TEMPEST code modifications and testing for erosion-resisting sludge simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Trent, D.S.
The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less
Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAKER, R.B.
1998-11-20
This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic backgroundmore » logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.« less
Ultrasonic interface level analyzer shop test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAEHR, T.W.
1999-05-24
The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Pareizs, J.; Coleman, C.
For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt ormore » SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.« less
Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.
During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareizs, J.; Billings, A.; Click, D.
2011-07-08
Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are oftenmore » added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.« less
Anaerobic digestion potential of urban organic waste: a case study in Malmö.
Davidsson, Asa; Jansen, Jes la Cour; Appelqvist, Björn; Gruvberger, Christopher; Hallmer, Martin
2007-04-01
A study of existing organic waste types in Malmö, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.
Sludge Settling Rate Observations and Projections at the Savannah River Site - 13238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillam, Jeffrey M.; Shah, Hasmukh B.; Keefer, Mark T.
2013-07-01
Since 2004, sludge batches have included a high percentage of stored sludge generated from the H- modified (HM) process. The slow-settling nature of HM sludge means that the settling is often the major part of the washing tank quiescent period between required pump runs to maintain flammability control. Reasonable settling projections are needed to wash soluble salts from sludge in an efficient manner, to determine how much sludge can be washed in a batch within flammability limits, and to provide composition projections for batch qualification work done in parallel with field preparation. Challenges to providing reasonably accurate settling projections includemore » (1) large variations in settling behavior from tank-to-tank, (2) accounting for changing initial concentrations, sludge masses, and combinations of different sludge types, (3) changing the settling behavior upon dissolving some sludge compounds, and (4) sludge preparation schedules that do not allow for much data collection for a particular sludge before washing begins. Scaling from laboratory settling tests has provided inconsistent results. Several techniques have been employed to improve settling projections and therefore the overall batch preparation efficiency. Before any observations can be made on a particular sludge mixture, projections can only be made based on historical experience with similar sludge types. However, scaling techniques can be applied to historical settling models to account for different sludge masses, concentrations, and even combinations of types of sludge. After sludge washing/settling cycles begin, the direct measurement of the sludge height, once generally limited to a single turbidity meter measurement per settle period, is now augmented by examining the temperature profile in the settling tank, to help determine the settled sludge height over time. Recently, a settling model examined at PNNL [1,2,3] has been applied to observed thermocouple and turbidity meter readings to quickly provide settling correlations to project settled heights for other conditions. These tools improve the accuracy and adaptability of short and mid-range planning for sludge batch preparation. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... Environmental Management (IDEM) submitted the State Plan on February 27, 2013. The State Plan is consistent with... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2013-0372; FRL-9821-1] Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, M.A.
1998-07-23
A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a).more » This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.K.
1999-05-10
Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.
Evaluation of sludge management alternatives in Istanbul metropolitan area.
Cakmakci, M; Erdim, E; Kinaci, C; Akca, L
2005-01-01
The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the "Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan", 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in Istanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.
C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
GJ Lumetta; DJ Bates; PK Berry
This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went accordingmore » to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.« less
Murray, Ashley; Horvath, Arpad; Nelson, Kara L
2008-05-01
Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.
Strength Measurements of Archive K Basin Sludge Using a Soil Penetrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.
2011-12-06
Spent fuel radioactive sludge present in the K East and K West spent nuclear fuel storage basins now resides in the KW Basin in six large underwater engineered containers. The sludge will be dispositioned in two phases under the Sludge Treatment Project: (1) hydraulic retrieval into sludge transport and storage containers (STSCs) and transport to interim storage in Central Plateau and (2) retrieval from the STSCs, treatment, and packaging for shipment to the Waste Isolation Pilot Plant. In the years the STSCs are stored, sludge strength is expected to increase through chemical reaction, intergrowth of sludge crystals, and compaction andmore » dewatering by settling. Increased sludge strength can impact the type and operation of the retrieval equipment needed prior to final sludge treatment and packaging. It is important to determine whether water jetting, planned for sludge retrieval from STSCs, will be effective. Shear strength is a property known to correlate with the effectiveness of water jetting. Accordingly, the unconfined compressive strengths (UCS) of archive K Basin sludge samples and sludge blends were measured using a pocket penetrometer modified for hot cell use. Based on known correlations, UCS values can be converted to shear strengths. Twenty-six sludge samples, stored in hot cells for a number of years since last being disturbed, were identified as potential candidates for UCS measurement and valid UCS measurements were made for twelve, each of which was found as moist or water-immersed solids at least 1/2-inch deep. Ten of the twelve samples were relatively weak, having consistencies described as 'very soft' to 'soft'. Two of the twelve samples, KE Pit and KC-4 P250, were strong with 'very stiff' and 'stiff' consistencies described, respectively, as 'can be indented by a thumb nail' or 'can be indented by thumb'. Both of these sludge samples are composites collected from KE Basin floor and Weasel Pit locations. Despite both strong sludges having relatively high iron concentrations, attribution of their high strengths to this factor could not be made with confidence as other measured sludge samples, also from the KE Basin floor and of high iron concentration, were relatively weak. The observed UCS and shear strengths for the two strong sludges were greater than observed in any prior testing of K Basin sludge except for sludge processed at 185 C under hydrothermal conditions.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Model Rule... monitoring system according to your monitoring plan required under § 60.4880. Additionally: (i) For carrier gas flow rate monitors (for activated carbon injection), during the performance test conducted...
Deng, Wen-Yi; Yuan, Min-Hao; Mei, Jing; Liu, Ya-Jun; Su, Ya-Xin
2017-03-01
Stickiness phenomenon is widely observed in sewage sludge drying practices. This paper is aimed at demonstrating and comparing the sticky properties of sewage sludge through non-agitated and agitated drying tests specially designed for sewage sludge. Special attentions were paid to the effects of additives, i.e. CaO, fine sawdust (FSD) and coarse sawdust (CSD), on the adhesive and cohesive characteristics of sewage sludge. The results indicated that the sticky properties of the sludge were markedly different under the different testing methods, and was also greatly influenced by CaO or sawdust addition. For instance, in the non-agitated drying tests, CaO can significantly enhance the maximum adhesive and cohesive stresses of the sludge, whereas in the agitated drying tests, the torque of agitation, which strongly correlated with the cohesive stress of the sludge, was lowered by CaO addition. During agitated drying process, sludge lump with CaO addition started to break up at higher moisture content than that of original sludge. On the other hand, sawdust also affected the sticky properties of sludge in a way that was totally different with CaO. After sawdust addition (at 5-10%WS (wet sludge basis)), the cohesive stress of the sludge was markedly increased due to strengthening of mechanical interlocking inside the sludge, whereas the adhesiveness of the sludge was lowered by sawdust addition. The influencing mechanisms of CaO and sawdust under the different testing methods were detailedly discussed in the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genifuel Hydrothermal Processing Bench Scale Technology ...
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C and 2900 psig on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350◦C and 2900 psig on the HTL aqueous phase product using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. It should be noted that HTL test results for secondary sludge may have been affected by equipment problems. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the product of HTL tests with primary sludge, secondary sludge, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
STALLINGS, MARY
This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less
K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary
Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of themore » subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and other waste streams generated by the process. Each of these steps is discussed in the paper, together with the current state of progress in developing the technology and requirements for continued development. A schematic of the recommended baseline WWO treatment process is given below. (authors)« less
SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareizs, J.; Click, D.; Lambert, D.
2011-11-16
Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.« less
Philips, Patrick J.; Stinson, Beverley; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Esposito, Kathleen; Bodniewicz, B.; Pape, R.; Anderson, J.
2005-01-01
The second phase of the study focused on one of the most common wastewater treatment processes operated in the United States, the Activated Sludge process. Using four controlled parallel activated sludge pilots, a more detailed assessment of the impact of Sludge Retention Time (SRT) on the reduction or removal of ECs was performed.
Chiochetta, Claudete G; Goetten, Luís C; Almeida, Sônia M; Quaranta, Gaetana; Cotelle, Sylvie; Radetski, Claudemir M
2014-01-01
The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate.
Development of EPA`s new methods to quantify vector attraction of wastewater sludges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, J.B.; Bhide, V.; Smith, J.E. Jr.
1996-05-01
EPA`s 1979 and 1993 sludge regulations require that sewage sludge be reduced in vector attraction before it can be applied to the land. In the 1979 regulation, satisfactory vector attraction reduction (VAR) could be demonstrated if treatment processes reduced the volatile solids content of sludge by 38%. The 1993 regulation adds two alternative test methods for aerobic sludges for determining whether VAR has been adequate. In the first method, specific oxygen uptake rate (SOUR) of the sludge must be <1.5 mg O{sub 2}/hr/g total solids, and in the second method, the additional volatile solids reduction (AVSR) that occurs when themore » sludge is further digested for 30 days must be <15%. Experimentation with the new tests is described. Comparisons among the three methods showed that the 38% VSR requirement and the SOUR test were equivalent only near 20{degree}C. The AVSR test was more conservative than either of the other tests. 18 refs., 7 figs., 3 tabs.« less
REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Koopman, D.
2009-08-01
A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hay, Michael S.
Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less
TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Leishear, R.; Poirier, M.
2012-05-31
The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.« less
40 CFR 61.54 - Sludge sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Sludge sampling. 61.54 Section 61.54... sampling. (a) As an alternative means for demonstrating compliance with § 61.52(b), an owner or operator... days prior to a sludge sampling test, so that he may at his option observe the test. (c) Sludge shall...
40 CFR 61.54 - Sludge sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Sludge sampling. 61.54 Section 61.54... sampling. (a) As an alternative means for demonstrating compliance with § 61.52(b), an owner or operator... days prior to a sludge sampling test, so that he may at his option observe the test. (c) Sludge shall...
Improvement of sedimentation and dewatering of municipal sludge by radiation
NASA Astrophysics Data System (ADS)
Sawai, Teruko; Yamazaki, Masao; Shimokawa, Toshinari; Sekiguchi, Masayuki; Sawai, Takeshi
As the promotion of sewerage system, the volume of municipal sludge in Tokyo has increased rapidly. Due to recent changes in the properties of the sludge, moreover, it has become difficult to thicken the liquid sewage sludge by sedimentation and to dewater the thickening sludge mechanically. The development of a new effective method for sludge treatment is necessary. Therefore, a study on the improvement of sedimentation and dewatering of sewage sludge by irradiation with 60Co gamma rays and electron beams was undertaken. Sedimentation tests and various dewatering tests were carried out for the waste activated sludge and anaerobically digested sludge. From the changes in the settling rate, capillary suction time, water content of the sludge cake, and the quality of separated water by irradiation, the optimum irradiation conditions for improving the sedimentation and dewatering of 2 types sludge were determined. The necessary dose for improving the sedimentation and dewatering was observed to be 1-3 kGy for the activated sludge and 5-10 kGy for the digested sludge. To confirm the cause of those changes by irradiation, the zeta potential and viscosity of the sludge were measured.
Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.
Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi,more » Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.« less
Analysis of sludge from Hanford K East Basin canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makenas, B.J.; Welsh, T.L.; Baker, R.B.
1997-09-12
Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the datamore » on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.« less
Kończak, Magdalena; Oleszczuk, Patryk
2018-06-01
The aim of the present study was to determine changes in the physicochemical properties and toxicity of soil amended with sewage sludge (10t dw /ha) or sewage sludge (10t dw /ha) with biochar addition (2.5, 5 or 10% of sewage sludge). The study was carried out as a field experiment over a period of 18months. Samples for analysis were taken at the beginning of the experiment as well as after 6, 12 and 18months. The study investigated toxicity of the unamended soil, sewage sludge-amended soil and sewage sludge-amended soil with biochar addition towards Folsomia candida (collembolan test) and Lepidium sativum (Phytotoxkit F). Moreover, toxicity of aqueous extracts obtained from the tested soils towards Vibrio fischeri (Microtox®) and Lepidium sativum (elongation test) was determined. The study showed that addition of biochar to the sewage sludge and soil reduced leaching of nutrients (mainly phosphorus and potassium) from the amended soil. Biochar significantly reduced sewage sludge toxicity, exhibiting a stimulating effect on the tested organisms. The stimulating effect of biochar addition to the sewage sludge persisted throughout the entire experiment. Apart from the remediatory character of biochar, this is also evidence of its fertilizing character. In the tests with L. sativum (leachates and solid phase) and V. fischeri (leachates), increasing the rate of biochar in the sewage sludge increased root growth stimulation (L. sativum) and bacteria luminescence (V. fischeri). However, increasing biochar rate decreased F. candida reproduction stimulation, which could have been an effect of reduced nutrient bioavailability due to the biochar. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.
The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contractmore » to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.« less
SITE DEMONSTRATION OF THE BASIC EXTRACTIVE SLUDGE TREATMENT PROCESS
The Superfund Innovative Technology Evaluation (SITE) Program, in cooperation with EPA Region 5, the Great Lakes National Program Office (GLNPO), and the U.S. Army Corps of Engineers (COE) planned and executed a pilot-scla e evaluation of the Basic Extyractive Sludge Treatment (B...
Assessment of capillary suction time (CST) test methodologies.
Sawalha, O; Scholz, M
2007-12-01
The capillary suction time (CST) test is a commonly used method to measure the filterability and the easiness of removing moisture from slurry and sludge in numerous environmental and industrial applications. This study assessed several novel alterations of both the test methodology and the current standard capillary suction time (CST) apparatus. Twelve different papers including the standard Whatman No. 17 chromatographic paper were tested. The tests were run using four different types of sludge including a synthetic sludge, which was specifically developed for benchmarking purposes. The standard apparatus was altered by the introduction of a novel rectangular funnel instead of a standard circular one. A stirrer was also introduced to solve the problem of test inconsistency (e.g. high CST variability) particularly for heavy types of sludge. Results showed that several alternative papers, which are cheaper than the standard paper, can be used to estimate CST values accurately, and that the test repeatability can be improved in many cases and for different types of sludge. The introduction of the rectangular funnel demonstrated an obvious enhancement of test repeatability. The use of a stirrer to avoid sedimentation of heavy sludge did not have statistically significant impact on the CST values or the corresponding data variability. The application of synthetic sludge can support the testing of experimental methodologies and should be used for subsequent benchmarking purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PACQUET, E.A.
The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less
Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbonmore » balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support further long term testing in a larger scale integrated system that is representative of what would be installed at a water resource recovery facility (WRRF) in order to fully assess the technical and economic viability of this technology for wastewater sludge treatment.« less
Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent
USDA-ARS?s Scientific Manuscript database
Confined swine production generates large volumes of wastewater typically stored and treated in anaerobic lagoons. These lagoons usually require a sludge management plan for their maintenance consisting of regular sludge removal by mechanical agitation and pumping followed by land application at agr...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS PROCEDURES FOR... draft permit for a major HWM, UIC, 404, or NPDES facility or activity, for every Class I sludge... that includes a sewage sludge land application plan under 40 CFR 501.15(a)(2)(ix), and for every draft...
Kayashima, Takakazu; Taruki, Masanori; Katagiri, Kazuomi; Nabeoka, Ryosuke; Yoshida, Tomohiko; Tsuji, Toshiaki
2014-02-01
The Organisation for Economic Co-operatoin and development (OECD) Guidelines for the Testing of Chemicals list 7 types of tests for determining the ready biodegradability of chemical compounds (301A-F and 310). The present study compares the biodegradation performance of test guideline 301C, which is applied in Japan's Chemical Substances Control Law, with the performance of the other 6 ready biodegradability tests (RBTs) listed in the guidelines. Test guideline 301C specifies use of activated sludge precultured with synthetic sewage containing glucose and peptone (301C sludge) as a test inoculum; in the other RBTs, however, activated sludge from wastewater treatment plants (WWTP sludge) is frequently employed. Analysis based on percentage of biodegradation and pass levels revealed that the biodegradation intensity of test guideline 301C is relatively weak compared with the intensities of RBTs using WWTP sludge, and the following chemical compounds are probably not biodegraded under test guideline 301C conditions: phosphorus compounds; secondary, tertiary, and quaternary amines; and branched quaternary carbon compounds. The relatively weak biodegradation intensity of test guideline 301C may be related to the markedly different activities of the 301C and WWTP sludges. These findings will be valuable for evaluating RBT data in relation to Japan's Chemical Substances Control Law. © 2013 SETAC.
