's ranking results in which 90% OAR high plans were selected. Plan filtering matrix was able to speed up the plan evaluation process. The new matrix plan quality index CPQI showed good consistence with physician ranking results. It is a promising index for NPC SIB-IMRT plan evaluation. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Fatigue damage in cross-ply titanium metal matrix composites containing center holes
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.; Bigelow, C. A.
1992-01-01
The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength.
Swanson, William H.; Dul, Mitchell W.; Horner, Douglas G.; Liu, Tiffany; Tran, Irene
2014-01-01
Purpose. To develop perimetric stimuli for which sensitivities are more resistant to reduced retinal illumination than current clinical perimeters. Methods. Fifty-four people free of eye disease were dilated and tested monocularly. For each test, retinal illumination was attenuated with neutral density (ND) filters, and a standard adaptation model was fit to derive mean and SEM for the adaptation parameter (NDhalf). For different stimuli, t-tests on NDhalf were used to assess significance of differences in consistency with Weber's law. Three experiments used custom Gaussian-windowed contrast sensitivity perimetry (CSP). Experiment 1 used CSP-1, with a Gaussian temporal pulse, a spatial frequency of 0.375 cyc/deg (cpd), and SD of 1.5°. Experiment 1 also used the Humphrey Matrix perimeter, with the N-30 test using 0.25 cpd and 25 Hz flicker. Experiment 2 used a rectangular temporal pulse, SDs of 0.25° and 0.5°, and spatial frequencies of 0.0 and 1.0 cpd. Experiment 3 used CSP-2, with 5-Hz flicker, SDs from 0.5° to 1.8°, and spatial frequencies from 0.14 to 0.50 cpd. Results. In Experiment 1, CSP-1 was more consistent with Weber's law (NDhalf ± SEM = 1.86 ± 0.08 log unit) than N-30 (NDhalf = 1.03 ± 0.03 log unit; t > 9, P < 0.0001). All stimuli used in Experiments 2 and 3 had comparable consistency with Weber's law (NDhalf = 1.49–1.69 log unit; t < 2). Conclusions. Perimetric sensitivities were consistent with Weber's law when higher temporal frequencies were avoided. PMID:24370832
Notch sensitivity and stress redistribution in three ceramic-matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackin, T.J.; He, M.Y.; Evans, A.G.
Fiber-reinforced ceramic-matrix composites (CMCs) depend upon inelastic mechanisms to diffuse stress concentrations associated with holes, notches, and cracks. These mechanisms consist of fiber debonding and pullout, multiple matrix cracking, and shear band formation. In order to understand these effects, experiments have bee conducted on several double-edge-notched CMCs that exhibit different stress redistribution mechanisms. Stresses have been measured an d mechanisms identified by using a combination of methods including X0-ray imaging, edge replication, and thermoelastic analysis. Multiple matrix cracking was found to be the most effective stress redistribution mechanism.
Polarization-interference Jones-matrix mapping of biological crystal networks
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Dubolazov, O. V.; Pidkamin, L. Y.; Sidor, M. I.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of Jones-matrix mapping with the help of reference wave. It was provided experimentally measured coordinate distributions of modulus of Jones-matrix elements of polycrystalline film of bile. It was defined the values and ranges of changing of statistic moments, which characterize such distributions. The second part presents the data of statistic analysis of the distributions of matrix elements of polycrystalline film of urine of donors and patients with albuminuria. It was defined the objective criteria of differentiation of albuminuria.
NASA Technical Reports Server (NTRS)
Fergusson, Neil J.
1992-01-01
In addition to an extensive review of the literature on exact and corrective displacement based methods of vibration analysis, a few theorems are proven concerning the various structural matrices involved in such analyses. In particular, the consistent mass matrix and the quasi-static mass matrix are shown to be equivalent, in the sense that the terms in their respective Taylor expansions are proportional to one another, and that they both lead to the same dynamic stiffness matrix when used with the appropriate stiffness matrix.
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eldridge, Jeffrey I.; Setlock, John A.; Gyekenyesi, John Z.
1997-01-01
Zirconia coated sapphire reinforced alumina matrix composites have been tested both after heat treatment to 1400 C and at temperatures ranging from 800 C to 1200 C in. air. Interfacial shear stress has also been measured with fiber pushout tests performed in air at room temperature, 800 C and 1OOO C. Matrix crack spacing was measured for the tensile tested composites and used to estimate interfacial shear stress up to 1200 C. Electron microscopy was used to determine the source of fiber fracture and to study interfacial failure within the composite.
Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.G. Quinn
A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.
Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.
Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang
2015-01-01
Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groner, D.J.
This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced SiC/SiC ceramic matrix composite specimens at 1100 deg C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle/low stress fatigue tests, far less fiber/matrix interface debond was evident than in low cycle/high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan
2016-01-01
This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Tripathi, Pooja; Pandey, Paras N
2017-07-07
The present work employs pseudo amino acid composition (PseAAC) for encoding the protein sequences in their numeric form. Later this will be arranged in the similarity matrix, which serves as input for spectral graph clustering method. Spectral methods are used previously also for clustering of protein sequences, but they uses pair wise alignment scores of protein sequences, in similarity matrix. The alignment score depends on the length of sequences, so clustering short and long sequences together may not good idea. Therefore the idea of introducing PseAAC with spectral clustering algorithm came into scene. We extensively tested our method and compared its performance with other existing machine learning methods. It is consistently observed that, the number of clusters that we obtained for a given set of proteins is close to the number of superfamilies in that set and PseAAC combined with spectral graph clustering shows the best classification results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao
2013-10-02
Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.
Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.
2001-01-01
A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari
2016-11-01
Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.
Structural characterization of MAPLE deposited lipase biofilm
NASA Astrophysics Data System (ADS)
Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.
2014-11-01
Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
NASA Astrophysics Data System (ADS)
Bahariqushchi, Rahim; Gündoğdu, Sinan; Aydinli, Atilla
2017-11-01
Models that use phonon confinement fail to provide consistent results for nanocrystal sizes in differing dielectric matrices due to varying stress experienced by nanocrystals in different dielectric environments. In cases where direct measurement of stress is difficult, the possibility of stress saturation as a function of size opens up a window for the use of phonon confinement to determine size. We report on a test of this possibility in Ge: SixNy system. Ge nanocrystals (NCs) embedded in silicon nitride matrix have been fabricated using plasma enhanced chemical vapor deposition (PECVD) followed by post annealing in Ar ambient. Nanocrystal size dependence of Raman spectra was studied taking into account associated stress and an improved phonon confinement approach. Our analysis show same stress for NCs which have sizes below 7.0 nm allowing the use of phonon confinement to determine the nanocrystal size. The results are compared with TEM data and good agreement is observed.
Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.
Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano
2014-09-09
A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.
NASA Astrophysics Data System (ADS)
Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika
2012-11-01
Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.
Vitamins E and C - effects on matrix components in the vascular system
USDA-ARS?s Scientific Manuscript database
The connective tissue in the vascular system, consisting mainly of vascular smooth muscle cells (VSMC) and the interstitial extracellular matrix (ECM), plays important roles in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development. ...
Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...
NASA Technical Reports Server (NTRS)
Almansour, Amjad; Kiser, Doug; Smith, Craig; Bhatt, Ram; Gorican, Dan; Phillips, Ron; McCue, Terry R.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature structural applications in the aerospace and nuclear industries. Under high stresses and temperatures, creep degradation is the dominant damage mechanism in CMCs. Consequently, chemical vapor infiltration (CVI) SiCf/SiC ceramic matrix composites (CMC) incorporating SylramicTM-iBN SiC fibers coated with boron nitride (BN) interphase and CVI-SiC matrix were tested to examine creep behavior in air at a range of elevated temperatures of (2200 - 2700 F). Samples that survived creep tests were evaluated via RT fast fracture tensile tests to determine residual properties, with the use of acoustic emission (AE) to assess stress dependent damage initiation and progression. Microscopy of regions within the gage section of the tested specimens was performed. Observed material degradation mechanisms are discussed.
Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L
2017-10-01
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses. Copyright © 2017 the American Physiological Society.
Properties of silicon carbide fiber-reinforced silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1988-01-01
The mechanical properties of NASA Lewis developed SiC/RBSN composites and their thermal and environmental stability havd been studied. The composites consist of nearly 30 vol pct of aligned 142 micron diameter chemically vapor-deposited SiC fibers in a relatively porous silicon nitride matrix. In the as-fabricated condition, the unidirectional and 2-D composites exhibited metal-like stress-strain behavior, graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. Furthermore, the measured room temperature tensile properties were relativley independent of tested volume and were unaffected by artifical notches normal to the loading direction or by thermal shocking from temperatures up to 800 C. The four-point bend strength data measured as a function of temperature to 1400 C in air showed that as-fabricated strength was maintained to 1200 C. At 1400 C, however, nearly 15 pct loss in strength was observed. Measurement of room temperature tensile strength after 100 hr exposure at temperatures to 1400 C in a nitrogen environment indicated no loss from the as-fabricated composite strength. On the other hand, after 100 hr exposure in flowing oxygen at 1200 and 1400 C, the composites showed approximately 40 pct loss from their as-fabricated ultimate tensile strength. Those exposed between 400 to 1200 C showed nearly 60 pct strength loss. Oxidation of the fiber/matrix interface as well as internal oxidation of the porous Si3N4 matrix are likely mechanisms for strength degradation. The excellent strength reproducibility, notch insensitivity, and high temperature strength of the composite makes it an ideal candidate for advanced heat engine applications provided coating or densification methods are developed to avoid internal oxidation attack.
Saliency image of feature building for image quality assessment
NASA Astrophysics Data System (ADS)
Ju, Xinuo; Sun, Jiyin; Wang, Peng
2011-11-01
The purpose and method of image quality assessment are quite different for automatic target recognition (ATR) and traditional application. Local invariant feature detectors, mainly including corner detectors, blob detectors and region detectors etc., are widely applied for ATR. A saliency model of feature was proposed to evaluate feasibility of ATR in this paper. The first step consisted of computing the first-order derivatives on horizontal orientation and vertical orientation, and computing DoG maps in different scales respectively. Next, saliency images of feature were built based auto-correlation matrix in different scale. Then, saliency images of feature of different scales amalgamated. Experiment were performed on a large test set, including infrared images and optical images, and the result showed that the salient regions computed by this model were consistent with real feature regions computed by mostly local invariant feature extraction algorithms.