Malara, Anna; Oleszczuk, Patryk
2013-05-01
The objective of the study was to determine the leachates toxicity from sewage sludge-amended soils (sandy and loamy). Samples originated from a plot experiment realized over a period of 29 months. Two types of soil were fertilized with sewage sludges at the dose of 3 % (90 t/ha). Soil samples were taken after 0, 7, 17, and 29 months from the application of sewage sludges. Leachates were obtained according to the EN 12457-2 protocol. The following commercial tests were applied for the estimation of the toxicity: Microtox (Vibrio fischeri), Microbial assay for toxic risk assessment (ten bacteria and one yeast), Protoxkit F (Tetrahymena thermophila), Rotoxkit F (Brachionus calyciflorus), and Daphtoxkit F (Daphnia magna). The test organisms displayed varied toxicity with relation to the soils amended with sewage sludges. The toxicity of the leachates depended both on the soil type and on the kind of sewage sludge applied. Notable differences were also observed in the sensitivity of the test organisms to the presence of sewage sludge in the soil. The highest sensitivity was a characteristic of B. calyciflorus, while the lowest sensitivity to the presence of the sludges was revealed by the protozoa T. thermophila. Throughout the periods of the study, constant variations of toxicity were observed for most of the test organisms. The intensity as well as the range of those variations depended both on the kind of test organism and on the kind of sludge and soil type. In most cases, an increase of the toxicity of soils amended with the sewage sludges was observed after 29 months of the experiment.
Sewage sludge pasteurization by gamma radiation: A Canadian demonstration project — 1988-91
NASA Astrophysics Data System (ADS)
Swinwood, Jean F.; Wilson, Bruce K.
Nordion International Inc. and a Canadian city, in cooperation with the Federal & Provincial Ministries of the Environment, began a project in 1988 to construct and operate a commercial-scale sewage sludge pasteurization facility using gamma radiation technology. The facility is scheduled to begin operations in 1991. This paper discusses the objectives and scope of the project, the design of the irradiation system, and the plans to market the pasteurized sludge as a high-value, organic soil conditioner and fertilizer.
ERIC Educational Resources Information Center
Carnegie, John W.
The rise time test (along with the settleometer procedure) is used to monitor sludge behavior in the secondary clarifier of an activated sludge system. The test monitors the effect of the nitrification/denitrification process and aids the operator in determining optimum clarifier sludge detention time and, to some extent, optimum degree of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Peeler, D.; Edwards, T.
2012-05-11
A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupledmore » operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.« less
NASA Astrophysics Data System (ADS)
Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka
2017-11-01
The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.
Hanford Waste End Effector Phase I Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.
This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less
Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A
2017-09-11
The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Rheological properties of disintegrated sewage sludge
NASA Astrophysics Data System (ADS)
Wolski, Paweł
2017-11-01
The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.
Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.
Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky
2018-05-01
Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigation of organic nitrogen and carbon removal in the aerobic digestion of various sludges.
Genç, Nevim; Yonsel, Sems; Dağaşan, Levent; Onar, A N
2002-11-01
Nitrification and carbon removal are investigated in aerobic batch digestion of various sludges. The experiments are carried out with activated sludge (Test 1) and with a mixture of activated and primary settling sludge (Test 2). The nitrification rate was monitored, measuring the NO2- concentration. At the 3rd day of the digestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l were found in Tests 1 and 2 respectively. In a digestion process, the degradation of biomass indicates the beginning of the endogenous phase. Our measure for biomass content of the sludge was protein analysis. In Test 1, the first day values of 50.93 mgTOC/ g(dry) matter/day and 138.53 mg(protein)-C/g(dry) matter/day for specific TOC and protein-C removal rates showed, that the digestion process began in the endogenous phase. For Test 2, since the endogenous phase began after removal of raw organic matter in primary settling sludge, specific TOC and protein-C removal rates were observed to be 60.12 mgTOC/g(dry) matter/day and 26.72 mg(protein-C/g(dry)matter/day, respectively.
ERIC Educational Resources Information Center
Carnegie, John W.
This lesson deals with special considerations that should be made when choosing a sludge solids management program, briefly describing the source of solids in wastewater and why they must be dealt with. The various solids handling processes and ultimate disposal methods are also briefly described, followed by a detailed discussion of the technical…
Activated Sludge. Instructor's Guide. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Boe, Owen K.
This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Documentation for siting requirements. 4. Anticipated date of initial startup. § 60.4915(a). Notification of initial startup Prior to initial startup 1. Maximum design dry sewage sludge burning capacity2.... 4. Anticipated date of initial startup. 5. Site-specific monitoring plan. 6. The site-specific...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Documentation for siting requirements. 4. Anticipated date of initial startup. § 60.4915(a). Notification of initial startup Prior to initial startup 1. Maximum design dry sewage sludge burning capacity2.... 4. Anticipated date of initial startup. 5. Site-specific monitoring plan. 6. The site-specific...
ERIC Educational Resources Information Center
Knezek, Bernard D., Ed.; Miller, Robert H., Ed.
This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…
Stefaniuk, Magdalena; Oleszczuk, Patryk
2016-11-01
Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox ® ), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of C free PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of C free PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, C free PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technology Assessment Report - Aqueous Sludge Gasification Technologies
Sludge production in the United States is increasing with an increase in population. An estimated 7.2 million dry tons of treated and tested sewage sludge was generated in 2004 and 4.1 million tons of paper mill sludge was produced in 1995. Consequently, there is an increased ne...
Liang, Fenglin; Sauceau, Martial; Dusserre, Gilles; Arlabosse, Patricia
2017-04-15
The mechanically dewatered sewage sludge with total solid content around 20% on a weight basis is very similar to yield stress fluid, its complex transition between solid and fluid states is not perfectly reversible and especially challenging in terms of pumping, land spreading and drying. To characterize the rheological and textural properties of highly concentrated sludge, a specific methodology based on uniaxial single and cyclic compression tests is developed. Three types of sludge samples (fresh original, fresh premixed and aged original ones) are extruded into cylinders and pressed between two parallel plates using a material testing machine. In single compression, the bioyield point beyond which the sludge fractures is around 7.3 kPa with true strain equal to 0.21. The cyclic compression tests reveal that the sludge behaves as a viscoelastic body when the true strain is smaller than 0.05 and as a visco-elasto-plastic once exceeding the yield stress. The elastic module is around 78 kPa; the viscosity is deduced, in the order of magnitude 10 4 -10 5 Pa·s and the yield stress is estimated about 4 kPa. In the unloading phase, the sludge behaves again as a viscoelastic body with clear hysteresis. With the increase of compression speed, the viscosity declines, which confirms that the sludge is a shear-thinning material. The yield stress and the bioyield increase with compression speed, but it does not induce extra internal damage in the samples since the resilience and the cohesiveness are unaltered. The reliability and sensitivity of the method is justified by highlighting the changes of sludge behavior due to aging and premixing effects: both decrease the strain energy density, but do aggravate the adhesiveness of the sludge; the aging makes the sludge less cohesive, while the premixing does not modify its cohesiveness. In spite of changes in test conditions, the elastic module of sludge samples remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.
C-104 high-level waste solids: Washing/leaching and solubility versus temperature studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
GJ Lumetta; DJ Bates; JP Bramson
This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 M NaOH or leaching with 3 M NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, ``Determination of the Solubility of HLW Sludge Solids.
Lim, T T; Chu, J; Goi, M H
2006-01-01
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, D.R.; Thompson, E.J.
2013-07-01
Among the Intermediate Level Waste materials in store and awaiting treatment and processing in the UK are quantities of magnesium hydroxide sludge. This sludge is a product of radioactive Magnox Swarf which arose from the de-canning of used magnox fuel element rods. As the Swarf was stored underwater, a corrosion reaction occurred over the course of time between the magnox and the water resulting in a magnesium hydroxide based sludge. The differing conditions and materials present in the various storage areas means that the sludge can range in consistency from that of a slurry through to a thick clay. Sludgemore » test materials are required to underpin and validate the research and development equipment and processes that are to be used to treat the waste material. Necessary restrictions imposed on the sampling and testing of the radioactive waste means that the available data on the properties and behaviour of the sludge is limited. The raw materials used to create the sludge test materials are based upon magnesium hydroxide so that as far as possible the chemical behaviour will be similar to that of the waste material. The most representative sludge test material is manufactured by the corrosion of non-radioactive magnox or magnesium. However, time constraints make it impractical to supply this material in sufficient quantities for full scale validation trials. An alternative is to use sludge manufactured from commercially available magnesium hydroxide. The particle shape of commercially available materials differs from corrosion product magnesium hydroxide which means that properties such as the rheological behaviour cannot be replicated. Nevertheless, valuable trial data can be obtained, giving a greater degree of confidence in the waste treatment process than would be possible if only the more representative but less available corrosion product materials were to be used. Key test material parameters used in the trials have been identified as the particle size distribution and the sludge thickness (measured as yield shear strength). Other properties including cohesion, adhesion and rheological behaviour are also considered. The use of different mixers for sludge manufacture has the potential to affect the behavioural properties and a brief description of each of these mixers is included. The scale of mixing has been found to make a significant difference to the ageing. A chemical impurity in the commercially available materials has been successfully exploited, so that sludge mixed at comparatively low yield shear strengths can thicken into the consistency of clay. This aids manufacture and allows large quantities of thick material to be produced relatively easily. (authors)« less
Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.
Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura
2011-04-01
The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.
NASA Astrophysics Data System (ADS)
Ostojski, Arkadiusz
2018-01-01
This paper aims to present municipal sewage sludge (MSS) elementary analysis and energetic potential based on measurement of heat of combustion (higher heating value HHV) and calculation of calorific values (lower heating value LHV). The analysis takes into the consideration water content in sewage sludge, at different utilization stages, in wastewater treatment plants in Gdańsk Wschód and Kościerzyna - Pomeranian Voivodeship. The study yielded the following results (in % dry matter): ash 19÷31 %, C - 31÷36 %, H - 5÷6 %, N - 4÷6 %, O - 28÷32 %, S - 1 %. Calorific value of stabilized sludges in Gdańsk was on average 13.8÷15 MJ/kg. In case of sludges not undergoing digestion from Kościerzyna WWTP, the calorific value was at the level of 17.5 MJ/kg. Thus, sewage sludges are good energy carriers. High water content though is the problem, as it lowers the useful effect of heat. There is no alternative for thermal sewage sludge neutralization, which is in conformity with valid Polish National Waste Management Plan (KPGO 2022).
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-03-06
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-01-31
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-04-10
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Buntner, D; Spanjers, H; van Lier, J B
2014-03-15
The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.R.
2001-04-04
The Filtration Research Engineering Demonstration (FRED) at the University of South Carolina ran a test campaign to confirm the utility of crossflow filtration for use with the MST sorption as a strontium-actinide removal technology that is expected to be coupled with the ion exchange and solvent extraction process alternatives. FRED has a Mott Metallurgical 7 tube filter with individual tubes 10 ft long and 3/4 inch o.d. having a nominal pore size of 0.5 microns. The blend sludge consisted of a 50/50 wt percent mixture of sludge simulants of SRS Tank 40H and Tank 8F simulated sludges previously manufactured atmore » FRED. Monosodium Titanate (MST) was blended with the 50/50 sludge mixture in a proportion of 0.9167 MST-to-Sludge ratio to provide the solids loadings analyzed in this test.« less
Sludge incineration tests on circulating fluidised bed furnace.
Lotito, V; Mininni, G; Di Pinto, A C; Spinosa, L
2001-01-01
Results of sludge incineration tests on a demonstrative fluidised bed furnace are reported and discussed. They show that particulate, heavy metals and acidic compounds in the emissions can be easily controlled both when sludge is spiked with chlorinated hydrocarbons up to a chlorine concentration in the feed of 5%, and when the afterburner is switched off. As for organic micropollutants, polynuclear aromatic hydrocarbons (PAH) were much lower than the Italian limits of 10 microg/m3 (no limits are at present considered in the European Directives). Dioxins (PCDDs) and furans (PCDFs) in some tests exceeded the limit of 0.1 ng/m3 (TE) but the concentrations in the fly ashes were much lower, thus evidencing a possible presence of contaminants in gas phase. PAHs and PCDD/PCDFs were not depending on the afterburning operation, the presence of organic chlorine in the feed sludge and the copper addition to sewage sludge.
Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion.
Braguglia, C M; Gianico, A; Mininni, G
2012-03-01
This paper deals with the comparison of ultrasound (mechanical) and ozone (chemical) pre-treatment on the performances of excess sludge semi-continuous digestion. Sludge solubilisation has been investigated by varying specific energy input. For each pre-treatment, long anaerobic digestion tests were carried out by two parallel digesters: one reactor, as control unit, was fed with untreated waste activated sludge, and the other one was fed with disintegrated sludge. To evaluate and compare the efficacy of both pre-treatments, the specific energy was maintained approximately the same. The digestion tests were carried out to investigate the feasibility of anaerobic digestion performance (total biogas production, volatile solids removal, sludge dewaterability) and to assess the heat balance. Results obtained from the digestion of sonicated sludge at 4% disintegration degree (≈ 2500 kJ/kg TS) showed that the ultrasound pre-treatment may be effective both in increasing VS destruction (+19%) and cumulative biogas production (+26%). On the contrary, the digestion test with ozonized sludge (ozone dose of 0.05 g O(3)/g TS corresponding to ≈ 2000 kJ/kg TS) did not indicate a significant improvement on the digestion performances. By doubling the ozone dose an improvement in the organics removal and cumulative biogas production was observed. Relevant differences in terms of colloidal charge and filterability were discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kianmehr, Peiman; Parker, Wayne; Seto, Peter
2012-04-01
The potential to use the results of biochemical acid potential (BAP) tests to predict the ultimate digestibility of raw and pretreated waste activated sludge (WAS) was investigated. The ultimate methane production from biochemical methane potential (BMP) tests on raw and pretreated samples which spanned a range of biodegradability proved linearly related to the volatile fatty acid (VFA) and soluble chemical oxygen demand (COD) production in corresponding BAP tests. In addition, a linear relationship between NH4-N production in the BMP and BAP tests was observed. Despite the linear nature of the relationships, the ratio of the production of methane in the BMP tests to the production of VFAs in the BAP tests varied with the biodegradability of the sludge samples. Waste Activated Sludge samples with low digestibility had ultimate yields of CH4 that were greater than the VFA yields in BAP tests, whereas sludge samples with high digestibility had lower yields of CH4 than the corresponding VFA yields. This trend contrasted with the NH4 results, in which the yields in the BAP tests were consistently less than those observed in the BMP tests. It was hypothesized that the varying relationship between CH4 and VFA yields was because of the inhibition of anaerobic oxidation of long-chain fatty acids (LCFAs) in the BAP tests. Long-chain fatty acids would be converted to CH4 in BMP tests but produced as digestion intermediates in the BAP tests and were not measured as part of the VFA yield. Hydrogen and acetate were identified as the two most likely intermediates that would accumulate in the BAP tests (which would cause inhibition). A stoichiometric model to facilitate the development of an improved understanding of the biodegradation processes in the BAP and BMP tests was assembled. When the model was applied to the BAP tests the anaerobic oxidation of LCFAs and propionate and methanogenesis were excluded from the model. The model was employed to estimate the extent of degradation of lipids, carbohydrates, and proteins in the batch tests as a function of the ultimate biodegradability of the sludge samples. On the basis of model fitting, it was determined that the degradation of lipids in BMP tests decreased, whereas the degradation of carbohydrates and proteins increased as the digestibility of the sludge samples increased. The varying ratio of lipid to protein and carbohydrate degradability with increasing digestibility of the sludge samples describes the relationship between VFA production and CH4 production in the BAP, and BMP tests, respectively.
Farmers' attitude toward treated sludge use in the villages of West Bank, Palestine.
Rashid, Md M; Kattou'a, Mary G; Al-Khatib, Issam A; Sato, Chikashi
2017-07-01
An application of treated sewage sludge on agricultural land has been widely accepted, as this method is simple and economical for disposal of wastewater residues. When applied properly on an agricultural land, sludge can replenish organic matter and nutrients in soil. Although sewage sludge has been used in agriculture in many parts of the world, its acceptability varies with different cultures and beliefs among farmers. Farmers' concerns on sludge use are primarily due to its anthropogenic origin, pollutants that it carries, a general perception of sewage being dirty, and its offensive odor. This paper aims to investigate farmers' perceptions on land application of treated sewage sludge on their farm. This study targeted two farming communities, namely, Anza and Beit Dajan villages, located in Jenin and Nablus districts in the West Bank, Palestine. In this study, a sample of 106 farmers were randomly selected and surveyed through a mixture of structured and open-ended questions. Results indicated that, overall, farmers have positive perceptions on land application of sludge. A majority of the farmers are in favor of the concept of sludge use when a planned wastewater treatment plant is constructed and it becomes operational. Results also indicate that a majority of the farmers are in favor of using sludge for fertilizing fruit trees, rather than growing vegetables and other plants in a greenhouse, and that many of them have knowledge of sludge properties and advantages and disadvantages of sludge use in agriculture. Despite the positive perceptions by the majority of farmers, a small fraction of the farmers are in disfavor of the use of sludge for the following reasons: psychological and social concerns, potential health risks, and their religious beliefs. Results further suggest that the land application of treated sewage sludge can be accepted by more farmers if the consumers are willing to buy agricultural products fertilized by sludge, sludge meets the public health requirements, and sludge is available at low costs. To improve farmers' perceptions on the land application of sludge, several measures are recommended.
Membrane filtration device for studying compression of fouling layers in membrane bioreactors
Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard
2017-01-01
A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990
Carbon nanotubes/carbon fiber hybrid material: a super support material for sludge biofilms.
Liu, Qijie; Dai, Guangze; Bao, Yanling
2017-07-16
Carbon fiber (CF) is widely used as a sludge biofilm support material for wastewater treatment. Carbon nanotubes/carbon fiber (CNTs/CF) hybrid material was prepared by ultrasonically assisted electrophoretic deposition (EPD). CF supports (CF without handling, CF oxidized by nitric acid, CNTs/CF hybrid material) were evaluated by sludge immobilization tests, bacterial cell adsorption tests and Derjaguin -Landau -Verwey -Overbeek (DLVO) theory. We found that the CNTs/CF hybrid material has a high capacity for adsorbing activated sludge, nitrifying bacterial sludge and pure strains (Escherichia coli and Staphylococcus aureus). CNTs deposited on CF surface easily wound around the curved surface of bacterial cell which resulted in capturing more bacterial cells. DLVO theory indicated the lowest total interaction energy of CNTs/CF hybrid material, which resulted in the highest bacteria cell adsorption velocity. Experiments and DLVO theory results proved that CNTs/CF hybrid material is a super support material for sludge biofilms.
Oxidation Ditch Technology for Upgrading Army Sewage Treatment Facilities.
1983-08-01
expensive and unreliable anaerobic digestion . Because of these advantages, oxidation ditch technology should be considered when planning wastewater...eliminates the need for further sludge treatment (e.g., anaerobic digestion can be eliminated). Does not need primary clarifier. Few moving parts in...four Army plants (see Chapter 2) use the anaerobic digestion process for sludge treatment. There are often problems in operating these digestors, and
Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen
2018-05-01
The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.
Biological testing of a digested sewage sludge and derived composts.
Moreira, R; Sousa, J P; Canhoto, C
2008-11-01
Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.
NASA Astrophysics Data System (ADS)
Purohit, A.; Satapathy, A.
2017-02-01
Use of industrial wastes, such as slag and sludge particles, as filler in polymers is not very common in the field of composite research. Therefore in this paper, a comparison of mechanical characteristics of epoxy based composites filled with LD sludge, BF slag and LD slag (wastes generated in iron and steel industries) were presented. A comparative study among these composites in regard to their dry sliding wear characteristics under similar test conditions was also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt.%) of LD sludge were fabricated by solution casting technique. Mechanical properties were evaluated as per ASTM test standards and sliding wear test was performed following a design of experiment approach based on Taguchi’s orthogonal array. The test results for epoxy-LD sludge composites were compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and wear characteristics among the three types of composites considered in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boruszko, Dariusz, E-mail: d.boruszko@pb.edu.pl
Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689 µg·kg{sup −1} in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95 µg·kg{sup −1} in dry mass. A mixture of excess and flotation sludge had the content of 497,7 µg·kg{sup −1} in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludgemore » to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. - Highlights: • The influence of applying Effective Microorganisms on PAHs degradation in dairy sewage sludge during fermentation has been examined. • To study the relationship between quantitative parameters and to describe the correlation strength, Spearman's rank correlation coefficient was used. • In order to verify whether there was a statistically significant change, the Wilcoxon test was applied for individual observation pairs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrke, R.J.; Streier, G.G.
1997-03-01
During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personalmore » contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.« less
Drying characteristics of electro-osmosis dewatered sludge.
Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun
2016-12-01
Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input.
Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion
NASA Astrophysics Data System (ADS)
Qiao, W.; Wang, W.; Xun, R.
2008-02-01
This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio, 36.4%, was obtained at 170 °C for 30 min. COD dissolving ratio was about 25% at 170 °C. BMP test of excess sludge and mixture of primary and excess sludge proved the increase of methane production. Total biogas production of microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days digestion. For excess sludge, biogas production was 11.1% to 25.9% higher than untreated sludge.
Karamalidis, Athanasios K; Voudrias, Evangelos A
2004-01-01
The oily sludge produced by petroleum refineries is classified as a solid hazardous waste, according to European regulations. The objective of this work was to investigate whether stabilization/solidification can be used as a management method for the oily sludge. The sludge samples used originated from a petroleum-storing tank and a centrifuge unit of two Greek refineries. The experiments were designed to study the leachability of the heavy metals Pb, Cr, Cd, Ni, and Cu, which are contained in the sludge, using the Toxicity Characteristic Leaching Procedure (TCLP). Despite the fact that the metals were immobilized in a cement-based environment in the presence of organic load, leaching tests have shown a low metal leachability, less than 5%. Acid Neutralizing Capacity (ANC) tests were employed in order to estimate the acid resistance of the stabilized/solidified waste. In addition to ANC, a sequential TCLP test was employed in order to understand how the pH affects the leachability of Ni from the stabilized/solidified specimen.
Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo
2018-03-01
Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recycling of petroleum-contaminated sand.
Taha, R; Ba-Omar, M; Pillay, A E; Roos, G; al-Hamdi, A
2001-08-01
The environmental impact of using petroleum-contaminated sand (PCS) as a substitute in asphalt paving mixtures was examined. An appreciable component of PCS is oily sludge, which is found as the dregs in oil storage tanks and is also produced as a result of oil spills on clean sand. The current method for the disposal of oily sludge is land farming. However, this method has not been successful as an oil content of < 1% w/w is required, and difficulty was encountered in reaching this target. The reuse of the sludge in asphalt paving mixtures was therefore considered as an alternative. Standard tests and environmental studies were conducted to establish the integrity of the materials containing the recycled sludge. These included physical and chemical characterization of the sludge itself, and an assessment of the mechanical properties of materials containing 0%, 5%, 22% and 50% oily sludge. The blended mixtures were subjected to special tests, such as Marshall testing and the determination of stability and flow properties. The experimental results indicated that mixtures containing up to 22% oily sludge could meet the necessary criteria for a specific asphalt concrete wearing course or bituminous base course. To maximize the assay from the recycled material, the environmental assessment was restricted to the 50% oily sludge mixture. Leachates associated with this particular mixture were assayed for total organic residue and certain hazardous metal contaminants. The results revealed that the organics were negligible, and the concentrations of the metals were not significant. Thus, no adverse environmental impact should be anticipated from the use of the recycled product. Our research showed that the disposal of oily sludge in asphalt paving mixtures could possibly yield considerable savings per tonne of asphalt concrete, and concurrently minimize any direct impact on the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.R.
2002-06-07
Personnel performed engineering-scale tests at the Filtration Research Engineering Demonstration (FRED) to determine crossflow filter performance with a 5.6 M sodium solution containing varying concentrations of sludge and sodium permanganate. The work represents another in a series of collaborative efforts between the University of South Carolina and the Savannah River Technology Center in support of the process development efforts for the Savannah River Site. The current tests investigated filter performance with slurry containing simulated Tank 40H Sludge and sodium permanganate at concentrations between 0.070 weight percent and 3.04 weight percent insoluble solids.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Farmer, F. H.; Gurganus, E. A.
1979-01-01
In an effort to improve understanding of the effects of variations in background water on reflectance spectra, laboratory tests were conducted with various concentrations of sewage sludge diluted with several types of background water. The results from these tests indicate that reflectance spectra for sewage-sludge mixtures are dependent upon the reflectance of the background water. Both the ratio of sewage-sludge reflectance to background-water reflectance and the ratio of the difference in reflectance to background-water reflectance show spectral variations for different turbid background waters. The difference in reflectance is the only parameter considered.
Improvement of primary settling performance with activated sludge.
Yetis, U; Tarlan, E
2002-04-01
In biological treatment plants employing activated sludge processes, it is possible to recirculate some portion of the waste activated sludge that is not sent to the aeration basin, to the inlet of the primary sedimentation tanks. But in the literature there is no detailed information about the conditions, ratios and the characteristics of the waste sludge that can be recirculated back. However, depending on its settling characteristics, the addition of waste activated sludge to raw wastewater may improve primary settling. Settling tests have shown that the effect of waste activated sludge on primary settling is strongly dependent on the mean cell residence time (or sludge age), theta(c), of the waste activated sludge and also on the suspended solids concentration. Different sludge ages of 4, 6, 8, 10, 14, 20 and 26 days, and for each sludge age at least five different initial suspended solids concentrations were studied. A sludge age of 8-10 days achieved the optimum efficiency in terms of the remaining suspended solids concentration as well as percent-suspended solids removal. Also, the settled sludge volumes were measured throughout the experiments; so, the comparison was made between settled sludge volumes, initial suspended solids (SS) concentrations and theta(c).
Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong
2009-04-01
To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.
TEST METHODS TO DETERMINE THE MERCURY EMISSIONS FROM SLUDGE INCINERATION PLANTS
Two test methods for mercury are described along with the laboratory and field studies done in developing and validating them. One method describes how to homogenize and analyze large quantities of sewage sludge. The other test method describes how to measure the mercury emission...
Virus elimination in activated sludge systems: from batch tests to mathematical modeling.
Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz
2014-01-01
A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.
Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.
Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R
2012-11-01
Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation.
Chand, Sukhmal; Singh, Shweta; Singh, Vinay Kumar; Patra, D D
2015-05-01
Unlike food crops, essential oil-bearing crops in which the oil is extracted through hydro-distillation can be a suitable crop to be grown in heavy metal-polluted soils as the oil does not carry any heavy metal. In a field experiment conducted at CIMAP, Lucknow, India during 2011 and 2012, influence of six doses of tannery sludge viz 0, 10, 20, 30, 40, and 50 t ha(-1) were tested, taking sweet basil (Ocimum basilicum) as the test crop. Maximum herb yield was obtained with the application of sludge at 20 t ha(-1). While in root, accumulation of Cd and Pb increased significantly up to 20 t ha(-1), Cr accumulation increased with increasing the dose of tannery sludge reaching maximum at 50 t ha(-1). Essential oil yield of basil (Ocimum basilicum) was significantly affected due to sludge application. Quality of essential oil, in term of chemical constituents, however, was marginally influenced due to tannery sludge application.
Construction technique of disposable bin from sludge cake and its environmental risk.
Kongmuang, Udomsak; Kiykaew, Duangta; Morioka, Ikuharu
2015-01-01
Now, a lot of researchers have tried to make recycled rigid materials from the sludge cake produced in paper mill industries for the purpose of decreasing its volume. In this study, the researchers tried to make economically a disposable bin and to examine whether it is toxic or not to the outside environment. To make a disposable bin, the researchers used the sludge cake, a plastic basket, as a fixed mold, white cloth or newspaper, as a removable supporter for wrapping around the mold, and latex or plaster, as a binder. The strength of the samples was measured by tensile-stress testing. The water absorption was evaluated by Cobb test. As toxicological tests, leaching test and seed germination test were selected. It was possible to form the disposal bin from the cleaned sludge cake. They seemed safe to carry garbage in the industry judging from the results of tensile-stress testing. Some of them showed less water absorptiveness (higher water resistance) in the results of Cobb test. The results of leaching test showed small values of three heavy metals, lead, nickel and copper, in the leachate. The seed germination test suggested no adverse effects of the bins in the clay and sand on the tomato growth. The results of these tests suggest that the bins have good strength, sufficient water resistance and no toxicological effect on the environment. This new recycled bin has the possibility to solve the environmental and health problems at disposing the sludge cake.
Phyto-dewatering of sewage sludge using Panicum repens L.
El-Gendy, A S; El-Kassas, H I; Razek, T M A; Abdel-Latif, H
2017-04-01
Experiments in the field environment have been conducted to study the growth of Panicum repens L., an aquatic plant, in the sewage sludge matrix. The experiments were also carried out to investigate the ability of this plant to dewater sewage sludge to increase the capacity of conventional drying beds. In addition, the ability of Panicum repens L. to reduce the sludge contents of certain elements (copper (Cu), Iron (Fe), Sodium (Na), lead (Pb), and Zinc (Zn)) was also investigated. All experiments were carried out in batch reactors. Different plant coverage densities were tested (0.00 to 27.3 kg/m 2 ). The liquid sewage sludge was collected from a wastewater treatment plant in Helwan city, Cairo Governorate, Egypt. The collected sludge represents a mixture of the primary sludge and waste activated sludge before discharging into drying beds.
40 CFR 60.5230 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Sewage Sludge Incineration Units Model Rule-Recordkeeping and Reporting § 60.5230 What records... standards under this subpart. (ii) Procedures for receiving, handling, and feeding sewage sludge. (iii... performance test, if in addition to sewage sludge. (x) For each qualified operator and other plant personnel...
40 CFR 60.5230 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Sewage Sludge Incineration Units Model Rule-Recordkeeping and Reporting § 60.5230 What records... standards under this subpart. (ii) Procedures for receiving, handling, and feeding sewage sludge. (iii... performance test, if in addition to sewage sludge. (x) For each qualified operator and other plant personnel...
40 CFR 60.5230 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Sewage Sludge Incineration Units Model Rule-Recordkeeping and Reporting § 60.5230 What records... standards under this subpart. (ii) Procedures for receiving, handling, and feeding sewage sludge. (iii... performance test, if in addition to sewage sludge. (x) For each qualified operator and other plant personnel...
40 CFR 60.5230 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Sewage Sludge Incineration Units Model Rule-Recordkeeping and Reporting § 60.5230 What records... standards under this subpart. (ii) Procedures for receiving, handling, and feeding sewage sludge. (iii... performance test, if in addition to sewage sludge. (x) For each qualified operator and other plant personnel...