Cook, Nicola A; Kim, Jin Un; Pasha, Yasmin; Crossey, Mary Me; Schembri, Adrian J; Harel, Brian T; Kimhofer, Torben; Taylor-Robinson, Simon D
2017-01-01
Psychometric testing is used to identify patients with cirrhosis who have developed hepatic encephalopathy (HE). Most batteries consist of a series of paper-and-pencil tests, which are cumbersome for most clinicians. A modern, easy-to-use, computer-based battery would be a helpful clinical tool, given that in its minimal form, HE has an impact on both patients' quality of life and the ability to drive and operate machinery (with societal consequences). We compared the Cogstate™ computer battery testing with the Psychometric Hepatic Encephalopathy Score (PHES) tests, with a view to simplify the diagnosis. This was a prospective study of 27 patients with histologically proven cirrhosis. An analysis of psychometric testing was performed using accuracy of task performance and speed of completion as primary variables to create a correlation matrix. A stepwise linear regression analysis was performed with backward elimination, using analysis of variance. Strong correlations were found between the international shopping list, international shopping list delayed recall of Cogstate and the PHES digit symbol test. The Shopping List Tasks were the only tasks that consistently had P values of <0.05 in the linear regression analysis. Subtests of the Cogstate battery correlated very strongly with the digit symbol component of PHES in discriminating severity of HE. These findings would indicate that components of the current PHES battery with the international shopping list tasks of Cogstate would be discriminant and have the potential to be used easily in clinical practice.
NASA Astrophysics Data System (ADS)
Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.
2015-12-01
Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improvement of structural models using covariance analysis and nonlinear generalized least squares
NASA Technical Reports Server (NTRS)
Glaser, R. J.; Kuo, C. P.; Wada, B. K.
1992-01-01
The next generation of large, flexible space structures will be too light to support their own weight, requiring a system of structural supports for ground testing. The authors have proposed multiple boundary-condition testing (MBCT), using more than one support condition to reduce uncertainties associated with the supports. MBCT would revise the mass and stiffness matrix, analytically qualifying the structure for operation in space. The same procedure is applicable to other common test conditions, such as empty/loaded tanks and subsystem/system level tests. This paper examines three techniques for constructing the covariance matrix required by nonlinear generalized least squares (NGLS) to update structural models based on modal test data. The methods range from a complicated approach used to generate the simulation data (i.e., the correct answer) to a diagonal matrix based on only two constants. The results show that NGLS is very insensitive to assumptions about the covariance matrix, suggesting that a workable NGLS procedure is possible. The examples also indicate that the multiple boundary condition procedure more accurately reduces errors than individual boundary condition tests alone.
Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N
2012-11-13
The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.
Removing Background Noise with Phased Array Signal Processing
NASA Technical Reports Server (NTRS)
Podboy, Gary; Stephens, David
2015-01-01
Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.
A review of modern instrumental techniques for measurements of ice cream characteristics.
Bahram-Parvar, Maryam
2015-12-01
There is an increasing demand of the food industries and research institutes to have means of measurement allowing the characterization of foods. Ice cream, as a complex food system, consists of a frozen matrix containing air bubbles, fat globules, ice crystals, and an unfrozen serum phase. Some deficiencies in conventional methods for testing this product encourage the use of alternative techniques such as rheometry, spectroscopy, X-ray, electro-analytical techniques, ultrasound, and laser. Despite the development of novel instrumental applications in food science, use of some of them in ice cream testing is few, but has shown promising results. Developing the novel methods should increase our understanding of characteristics of ice cream and may allow online testing of the product. This review article discusses the potential of destructive and non-destructive methodologies in determining the quality and characteristics of ice cream and similar products. Copyright © 2015. Published by Elsevier Ltd.
Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor
NASA Astrophysics Data System (ADS)
Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.
2006-04-01
This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
[Modern polymers in matrix tablets technology].
Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa
2014-01-01
Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.
Visco-elastic controlled-source full waveform inversion without surface waves
NASA Astrophysics Data System (ADS)
Paschke, Marco; Krause, Martin; Bleibinhaus, Florian
2016-04-01
We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong
2016-07-01
In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-05-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-07-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
Quantifying water flow and retention in an unsaturated fracture-facial domain
Nimmo, John R.; Malek-Mohammadi, Siamak
2015-01-01
Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.
Cuticular Membrane of Fuyu Persimmon Fruit Is Strengthened by Triterpenoid Nano-Fillers
Tsubaki, Shuntaro; Sugimura, Kazuki; Teramoto, Yoshikuni; Yonemori, Keizo; Azuma, Jun-ichi
2013-01-01
The mechanical defensive performance of fruit cuticular membranes (CMs) is largely dependent on the molecular arrangement of their constituents. Here, we elucidated nano-sized interactions between cutin and triterpenoids in the cuticular matrix of Fuyu persimmon fruits ( Diospyros kaki Thunb. cv. Fuyu), focusing on the mechanical properties using a combination of polymer analyses. The fruit CMs of Fuyu were primarily composed of wax (34.7%), which was predominantly triterpenoids followed by higher aliphatic compounds, and cutin (48.4%), primarily consisting of 9,10-epoxy-18-hydroxyoctadecanoic acid and 9,10,18-trihydroxyoctadecanoic acid. Based on the tensile tests of the CM, the removal of wax lead to a considerable decrease in the maximum stress and elastic modulus accompanied by an increase in the maximum strain, indicating that wax is of significant importance for maintaining the mechanical strength of the CM. Wide-angle X-ray diffraction and relaxation time measurements using solid-state 13C nuclear magnetic resonance indicated that the triterpenoids in the cuticular matrix construct a nanocomposite at a mixing scale below 20-24 nm; however, the higher aliphatic compounds did not exhibit clear interactions with cutin. The results indicated that the triterpenoids in the cuticular matrix endow toughness to the CM by functioning as a nanofiller. PMID:24086493
O'Brien, Kevin D; Lewis, Katherine; Fischer, Jens W; Johnson, Pamela; Hwang, Jin-Yong; Knopp, Eleanor A; Kinsella, Michael G; Barrett, P Hugh R; Chait, Alan; Wight, Thomas N
2004-11-01
Lipoprotein retention on extracellular matrix (ECM) may play a central role in atherogenesis, and a specific extracellular matrix proteoglycan, biglycan, has been implicated in lipoprotein retention in human atherosclerosis. To test whether increased cellular biglycan expression results in increased retention of lipoproteins on ECM, rat aortic smooth muscle cells (SMCs) were transduced with a human biglycan cDNA-containing retroviral vector (LBSN) or with an empty retroviral vector (LXSN). To assess the importance of biglycan's glycosaminoglycan side chains in lipoprotein retention, ECM binding studies were also performed using RASMCs transduced with a retroviral vector encoding for a mutant, glycosaminoglycan-deficient biglycan (LBmutSN). Human biglycan mRNA and protein were confirmed in LBSN and LBmutSN RASMCs by Northern and Western blot analyses. HDL3+E binding to SMC ECM was increased significantly (as determined by 95% confidence intervals for binding curves) for LBSN as compared to either LXSN or LBmutSN cells; the increases for LBSN cell ECM were due primarily to an approximately 50% increase in binding sites (increased Bmax) versus LXSN cell ECM and of approximately 25% versus LBmutSN cell ECM. These results are consistent with the hypothesis that biglycan, through its glycosaminoglycan side chains, may mediate lipoprotein retention on atherosclerotic plaque ECM.
Sarukawa, Junichiro; Takahashi, Masaaki; Abe, Masashi; Suzuki, Daisuke; Tokura, Seiichi; Furuike, Tetsuya; Tamura, Hiroshi
2011-01-01
Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA-chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA-chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S
2007-11-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.
Tailored interphase structure for improved strength and energy absorption of composites
NASA Astrophysics Data System (ADS)
Gao, Xiao
Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline. Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).
The self-healing composite anticorrosion coating
NASA Astrophysics Data System (ADS)
Yang, Zhao; Wei, Zhang; Le-ping, Liao; Hong-mei, Wang; Wu-jun, Li
Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest for the researchers. In the article, effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resindroplets. Characteristics of these capsules were studied by scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and particle size analyzer. The model system of self-healing antisepsis coating consists of an epoxy resin matrix, 10 wt% microencapsulated healing agent, 2wt% catalyst solution. The self-healing function of this coating system is evaluated through corrosion testing of damaged and healed coated steel samples compared to control samples. Electrochemical testing provides further evidence of passivation of the substrate by self-healing coatings.
NASA Technical Reports Server (NTRS)
1985-01-01
A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.
Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy.
Lei, Zhenkun; Wang, Quan; Qiu, Wei
2013-06-01
The interfacial stress transfer behavior of a Kevlar 49 aramid fiber-epoxy matrix was studied with fiber pullout tests, the fibers of which were stretched by a homemade microloading device. Raman spectra on the embedded fiber were recorded by micro-Raman spectroscopy, under different strain levels. Then, the fiber axial stress was obtained by the relationship between the stress and Raman shift of the aramid fiber. Experimental results revealed that the fiber axial stress increased significantly with the load. The shear stress concentration occurred at the fiber entry to the epoxy resin. Thus, interfacial friction stages exist in the debonded fiber segment, and the interfacial friction shear stress is constant within one stage. The experimental results are consistent with the theoretical model predictions.
Inclusion-based effective medium models for the field-scale permeability of 3D fractured rock masses
NASA Astrophysics Data System (ADS)
Ebigbo, Anozie; Lang, Philipp S.; Paluszny, Adriana; Zimmerman, Robert W.
2016-04-01
Fractures that are more permeable than their host rock can act as preferential, or at least additional, pathways for fluid to flow through the rock. The additional transmissivity contributed by these fractures will be of great relevance in several areas of earth science and engineering, such as radioactive waste disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs, or hydraulic fracturing. In describing or predicting flow through fractured rock, the effective permeability of the rock mass, comprising both the rock matrix and a network of fractures, is a crucial parameter, and will depend on several geometric properties of the fractures/networks, such as lateral extent, aperture, orientation, and fracture density. This study investigates the ability of classical inclusion-based effective medium models (following the work of Sævik et al., Transp. Porous Media, 2013) to predict this permeability. In these models, the fractures are represented as thin, spheroidal inclusions, the interiors of which are treated as porous media having a high (but finite) permeability. The predictions of various effective medium models, such as the symmetric and asymmetric self-consistent schemes, the differential scheme, and Maxwell's method, are tested against the results of explicit numerical simulations of mono- and polydisperse isotropic fracture networks embedded in a permeable rock matrix. Comparisons are also made with the Hashin-Shrikman bounds, Snow's model, and Mourzenko's heuristic model (Mourzenko et al., Phys. Rev. E, 2011). This problem is characterised mathematically by two small parameters, the aspect ratio of the spheroidal fractures, α, and the ratio between matrix and fracture permeability, κ. Two different regimes can be identified, corresponding to α/κ < 1 and α/κ > 1. The lower the value of α/κ, the more significant is flow through the matrix. Due to differing flow patterns, the dependence of effective permeability on fracture density differs in the two regimes. When α/κ > 1, a distinct percolation threshold is observed, whereas for α/κ < 1, the matrix is sufficiently transmissive that a percolation-like transition is not observed. The self-consistent effective medium methods show good accuracy for both mono- and polydisperse isotropic fracture networks. Mourzenko's equation is also found to be very accurate, particularly for monodisperse networks. Finally, it is shown that Snow's model essentially coincides with the Hashin-Shtrikman upper bound.
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Martin, Roderick H.
1992-01-01
The results are summarized of several interlaboratory 'round robin' test programs for measuring the mode 1 interlaminar fracture toughness of advanced fiber reinforced composite materials. Double Cantilever Beam (DCB) tests were conducted by participants in ASTM committee D30 on High Modulus Fibers and their Composites and by representatives of the European Group on Fracture (EGF) and the Japanese Industrial Standards Group (JIS). DCB tests were performed on three AS4 carbon fiber reinforced composite materials: AS4/3501-6 with a brittle epoxy matrix; AS4/BP907 with a tough epoxy matrix; and AS4/PEEK with a tough thermoplastic matrix. Difficulties encountered in manufacturing panels, as well as conducting the tests are discussed. Critical issues that developed during the course of the testing are highlighted. Results of the round robin testing used to determine the precision of the ASTM DCB test standard are summarized.
Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments
NASA Technical Reports Server (NTRS)
Westfall, L. J.; Petrasek, D. W.
1985-01-01
Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.
Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments
NASA Technical Reports Server (NTRS)
Westfall, Leonard J.; Petrasek, Donald W.
1988-01-01
Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.
VARIABILITY OF VISUAL FIELD MEASUREMENTS IS CORRELATED WITH THE GRADIENT OF VISUAL SENSITIVITY
Wyatt, Harry J.; Dul, Mitchell W.; Swanson, William H.
2007-01-01
Conventional static automated perimetry provides important clinical information, but its utility is limited by considerable test-retest variability. Fixational eye movements during testing could contribute to variability. To assess this possibility, it is important to know how much sensitivity change would be caused by a given eye movement. To investigate this, we have evaluated the gradient, the rate at which sensitivity changes with location. We tested one eye each, twice within 3 weeks, of 29 patients with glaucoma, 17 young normal subjects and 13 older normal subjects. The 10-2 test pattern with the SITA Standard algorithm was used to assess sensitivity at locations with 2° spacing. Variability and gradient were calculated at individual test locations. Matrix correlations were determined between variability and gradient, and were substantial for the patients with glaucoma. The results were consistent with a substantial contribution to test-retest variability from small fixational eye movements interacting with visual field gradient. Successful characterization of the gradient of sensitivity appears to require sampling at relatively close spacing, as in the 10-2 test pattern. PMID:17320924
Variability of visual field measurements is correlated with the gradient of visual sensitivity.
Wyatt, Harry J; Dul, Mitchell W; Swanson, William H
2007-03-01
Conventional static automated perimetry provides important clinical information, but its utility is limited by considerable test-retest variability. Fixational eye movements during testing could contribute to variability. To assess this possibility, it is important to know how much sensitivity change would be caused by a given eye movement. To investigate this, we have evaluated the gradient, the rate at which sensitivity changes with location. We tested one eye each, twice within 3 weeks, of 29 patients with glaucoma, 17 young normal subjects and 13 older normal subjects. The 10-2 test pattern with the SITA Standard algorithm was used to assess sensitivity at locations with 2 degrees spacing. Variability and gradient were calculated at individual test locations. Matrix correlations were determined between variability and gradient, and were substantial for the patients with glaucoma. The results were consistent with a substantial contribution to test-retest variability from small fixational eye movements interacting with visual field gradient. Successful characterization of the gradient of sensitivity appears to require sampling at relatively close spacing, as in the 10-2 test pattern.
Matrix isolation of fullerene-derived CO 2 at ambient temperature
NASA Astrophysics Data System (ADS)
Taylor, Roger; Pénicaud, Alain; Tower, Nicole J.
1998-10-01
Heating fullerene oxides, e.g. C 120O, C 70O, C 60O and C 60O 2, in a KBr matrix at 225°C under 0.2 mbar vacuum, produces a sharp IR band at 2330 cm -1 due to matrix-isolated CO 2. The band is also obtained by heating a KBr matrix of the insoluble deposits that fullerenes form on standing in air. The matrices are extremely stable and are unchanged even by prolonged heating at 225°C under vacuum. Heating a KBr matrix of the deposit from C 84 produces also a sharp stable band at 2035 cm -1 consistent with matrix-isolated C 3. Similar treatment of C 70F 38O produces matrices containing both CO 2 and CO, the latter being of lower stability.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Hooper, S. J.
1991-01-01
Quasi-static tension tests were conducted on AS4/3501-6 graphite epoxy laminates. Dye penetrant enhanced x-radiography was used to document the onset of matrix cracking and the onset of local delaminations at the intersection of the matrix cracks and the free edge. Edge micrographs taken after the onset of damage were used to verify the location of the matrix cracks and local delamination through the laminate thickness. A quasi-3D finite element analysis was conducted to calculate the stresses responsible for matrix cracking in the off-axis plies. Laminated plate theory indicated that the transverse normal stresses were compressive. However, the finite element analysis yielded tensile transverse normal stresses near the free edge. Matrix cracks formed in the off-axis plies near the free edge where in-plane transverse stresses were tensile and had their greatest magnitude. The influence of the matrix crack on interlaminar stresses is also discussed.
Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan
2018-05-11
This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.
Microgravity processing of particulate reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.
1989-01-01
The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.
1977-01-01
The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.
Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.
Core filaments of the nuclear matrix
1990-01-01
The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an interior matrix composed of thick, polymorphic fibers and large masses that resemble remnant nucleoli. Further extraction of the nuclear matrices of HeLa or MCF-7 cells with 2 M sodium chloride uncovered a network of core filaments. A few dark masses remained enmeshed in the filament network and may be remnants of the nuclear matrix thick fibers and nucleoli. The highly branched core filaments had diameters of 9 and 13 nm measured relative to the intermediate filaments. They may serve as the core structure around which the matrix is constructed. The core filaments retained 70% of nuclear RNA. This RNA consisted both of ribosomal RNA precursors and of very high molecular weight hnRNA with a modal size of 20 kb. Treatment with RNase A removed the core filaments. When 2 M sodium chloride was used directly to remove chromatin after DNase I digestion without a preceding 0.25 M ammonium sulfate extraction, the core filaments were not revealed. Instead, the nuclear interior was filled with amorphous masses that may cover the filaments. This reflected a requirement for a stepwise increase in ionic strength because gradual addition of sodium chloride to a final concentration of 2 M without an 0.25 M ammonium sulfate extraction uncovered core filaments. PMID:2307700
Population clustering based on copy number variations detected from next generation sequencing data.
Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping
2014-08-01
Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.
Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh
2017-06-01
Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.
Bio-Based Nanocomposites: An Alternative to Traditional Composites
ERIC Educational Resources Information Center
Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri
2009-01-01
Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…
Involution symmetries and the PMNS matrix
NASA Astrophysics Data System (ADS)
Pal, Palash B.; Byakti, Pritibhajan
2017-10-01
C S Lam has suggested that the PMNS matrix (or at least some of its elements) can be predicted by embedding the residual symmetry of the leptonic mass terms into a bigger symmetry. We analyse the possibility that the residual symmetries consist of involution generators only and explore how Lam's idea can be implemented.
Curriculum Management Using an Interdisciplinary Matrix Structure and a Modular/Credit System
ERIC Educational Resources Information Center
Walsh, Edward M.
1977-01-01
The operation and results of an experiment at The National Institute for Higher Education, Limerick, Ireland, are described. A matrix structure, consisting of interdisciplines and departments responsible for academic policy and operation, is used with a U.S.-style modular credit system for curriculum management and development. (Author/LBH)
0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simkovic, Fedor; Bogoliubov Laboratory of Theoretical Physics, JINR, RU-141 980 Dubna, Moscow region; Department of Nuclear Physics, Comenius University, Mlynska dolina F1, SK-842 15 Bratislava
A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elementsmore » for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.« less
Effect of inclusions on heterogeneous crack nucleation in nanocomposites
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Ovid'Ko, I. A.; Skiba, N. V.
2007-02-01
A two-dimensional theoretical model is proposed for the heterogeneous nucleation of a grain-boundary nanocrack in a nanocomposite consisting of a nanocrystalline matrix and nanoinclusions whose elastic moduli are identical to those of the matrix. The inclusions have the form of rods with a rectangular cross section and undergo dilatation eigenstrain induced by the differences in the lattice parameters and thermal expansion coefficients of the matrix and inclusions. In terms of the model, a mode-I-II nanocrack nucleates at the negative disclination of a biaxial dipole consisting of wedge grain-boundary (or junction) disclinations; then, the nanocrack opens along a grain boundary and reaches an inclusion boundary. Depending on the relative positions and orientations of the initial segment of the nanocrack and the inclusion, the nanocrack can either penetrate into the inclusion or bypass it along the matrix-inclusion interface. The nanocrack nucleation probability increases near an inclusion with negative (compressive) dilatation eigenstrain. A decrease in the inclusion size decreases (increases) the probability of a crack opening along the interface if the dilatation eigenstrain is negative (positive).
Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Gates, Thomas S.
2005-01-01
The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.
Kocabeyoglu, Sibel; Uzun, Salih; Mocan, Mehmet Cem; Bozkurt, Banu; Irkec, Murat; Orhan, Mehmet
2013-10-01
The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP) using the Swedish interactive threshold algorithm (SITA)-Standard 24-2 test. This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT) perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD]) were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA) 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years) were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651). MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001), and fixation losses and false negative errors were significantly less with SAP (P < 0.05). A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008) and PSD (r = 0.329, P = 0.014) was observed. Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.
Preliminary Results From the First Flight of ATIC: The Silicon Matrix
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Ahn, H. S.; Bashindzhagyan, G.; Ampe, J.; Case, G.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) uses a silicon matrix detector in conjunction with a scintillator hodoscope to determine the incident cosmic ray's charge. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. The silicon matrix consists of 4480 individual silicon pads, each capable of measuring the signal from cosmic rays with atomic numbers from I to 26. Preliminary results will be presented describing the performance of the silicon matrix during the 16-day maiden flight of ATIC around Antarctica.
Preliminary Results from the First Flight of ATIC: The Silicon Matrix
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) uses a silicon matrix detector to determine charge in conjunction with a scintillator hodoscope that measures charge and trajectory. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. The silicon matrix consists of 4480 individual silicon pads, each capable of measuring the signal from cosmic rays with atomic numbers from 1 to 26. Preliminary results will be presented describing the performance of the silicon matrix during the 16-day maiden flight of ATIC around Antarctica.
A new simple form of quark mixing matrix
NASA Astrophysics Data System (ADS)
Qin, Nan; Ma, Bo-Qiang
2011-01-01
Although different parametrizations of quark mixing matrix are mathematically equivalent, the consequences of experimental analysis may be distinct. Based on the triminimal expansion of Kobayashi-Maskawa matrix around the unit matrix, we propose a new simple parametrization. Compared with the Wolfenstein parametrization, we find that the new form is not only consistent with the original one in the hierarchical structure, but also more convenient for numerical analysis and measurement of the CP-violating phase. By discussing the relation between our new form and the unitarity boomerang, we point out that along with the unitarity boomerang, this new parametrization is useful in hunting for new physics.
NASA Astrophysics Data System (ADS)
Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura
2008-02-01
A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.
Microstructure and Dry Sliding Wear Resistance of Laser Cladding Ti-Al-Si Composite Coating
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.; Dai, J. J.
In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si12 and the matrix of Ti3Al, TiAl, TiAl3 and α-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV0.2 to 1130 HV0.2, which was approximately 3-4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023cm3ṡmin-1, which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.
Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui
2018-06-15
High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).
High-temperature testing of glass/ceramic matrix composites
NASA Technical Reports Server (NTRS)
Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.
1989-01-01
Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.
CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL
We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...
Revealing Slip Bands In A Metal-Matrix/Fiber Composite
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.
1995-01-01
Experimental procedure includes heat treatments and metallographic techniques developed to facilitate studies of deformation of metal-matrix/fiber composite under stress. Reveals slip bands, indicative of plastic flow occurring in matrix during mechanical tests of specimens of composite.
NASA Astrophysics Data System (ADS)
Montesano, John
The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.
A study of blood contamination of Siqveland matrix bands.
Lowe, A H; Bagg, J; Burke, F J T; MacKenzie, D; McHugh, S
2002-01-12
AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P < 0.001). If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
Nonlinear Penalized Estimation of True Q-Matrix in Cognitive Diagnostic Models
ERIC Educational Resources Information Center
Xiang, Rui
2013-01-01
A key issue of cognitive diagnostic models (CDMs) is the correct identification of Q-matrix which indicates the relationship between attributes and test items. Previous CDMs typically assumed a known Q-matrix provided by domain experts such as those who developed the questions. However, misspecifications of Q-matrix had been discovered in the past…
Assessing Fit of Item Response Models Using the Information Matrix Test
ERIC Educational Resources Information Center
Ranger, Jochen; Kuhn, Jorg-Tobias
2012-01-01
The information matrix can equivalently be determined via the expectation of the Hessian matrix or the expectation of the outer product of the score vector. The identity of these two matrices, however, is only valid in case of a correctly specified model. Therefore, differences between the two versions of the observed information matrix indicate…
ERIC Educational Resources Information Center
Pittorf, Martin L.; Lehmann, Wolfgang; Huckauf, Anke
2014-01-01
In this study the visual working memory (VWM) and perception speed of 60 children between the ages of three and six years were tested with an age-based, easy-to-handle Matrix Film Battery Test (reliability R?=?0.71). It was thereby affirmed that the VWM is age dependent (correlation coefficient r?=?0.66***) as expected. Furthermore, a significant…
ERIC Educational Resources Information Center
Freund, Philipp Alexander; Holling, Heinz
2011-01-01
If tests of cognitive ability are repeatedly taken, test scores rise. Such retest effects have been observed for a long time and for a variety of tasks. This study investigates retest effects on figural matrix items in an educational context. A short term effect is assumed for the direct retest administration in the same test session, and a long…
EPA worst case water microcosms for testing phage biocontrol of Salmonella.
McLaughlin, Michael R; Brooks, John P
2008-01-01
A microplate method was developed as a tool to test phages for their ability to control Salmonella in aqueous environments. The method used EPA (U.S. Environmental Protection Agency) worst case water (WCW) in 96-well plates. The WCW provided a consistent and relatively simple defined turbid aqueous matrix, high in total organic carbon (TOC) and total dissolved salts (TDS), to simulate swine lagoon effluent, without the inconvenience of malodor and confounding effects from other biological factors. The WCW was originally defined to simulate high turbidity and organic matter in water for testing point-of-use filtration devices. Use of WCW to simulate lagoon effluent for phage testing is a new and innovative application of this matrix. Control of physical and chemical parameters (TOC, TDS, turbidity, temperature, and pH) allowed precise evaluation of microbiological parameters (Salmonella and phages). In a typical application, wells containing WCW were loaded with Salmonella enterica susp. enterica serovar Typhimurium (ATCC14028) and treated with phages alone and in cocktail combinations. Mean Salmonella inactivation rates (k, where the lower the value, the greater the inactivation) of phage treatments ranged from -0.32 to -1.60 versus -0.004 for Salmonella controls. Mean log(10) reductions (the lower the value, the greater the reduction) of Salmonella phage treatments were -1.60 for phage PR04-1, -2.14 for phage PR37-96, and -2.14 for both phages in a sequential cocktail, versus -0.08 for Salmonella controls. The WCW microcosm system was an effective tool for evaluating the biocontrol potential of Salmonella phages.
On the Possibility of Ill-Conditioned Covariance Matrices in the First-Order Two-Step Estimator
NASA Technical Reports Server (NTRS)
Garrison, James L.; Axelrod, Penina; Kasdin, N. Jeremy
1997-01-01
The first-order two-step nonlinear estimator, when applied to a problem of orbital navigation, is found to occasionally produce first step covariance matrices with very low eigenvalues at certain trajectory points. This anomaly is the result of the linear approximation to the first step covariance propagation. The study of this anomaly begins with expressing the propagation of the first and second step covariance matrices in terms of a single matrix. This matrix is shown to have a rank equal to the difference between the number of first step states and the number of second step states. Furthermore, under some simplifying assumptions, it is found that the basis of the column space of this matrix remains fixed once the filter has removed the large initial state error. A test matrix containing the basis of this column space and the partial derivative matrix relating first and second step states is derived. This square test matrix, which has dimensions equal to the number of first step states, numerically drops rank at the same locations that the first step covariance does. It is formulated in terms of a set of constant vectors (the basis) and a matrix which can be computed from a reference trajectory (the partial derivative matrix). A simple example problem involving dynamics which are described by two states and a range measurement illustrate the cause of this anomaly and the application of the aforementioned numerical test in more detail.
Damage development in titanium metal matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1992-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Damage development in titanium metal-matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1993-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
NASA Astrophysics Data System (ADS)
Gunde, R.; Ha, T.-K.; Günthard, H. H.
1990-08-01
In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix shifts will be discussed.
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
Hybrid Composite Cryogenic Tank Structure
NASA Technical Reports Server (NTRS)
DeLay, Thomas
2011-01-01
A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.
Life Modeling and Design Analysis for Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
2005-01-01
The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1992-01-01
To date, the effect of thermo-oxidative aging on unidirectional composite mechanical properties has been monitored by the measurement of interlaminar shear strength (ILSS) and either three or four point longitudinal flexural strength (LFS) of the composites being tested. Both results are affected by the fiber-to-matrix bonding, the former being dependent on the shear resistance of the interface and the latter on the degree of load sharing by the fibers through the fiber/matrix interface. Recently, fiber/matrix interfacial bond strengths have been monitored using a transverse flexural strength (TFS) test method. This test method was used to evaluate the effect of fiber surface treatment on the fiber/matrix bond. The interface bonding was varied in these tests using Hercules A-fibers with three-types of surfaces that produce bonds of poor, better, and good quality. The TFS was found not only to be sensitive to the bonding, but also to the aging time of unidirectional A-fiber/PMR-15 composites. This relationship reflects the mechanism by which the PMR-15 degrades during thermal aging.
Thermodynamically consistent model of brittle oil shales under overpressure
NASA Astrophysics Data System (ADS)
Izvekov, Oleg
2016-04-01
The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S.
2010-01-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument. PMID:20165563
Matrix remodeling between cells and cellular interactions with collagen bundle
NASA Astrophysics Data System (ADS)
Kim, Jihan; Sun, Bo
When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.