Recommendation of ruthenium source for sludge batch flowsheet studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodham, W.
Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate,more » conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.« less
TBT and TPhT persistence in a sludged soil.
Marcic, Christophe; Le Hecho, Isabelle; Denaix, Laurence; Lespes, Gaëtane
2006-12-01
The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography-pulsed flame photometric analysis (GC-PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 microg(Sn) kg(-1) of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 microg(Sn) kg(-1), less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 microg(Sn) kg(-1) in our conditions) the pH had no effect on TBT and TPhT persistence.
Short-term bioassay responses to sludge products and leachate.
Fjällborg, B; Gustafsson, N
2006-10-01
Recycling of sewage sludge is needed in a sustainable society. Quality aspects of sludge include hygiene (pathogens), nutrients (N and P), and toxicants (metals and organics). Metals are of particular concern because they are not degradable, but their hazards are related to their bioavailability and chemical speciation. In this article, the effect on sludge quality of two treatment methods, incineration and pelletization, has been determined for digested sludge from two treatment plants. The combined effect of nutrients and toxicants in sludge and sludge product was determined for spring wheat, Triticum aestivum, and the toxicity of the leachate water was determined for water fleas, Daphnia magna, and seeds of lettuce, Lactuca sativa. Toxicity Identification Evaluation was used to determine whether metals were possible toxicants. The results indicated that incineration decreased toxicity, whereas leachability of metals and the fertilizing effect was unaffected. Pelletization seemed to increase toxicity and leachability of metals and also decreased the fertilizing effect of the sludge. Thus, the results suggest that pelletization of digested sewage sludge increased the toxicity of the sludge and thus decreased the quality of the sludge, whereas incineration apparently reduced toxicity for the two sludges tested.
Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...
Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub
2016-11-05
Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, J; Miller, D; Stone, M
The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less
Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.
2010-01-01
Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.
K basins sludge removal sludge pretreatment system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, H.L.
1997-06-12
The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task formore » this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-03-01
Progress is reported on a comprehensive program to develop the necessary technologies for cost/beneficial uses of existing and future surplus radioactive materials. The major portion of the work was concentrated on the testing of the effectiveness of ..gamma.. sources for the processing of sewage sludge to inactivate enteric viruses and bacteria and the subsequent testing of the biological effects of the treated sludge when used as fertilizer or additives to animal feeds.
Speciation of mercury in sludge solids: washed sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Lourie, A. P.
2017-10-24
The objective of this applied research task was to study the type and concentration of mercury compounds found within the contaminated Savannah River Site Liquid Waste System (SRS LWS). A method of selective sequential extraction (SSE), developed by Eurofins Frontier Global Sciences1,2 and adapted by SRNL, utilizes an extraction procedure divided into seven separate tests for different species of mercury. In the SRNL’s modified procedure four of these tests were applied to a washed sample of high level radioactive waste sludge.
Barañao, P A; Hall, E R
2004-01-01
Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.
Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge
NASA Astrophysics Data System (ADS)
Peng, Ching-Fang; Chen, How-Ji
2018-02-01
This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.
Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems.
Valls, S; Vàzquez, E
2002-01-01
One of the main objectives of this work is to present an effective alternative for the final destination of sludge from urban waste water treatment plants by its use as a component of mortar or concrete. A binding and stabilizing matrix of sludge-cement and sludge-cement-coal fly-ash was investigated and the effects of various percentages of waste and binder, on the behavior of sludge in the system are presented. Assessment of the environmental quality of the final product and the consequent guarantee of its use in the building industry demand that it meets a number of requisites, one of which is that the effluents extracted by water action should be contamination-free, or at least that the concentration of contaminants should be below certain pre-set limits. For this a number of leaching tests must be carried out, such as the Netherlands Leaching Test .
Sludge accumulation pattern inside oxidation ditch case study.
Fouad, Moharram; El-Morsy, Ahmed
2014-01-01
The sludge accumulation pattern of an oxidation ditch (OD) plant treating municipal wastewater was observed under dry and wet weather conditions, during 3 years of operation. The accumulation patterns along the ditches and their rates were revealed. In addition, the composition of the accumulation was investigated. Finally, the ratio of sand and volatile particles, mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids, as well as the removal efficiency were also observed against the accumulated sludge. Further, a laboratory-scale channel was used to investigate the settleability of grit after mixing with variable values of MLSS. The observed results indicated that the economical design and operation of ODs using a velocity value between 0.3-0.35 m/s is not recommended, to avoid the settling of all solids. High values of MLSS and sludge age need high horizontal velocity (more than 0.35 m/s) and more power to avoid settling problems and system failure. The influence of flow velocity on the sludge settleability was studied, enabling better planning of future ditch design and operation.
Alkaline treatment of high-solids sludge and its application to anaerobic digestion.
Li, Chenchen; Li, Huan; Zhang, Yuyao
2015-01-01
High-solids anaerobic digestion is a promising new process for sludge reduction and bioenergy recovery, requiring smaller digestion tanks and less energy for heating, but a longer digestion time, than traditional low-solids anaerobic digestion. To accelerate this process, alkaline sludge disintegration was tested as a pretreatment method for anaerobic digestion of high-solids sludge. The results showed that alkaline treatment effectively disintegrated both low-solids sludge and high-solids sludge, and treatment duration of 30 min was the most efficient. The relation between sludge disintegration degree and NaOH dose can be described by a transmutative power function model. At NaOH dose lower than 0.2 mol/L, sludge disintegration degree remained virtually unchanged when sludge total solids (TS) content increased from 2.0 to 11.0%, and decreased only slightly when sludge TS increased to 14.2%. Although high-solids sludge required a slightly higher molarity of NaOH to reach the same disintegration level of low-solids sludge, the required mass of NaOH actually decreased due to sludge thickening. From the view of NaOH consumption, sludge TS of 8-12% and a NaOH dose of 0.05 mol/L were optimum conditions for alkaline pretreatment, which resulted in a slight increase in accumulative biogas yield, but a decrease by 24-29% in digestion time during the subsequent anaerobic digestion.
Habermacher, Jonathan; Benetti, Antonio Domingues; Derlon, Nicolas; Morgenroth, Eberhard
2016-07-01
One strategy for the management of excess sludge in small wastewater treatment plants (WWTPs) consists in minimizing the excess sludge production by operating the WWTP at very long solids retention times (SRTs > 30 days). A number of recent studies have suggested that sludge minimization at very long SRT results from the degradation of the unbiodegradable particulate fraction (XU) (influent unbiodegradable compounds and endogenous decay products). But the biodegradability of the unbiodegradable particulate fraction has only been evaluated during batch digestion test performed at ambient temperature with sludge fed with synthetic wastewaters. It is not clear to what extent observations made for sludge fed with synthetic influents can be transposed to sludge fed with real influent. The current study thus focused on evaluating the biodegradability of the unbiodegradable particulate fraction for sludge fed with real wastewater. Batch digestion tests (400 days, ambient temperature) were conducted with three different sludges fed with either synthetic or real influents and exposed to aerobic or intermittent aeration conditions. Our results indicate that volatile suspended solids (VSS) decreased even after complete decay of the active biomass (i.e., after 30 days of aerobic batch digestion) indicating that the unbiodegradable particulate fraction is biodegradable. However, very low degradation rates of the unbiodegradable particulate fraction were monitored after day 30 of digestion (0.7-1.7·10(-3) d(-1)). These values were in the lower range of previously published values for synthetic wastewaters (1-7.5·10(-3) d(-1)). The low values determined in our study indicate that the rate could decrease over time or that sludge composition influences the degradability of the unbiodegradable particulate fraction. But our results also demonstrate that extracellular polymeric substances (EPS) have a minor impact on the biodegradability of the unbiodegradable particulate fraction. Overall bound EPS were indeed biodegradable under all conditions and thus did not accumulate in the unbiodegradable particulate fraction. Different bound EPS pools (e.g., cation bound EPS) were associated with specific degradation behaviors. Besides improved mechanistic understanding of sludge degradation processes, our results have implications for the development of decentralized wastewater treatment technologies with on-site reduction of excess sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Yuan-Cheng; Min, Xiao-Bo; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liyang, Wen-Jun
2016-10-01
Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. E.; Jones, T. M.; Miller, D. H.
Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418,more » 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters' describes the number of equivalent canisters that would be produced from the beginning of the current contract period before SB3 is blended with SB4. The melt rate for the SMRF SB4/Frit 510 test was 14.6 grams/minute. Due to cold cap mounding problems with the SMRF SB4/Frit 418 feed at 50 weight % solids that prevented a melt rate determination, this feed was diluted to 45 weight % solids. The melt rate for this diluted feed was 8.9 grams/minute. A correction factor of 1.2 for estimating the melt rate at 50 weight % solids from 45 weight % solids test results (based on previous SMRF testing5) was then used to estimate a melt rate of 10.7 grams/minute for SB4/Frit 418 at 50 weight % solids. Therefore, the use of Frit 510 versus Frit 418 with SB4 resulted in a higher melt rate (14.6 versus an estimated 10.7 grams/minute). For reference, a previous SMRF test with SB3/Frit 418 feed at 35% waste loading and 50 weight % solids resulted in a melt rate of 14.1 grams/minute. Therefore, depending on the actual feed rheology, the use of Frit 510 with SB4 could result in similar melt rates as experienced with SB3/Frit 418 feed in the DWPF.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Toxicity of ferric chloride sludge to aquatic organisms.
Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr
2007-06-01
Iron-rich sludge from a drinking water treatment plant (DWTP) was investigated regarding its toxicity to aquatic organisms and physical and chemical composition. In addition, the water quality of the receiving stream near the DWTP was evaluated. Experiments were carried out in August 1998, February 1999 and May 1999. Acute toxicity tests were carried out on a cladoceran (Daphnia similis), a midge (Chironomus xanthus) and a fish (Hyphessobrycon eques). Chronic tests were conducted only on D. similis. Acute sludge toxicity was not detected using any of the aquatic organisms, but chronic effects were observed upon the fecundity of D. similis. Although there were relatively few sample dates, the results suggested that the DWTP sludge had a negative effect on the receiving body as here was increased suspended matter, turbidity, conductivity, chemical oxygen demand (COD) and hardness in the water downstream of the DWTP effluent discharge. The ferric chloride sludge also exhibited high heavy metal concentrations revealing a further potential for pollution and harmful chronic effects on the aquatic biota when the sludge is disposed of without previous treatment.
Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P
2011-09-01
Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WHITE, D.A.
1999-12-29
This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS).
Persistence of enteroviruses in sewage sludge*
Subrahmanyan, T. P.
1977-01-01
Sewage from residential areas often contains viruses pathogenic for man and significant amounts are probably associated with solids in sewage sludge. Information on the survival of viruses in sewage sludge is necessary in order to develop guidelines for recycling programmes that involve spreading the sludge on land. In the present study, a number of enteroviruses were added to sewage sludge and the artificially contaminated sludges were tested for viruses at intervals over a 12-week period. Most of the viruses survived for many weeks at room temperature. It is clear that sewage sludge destined for land application should be adequately treated for virus inactivation. In interpreting these results, it should be borne in mind that the survival of hepatitis A virus might be similar. Recent reports about the reappearance of poliomyelitis in regions with immunization programmes should also be taken into consideration. PMID:202416
He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri
2012-06-01
The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.
Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.
Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less
BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)
Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...
Donatello, S; Tyrer, M; Cheeseman, C R
2010-01-01
A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.
ERIC Educational Resources Information Center
Carnegie, John W.
Laboratory tests used to determine status and to evaluate and/or maintain process control of the various sludge treatment processes are introduced in this lesson. Neither detailed test procedures nor explanations of how the tests should be applied to every unit are explained; this information is provided in other modules. The instructor's manual…
NASA Astrophysics Data System (ADS)
Purohit, Abhilash; Satapathy, Alok
2018-03-01
In the field of composite research, use of industrial wastes such as slag and sludge particles as filler in wear resistant polymer composites has not been very common. Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In this context this work explores the possibility of such polymer composites filled with low cost industrial wastes and presents a comparison of mechanical characteristics among three types of epoxy based composites filled with Linz - Donawitz sludge (LD sludge), blast furnace slag (BF slag) and Linz - Donawitz slag (LD slag) respectively. A comparative study in regard to their solid particle erosion wear characteristics under similar test conditions is also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt. %) of LD sludge are fabricated by solution casting technique. Mechanical properties such as micro- hardness, tensile strength and flexural strength of three types of composites have been evaluated as per ASTM test standards and solid particle erosion wear test is performed following a design of experiment approach based on Taguchi’s orthogonal array. Five control factors (impact velocity, erodent size, filler content, impingement angle and erodent temperature) each at five levels are considered to conduct erosion wear tests. The test results for epoxy-LD sludge composites are compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and erosion wear characteristics among the three types of composites considered in this study. This work also opens up a new avenue for value added utilization of an abundant industrial waste in the making of epoxy based functional composites.
Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.
Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin
2018-04-30
The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fountain, Matthew S.; Fiskum, Sandra K.; Baldwin, David L.
This data package contains the K Basin sludge characterization results obtained by Pacific Northwest National Laboratory during processing and analysis of four sludge core samples collected from Engineered Container SCS-CON-210 in 2010 as requested by CH2M Hill Plateau Remediation Company. Sample processing requirements, analytes of interest, detection limits, and quality control sample requirements are defined in the KBC-33786, Rev. 2. The core processing scope included reconstitution of a sludge core sample distributed among four to six 4-L polypropylene bottles into a single container. The reconstituted core sample was then mixed and subsampled to support a variety of characterization activities. Additionalmore » core sludge subsamples were combined to prepare a container composite. The container composite was fractionated by wet sieving through a 2,000 micron mesh and a 500-micron mesh sieve. Each sieve fraction was sampled to support a suite of analyses. The core composite analysis scope included density determination, radioisotope analysis, and metals analysis, including the Waste Isolation Pilot Plant Hazardous Waste Facility Permit metals (with the exception of mercury). The container composite analysis included most of the core composite analysis scope plus particle size distribution, particle density, rheology, and crystalline phase identification. A summary of the received samples, core sample reconstitution and subsampling activities, container composite preparation and subsampling activities, physical properties, and analytical results are presented. Supporting data and documentation are provided in the appendices. There were no cases of sample or data loss and all of the available samples and data are reported as required by the Quality Assurance Project Plan/Sampling and Analysis Plan.« less
ERIC Educational Resources Information Center
Himes, Dottie
This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…
Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A
The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so.
Seka, M A; Van DeWiele, T; Verstraete, W
2002-01-01
A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.
Mininni, Giuseppe; Sbrilli, Andrea; Guerriero, Ettore; Rotatori, Mauro
2004-03-01
The factors affecting polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) formation were studied in sewage sludge incineration tests carried out on a demonstrative plant. The plant includes a circulating fluidised bed furnace (FBF) and a rotary kiln furnace (RKF), operating alternatively. During the tests sewage sludge was spiked with chlorinated hydrocarbons and the operating parameters of the afterburning chamber were varied. PCDD/F were sampled in each test before the bag filter, thus collecting the above contaminants before abatement systems. From the tests it appeared that PCDD/F were always produced in more abundance in the tests carried out by FBF than by RKF. The higher PCDD/F concentrations in the tests by FBF were reached when sewage sludge was spiked with a high dosage of a surrogate organic mixture of chlorinated hydrocarbons and when the afterburning chamber was used only as transit equipment with the burner off. The distribution of the different PCDD/F homologues was compared. P5CDFs were generally the prevalent fraction, with very few exceptions for the tests by RKF at high temperature of the afterburning chamber. As for FBF tests, it was found that the PCDD/F homologue profile depends on the afterburning chamber temperature.
Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan
2012-09-01
The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.
Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P
2009-01-01
In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.
Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.
Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato
2015-01-01
Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.
Sewage sludge conditioning with the application of ash from biomass-fired power plant
NASA Astrophysics Data System (ADS)
Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam
2018-02-01
During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.
Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin
2017-06-15
To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Arasmith, E. E.
The settleometer test is used to indicate the solids-liquid separation (downtime) capability of sludge, most commonly on activated sludge entering the secondary clarifier and aerobic digesters. Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module…
ERIC Educational Resources Information Center
Wooley, John F.
A commonly used test for determining filterability of conditioned sludge is the specific resistance (Buchner funnel) test. The sludge is filtered through filter paper using a Buchner funnel, and the time needed to obtain a given volume of filtrate (or for cake residue to begin to crack) is measured. The shorter the time, the better the…
Laboratory measurements of radiance and reflectance spectra of dilute primary-treated sewage sludge
NASA Technical Reports Server (NTRS)
Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Gurganus, E. A.
1977-01-01
The feasibility of remotely monitoring ocean dumping of waste products such as acid and sewage sludge is evaluated. The laboratory arrangement, solar simulator, and test results from three experiments conducted in the laboratory are described. Radiance and reflectance spectra are presented for primary-treated sewage sludge mixed with two types of base water. Results indicate that upwelled reflectance varies in a near-linear manner with concentration and that the sludge has a practically flat signal response between 420 and 970 nm. Well-defined upwelled reflectance spectra were obtained for the sewage-sludge mixtures at all wavelengths and concentrations. The spectral-reflectance values appeared to be influenced by the type of base water, but this influence was small, especially for the mixtures with low concentrations of sewage sludge.
Lobato, L C S; Chernicharo, C A L; Pujatti, F J P; Martins, O M; Melo, G C B; Recio, A A R
2013-01-01
A small unit of cogeneration of energy and heat was tested at the Centre for Research and Training on Sanitation UFMG/COPASA - CePTS, located at the Arrudas Sewage Treatment Plant, in Belo Horizonte, Minas Gerais, Brazil. The unit consisted of an engine power generator adapted to run on biogas, a thermal dryer prototype and other peripherals (compressor, biogas storage tank, air blower, etc.). The heat from engine power generator exhaust gases was directed towards the thermal dryer prototype to dry the sludge and disinfect it. The results showed that the experimental apparatus is self-sufficient in electricity, even producing a surplus, available for other uses. The tests of drying and disinfection of sludge lasted 7 h, leading to an increase in solids content from 4 to 8% (50% reduction in sludge volume). Although the drying of sludge was not possible (only thickening was achieved), the disinfection process proved very effective, enabling the complete inactivation of helminth eggs.
Ince, Orhan; Kolukirik, Mustafa; Cetecioglu, Zeynep; Eyice, Ozge; Inceoglu, Ozgul; Ince, Bahar
2009-12-01
The aim of this study was to determine the effect of toluene on an anaerobic sludge taken from a full-scale upflow anaerobic sludge blanket (UASB) reactor in terms of potential activity and composition of acetoclastic methanogens. Specific methanogenic activity (SMA) test results showed that 5%, 9.5%, 14%, 24%, 29%, 38% and 62% inhibition occurred in the potential methane production (PMP) rate of the sludge at toluene concentrations of 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM and 1 mM, respectively. Fluorescence in situ hybridization (FISH) results showed that relative abundance of archaeal cells was approx. 19% throughout the SMA tests. The anaerobic sludge was dominated by acetoclastic genus Methanosaeta which were slightly affected by increasing toluene concentrations do not have any effect on relative abundance of Methanosaeta spp., which was between 73% +/- 1.6 and 68% +/- 2.1 of the archaeal population.
Consideration of Sludge Formation in HFC-134a / Polyol Ester oil Refrigeration System
NASA Astrophysics Data System (ADS)
Yamamoto, Tsutomu; Yamamoto, Tethuya; Simizu, Yasuhiko; Nakayama, Yoshinori; Takizawa, Kikuo
A refrigeration test employing HFC-134a and polyol ester oil was carried out in order to make clear the causes of the sludge formation in the capillary tube. Compressors used were two types: a hermetic reciprocating compressor and a rotary compressor. Installed dryer contained desiccant of the compound zeolite type. The results showed that the amount of capillary sludge increased as the compressor temperature rose. The capillary sludge was determined to consist of desiccant and metal dust for the reciprocating compressor, and of tar-like substance for the rotary compressor. Thermal stability test which was used to check the degree of deterioration of the ester oil, suggested that the presence of desiccant and high compressor temperature might produce tar-like substance by the break down and polymerization of the ester oil. In addition, it was confirmed that factors affecting the sludge formation were the dirtiness of the refrigeration circuit for the reciprocating compressor, and the presence of desiccant, for the rotary compressor.
Boruszko, Dariusz
2017-05-01
Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689µg·kg -1 in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95µg·kg -1 in dry mass. A mixture of excess and flotation sludge had the content of 497,7µg·kg -1 in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Souto Filho, S. N.; Marchini, D. C.; de Arruda, O. G.; Giácomo, R. G.; Alves, M. C.
2012-04-01
Incorrect use of land and large buildings in rural areas are causing changes to it, making them less productive and thus increasing the degraded areas. Techniques aimed at ecological restoration of degraded soils have been investigated. In recovery planning a degraded area, the great challenge to be achieved is the establishment of a A horizon, so that from then on, the process is catalyzed by the biosphere, and there may be other horizons, as the natural conditioning. In this sense the positive changes were investigated in an environment of decapitated Savannah Oxisol, which was removed a layer 8.5 m thick to build a hydroelectric power plant. For recovery, we used a native tree species, green manure, sewage sludge and grass. The studied soil is under human intervention techniques for recovery for seven years. The experimental design was randomized blocks with five treatments and five replications. The treatments were: 1-Control- bare soil (without management), 2-Astronium fraxinifolium Schott; 3-A. fraxinifolium + Canavalia ensiformis; 4- A. fraxinifolium + Raphanus sativus by 2005 was replaced in 2006 by Crotalaria juncea; 5- A. fraxinifolium + Brachiaria decumbens + sewage sludge (60 t ha-1, dry basis). We studied in 2010 and 2011 the development of tree species (stem diameter and plant height), the fresh and dry matter of green manures and B. decumbens. The results were analyzed by performing the variance analysis and Tukey test at 5% probability to compare averages. The rate of plant growth during the periods studied in the treatment with sewage sludge was higher than other treatments, so this is the most appropriate management for the recovery of degraded soil under study.
Forest Thrives In Sludge Application Tests
Dale G. Brockway
1988-01-01
A six-year, state and federal research-demonstration project to recycle treated municipal wastewater sludge on forest lands has resulted in dramatic growth increase of trees, groundcover and wildlife populations.
A pilot-scale microwave technology for sludge sanitization and drying.
Mawioo, Peter M; Garcia, Hector A; Hooijmans, Christine M; Velkushanova, Konstantina; Simonič, Marjana; Mijatović, Ivan; Brdjanovic, Damir
2017-12-01
Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4kW for various time durations ranging from 30 to 240min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥16MJ/kg) and nutrient contents (solids; TN≥28mg/g TS and TP≥15mg/g TS; condensate TN≥49mg/L TS and TP≥0.2mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
This document is composed of a work plan and additional technical information which demonstrates the qualifications of Detox Industries, Inc. to conduct remediation of a PCB contaminated sludge at General Motors (GM) plant in New York. Provided are the results of a field demons...
Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C. J.; Newell, J. D.; Crawford, C. L.
An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.
Chitosan use in chemical conditioning for dewatering municipal-activated sludge.
Zemmouri, H; Mameri, N; Lounici, H
2015-01-01
This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F. C.
2013-11-18
In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.
Potential use of sludge cake from paper mill wastewater treatment as degradable flower pot.
Kongmuang, Udomsak; Sritanaudomchai, Hathaitip; Morioka, Ikuharu
2016-07-01
Sludge cake produced in paper mill industries is disposed into a landfill and may cause the environmental and health problems. Now many researchers have tried to recycle rigid materials from it for the purpose of decreasing its volume. The aims of this study were to clarify three hypotheses: (1) whether a flower pot would be economically made from sludge cake, (2) whether it would be safe for environment, and (3) when vegetables would grow enough in it, whether they would be safe for human consumption. Sludge cake was mixed with soil (soil texture: heavy clay). The circular plaster mold was used as a fixed mold. As the toxicological testing, leaching test and seed germination test were used. Heavy metal concentrations in vegetables grown in the flower pot were measured. The flower pot was sufficiently formed by drying in natural open air. The results of leaching test showed three heavy metals, lead, nickel and copper, were lower than the standard in Thailand. The seed germination test suggested no negative effects of the flower pot on the germination of Chinese kale. Lead concentrations in the Chinese kale were higher than the recommended maximum level in leafy vegetables. The new flower pot can be made from sludge cake with soil. It has the possibility to have no negative effect on the environment. Although the vegetables grown in this flower pot are not suitable to eat, this flower pot has the possibility to solve the environmental and health problems.
Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan
2009-10-01
The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.
Characterization study on secondary sewage sludge for replacement in building materials
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri
2017-09-01
Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan
2011-07-01
To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.
Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.
Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy
2017-09-15
Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lei, Li; Ni, Jinren
2014-04-15
A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dries, Jan; Daens, Dominique; Geuens, Luc; Blust, Ronny
2014-01-01
The present study compares conventional wastewater treatment technologies (coagulation-flocculation and activated sludge) and powdered activated carbon (PAC) treatment for the removal of acute ecotoxicity from wastewater generated by tank truck cleaning (TTC) processes. Ecotoxicity was assessed with a battery of four commercially available rapid biological toxicity testing systems, verified by the US Environmental Protection Agency. Chemical coagulation-flocculation of raw TTC wastewater had no impact on the inhibition of the bioluminescence by Vibrio fischeri (BioTox assay). Subsequent biological treatment with activated sludge without PAC resulted in BioTox inhibition-free effluent (<10% inhibition). In contrast, activated sludge treatment without PAC produced an effluent that significantly inhibited (>50%) (i) the bioluminescence by Photobacterium leiognathi (ToxScreen³ test kit), (ii) the photosynthesis by the green algae Chlorella vulgaris (LuminoTox SAPS test kit), and (iii) the particle ingestion by the crustacean Thamnocephalus platyurus (Rapidtoxkit test kit). The lowest inhibition was measured after activated sludge treatment with the highest PAC dose (400 mg/L), demonstrating the effectiveness of PAC treatment for ecotoxicity removal from TTC wastewater. In conclusion, the combination of bioassays applied in the present study represents a promising test battery for rapid ecotoxicty assessment in wastewater treatment.
Pantazopoulou, E; Zebiliadou, O; Mitrakas, M; Zouboulis, A
2017-03-01
A global demand for efficient re-utilization of produced solid wastes, which is based on the principles of re-use and recycling, results to a circular economy, where one industry's waste becomes another's raw material and it can be used in a more efficient and sustainable way. In this study, the influence of a by-product addition, such as aluminum anodizing sludge, on tannery waste (air-dried sludge) stabilization was examined. The chemical characterization of tannery waste leachate, using the EN 12457-2 standard leaching test, reveals that tannery waste cannot be accepted even in landfills for hazardous wastes, according to the EU Decision 2003/33/EC. The stabilization of tannery waste was studied applying different ratios of tannery waste and aluminum anodizing sludge, i.e. 50:50, 60:40, 70:30 and 80:20 ratios respectively. Subsequently, the stabilization rate of the qualified as optimum homogenized mixture of 50:50 ratio was also tested during time (7, 15 and 30days). Moreover, this stabilized product was subjected to phytotoxicity tests using the Lepidium sativum, Sinapis alba and Sorghum saccharatum seeds. The experimental results showed that aluminum anodizing sludge managed to stabilize effectively chromium and organic content of tannery waste, which are the most problematic parameters influencing its subsequent disposal. As a result, tannery waste stabilized with the addition of aluminum anodizing sludge at 50:50 ratio can be accepted in non-hazardous waste landfills, as chromium and dissolved organic carbon concentrations in the respective leachate are below the relevant regulation limits, while the stabilized waste shows decreased phytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wood ash to treat sewage sludge for agricultural use
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.K.
About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for landmore » application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.« less
Berthod, Laurence; Roberts, Gary; Whitley, David C; Sharpe, Alan; Mills, Graham A
2014-12-15
The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Berthod, Laurence; Roberts, Gary; Whitley, David C.; Sharpe, Alan; Mills, Graham A.
2014-01-01
The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. PMID:25299795
Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.
Björklund, Karin; Li, Loretta Y
2017-07-15
Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua
2015-09-01
Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peeters, Bart; Dewil, Raf; Vernimmen, Luc; Van den Bogaert, Benno; Smets, Ilse Y
2013-07-01
This paper presents a new application of polyaluminiumchloride (PACl) as a conditioner for waste activated sludge prior its dewatering and drying. It is demonstrated at lab scale with a shear test-based protocol that a dose ranging from 50 to 150 g PACl/kg MLSS (mixed liquor suspended solids) mitigates the stickiness of partially dried sludge with a dry solids content between 25 and 60 %DS (dry solids). E.g., at a solids dryness of 46% DS the shear stress required to have the pre-consolidated sludge slip over a steel surface is reduced with 35%. The salient feature of PACl is further supported by torque data from a full scale decanter centrifuge used to dewater waste sludge. The maximal torque developed by the screw conveyor inside the decanter centrifuge is substantially reduced with 20% in the case the sludge feed is conditioned with PACl. The beneficial effect of waste sludge conditioning with PACl is proposed to be the result of the bound water associated with the aluminium polymers in PACl solutions which act as a type of lubrication for the intrinsically sticky sludge solids during the course of drying. It can be anticipated that PACl addition to waste sludge will become a technically feasible and very effective method to avoid worldwide fouling problems in direct sludge dryers, and to reduce torque issues in indirect sludge dryers as well as in sludge decanter centrifuges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy potential of the modified excess sludge
NASA Astrophysics Data System (ADS)
Zawieja, Iwona
2017-11-01
On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.
STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.
2014-06-01
The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency formore » future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: • a description of the K Basin sludge sample archive program and the sample inventory • a summary and images of the samples that were repackaged in April 2014 • up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory • updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory • occurrence and deficiency reports associated with sample storage and repackaging« less
The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.
Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I
2000-10-02
The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.
Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M
2016-10-01
The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.
Toxicities of triclosan, phenol, and copper sulfate in activated sludge.
Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf
2005-04-01
The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Innovative sludge pretreatment technology for impurity separation using micromesh.
Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao
2018-05-23
In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2 min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.
Barraoui, Driss; Labrecque, Michel; Blais, Jean-François
2008-03-01
Given the fact that, according to our knowledge, no study has compared the agro-environmental use of decontaminated with non-decontaminated sludge, a greenhouse experiment was carried out to test the growth of maize (Zea mays L., G-4011 Hybrid) and bioaccumulation of metals in the presence of four different sludges (MUC, QUC, BEC and DAI), before and after their decontamination by a novel process (METIX-AC). Data showed that decontaminated sludge ameliorated plant growth and biomass production, and decreased bioaccumulation of metals, more than control soil, inorganic chemical fertilization, or conventional non-decontaminated sludge. Since chemicals used by the METIX-AC process contained S and Fe, decontaminated sludge introduced large amounts of these elements, while the overall presence of metals was reduced. Often, sludge dose also affected maize growth and bioaccumulation of metals. Overall, no toxicity to plants was noticed and bioaccumulation and transfer of many metals remained below the limits reported in the literature.
Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R
2016-01-01
Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.