The microstructural dependence of wear resistance in austenite containing plate steels
NASA Astrophysics Data System (ADS)
Wolfram, Preston Charles
The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.
Hydrology of the unsaturated zone, Yucca Mountain, Nevada
Lecain, Gary D.; Stuckless, John S.
2012-01-01
The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico Hills bedded tuff. Thermal gradients in the unsaturated zone vary with location, and range from ~2.0 °C to 6.0 °C per 100 m; the variability appears to be associated with topography. Large-scale heater testing identified a heat-pipe signature at ~97 °C, and identified thermally induced and excavation-induced changes in the stress field. Elevated gas-phase CO2 concentrations and a decrease in the pH of water from the condensation zone also were identified. Conceptual and numerical flow and transport models of Yucca Mountain indicate that infiltration is highly variable, both spatially and temporally. Flow in the unsaturated zone is predominately through fractures in the welded units of the Tiva Canyon and Topopah Spring Tuffs and predominately through the matrix in the Paintbrush Tuff nonwelded units and Calico Hills Formation. Isolated, transient, fast-flow paths, such as faults, do exist but probably carry only a small portion of the total liquid-water flux at Yucca Mountain. The Paintbrush Tuff nonwelded units act as a storage buffer for transient infiltration pulses. Faults may act as flow boundaries and/or fast pathways. Below the proposed repository horizon, low-permeability lithostratigraphic units of the Topopah Spring Tuff and/or the Calico Hills Formation may divert flow laterally to faults that act as conduits to the water table. Advective transport pathways are consistent with flow pathways. Matrix diffusion is the major mechanism for mass transfer between fractures and the matrix and may contribute to retardation of radionuclide transport when fracture flow is dominant. Sorption may retard the movement of radionuclides in the unsaturated zone; however, sorption on mobile colloids may enhance radionuclide transport. Dispersion is not expected to be a major transport mechanism in the unsaturated zone at Yucca Mountain. Natural analogue studies support the concepts that percolating water may be diverted around underground openings and that the percentage of infiltration that becomes seepage decreases as infiltration decreases.
Fatigue loading history reconstruction based on the rain-flow technique
NASA Technical Reports Server (NTRS)
Khosrovaneh, A. K.; Dowling, N. E.
1989-01-01
Methods are considered for reducing a non-random fatigue loading history to a concise description and then for reconstructing a time history similar to the original. In particular, three methods of reconstruction based on a rain-flow cycle counting matrix are presented. A rain-flow matrix consists of the numbers of cycles at various peak and valley combinations. Two methods are based on a two dimensional rain-flow matrix, and the third on a three dimensional rain-flow matrix. Histories reconstructed by any of these methods produce a rain-flow matrix identical to that of the original history, and as a result the resulting time history is expected to produce a fatigue life similar to that for the original. The procedures described allow lengthy loading histories to be stored in compact form.
Parallel scalability of Hartree-Fock calculations
NASA Astrophysics Data System (ADS)
Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.
2015-03-01
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.
Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment
2013-01-01
Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903
Direct structural parameter identification by modal test results
NASA Technical Reports Server (NTRS)
Chen, J.-C.; Kuo, C.-P.; Garba, J. A.
1983-01-01
A direct identification procedure is proposed to obtain the mass and stiffness matrices based on the test measured eigenvalues and eigenvectors. The method is based on the theory of matrix perturbation in which the correct mass and stiffness matrices are expanded in terms of analytical values plus a modification matrix. The simplicity of the procedure enables real time operation during the structural testing.
Predicting Fatigue Lives Of Metal-Matrix/Fiber Composites
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1994-01-01
Method of prediction of fatigue lives of intermetallic-matrix/fiber composite parts at high temperatures styled after method of universal slopes. It suffices to perform relatively small numbers of fatigue tests. Data from fatigue tests correlated with tensile-test data by fitting universal-slopes equation to both sets of data. Thereafter, universal-slopes equation used to predict fatigue lives from tensile properties.
Constructing and Validating a Q-Matrix for Cognitive Diagnostic Analyses of a Reading Test
ERIC Educational Resources Information Center
Li, Hongli; Suen, Hoi K.
2013-01-01
Cognitive diagnostic analyses have been advocated as methods that allow an assessment to function as a formative assessment to inform instruction. To use this approach, it is necessary to first identify the skills required for each item in the test, known as a Q-matrix. However, because the construct being tested and the underlying cognitive…
[In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure].
Dunda, S E; Ranker, M; Pallua, N; Machens, H-G; Ravichandran, A; Schantz, J-T
2015-12-01
Biological and physical characteristics of matrices are one essential factor in creating bioartificial tissue. In this study, a new 3-dimensional cellulose matrix (Xellulin(®)) was tested in terms of biocompatibility and applicability for tissue engineering in vitro and in vivo. The tested matrix Xellulin(®) is a natural hydrological gel-matrix containing bacterial cellulose and water. To evaluate the cell biocompatibilty, cell adherence and proliferation characteristics in vitro, the matrix was cultured with human fibroblasts. Further in vivo studies were carried out by transplanting preadipocytes of 4- to 6-week-old Wistar rats with 3 different conditions: a) Xellulin(®) including 500 000 preadipocytes subcutaneous, b) Xellulin(®) including 500 000 preadipocytes within an in vivo bioreactor chamber, c) Xellulin(®) without cells subcutaneous as control. After explantation on day 14 histomorphological and immunohistochemical evaluations were performed. In vitro study revealed an excellent biocompatibility with good cell adherence of the fibroblasts on the matrix and evidence of cell proliferation and creation of a 3-dimensional cell network. In vivo neocapillarisation could be shown in all groups with evidence of erythrocytes (H/E staining) and endothelial vascular cells (RECA-1-staining). A significantly higher vascular density was shown in vascularised bioreactor group (18.4 vessels/100 000 µm(2) (group b) vs. 8.1 (group a), p<0.05). Cell density was the highest in the vascularised group, but without significant values. No immunogenic reaction to the matrix was noticed. The promising in vitro results concerning cell adherence and proliferation on the tested matrix could be confirmed in vivo with an evidence of 3-dimensional neocapillarisation. Cell survival was higher in the vascularised group, but without significance. Long-term tests (28-42 days) need to be carried out to evaluate long-term cell survival and the matrix stability. Furthermore, studies concerning the implementation of the matrix within anatomic structures as well as long-term biocompatibility are needed. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Jayaseelan, J.; Vijayakumar, K. R.; Ethiraj, N.; Sivabalan, T.; nallayan, W. Andrew
2017-12-01
Composite materials are heterogenous materials containing one or more solid phases. In recent years cost-effective composite making is an ideal task. Hence we have come out with a natural fibre composite, which contains goat hair and epoxy as a binding element, with the combination of Graphene as a main source of enhanced mechanical property. Fabrication of natural composite consists of five layers of goat hair sandwiched in epoxy matrix. These composites made are tested for mechanical properties including Tensile strength, Flexural strength, Inter laminar shear and Impact strength. The mechanical properties of the six composite sets are analyzed and reported.
Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.
Seaglar, J; Rousseau, C-E
2015-04-01
The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy
1997-01-01
The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.
NASA Astrophysics Data System (ADS)
Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong
2017-11-01
The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.
Possible world based consistency learning model for clustering and classifying uncertain data.
Liu, Han; Zhang, Xianchao; Zhang, Xiaotong
2018-06-01
Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Maosong; Qu, Xie; Lü, Xilin
2017-11-01
By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.
Antoine, Daniel; Hillson, Simon; Dean, M Christopher
2009-01-01
Dental tissues contain regular microscopic structures believed to result from periodic variations in the secretion of matrix by enamel- and dentine-forming cells. Counts of these structures are an important tool for reconstructing the chronology of dental development in both modern and fossil hominids. Most studies rely on the periodicity of the regular cross-banding that occurs along the long axis of enamel prisms. These prism cross-striations are widely thought to reflect a circadian rhythm of enamel matrix secretion and are generally regarded as representing daily increments of tissue. Previously, some researchers have argued against the circadian periodicity of these structures and questioned their use in reconstructing dental development. Here we tested the periodicity of enamel cross-striations – and the accuracy to which they can be used – in the developing permanent dentition of five children, excavated from a 19th century crypt in London, whose age-at-death was independently known. The interruption of crown formation by death was used to calibrate cross-striation counts. All five individuals produced counts that were strongly consistent with those expected from the independently known ages, taking into account the position of the neonatal line and factors of preservation. These results confirm that cross-striations do indeed reflect a circadian rhythm in enamel matrix secretion. They further validate their use in reconstructing dental development and in determining the age-at-death of the remains of children whose dentitions are still forming at the time of death. Significantly they identify the most likely source of error and the common difficulties encountered in histological studies of this kind. PMID:19166472
NASA Astrophysics Data System (ADS)
Soba, A.; Denis, A.
2007-03-01
The codes PLACA and DPLACA, elaborated in this working group, simulate the behavior of a plate-type fuel containing in its core a foil of monolithic or dispersed fissile material, respectively, under normal operation conditions of a research reactor. Dispersion fuels usually consist of ceramic particles of a uranium compound in a high thermal conductivity matrix. The use of particles of a U-Mo alloy in a matrix of Al requires especially devoted subroutines able to simulate the growth of the interaction layer that develops between the particles and the matrix. A model is presented in this work that gives account of these particular phenomena. It is based on the assumption that diffusion of U and Al through the layer is the rate-determining step. Two moving interfaces separate the growing reaction layer from the original phases. The kinetics of these boundaries are solved as Stefan problems. In order to test the model and the associated code, some previous, simpler problems corresponding to similar systems for which analytical solutions or experimental data are known were simulated. Experiments performed with planar U-Mo/Al diffusion couples are reported in the literature, which purpose is to obtain information on the system parameters. These experiments were simulated with PLACA. Results of experiments performed with U-Mo particles disperse in Al either without or with irradiation, published in the open literature were simulated with DPLACA. A satisfactory prediction of the whole reaction layer thickness and of the individual fractions corresponding to alloy and matrix consumption was obtained.
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh; Lang, Jerry
2010-01-01
Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.
Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings
NASA Astrophysics Data System (ADS)
Lionetto, Francesca; Dell'Anna, Riccardo; Montagna, Francesco; Maffezzoli, Alfonso
2015-04-01
Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE) analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation. The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP) filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.
2018-04-01
The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.
2018-01-01
ABSTRACT Pseudomonas aeruginosa produces an extracellular biofilm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the protein component of the biofilm matrix is poorly defined and understudied relative to the other major matrix constituents. While matrix proteins have been suggested to provide many functions to the biofilm, only proteins that play a structural role have been characterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa biofilms. We then focused on a candidate matrix protein, the serine protease inhibitor ecotin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme produced by the host immune system during P. aeruginosa biofilm infections. We show that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This may represent a novel mechanism of protection for biofilms to increase their tolerance against the innate immune response. PMID:29636440
Ceramic Matrix Composite Vane Subelement Burst Testing
NASA Technical Reports Server (NTRS)
Brewer, David N.; Verrilli, Michael; Calomino, Anthony
2006-01-01
Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.
Fatigue testing and damage development in continuous fiber reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1988-01-01
A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.
Fatigue testing and damage development in continuous fiber reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1989-01-01
A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...
2016-05-26
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
Mueller matrix mapping of biological polycrystalline layers using reference wave
NASA Astrophysics Data System (ADS)
Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.
2018-01-01
The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.
Mischiati, Carolina R.; Comerford, Mark; Gosford, Emma; Swart, Jacqueline; Ewings, Sean; Botha, Nadine; Stokes, Maria; Mottram, Sarah L.
2015-01-01
Pre-season screening is well established within the sporting arena, and aims to enhance performance and reduce injury risk. With the increasing need to identify potential injury with greater accuracy, a new risk assessment process has been produced; The Performance Matrix (battery of movement control tests). As with any new method of objective testing, it is fundamental to establish whether the same results can be reproduced between examiners and by the same examiner on consecutive occasions. This study aimed to determine the intra-rater test re-test and inter-rater reliability of tests from a component of The Performance Matrix, The Foundation Matrix. Twenty participants were screened by two experienced musculoskeletal therapists using nine tests to assess the ability to control movement during specific tasks. Movement evaluation criteria for each test were rated as pass or fail. The therapists observed participants real-time and tests were recorded on video to enable repeated ratings four months later to examine intra-rater reliability (videos rated two weeks apart). Overall test percentage agreement was 87% for inter-rater reliability; 98% Rater 1, 94% Rater 2 for test re-test reliability; and 75% for real-time versus video. Intraclass-correlation coefficients (ICCs) were excellent between raters (0.81) and within raters (Rater 1, 0.96; Rater 2, 0.88) but poor for real-time versus video (0.23). Reliability for individual components of each test was more variable: inter-rater, 68-100%; intra-rater, 88-100% Rater 1, 75-100% Rater 2; and real-time versus video 31-100%. Cohen’s Kappa values for inter-rater reliability were 0.0-1.0; intra-rater 0.6-1.0 for Rater 1; -0.1-1.0 for Rater 2; and -0.1-1 for real-time versus video. It is concluded that both inter and intra-rater reliability of tests in The Foundation Matrix are acceptable when rated by experienced therapists. Recommendations are made for modifying some of the criteria to improve reliability where excellence was not reached. Key points The movement control tests of The Foundation Matrix had acceptable reliability between raters and within raters on different days Agreement between observations made on tests performed real-time and on video recordings was low, indicating poor validity of use of video recordings Some movement evaluation criteria related to specific tests that did not achieve excellent agreement could be modified to improve reliability PMID:25983594
The prospects for composites based on boron fibers
NASA Technical Reports Server (NTRS)
Naslain, R.
1978-01-01
The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.
Partially degradable fibers and microvascular materials formed from the fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hefei; Pety, Stephen J.; Sottos, Nancy R.
A partially degradable polymeric fiber includes a thermally degradable polymeric core and a coating surrounding at least a portion of the core. The thermally degradable polymeric core includes a polymeric matrix including a poly(hydroxyalkanoate), and a metal selected from the group consisting of an alkali earth metal and a transition metal, in the core polymeric matrix. The concentration of the metal in the polymeric matrix is at least 0.1 wt %. The partially degradable polymeric fiber may be used to form a microvascular system containing one or more microfluidic channels.
Uncertainty of relative sensitivity factors in glow discharge mass spectrometry
NASA Astrophysics Data System (ADS)
Meija, Juris; Methven, Brad; Sturgeon, Ralph E.
2017-10-01
The concept of the relative sensitivity factors required for the correction of the measured ion beam ratios in pin-cell glow discharge mass spectrometry is examined in detail. We propose a data-driven model for predicting the relative response factors, which relies on a non-linear least squares adjustment and analyte/matrix interchangeability phenomena. The model provides a self-consistent set of response factors for any analyte/matrix combination of any element that appears as either an analyte or matrix in at least one known response factor.
NASA Technical Reports Server (NTRS)
Rembaum, A.; Wallace, C. J. (Inventor)
1978-01-01
An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Eckfeldt, J H; Copeland, K R
1993-04-01
Proficiency testing using stabilized control materials has been used for decades as a means of monitoring and improving performance in the clinical laboratory. Often, the commonly used proficiency testing materials exhibit "matrix effects" that cause them to behave differently from fresh human specimens in certain clinical analytic systems. Because proficiency testing is the primary method in which regulatory agencies have chosen to evaluate clinical laboratory performance, the College of American Pathologists (CAP) has proposed guidelines for investigating the influence of matrix effects on their Survey results. The purpose of this investigation was to determine the feasibility, usefulness, and potential problems associated with this CAP Matrix Effect Analytical Protocol, in which fresh patient specimens and CAP proficiency specimens are analyzed simultaneously by a field method and a definitive, reference, or other comparative method. The optimal outcome would be that both the fresh human and CAP Survey specimens agree closely with the comparative method result. However, this was not always the case. Using several different analytic configurations, we were able to demonstrate matrix and calibration biases for several of the analytes investigated.
High Strength Discontinuously Reinforced Aluminum For Rocket Applications
NASA Technical Reports Server (NTRS)
Pandey, A. B.; Shah, S. R.; Shadoan, M.
2003-01-01
This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.
NASA Astrophysics Data System (ADS)
Jin, Yu; Liu, Renrong; Zhu, Lixin; Chen, Zhenzhen
2017-11-01
In this paper, an immunochromatographic assay card was developed for the detection of DON in feed and cereals using a novel colloidal gold labeling method. For the colloidal gold immunochromatographic rapid detection (GICD) card, a monoclonal antibody DON-mAb and a goat anti-chicken IgY were drawn on NC membrane as the test line (T line) and the control line (C line) respectively. A gold labeled DON-CBSA conjugate and a gold labeled chicken IgY were sprayed onto the conjugate pad. The GICD card has cut-off levels of 50ng/mL for DON, which is invulnerable to matrix interference, and applicable to a wide range of samples. The GICD detecting results of feed and grain samples were compared with the results of ELISA testing, which showed good consistency.
NASA Technical Reports Server (NTRS)
Morscher, G. N.; Gyekenyesi, J. Z.
1998-01-01
Composites consisting of woven Hi-Nicalon fibers, BN interphases, and different SiC matrices were studied in tension at room temperature. Composites with SiC matrices processed by CVI and melt infiltration were compared. Monotonic and load/unload/reload tensile hysteresis experiments were performed. A modal acoustic emission (AE) analyzer was used to monitor damage accumulation during the tensile test. Post test polishing of the tensile gage sections was performed to determine the extent of cracking. The occurrence and location of cracking could easily be determined using modal AE. The loss of modulus could also effectively be determined from the change in the velocity of sound across the sample. Finally, the stresses where cracks appear to intersect the load-bearing fibers correspond with high temperature low cycle fatigue run out stresses for these materials.
Interlaminar shear properties of graphite fiber, high-performance resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.; Kourtides, D. A.; Fish, R. H.; Varma, D. S.
1983-01-01
Short beam testing was used to determine the shear properties of laminates consisting of T-300 and Celion 3000 and 6000 graphite fibers, in epoxy, hot melt and solvent bismaleimide, polyimide and polystyrylpyridine (PSP). Epoxy, composites showed the highest interlaminar shear strength, with values for all other resins being substantially lower. The dependence of interlaminar shear properties on the fiber-resin interfacial bond and on resin wetting characteristics and mechanical properties is investigated, and it is determined that the lower shear strength of the tested composites, by comparison with epoxy resin matrix composites, is due to their correspondingly lower interfacial bond strengths. An investigation of the effect of the wettability of carbon fiber tow on shear strength shows wetting variations among resins that are too small to account for the large shear strength property differences observed.
Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J. R.; Bergeron, A.; Dionne, B.
2015-12-01
BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less
Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator
NASA Astrophysics Data System (ADS)
Pesantez, Daniel
The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) microdevice would replace periodic laboratory diagnosis tests with a continuous monitor that provides real-time data on organ viability. Amperometry, a technique that correlates an electrical signal with analyte concentration, is used as a method to detect glucose concentrations. A novel two-electrode electrochemical sensing cell design is presented. It uses a modified metallic working electrode (WE) and a bare metallic reference electrode (RE) that acts as a pseudo-reference/counter electrode as well. The proposed microsensor has the potential to be used as a minimally invasive sensor for its reduced number of probes and very small dimensions achieved by micromachining and lithography. In order to improve selectivity of the microdevice, two electron transfer mechanisms or generations were explored. A first generation microsensor uses molecular oxygen as the electron acceptor in the enzymatic reaction and oxidizes hydrogen peroxide (H2O2) to get the electrical signal. The microsensor's modified WE with conductive polymer polypyrrole (PPy) and corresponding enzyme glucose oxidase (GOx) immobilized into its matrix, constitutes the electrochemical detection mechanism. Photoluminescence spectroscopic analysis confirmed and quantified enzyme immobilized concentrations within the matrix. In vitro testing for glucose shows increasing current with increasing analyte concentration. Testing the glucose microsensor with known concentrations of glucose over a period of 48 hours demonstrated both the potential durability and sensitivity of the device. Unknown/blind in vitro glucose experiments showed the reproducibility and accuracy of the microsensor to detect various glucose levels. Thinner polymer matrix films lead to better sensing performance during in vitro tests (0.6nA/mM lower limit sensitivity and 0.2nA/mM upper limit sensitivity). In vitro experiments using electroactive ascorbic acid (AA) and uric acid (UA) showed the selectivity of the sensor for glucose. In an effort to reduce the sensor's oxidation potential (0.7V) and noise, a second generation electron transfer approach was developed by incorporating into a modified Platinum WE with a nanoscale PPy and GOx matrix, a redox mediator. Ferrocene (Fc) was selected as the artificial electron carrier, substituting molecular oxygen in the enzymatic reaction. The incorporation of Fc into the polymer matrix is done by a simple electrochemical synthesis. Modifications in the microsensor design, materials and fabrication process are presented. Experiments with the new sensor generation resulted in higher sensitivity values (22.8nA/mM lower limit sensitivity and 12.5nA/mM upper limit sensitivity) for glucose and noise was further eliminated by operating the sensor at a lower oxidation potential (0.3V). The final experimental work consisted of preliminary ex vivo tests with the MetaSense microdevice on bovine kidney samples, which showed a qualitatively correlation between glucose consumption trend profile during preservation and viability histology outcome.
Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly
Ievoli, Elena; Lindstedt, Ragnar; Inforzato, Antonio; Camaioni, Antonella; Palone, Francesca; Day, Anthony J.; Mantovani, Alberto; Salvatori, Giovanni; Salustri, Antonietta
2011-01-01
Pentraxin 3 (PTX3) plays a key role in the formation of the hyaluronan-rich matrix of the cumulus oophorus surrounding ovulated eggs that is required for successful fertilization and female fertility. PTX3 is a multimeric protein consisting of eight identical protomers held together by a combination of non-covalent interactions and disulfide bonds. Recent findings suggest that the oligomeric status of PTX3 is important for stabilizing the cumulus matrix. Because the role of PTX3 in the cumulus resides in the unique N-terminal sequence of the protomer, we investigated further this issue by testing the ability of distinct Cys/Ser mutants of recombinant N-terminal region of PTX3 (N_PTX3) with different oligomeric arrangement to promote in vitro normal expansion in cumuli from Ptx3-null mice. Here we report that the dimer of the N_PTX3 is unable to rescue cumulus matrix organization, and that the tetrameric assembly of the protein is the minimal oligomeric state required for accomplishing this function. We have previously demonstrated that PTX3 binds to HCs of IαI and TSG-6, which are essential for cumulus matrix formation and able to interact with hyaluronan. Interestingly, here we show by solid-phase binding experiments that the dimer of the N_PTX3 retains the ability to bind to both IαI and TSG-6, suggesting that the octameric structure of PTX3 provides multiple binding sites for each of these ligands. These findings support the hypothesis that PTX3 contributes to cumulus matrix organization by cross-linking HA polymers through interactions with multiple HCs of IαI and/or TSG-6. The N-terminal PTX3 tetrameric oligomerization was recently reported to be also required for recognition and inhibition of FGF2. Given that this growth factor has been detected in the mammalian preovulatory follicle, we wondered whether FGF2 negatively influences cumulus expansion and PTX3 may also serve in vivo to antagonize its activity. We found that a molar excess of FGF2, above PTX3 binding capacity, does not affect in vitro cumulus matrix formation thus ruling out this possibility. In conclusion, the data strength the view that PTX3 acts as a nodal molecule in cross-linking HA in the matrix. PMID:21619930
Efficacy of wax matrix bait stations for Mediterranean Fruit Flies (Diptera: Tephritidae)
USDA-ARS?s Scientific Manuscript database
Tests were conducted that evaluated efficacy of wax matrix bait stations for Ceratitis capitata (Wiedemann) adults in Guatemala. Bait stations were exposed to outdoor conditions to determine effect of weathering on longevity as indicated by bait station age. Results of laboratory tests found that ba...
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
Cook, Nicola A; Kim, Jin Un; Pasha, Yasmin; Crossey, Mary ME; Schembri, Adrian J; Harel, Brian T; Kimhofer, Torben; Taylor-Robinson, Simon D
2017-01-01
Background Psychometric testing is used to identify patients with cirrhosis who have developed hepatic encephalopathy (HE). Most batteries consist of a series of paper-and-pencil tests, which are cumbersome for most clinicians. A modern, easy-to-use, computer-based battery would be a helpful clinical tool, given that in its minimal form, HE has an impact on both patients’ quality of life and the ability to drive and operate machinery (with societal consequences). Aim We compared the Cogstate™ computer battery testing with the Psychometric Hepatic Encephalopathy Score (PHES) tests, with a view to simplify the diagnosis. Methods This was a prospective study of 27 patients with histologically proven cirrhosis. An analysis of psychometric testing was performed using accuracy of task performance and speed of completion as primary variables to create a correlation matrix. A stepwise linear regression analysis was performed with backward elimination, using analysis of variance. Results Strong correlations were found between the international shopping list, international shopping list delayed recall of Cogstate and the PHES digit symbol test. The Shopping List Tasks were the only tasks that consistently had P values of <0.05 in the linear regression analysis. Conclusion Subtests of the Cogstate battery correlated very strongly with the digit symbol component of PHES in discriminating severity of HE. These findings would indicate that components of the current PHES battery with the international shopping list tasks of Cogstate would be discriminant and have the potential to be used easily in clinical practice. PMID:28919805
Electrically conductive material
Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.
1993-01-01
An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.
A practical guide to density matrix embedding theory in quantum chemistry
Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; ...
2016-05-09
Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. Here, we also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.
NASA Astrophysics Data System (ADS)
V. R., Arun prakash; Rajadurai, A.
2016-10-01
In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.
Pendulum impact resistance of tungsten fiber/metal matrix composites.
NASA Technical Reports Server (NTRS)
Winsa, E. A.; Petrasek, D. W.
1972-01-01
The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.
2016-06-01
Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.
Performance and Safety Tests of Lithium-Ion Cells Arranged in a Matrix Design Configuration
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith; Tracinski, Walt
2010-01-01
Matrix Packs display large variations in cell bank voltages at the charge and discharge current (C/2) used in this test program. The voltage difference is larger at the end of discharge than at the end of charge under the conditions studied. Disconnection of a cell from the pack leads to a larger voltage difference during discharge (greater than 2.0 V) between the bank that has one less cell and the other banks. Thermal profile does not show any significant changes or increase in temperature after one cell was disconnected from the bank in spite of falling to very low voltages at the end of discharge. All tests on the matrix pack with the HAM displayed lower max in general due to the placement of thermocouple on the outside of the HAM rather than on the cells. Disconnection of cells has almost no influence on the performance of the packs and does not show any abnormal thermal changes for the 100 cycles obtained in this test program. Longer cycle life may influence the performance especially if the low voltage cell goes into reversal. Overcharge leads to CID activation of cells. If the matrix configuration has a larger number of cells in series, (more than 5 S configuration), the limitations of protective devices may manifest itself irrespective of it being in a matrix configuration. External short circuit causes a fire with expulsion of content from some cells. The fire does not propagate itself laterally, but if there was cell module stacking, then the fire would cause the cells above it to also go into flames/thermal runaway. Limitations of protective devices are observed in this case as the PTCs in the cells did not protect under this abusive condition. Matrix configurations seem to provide protection against lateral propagation of fire and flame. Matrix pack configuration seems to provide good performance in spite of losing cell connections; at least for the configuration tested under this program.
Development of 10×10 Matrix-anode MCP-PMT
NASA Astrophysics Data System (ADS)
Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin
2018-02-01
10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong QIn, Ronald Davidson
2011-07-18
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026; Davidson, Ronald C.
2011-05-15
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation.« less
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2015-03-01
Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.
Determination of the self-adjoint matrix Schrödinger operators without the bound state data
NASA Astrophysics Data System (ADS)
Xu, Xiao-Chuan; Yang, Chuan-Fu
2018-06-01
(i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.
Technology Base Enhancement Program. Metal Matrix Composites
1993-08-30
efficiency, improved structural reliability, and reduced maintenance when compared to carbon fiber reinforced composites . Aerospace engines (in particular...different materials. The composite consists of a metal matrix reinforced with particulates, flakes, whiskers,3 continuous fibers , filaments, wires, or...graphite and carbon to metals. They come in three general forms: particulates (or particles) with a length to diameter ratio of about 1; chopped fibers or
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2003-01-01
The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.
NASA Astrophysics Data System (ADS)
Chen, Qiang; Chen, Gang; Han, Fei; Xia, Xiangsheng; Wu, Yang
2017-07-01
Near-net shaping of Mg-RE alloy matrix composites has received increasing attention. In this work, stir casting followed by extrusion was adopted to fabricate Mg-RE alloy (WE43) matrix composites reinforced by micron-sized SiC particles. The microstructural evolutions of SiCp/WE43 composites partially remelted from as-cast and extruded states were studied. Furthermore, the thixoformability of SiCp/WE43 composites in different states was evaluated by thixoextruding a type of double-cup component. The microstructures of as-cast SiCp/WE43 composites were optimized under the comprehensive effects of SiC particles and RE elements. The SiCp/WE43 composite was fully recrystallized during hot extrusion, and the α-Mg matrix consisted of fine equiaxed grains. Although the as-cast SiCp/WE43 composite consisted of satisfactory structures and can be successfully thixoextruded into the final component with good surface quality and no evidence of internal defects, the microstructures, Vickers hardness, tensile mechanical properties, and wear resistance were still inferior to those of the component thixoextruded from extruded composite. Moreover, the thixoextrusion process was analyzed schematically, and an ideal thixoforming process that should contain two stages was proposed.
Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.
2008-09-01
Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.
Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R
2015-01-01
Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC
Koo, Kyo-In; Lee, Sangmin; Cho, Dong-il Dan
2011-01-01
This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 μL using approximately 25.4 μL of AIBN compound.