Keating, C; Cysneiros, D; Mahony, T; O'Flaherty, V
2013-01-01
In this study, the ability of various sludges to digest a diverse range of cellulose and cellulose-derived substrates was assessed at different temperatures to elucidate the factors affecting hydrolysis. For this purpose, the biogas production was monitored and the specific biogas activity (SBA) of the sludges was employed to compare the performance of three anaerobic sludges on the degradation of a variety of complex cellulose sources, across a range of temperatures. The sludge with the highest performance on complex substrates was derived from a full-scale bioreactor treating sewage at 37 °C. Hydrolysis was the rate-limiting step during the degradation of complex substrates. No activity was recorded for the synthetic cellulose compound carboxymethylcellulose (CMC) using any of the sludges tested. Increased temperature led to an increase in hydrolysis rates and thus SBA values. The non-granular nature of the mesophilic sludge played a positive role in the hydrolysis of solid substrates, while the granular sludges proved more effective on the degradation of soluble compounds.
PAHs content of sewage sludge in Europe and its use as soil fertilizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suciu, Nicoleta A., E-mail: nicoleta.suciu@unicatt.it; Lamastra, Lucrezia; Trevisan, Marco
2015-07-15
Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lackmore » of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha{sup −1} sewage sludge annually than 15 t ha{sup −1} triennially. Results suggest, the EU maximum recommended limit of 6 mg kg{sup −1} PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms.« less
NASA Astrophysics Data System (ADS)
Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian
2014-06-01
Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.
ERIC Educational Resources Information Center
West, Alfred W.
This is the first in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Part I of this document deals with physical observations which should be performed during each routine control test. Part II…
Crawler Acquisition and Testing Demonstration Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
DEFIGH-PRICE, C.
2000-10-23
If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support finalmore » design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan includes the following: (1) Identification of acquisition strategy and plan to obtain a crawler based retrieval system; (2) Plan for sufficient cold testing to make a decision for W-523 and to comply with TPA Milestone M-45-03H; (3) Cost and schedule for path forward; (4) Responsibilities of the participants; and (5) The plan is supported by updated Level 1 logics, a Relative Order of Magnitude cost estimate and preliminary project schedule.« less
Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.
da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard
2015-01-01
The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.
Reuse of waste materials as growing media for ornamental plants.
Hernández-Apaolaza, Lourdes; Gascó, Antonio M; Gascó, José M; Guerrero, Francisca
2005-01-01
The use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost. Substrates were physically and chemically well characterized, and 75-cm plants were grown on them for one year. Plant and substrate status were periodically tested along the experiment. As biosolid recycling is the main objective of the present work, the mixtures with 30% of composted sewage sludge will be the most convenient substrate to use. For C. sempervirens and C. arizonica, a mixture between pine bark or coconut fibre and 30% of biosolid compost in volume gave the best results, but the lower cost of the pine bark than the coconut fibre substrate indicated the use of the PB+30% CSS. For P. pinea the research of new combinations between waste products is recommended to attain better results.
Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D
2015-10-01
Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Ozonation strategies to reduce sludge production of a seafood industry WWTP.
Campos, J L; Otero, L; Franco, A; Mosquera-Corral, A; Roca, E
2009-02-01
In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.
NASA Astrophysics Data System (ADS)
Ni'matuzahroh, Puspitasari, Alvin Oktaviana; Pratiwi, Intan Ayu; Fatimah, Sumarsih, Sri; Surtiningsih, Tini; Salamun
2016-03-01
The study aims to reveal the potency of biosurfactant-producing bacterial culture with molasses as substrate growth in releasing oil from the petroleum sludge at temperature variations. Bacteria used consisted of (Acinetobacter sp. P2(1), Pseudomonas putida T1(8), Bacillus subtilis 3KP and Micrococcus sp. L II 61). The treatments were tested at 40°C, 50°C and 60 °C for 7 days of incubation. Synthetic surfactant (Tween 20) was used as a positive control and molasses as a negative control. Release of petroleum hydrocarbons from oil sludge was expressed in percentage of oil removal from oil sludge (%). Data were analyzed statistically using the Analysis of Variance (α = 0.05) and continued with Games-Howell test. The kinds of bacterial cultures, incubation temperature and combination of both affected the percentage of oil removal. The abilities of Bacillus subtilis 3KP and Micrococcus sp. LII 61cultures in oil removal from oil sludge at the temperature exposure of 60°C were higher than Tween 20. Both of bacterial cultures grown on molasses can be proposed as a replacement for synthetic surfactant to clean up the accumulation of oil sludge in a bottom of oil refinery tank.
Rajagopal, Rajinikanth; Béline, Fabrice
2011-05-01
This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2014-02-01
There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management.
NASA Astrophysics Data System (ADS)
Antonella Dino, Giovanna; Clemente, Paolo; De Luca, Domenico Antonio; Lasagna, Manuela
2013-04-01
Residual sludge coming from dimensional stones working plants (diamond framesaw and ganguesaw with abrasive shots processes) represents a problem for Stone Industries. In fact the cost connected to their landfilling amounts to more than 3% of operating costs of dimensional stone working plants. Furthermore their strict feature as waste to dump (CER code 010413) contrasts the EU principles of "resource preservation" and "waste recovery". The main problems related to their management are: size distribution (fine materials, potentially asphyxial), presence of heavy metals (due to the working processes) and TPH content (due to oil machines losses). Residual sludge, considered according to Italian Legislative Decree n.152/06, can be used, as waste, for environmental restoration of derelict land or in cement plants. It is also possible to think about their systematic treatment in consortium plats for the production of Secondary Raw Materials (SRM) or "New Products" (NP, eg. artificial loam, waterproofing materials, ....). The research evidences that, on the basis of a correct sludge management, treatment and characterization, economic and environmental benefits are possible (NP or SRM in spite of waste to dump). To individuate different applications of residual sludge in civil and environmental contexts, a geotechnical (size distribution, permeability, Atterberg limits, cohesion and friction angle evaluation, Proctor soil test) characterization was foreseen. The geotechnical tests were conducted on sludge as such and on three different mixes: - Mix 1 - Bentonite clay (5-10%) added to sludge a.s (90-95%); - Mix 2 - Sludge a.s. (90-80-70%) added to coarse materials coming from crushed dimensional stones (10-20-30%); - Mix 3 - Sludge a.s. (50-70%) mixed with sand, compost, natural loam (50-30% mixture of sand, compost, natural loam). The results obtained from the four sets of tests were fundamental to evaluate: - the characteristics of the original materials; - the chance to obtain new products for dumps waterproofing (Mix 1). In this case the permeability has to be at least 10-9 m/s; - the opportunity to use them for land rehabilitation and reclamation (fine and coarse materials to fill quarry or civil works pits - Mix2; artificial loam to use for quarry and civil works revegetation - Mix 3). In Mix 3 phytotoxicity tests have been performed in cooperation with Agricultural Dept. - University of Turin. In this case the "cradle to grave principle" would be applied: "waste" coming from dimensional stone working plants could return to quarries. The results coming from geotechnical tests are promising, but to exploit sludge mixtures in civil and environmental applications it is necessary to guarantee, by means of appropriate chemical analysis, that there are no problems connected to soil, water and air pollution (connected to heavy metals and TPH contents). Magnetic or hydrogravimetric separation can be performed to reduce heavy metal content, instead TPH decrement can be reached by mean of specific agronomic treatments (eg. Bioremediation). Several in situ tests will be performed to compare the laboratory results to the "pre-industrial" ones: the obtained results will be potentially useful to propose some integration to the present Italian legislation.
Effects of using arsenic-iron sludge wastes in brick making.
Hassan, Khondoker Mahbub; Fukushi, Kensuke; Turikuzzaman, Kazi; Moniruzzaman, S M
2014-06-01
The arsenic-iron sludge generated in most of the treatment systems around the world is discharged into the nearest watercourse, which leads to accumulative rise of arsenic and iron concentrations in water. In this study, attempts were made to use the arsenic-iron sludge in making bricks and to analyze the corresponding effects on brick properties. The water treatment plant sludge is extremely close to brick clay in chemical composition. So, the sludge could be a potential substitute for brick clay. This study involved the addition of sludge with ratios 3%, 6%, 9% and 12% of the total weight of sludge-clay mixture. The physical and chemical properties of the produced bricks were then determined and evaluated and compared to control brick made entirely from clay. Results of different tests indicated that the sludge proportion and firing temperature were the two key factors in determining the quality of bricks. The compressive strength of 3%, 6%, 9% and 12% sludge containing brick samples were found to be 14.1 MPa, 15.1 MPa, 9.4 MPa and 7.1 MPa, respectively. These results indicate that the compressive strength of prepared bricks initially increased and then decreased with the increase of sludge proportion. Leaching characteristics of burnt bricks were determined with the variation of pH at a constant temperature. The optimum amount of sludge that could be mixed with clay to produce good bonding of clay-sludge bricks was found to be 6% (safely maximum) by weight. Copyright © 2013 Elsevier Ltd. All rights reserved.
Municipal sewage sludge application on Ohio farms: tissue metal residues and infections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, C.S.; Dorn, C.R.; Lamphere, D.N.
1985-12-01
Transmission of infectious agents and translocation of Cd, Cu, Pb, and Zn from anaerobically digested sludge to the tissues of farm animals grazing on pastures to which sludge was applied (2-10 metric tons per hectare) were studied on eight farms. No significant health risk associated with the possible presence in sludge of Salmonella spp., or of common animal parasites including Nematodirus spp., Strongylus spp., Strongyloides spp., Trichuris spp., Eimeria spp., Ascaris spp., and Ancylostomum spp. was noted. Caudal fold as well as cervical tuberculin testing indicated no conversions from negative to positive following exposure of cattle to sludge. Significantly highermore » fecal Cd concentrations were detected in samples collected from cattle soon after being placed on sludge-treated pastures compared to preexposure values in the same animals. Significant Cd and Pb accumulations were found in the kidneys of calves grazing sludge-treated pastures compared to control calves. Although older cows grazing sludge-treated pastures had significantly higher blood Pb levels, no metal accumulation was observed in other tissues. Statistically significant accumulations of Cd and Pb in the kidney of calves grazing these pastures for a relatively short period suggest that caution should be exercised to avoid prolonged grazing of cattle on pastures receiving heavy sludge applications, especially with sludges containing high concentrations of heavy metals.« less
Digital image processing and analysis for activated sludge wastewater treatment.
Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed
2015-01-01
Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
Han, Sim-Hee; Lee, Jae-Cheon; Oh, Chang-Young; Kim, Pan-Gi
2006-10-01
We investigated alleviation of Cd toxicity and changes in the physiological characteristics of Betula schmidtii seedlings following application of composted sewage sludge to Cd-treated plants. Plants were grown under four test conditions: control, Cd treatment, sludge amendment, and Cd treatment with sludge amendment. B. schmidtii treated with Cd only accumulated the greatest amount of Cd in the leaves, but absorbed Cd was also highly concentrated in the roots. In contrast, Cd concentrations in the Cd and sludge amendment treated seedlings were the lowest in the roots. Since sludge amendment increased the growth of seedlings, it may have alleviated toxicity by dilution of Cd. Additionally, the absorbed Cd was more widely distributed since it was transported from the roots and accumulated in the stems and leaves of Cd and sludge treated plants. Cd treatment inhibited the growth and physiological functions of B. schmidtii seedlings, but sludge amendment compensated for these effects and improved growth and physiological functions in both Cd-treated and control plants. SOD activity in the leaves of seedlings was increased in the Cd-treated plants, but not in the Cd and sludge amendment treated seedlings. In conclusion, alleviation of Cd toxicity in response to sludge amendment may be related to a dilution effect, in which the Cd concentration in the tissues was effectively lowered by the improved growth performance of the seedlings.
Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu
2018-04-01
The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.
El-Sebaie, O; Ahmed, M; Ramadan, M
2000-01-01
The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.
Improvements of nano-SiO2 on sludge/fly ash mortar.
Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q
2008-01-01
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.
Modification of Rhodamine WT tracer tests procedure in activated sludge reactors
NASA Astrophysics Data System (ADS)
Knap, Marta; Balbierz, Piotr
2017-11-01
One of the tracers recommended for use in wastewater treatment plants and natural waters is Rhodamine WT, which is a fluorescent dye, allowing to work at low concentrations, but may be susceptible to sorption to activated sludge flocs and chemical quenching of fluorescence by dissolved water constituents. Additionally raw sewage may contain other natural materials or pollutants exhibiting limited fluorescent properties, which are responsible for background fluorescence interference. This paper presents the proposed modifications to the Rhodamine WT tracer tests procedure in activated sludge reactors, which allow to reduce problems with background fluorescence and tracer loss over time, developed on the basis of conducted laboratory and field experiments.
Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen
2016-11-01
Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.
Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque
2018-06-01
An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.
Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas
2017-03-01
Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies, such as channels, recreational water bodies, and commercial ports. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J
2015-09-09
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.
Lin, Lin; Li, Xiao-Yan
2018-03-01
Iron-based chemically enhanced primary sedimentation (CEPS) is increasingly adopted for wastewater treatment in mega cities, producing a large amount of sludge (Fe-sludge) with a high content of organics for potential organic resource recovery. In this experimental study, acidogenic fermentation was applied treat FeCl 3 -based CEPS sludge for production of volatile fatty acids (VFAs) at different pHs. Batch fermentation tests on the Fe-sludge with an organic content of 10 g-COD/L showed that the maximum VFAs production reached 2782.2 mg-COD/L in the reactor without pH control, and it reached 688.4, 3095.3, and 2603.7 mg-COD/L in reactors with pHs kept at 5.0, 6.0 and 8.0, respectively. Analysis of the acidogenesis kinetics and enzymatic activity indicated that the alkaline pH could accelerate the rate of organic hydrolysis but inhibited the further organic conversion to VFAs. In semi-continuous sludge fermentation tests, the VFAs yield in the pH6 reactor was 20% higher than that in the control reactor without pH regulation, while the VFAs yield in the pH8 reactor was 10% lower than the control. Illumina MiSeq sequencing revealed that key functional microorganisms known for effective sludge fermentation, including Bacteroidia and Erysipelotrichi, were enriched in the pH6 reactor with an enhanced VFAs production, while Clostridia became more abundant in the pH8 reactor to stand the unfavorable pH condition. The research presented acidogenic fermentation as an effective process for CEPS sludge treatment and organic resource recovery and provided the first insight into the related microbial community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robidoux, P Y; Choucri, A; Bastien, C; Sunahara, G I; López-Gastey, J
2001-01-01
Septic tank sludge is regularly hauled to the Montreal Urban Community (MUC) wastewater treatment plant. It is then discharged and mixed with the wastewater inflow before entering the primary chemical treatment process. An ecotoxicological procedure integrating chemical and toxicological analyses has been recently developed and applied to screen for the illicit discharge of toxic substances in septic sludge. The toxicity tests used were the Microtox, the bacterial-respiration, and the lettuce (Lactuca sativa) root elongation tests. In order to validate the applicability of the proposed procedure, a two-year interlaboratory study was carried out. In general, the results obtained by two independent laboratories (MUC and the Centre d'expertise en analyse environnementale du Quebec) were comparable and reproducible. Some differences were found using the Microtox test. Organic (e.g., phenol and formaldehyde) and inorganic (e.g., nickel and cyanide) spiked septic sludge were detected with good reliability and high efficiency. The relative efficiency to detect spiked substances was > 70% and confirms the results of previous studies. In addition, the respiration test was the most efficient toxicological tool to detect spiked substances, whereas the Microtox was the least efficient (< 15%). Efficiencies to detect spiked contaminants were also similar for both laboratories. These results support previous data presented earlier and contribute to the validation of the ecotoxicological procedure used by the MUC to screen toxicity in septic sludge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, J.P.; Glover, T.N.
Acid, infertile, erosive, barren orphan coal minesoils are a regional problem in the eastern coal fields. Learning how to establish permanent forest ecosystems on these minesoils is a goal of reclamation research in Ohio. This greenhouse research tested Newark, Ohio sewage sludge at 70, 160, 250, and 340 Mg ha/sup -1/ as treatments to promote growth of American sycamore (Platanus occidentalis L.) seedlings in toxic minesoils. Sycamore seed did germinate and grow in sludge-amended minesoil, whereas growth was nil in the absence of sewage sludge. Soil pH, available P, exchangeable K and Ca, available Zn, and extractable B all increasedmore » with sludge addition, but exchangeable Mg, available Mn and CEC declined. Regressions of N, P, K, Ca, Fe, and Cu content of seedlings on rate of sludge addition were significant and positive; a similar regression of manganese was significant and negative. Stress symptoms appearing on lower leaves of sycamore seedlings grown in sludge-minesoil mixtures matched boron toxicity symptoms of sycamore produced in solution cultures containing 2 or 4 mg kg/sup -1/ of B and in mixtures of glass fiber insulation, a component of the sludge, with peat and vermiculite.« less
Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V
2015-01-01
To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.
Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, D.; Pareizs, J.; Martino, C.
For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.
NASA Astrophysics Data System (ADS)
Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi
This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.
Microbial Ecology of Activated Sludge
Dias, F. F.; Bhat, J. V.
1964-01-01
Over 300 bacterial strains were isolated from seven samples of activated sludge by plating on sewage agar. Gram-negative bacteria of the genera Zoogloea and Comamonas predominated. Many isolates (51%) showed sudanophilic inclusions of poly-β-hydroxybutyric acid, whereas 34% accumulated iodophilic material on media containing starch. A large number required either vitamins or amino acids, or both, for growth. None of the isolates tested for their ability to bring about changes in autoclaved sewage produced an effluent comparable in quality to the activated sludge control, although the Zoogloea did produce activated sludgelike flocs. A study of 150 bacterial strains isolated from raw sewage revealed that they differed from the sludge isolates in several respects. Coliforms, which constitute nearly a quarter of the sewage isolates, were rarely encountered in sludge. PMID:14215970
Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption.
Ophithakorn, Thiwari; Sabah, Aboubakr; Delalonde, Michele; Bancon-Montigny, Chrystelle; Suksaroj, Thunwadee Tachapattaworakul; Wisniewski, Christelle
2016-11-01
Organotin compounds (OTs) have been widely used for their biocidal properties and as stabilizers in various industrial applications. Due to their high toxicity, organotins are subject to many studies regarding their behavior in wastewater treatment plant and aquatic environment. However, few studies are available regarding their behavior in lagoon sewage system, although such treatment is commonly used for sewage treatment in low-population areas. The present study aimed at studying the fate of organotins (monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT)) in lagoon sewage system. Short-term experiments, carried out at lab scale, consisted in sampling sludge from aerobic stabilization ponds, and then quantifying sorption and desorption of the different organotin species, as well as their respective transformation, under defined operating conditions (e.g., tributyltin spike and dilution) simulating possible change in the surrounding environment of sludge in the lagoon. Results established that a very important percentage of the OTs was localized in the solid phase of the sludge (more than 98 %), whatever the operating conditions may be; however, transformation and locations of the three OT species differed according to the different conditions of sludge dilution, TBT spiking, and test duration. After dilution of lagoon sludge, TBT desorption from sludge was observed; it was supposed that dealkylation of TBT after desorption occurred rapidly and increased dissolved MBT and DBT in liquid phase; MBT sorbed subsequently on solid phase. The nature of the diluent (i.e., tap water or saline solution) appeared to slightly influence the sludge behavior. After TBT spiking, TBT was supposed to be rapidly sorbed but also transformed in DBT and MBT that would as well sorbed on the sludge, which explained the decrease of these species in the liquid phase. Tests aimed at studying long-term effect of TBT spiking demonstrated that the sorbed species could be remobilized and transformed after a dilution.
Reuse of textile effluent treatment plant sludge in building materials.
Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R
2006-01-01
This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.
Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez
2006-01-01
The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2014-01-01
Abstract Background There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Methods Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Results Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. Conclusion The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26060740
NASA Astrophysics Data System (ADS)
Liberati, Dario; Sconocchia, Paolo; Ricci, Anna; Gigliotti, Giovanni; Tacconi, Chiara; De Angelis, Paolo
2017-04-01
Transpiration of plants can be used to control or remove water in artificial basins containing polluted flooded sediments (phyto-dehydration), with the aim to reduce the risk of environment contamination due to water/sediment spillage. At the same time plants can reduce the risks associated to the pollutants, reducing their mobility by the adsorption in the rhizosphere, uptake and accumulation in tissues, and providing organiccompounds contributing to bind heavy metals. We tested, at pilot scale, a phytodeydration approach to be applied to a storage pond containing sludge with high zinc and copper concentrations (3200 and 1000 µg/Kg, respectively). The sludge derives from the biodigestion of pig slurries, and for most of the year is covered by a water layer due to rainfall. The phyto-dehydration approach was tested in a two years long mesocosm-scale experiment. Inside the mesocosms we maintained the same sludge/water stratification observed in the pond; the helophyte species Phragmites australis was planted over a floating frame inside half of the mesocosms. Mesocosms with P.australis and control mesocosms without plants, were monitored during the test to assess the water consumption, CO2 and CH4 gas exchanges and plant functioning. At the end of the second year we analysed the changes on the carbon pool of the sludge and the immobilization of heavy metals in the plant tissues. After two years, the total organic carbon content of the sludge has been reduced in the control mesocosms, while in the P. australis mesocosms remain close to the initial values. Zinc and copper immobilization in the plant tissues, was characterised by: a very low concentration of zinc (5 µg/kg ) in leaves, intermediates values in culms and rhizomes (49 and 30 µg/kg) and higher values in roots (222 and 114 µg/kg). In conclusion, in addition to the reduction of the sludge spillage risks, the phyto-dehydration approach based on P. australis reduced the carbon loss of the sludge, and triggered at the same time a phytostabilization process that reduce the mobility of zinc and copper, without risk of input of these metals to the food chain.
Joint NRC/EPA Sewage Sludge Radiological Survey: Survey Design & Test Site Results
This report contains the results of a radiological survey of nine publicly POTWs around the country, which was commissioned by the Sewage Sludge Subcommittee, to determine whether and to what extent radionuclides concentrate in sewage treatment wastes.
STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE
This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the geneerator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...
Sobik-Szołtysek, Jolanta; Wystalska, Katarzyna; Grobelak, Anna
2017-07-01
This study evaluated the content of bioavailable forms of selected heavy metals present in the waste from Zn and Pb processing that can potentially have an effect on the observed difficulties in reclamation of landfills with this waste. The particular focus of the study was on iron because its potential excess or deficiency may be one of the causes of the failure in biological reclamation. The study confirmed that despite high content of total iron in waste (mean value of 200.975gkg -1 ), this metal is present in the forms not available to plants (mean: 0.00009gkg -1 ). The study attempted to increase its potential bioavailability through preparation of the mixtures of this waste with additions in the form of sewage sludge and coal sludge in different proportions. Combination of waste with 10% of coal sludge and sewage sludge using the contents of 10%, 20% and 30% increased the amounts of bioavailable iron forms to the level defined as sufficient for adequate plant growth. The Lepidum sativum test was used to evaluate phytotoxicity of waste and the mixtures prepared based on this waste. The results did not show unambiguously that the presence of heavy metals in the waste had a negative effect on the growth of test plant roots. Copyright © 2017 Elsevier Inc. All rights reserved.
Zubrowska-Sudol, Monika; Walczak, Justyna
2014-09-15
The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Radiation technology for environmental conservation
NASA Astrophysics Data System (ADS)
Machi, S.
The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NO x can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NO x in flue gas from coal burning power stations.
Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C
2006-01-01
Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.
Ward, R L; Yeager, J G; Ashley, C S
1981-01-01
Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765
Effects of waste glass additions on quality of textile sludge-based bricks.
Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji
2015-01-01
This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.
Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh
2015-06-01
In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.
Fouad, Mahmoud M; Razek, Taha M A; Elgendy, Ahmed S
2017-02-01
In Egypt, water treatment consumes about 365 000 tons of aluminum sulfate and produces more than 100 million tons of sludge per year. The common disposal system of sludge in Egypt is to discharge it into natural waterways. Toxicity of aluminum, environmental regulations and costs of chemicals used in water treatment and sludge treatment processes led to an evaluation of coagulant recovery and subsequent reuse. The present work aimed at aluminum recovery from sludge of El-Shiekh Zayd water treatment plant (WTP) to produce aluminum sulfate coagulant. Sludge was characterized and the effect of five variables was tested and the process efficiency was evaluated at different operating conditions. Maximum recovery is 94.2% at acid concentration 1.5 N, sludge weight 5 g, mixing speed 60 rpm, temperature 60 °C and leaching time 40 min. Then optimum conditions were applied to get maximum recovery for aluminum sulfate and compared to commercial coagulant on raw water of El-Shiekh Zayd (WTP).
The influence of clay fineness upon sludge recycling in a ceramic matrix
NASA Astrophysics Data System (ADS)
Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.
2016-04-01
The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.
Stack Gas Scrubber Makes the Grade
ERIC Educational Resources Information Center
Chemical and Engineering News, 1975
1975-01-01
Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)
Environmental application of cesium-137 irradiation technology: Sludges and foods
NASA Astrophysics Data System (ADS)
Sivinski, Jacek S.
Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation.
Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo
2014-04-01
Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Jing; Fu, Rongbing; Xu, Zhen
2017-08-01
In this work, the effects of diatomite with 15% FeSO 4 •7H 2 O and 7.5% Ca(OH) 2 on sludge stabilization were investigated using batch leaching tests. The influence of cell rupture caused by freezing and thawing on stabilization was also evaluated. The results indicated that the optimal diatomite percentage was 2%. Cell rupture by freezing and thawing reduced heavy metal leachability, followed by cell death and decrease of organic groups. The concentration of heavy metals in sludge leachate increased after cell rupture, indicating that the heavy metal leachability was reduced after freezing and thawings. Moreover, the stabilization effects were generally improved after freezing and thawing. As compared with the stabilization of the original sludge, the unstable fractions decreased and the residual fractions of the heavy metals increased in the stabilized sludge after cell rupture. This study developed a method to stabilize heavy metals in municipal sewage sludge. Diatomite combined with FeSO 4 ·7H 2 O and Ca(OH) 2 improved the treatment of sewage sludge contaminated by heavy metals. Cell lysis by freeze-thaw treatment reduced the risk of leaching heavy metals caused by cell death and decreased major organic groups in the sludge.
Behavior of radioactive materials and safety stock of contaminated sludge.
Tsushima, Ikuo
2017-01-28
The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.
Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe
2015-11-01
This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the application on the soil of sludge stabilized by liming or anaerobic digestion.
2003-11-01
treated anaerobically . To accommodate the longer residence times needed to treat waste anaerobically , the capacity is often much larger than a...the receiving tank (T1), where it is diluted and run through a trash pump (P1) to produce a homogenous slurry. 3 Figure 1. Sequencing...blower provides air to the reactor and receiving tank. The trash pump is also used to transfer sludge to the reactor and to recirculate sludge in
1998-08-01
b. WR-ALC IWTP Plant #2 ........................... 35 2. Analysis of WR-ALC IWTP Streams and Sludges ................. 36 a. RCRA Metal Removal at WR...ECONOMIC ANALYSIS OF MOS-LLX AND USE OF A STOICHIO- METRIC AMOUNT OF FERROUS SULFATE FOR CrvI REDUCTION AT IWTP PLANT #2 AT WR-ALC...per day ICP or ICAP Inductively coupled Argon Plasma Elemental Analysis Technique IWTP Industrial Waste Water Treatment Plant LIX Liquid Ion Exchange
PILOT-SCALE INCINERATION OF CONTAMINATED SLUDGES FROM THE BOFORS-NOBEL SUPERFUND SITE
A detailed test program was performed at the U.S. Environmental Protection Agency’s (EPA’s) Incineration Research Facility (IRF) to help determine the effectiveness of incineration in treating two contaminated lagoon sludges from the Bofors-Nobel Superfund site in Mus...
Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I
2016-11-01
Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.
Roldán-Carrillo, T; Castorena-Cortés, G; Zapata-Peñasco, I; Reyes-Avila, J; Olguín-Lora, P
2012-03-01
The biodegradation of oil sludge from Mexican sour gas and petrochemical facilities contaminated with a high content of hydrocarbons, 334.7 ± 7.0 g kg(-1) dry matter (dm), was evaluated. Studies in microcosm systems were carried out in order to determine the capacity of the native microbiota in the sludge to reduce hydrocarbon levels under aerobic conditions. Different carbon/nitrogen/phosphorous (C/N/P) nutrient ratios were tested. The systems were incubated at 30 °C and shaken at 100 rpm. Hydrocarbon removals from 32 to 51% were achieved in the assays after 30 days of incubation. The best assay had C/N/P ratio of 100/1.74/0.5. The results of the Microtox(®) and Ames tests indicated that the original sludge was highly toxic and mutagenic, whereas the best assay gave a final product that did not show toxicity or mutagenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ultrasonic sludge pretreatment under pressure.
Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri
2013-09-01
The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.
Fang, Binbin; Guo, Jing; Li, Fuxing; Giesy, John P; Wang, Lianjun; Shi, Wei
2017-02-01
Industrialized development of the Yangtze River Delta, China, has resulted in larger amounts of wastes, including sludges from treatment of these wastes. Methods to manage and dispose, including reuse were urgently needed. Sludge and reused products were collected from two largest factories, KEYUAN and HENGJIA where treated sludges were turned into bricks or sludge cake to be placed in landfills, respectively. Metals and organic compounds were quantified in sludges and leachates assessed by use of toxicity characterized leaching procedure (TCLP) while acute toxicity was determined by Daphnia magna. Nine metals were detected in all raw sludges with concentrations of Cr and Ni exceeding Chinese standards. For sludge leachate, concentrations of metals were all less than Chinese standards, which changed little after being made into cake by HENGJIA, but were significantly less after being made into brick by KEYUAN. Toxicity units (TU) for all samples are greater than 1.0 indicating that they are potentially toxic to aquatic organisms. TUs changed little after being made into filter cake, but were 10-fold less after being made into bricks. Cr and Ni contributed most to the total toxicity followed by Zn and Cu. Making of sludges into K-brick 1 resulted in better inactivation of contaminants, which resulted in less toxic potencies. So that is the recommended method for handling of industrial sludges. To further assure their safe reuse, additional research on identification of key toxicants and potential hazards, based on additional endpoints, by combining bio-tests and chemical analysis should be done for reused sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.
2015-01-01
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678
Energy intensity modeling for wastewater treatment technologies.
Molinos-Senante, María; Sala-Garrido, Ramón; Iftimi, Adina
2018-07-15
Wastewater treatment plants (WWTPs) are energy intensive facilities; therefore increased pressure has been placed on managers and policy makers to reduce the facilities' energy use. Several studies were conducted to compare the energy intensity (EI) of WWTPs, which showed large dispersion in EI among the facilities. In the present study, the degree EI influenced WWTPs was tested using a set of technical variables by modeling the EI of a 305 WWTP sample grouped into five secondary treatment technologies. Results indicated the following two major findings: i) WWTPs using conventional activated sludge, extended aeration, trickling biofilters, and biodisks exhibited significant economies of scale in energy use; and ii) pollutant removal efficiency demonstrated low impacts on WWTP EI. The methodology and results of this study are of value to policy makers in planning new WWTPs and developing management plans to improve energy efficiency of wastewater treatment. Copyright © 2018. Published by Elsevier B.V.