Koo, Kyo-in; Lee, Sangmin; Cho, Dong-il Dan
2011-01-01
This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 μL using approximately 25.4 μL of AIBN compound. PMID:22163997
Mechanical Properties of Aerogels
NASA Technical Reports Server (NTRS)
Parmenter, Kelly E.; Milstein, Frederick
1995-01-01
Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response of reinforced aerogels can be fully understood, more tests of unreinforced aerogels are necessary. Unreinforced aerogels are of particular use because their birefringent nature allows for visual determination of stress fields during mechanical testing. The success of any future tests depends on the availability of a large supply of quality specimens with well-documented preparation and storage histories.
Nanosized thin SnO₂ layers doped with Te and TeO₂ as room temperature humidity sensors.
Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan
2014-05-21
In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques-SEM, EDS in SEM, TEM, SAED, AES and electrical measurements-are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio R(Sn/Te) and the evaporation conditions. It is shown that as-deposited layers with R(Sn/Te) ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature-very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.
Quantum calculations for one-dimensional cooling of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vredenbregt, E.; Doery, M.; Bergeman, T.
1993-05-01
We report theoretical velocity distributions for sub-Doppler laser cooling of metastable He*(2{sup 3}S), calculated with the Density Matrix and Monte Carlo Wavefunction approaches. For low-field (B = 50 mG) magnetic-field induced laser cooling on the 2{sup 3}S {yields} (2{sup 3}P, J = 2) transition ({lambda} = 1083 nm), we get a narrow, sub-Doppler structure, consisting of three, {approximately}1 photon recoil wide peaks, spaced {approximately}1 recoil apart. With increasing field, this three-peak structure develops into two velocity-selective resonance (VSR) peaks, each {approximately}2 recoils wide. For the 2{sup 3}S {yields} (3{sup 3}P, J = 2) transition ({lambda} 389 nm), VSR peaks aremore » predicted to appear at low field without the third, central peak, which only develops at higher field (B = 200 mG). Additional computations deal with polarization-gradient cooling. In general, we find that for one-dimensional cooling calculations, the Density Matrix method is more efficient than the Monte Carlo Wavefunction approach. Experiments are currently under way to test the results.« less
The effect of interface properties on nickel base alloy composites
NASA Technical Reports Server (NTRS)
Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.
1995-01-01
This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.
Patterns of innovation in weapons acquisition decisions: the case of the long-range cruise missile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ockenden, S.E.
1987-01-01
This study was conducted to determine why organizations can appear innovative on some occasions, and non-innovative on others. The particular focus of the study concerns two comparable organizations - the US Air Force and the US Navy - which responded differently to the opportunity for weapons innovation presented by a promising technology, the long-range cruise missile. Explanations for weapons innovation and acquisition decisions are traditionally found in four approaches: arms-race models; rational actor models; bureaucratic and cybernetics models; and idiographic case studies. None of these approaches is sufficient to offer general, stable, and consistent predictions about weapons innovation. Research outsidemore » of political science offers some insights. This literature was reviewed to develop a four-fold matrix describing patterns of behavior when a given organization confronts an opportunity to innovate at a given time. Because of significant differences between the two organizations in terms of goal consensus, significant differences in behavior were found. The air Force strongly resisted the cruise missile, while the Navy incrementally adopted it. While the entire matrix could not be tested, conclusions could be drawn.« less
Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands
NASA Astrophysics Data System (ADS)
Daghash, Sherif M.; Ozbulut, Osman E.
2018-06-01
This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.
Solid particle erosion of polymers and composites
NASA Astrophysics Data System (ADS)
Friedrich, K.; Almajid, A. A.
2014-05-01
After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.
Visualizing desirable patient healthcare experiences.
Liu, Sandra S; Kim, Hyung T; Chen, Jie; An, Lingling
2010-01-01
High healthcare cost has drawn much attention and healthcare service providers (HSPs) are expected to deliver high-quality and consistent care. Therefore, an intimate understanding of the most desirable experience from a patient's and/or family's perspective as well as effective mapping and communication of such findings should facilitate HSPs' efforts in attaining sustainable competitive advantage in an increasingly discerning environment. This study describes (a) the critical quality attributes (CQAs) of the experience desired by patients and (b) the application of two visualization tools that are relatively new to the healthcare sector, namely the "spider-web diagram" and "promotion and detraction matrix." The visualization tools are tested with primary data collected from telephone surveys of 1,800 patients who had received care during calendar year 2005 at 6 of 61 hospitals within St. Louis, Missouri-based, Ascension Health. Five CQAs were found by factor analysis. The spider-web diagram illustrates that communication and empowerment and compassionate and respectful care are the most important CQAs, and accordingly, the promotion and detraction matrix shows those attributes that have the greatest effect for creating promoters, preventing detractors, and improving consumer's likelihood to recommend the healthcare provider.
Alumina forming iron base superalloy
Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.
2014-08-26
An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.
Fiber pushout and interfacial shear in metal-matrix composites
NASA Technical Reports Server (NTRS)
Koss, Donald A.; Hellmann, John R.; Kallas, M. N.
1993-01-01
Recent thin-slice pushout tests have suggested that MMC matrix-fiber interface failure processes depend not only on such intrinsic factors as bond strength and toughness, and matrix plasticity, but such extrinsic factors as specimen configuration, thermally-induced residual stresses, and the mechanics associated with a given test. After detailing the contrasts in fiber-pullout and fiber-pushout mechanics, attention is given to selected aspects of thin-slice fiber pushout behavior illustrative of the physical nature of interfacial shear response and its dependence on both intrinsic and extrinsic factors.
Discriminant Validity of the WISC-IV Culture-Language Interpretive Matrix
ERIC Educational Resources Information Center
Styck, Kara M.; Watkins, Marley W.
2014-01-01
The Culture-Language Interpretive Matrix (C-LIM) was developed to help practitioners determine the validity of test scores obtained from students who are culturally and linguistically different from the normative group of a test. The present study used an idiographic approach to investigate the diagnostic utility of the C-LIM for the Wechsler…
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
Lyophilic matrix method for dissolution and release studies of nanoscale particles.
Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko
2017-10-25
We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Chao; Chen, Shou
2017-01-01
According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.
Projection matrix acquisition for cone-beam computed tomography iterative reconstruction
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Shi, Wenlong; Zhang, Caixin; Gao, Zongzhao
2017-02-01
Projection matrix is an essential and time-consuming part in computed tomography (CT) iterative reconstruction. In this article a novel calculation algorithm of three-dimensional (3D) projection matrix is proposed to quickly acquire the matrix for cone-beam CT (CBCT). The CT data needed to be reconstructed is considered as consisting of the three orthogonal sets of equally spaced and parallel planes, rather than the individual voxels. After getting the intersections the rays with the surfaces of the voxels, the coordinate points and vertex is compared to obtain the index value that the ray traversed. Without considering ray-slope to voxel, it just need comparing the position of two points. Finally, the computer simulation is used to verify the effectiveness of the algorithm.
Greater Severity of Peanut Challenge Reactions Using a High fat versus Low Fat Matrix Vehicle.
Pettersson, M Eleonore; Koppelman, Gerard H; Schins, Afke M M; van Ginkel, C Doriene; Flokstra-de Blok, Bertine M J; Kollen, Boudewijn J; Dubois, Anthony E J
2018-06-16
Food allergy is a potentially life-threatening disease with a detrimental effect on the quality of life of caregivers and children.(1) Although many different types of food have been identified as potential elicitors of allergic reactions, only a small number of these foods cause the majority of reactions.(2) Food consists of a complex mixture of nutrient and non-nutrient components and their molecular interactions, which are known as the food matrix. Individual matrix components, or the matrix as a whole, may interact with a food allergen and may influence the clinical response to that allergen. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
USE OF COMBUSTION SYNTHESIS IN PREPARING CERAMIC-MATRIX AND METAL-MATRIX COMPOSITE POWDERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weil, K. Scott; Hardy, John S.
A standard combustion-based approach typically used to synthesize nanosize oxide powders has been modified to prepare composite oxide-metal powders for subsequent densification via sintering or hot-pressing into ceramic- or metal-matrix composites. Copper and cerium nitrate salts were dissolved in the appropriate ratio in water and combined with glycine, then heated to cause autoignition. The ratio of glycine-to-total nitrate concentration was found to have the largest effect on the composition, agglomerate size, crystallite size, and dispersivity of phases in the powder product. After consolidation and sintering under reducing conditions, the resulting composite compact consists of a well-dispersed mixture of sub-micron sizemore » reinforcement particles in a fine-grained matrix.« less
Immunogold detection of glycoprotein antigens in sea urchin embryos.
Benson, N C; Benson, S C; Wilt, F
1989-01-01
Four developmental stages of sea urchin embryos were labeled with colloidal gold in an attempt to elucidate the intracellular trafficking patterns within the cells that produce the glycoprotein matrix of the embryonic spicule. The primary mesenchyme cells (PMCs) form a syncytium and secrete an organic matrix on which calcium carbonate is laid down to form an endoskeletal spicule. The organic matrix has been isolated and characterized as glycoprotein consisting of four major bands. Polyclonal antibodies to these glycoproteins were used to label embryos from the mesenchyme blastula, early gastrula, late gastrula, and plutei stages of development. The label is concentrated in the Golgi complex and associated vesicles, in secretory vesicles, and in the organic matrix. The density of the labeling increases as development proceeds.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
Rephasing invariants of the Cabibbo-Kobayashi- Maskawa matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez R, H.; Kielanowski, P., E-mail: kiel@fis.cinvestav.mx; Juárez W, S. R., E-mail: rebeca@esfm.ipn.mx
2016-03-15
The paper is motivated by the importance of the rephasing invariance of the CKM (Cabibbo-Kobayashi-Maskawa) matrix observables. These observables appear in the discussion of the CP violation in the standard model (Jarlskog invariant) and also in the renormalization group equations for the quark Yukawa couplings. Our discussion is based on the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In the mainmore » theorem we show that a general rephasing invariant monomial can be expressed as a product of at most five factors: four of them are fundamental phase invariant monomials and the fifth factor consists of powers of squares of absolute values of the CKM matrix elements. We also show that the imaginary part of any rephasing invariant monomial is proportional to the Jarlskog’s invariant J or is 0.« less