40 CFR 255.30 - Responsibilities established.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accountable. (b) Where the State plan identifies municipal sewage sludge disposal, hazardous waste disposal or... Section 255.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Responsibilities of Identified Agencies and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
KIRKBRIDE, R.A.
The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.
Ge, Huoqing; Batstone, Damien; Keller, Jurg
2016-01-01
The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio
2011-01-15
Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less
Trapote, Arturo; Jover, Margarita; Cartagena, Pablo; El Kaddouri, Marouane; Prats, Daniel
2014-08-01
This article describes an effective procedure for reducing the water content of excess sludge production from a wastewater treatment plant by increasing its concentration and, as a consequence, minimizing the volume of sludge to be managed. It consists of a pre-dewatering sludge process, which is used as a preliminary step or alternative to the thickening. It is made up of two discontinuous sequential stages: the first is resettling and the second, filtration through a porous medium. The process is strictly physical, without any chemical additives or electromechanical equipment intervening. The experiment was carried out in a pilot-scale system, consisting of a column of sedimentation that incorporates a filter medium. Different sludge heights were tested over the filter to verify the influence ofhydrostatic pressure on the various final concentrations of each stage. The results show that the initial sludge concentration may increase by more than 570% by the end of the process with the final volume of sludge being reduced in similar proportions and hydrostatic pressure having a limited effect on this final concentration. Moreover, the value of the hydrostatic pressure at which critical specific cake resistance is reached is established.
Properties of fired clay brick incorporating with sewage sludge waste
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri
2017-09-01
The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.
Complete solids retention activated sludge process.
Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L
2016-01-01
In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration.
Fernández-Sanjuan, María; Lacorte, Silvia; Rigol, Anna; Sahuquillo, Angels
2012-11-01
The determination of alkylphenols in sewage sludge is still hindered by the complexity of the matrix and of the analytes, some of which are a mixture of isomers. Most of the methods published in the literature have not been validated, due to the lack of reference materials for the determination of alkylphenols in sludge. Given this situation, the objectives of the present study were to develop a new quality-control material for determining octylphenol, nonylphenol and nonylphenol monoethoxylate in sludge. The material was prepared from an anaerobically digested sewage sludge, which was thermally dried, sieved, homogenized and bottled after checking for the bulk homogeneity of the processed material. Together with the sewage sludge, an extract was also prepared, in order to provide a quality-control material for allowing laboratories to test the measuring step. The homogeneity and 1-year stability of the two materials were evaluated. Statistical analysis proved that the materials were homogeneous and stable for at least 1 year stored at different temperatures. These materials are intended to assist in the quality control of the determination of alkylphenols and alkylphenol ethoxylates in sewage sludge.
Procedures of determining organic trace compounds in municipal sewage sludge-a review.
Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S
2017-02-01
Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.
Ding, Jia-li; Liu, Rui; Zheng, Wei; Yu, Wei-juan; Ye, Zhao-xia; Chen, Lu-jun; Zhang, Yong-ming
2015-10-01
In order to determine eleven commonly used veterinary antibiotics (including four tetracyclines, two sulfonamides, three quinolones and two macrolides) in piggery wastewater and activated sludge in the Yangtze River Delta region, the conditions of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry were optimized. The recovery rate and relative standard deviations of the method were confirmed as 73% - 105.2%, 3.1% - 10.2% for piggery wastewater (n = 3) and 57.4% - 104.6%, 1.9% - 10.9% (n = 3) respectively for the activated sludge. Removal of antibiotics was then studied in a membrane bioreactor. The results showed that antibiotics of both tetracycline and sulfonamide species took a large portion in the wastewater, while tetracycline species were the dominant in the sludge. Tetracycline species in the wastewater were removed by 85.2%, mainly through biodegradation (51.9%) and secondly by sludge adsorption (33.2%). By comparison, sulfonamide species was removed by 95.8%, almost all through biodegradation while little by sludge adsorption. Flask tests suggested that the accumulated antibiotics in the sludge give no significant influence on the microbial removal of organics and ammonium.
Mancuso, Giuseppe; Langone, Michela; Andreottola, Gianni
2017-03-01
In this work, a modified swirling jet induced hydrodynamic cavitation (HC) has been used for the pre-treatment of excess sludge. In order to both improve the HC treatment efficiencies and reduce the energy consumption, the effectiveness of the HC reactor on sludge disintegration and on aerobic biodegradability has been investigated at different operating conditions and parameters, such as temperature, inlet pressure, sludge total solid (TS) content and reactor geometry. The inlet pressure was related to the flow velocity and pressure drop. The best results in terms of sludge solubilisation were achieved after 2h of HC treatment, treating a 50.0gTSL -1 and using the three heads Ecowirl system, at 35.0°C and 4.0bar. Chemical and respirometric tests proved that sludge solubilisation and aerobic biodegradability can be efficiently enhanced through HC pre-treatment technique. At the optimum operating conditions, the specific supplied energy has been varied from 3276 to 12,780kJkgTS -1 in the HC treatment, by increasing the treatment time from 2 to 8 h, respectively. Low endogenous decay rates (b H ) were measured on the excess sludge at low specific supplied energy, revealing that only an alteration in floc structure was responsible for the sludge solubilisation. On the contrary, higher b H values were measured at higher specific supplied energy, indicating that the sludge solubilisation was related to a decreasing biomass viability, as consequence of dead cells and/or disrupted cells (cell lysis). Copyright © 2016 Elsevier B.V. All rights reserved.
Development of k-300 concrete mix for earthquake-resistant Housing infrastructure in indonesia
NASA Astrophysics Data System (ADS)
Zulkarnain, Fahrizal
2018-03-01
In determining the strength of K-300 concrete mix that is suitable for earthquake-resistant housing infrastructure, it is necessary to research the materials to be used for proper quality and quantity so that the mixture can be directly applied to the resident’s housing, in the quake zone. In the first stage, the examination/sieve analysis of the fine aggregate or sand, and the sieve analysis of the coarse aggregate or gravel will be carried out on the provided sample weighing approximately 40 kilograms. Furthermore, the specific gravity and absorbance of aggregates, the examination of the sludge content of aggregates passing the sieve no. 200, and finally, examination of the weight of the aggregate content. In the second stage, the planned concrete mix by means of the Mix Design K-300 is suitable for use in Indonesia, with implementation steps: Planning of the cement water factor (CWF), Planning of concrete free water (Liters / m3), Planning of cement quantity, Planning of minimum cement content, Planning of adjusted cement water factor, Planning of estimated aggregate composition, Planning of estimated weight of concrete content, Calculation of composition of concrete mixture, Calculation of mixed correction for various water content. Implementation of the above tests also estimates the correction of moisture content and the need for materials of mixture in kilograms for the K-300 mixture, so that the slump inspection result will be achieved in planned 8-12 cm. In the final stage, a compressive strength test of the K-300 experimental mixture is carried out, and subsequently the composition of the K-300 concrete mixture suitable for one sack of cement of 50 kg is obtained for the foundation of the proper dwelling. The composition is consists of use of Cement, Sand, Gravel, and Water.
JPL Activated Carbon Treatment System (ACTS) for sewage
NASA Technical Reports Server (NTRS)
1976-01-01
An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.
Operation of an aquatic worm reactor suitable for sludge reduction at large scale.
Hendrickx, Tim L G; Elissen, Hellen H J; Temmink, Hardy; Buisman, Cees J N
2011-10-15
Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete Lumbriculus variegatus has been shown at small scale. For scaling up purposes, a new configuration of the reactor was designed, in which the worms were positioned horizontally in the carrier material. This was tested in a continuous experiment of 8 weeks where it treated all the waste sludge from a lab-scale activated sludge process. The results showed a higher worm growth rate compared to previous experiments with the old configuration, whilst nutrient release was similar. The new configuration has a low footprint and allows for easy aeration and faeces collection, thereby making it suitable for full scale application. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, T.
Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less
Zhang, Qian-Qian; Zhang, Zheng-Zhe; Guo, Qiong; Wang, Jiao-Jiao; Wang, Hui-Zhong; Jin, Ren-Cun
2015-04-01
In the present study, the short- and long-term effects of Zn(II) on the anaerobic ammonium oxidation (anammox) performance and sludge characteristics were evaluated. The anammox activity decreased with increasing Zn(II) concentration and pre-exposure time in short-term tests. The half maximal inhibitory concentration (IC50) of Zn(II) was found to be 25.0 mg L(-1). The 24 and 48-h pre-exposure time was a restricted factor impacting the anammox activity, and washing the inhibited sludge with buffer solution only worked under 0 and 24-h pre-exposure time. The anammox sludge could tolerate 5 mg L(-1) Zn(II) but was suppressed at 8 mg L(-1). The inhibited performance could be remitted, as the combination strategies were applied, and after the short term of recovery period, the inhibited sludge characteristics were remitted to the normal.
Operational Control Procedures for the Activated Sludge Process: Appendix.
ERIC Educational Resources Information Center
West, Alfred W.
This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability…
40 CFR 158.2280 - Environmental fate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... biodegradability, porous pot, the biodegradation in activated sludge study as described in the “Simulation Tests to... applicant must choose either to: A. Conduct the biodegradation in activated sludge study as described in the... ready biodegradability study; or B. Conduct one of the following studies: The biodegradation in...
40 CFR 158.2280 - Environmental fate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... biodegradability, porous pot, the biodegradation in activated sludge study as described in the “Simulation Tests to... applicant must choose either to: A. Conduct the biodegradation in activated sludge study as described in the... ready biodegradability study; or B. Conduct one of the following studies: The biodegradation in...
Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
Park, Jeongmin; Lee, Sang-Sup
2018-04-25
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.
Pharmaceuticals and illicit drugs - A new threat to the application of sewage sludge in agriculture.
Ivanová, Lucia; Mackuľak, Tomáš; Grabic, Roman; Golovko, Oksana; Koba, Olga; Staňová, Andrea Vojs; Szabová, Petra; Grenčíková, Anna; Bodík, Igor
2018-04-07
The occurrence of 93 pharmaceuticals, illicit drugs and their metabolites has been investigated in stabilized sewage sludge from five municipal wastewater treatment plants (WWTPs) in the Slovak Republic. The total population connected to the tested WWTPs was approximately 600,000 p.e. which represents >20% of the Slovak population connected to public sewer systems. The sludge production from the five tested plants was >8100tons in 2016, which is approximately 15% of the total Slovak sewage sludge production in 2016. The highest total concentration of all pharmaceuticals was found in WWTP Bratislava Devínska Nová Ves (DNV) and Senec - 11,800 and 11,300ng/g dry matter (DM), respectively. Among individual pharmaceuticals, the highest concentrations were recorded for fexofenadine (mean 2340ng/g DM, maximum 5600ng/g DM in Bratislava DNV) and telmisartan (mean 1170ng/g DM, with a maximum of 3370ng/g DM in Senec). A principal component analysis revealed differences between pharmaceutical patterns in aerobically and anaerobically stabilized sludge. The worst-case scenario based on no further degradation of pharmaceuticals between sludge production and field application was used to predict pharmaceutical mass loads in agriculture. For the result, we estimated an annual load to soil in the Slovak Republic of up to several hundred kilograms of pharmaceuticals and drugs, with the maximum for fexofenadine (120kg/year) and verapamil (29kg/year). Copyright © 2018 Elsevier B.V. All rights reserved.
Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. D. Newell; Pareizs, J. M.; Martino, C. J.
For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allowsmore » for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis« less
Thermal hydrolysis for sewage treatment: A critical review.
Barber, W P F
2016-11-01
A review concerning the development and applicability of sewage sludge thermal hydrolysis especially prior to anaerobic digestion is presented. Thermal hydrolysis has proven to be a successful approach to making sewage sludge more amenable to anaerobic digestion. Currently there are 75 facilities either in operation or planning, spanning several continents with the first installation in 1995. The reported benefits of thermal hydrolysis relate to: increased digestion loading rate due to altered rheological properties, improved biodegradation of (especially activated) sludge and enhanced dewaterability. In spite of its relative maturity, there has been no attempt to perform a critical review of the pertinent literature relating to the technology. Closer look at the literature reveals complications with comparing both experimental- and full-scale results due to differences in experimental set-up and capability, and also site-specific conditions at full-scale. Furthermore, it appears that understanding of thermodynamic and rheological properties of sludge is key to optimizing the process, however these parameters are largely overlooked by the literature. This paper aims to bridge these complexities in order to elucidate the benefits of thermal hydrolysis for sewage treatment, and makes recommendations for further development and research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusido, Joan A., E-mail: joan.antoni.cusido@upc.edu; Soriano, Cecilia
2011-06-15
A direct result of the growing number of municipal wastewater-treatment plants (WWTPs) has been an increase in the generation of large amounts of sewage sludge that requires environmentally acceptable final destination. To decrease the volume of sludge, a common technique is drying the sludge at a low temperature in rotary kilns. The result of this process is a granulated material consisting of dehydrated sludge pellets. After this treatment, this pelletized material becomes easier to manipulate, but it also becomes a more toxic waste, containing dangerous substances, mostly of the lipid type. At its final stage, this material is usually incinerated,more » used as a comburent material, used as an agricultural fertilizer, or used in the cement industry. Each application has its own problems and requires remediation measures from the safety and environmental viewpoints. In this study, we looked beyond these possible applications and analyzed the transformation of sewage sludge through a ceramization process into a material similar to expanded clays; we subsequently explored its uses in the building industry or in the agriculture industry, among others. Both the properties of the product material and the production method were characterized, and an environmental analysis was conducted. The new, lightweight material had a microstructure with open porosity and low thermal conductivity. Environmental characterization such as the leaching test revealed that undetectable amounts of hazardous metals from the sludge were present in the leachate after the sludge went through a thermal treatment, despite their initial presence (with the exception of vanadium, which could pose some restrictions on some of the proposed uses for the final product). Toxicity tests also showed negative results. The study of gaseous emissions during production revealed emissions factors similar to those during the production of conventional clay ceramics, although with higher organic emissions. As for conventional clay ceramics, industrial production would require the implementation of some type of air-depuration system. The results showed that the ceramization of sludge pellets is a promising valorization technique worth considering from both the economic and technological perspectives.« less
Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics.
Cusidó, Joan A; Soriano, Cecilia
2011-06-01
A direct result of the growing number of municipal wastewater-treatment plants (WWTPs) has been an increase in the generation of large amounts of sewage sludge that requires environmentally acceptable final destination. To decrease the volume of sludge, a common technique is drying the sludge at a low temperature in rotary kilns. The result of this process is a granulated material consisting of dehydrated sludge pellets. After this treatment, this pelletized material becomes easier to manipulate, but it also becomes a more toxic waste, containing dangerous substances, mostly of the lipid type. At its final stage, this material is usually incinerated, used as a comburent material, used as an agricultural fertilizer, or used in the cement industry. Each application has its own problems and requires remediation measures from the safety and environmental viewpoints. In this study, we looked beyond these possible applications and analyzed the transformation of sewage sludge through a ceramization process into a material similar to expanded clays; we subsequently explored its uses in the building industry or in the agriculture industry, among others. Both the properties of the product material and the production method were characterized, and an environmental analysis was conducted. The new, lightweight material had a microstructure with open porosity and low thermal conductivity. Environmental characterization such as the leaching test revealed that undetectable amounts of hazardous metals from the sludge were present in the leachate after the sludge went through a thermal treatment, despite their initial presence (with the exception of vanadium, which could pose some restrictions on some of the proposed uses for the final product). Toxicity tests also showed negative results. The study of gaseous emissions during production revealed emissions factors similar to those during the production of conventional clay ceramics, although with higher organic emissions. As for conventional clay ceramics, industrial production would require the implementation of some type of air-depuration system. The results showed that the ceramization of sludge pellets is a promising valorization technique worth considering from both the economic and technological perspectives. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani
2015-01-01
The development of effluent removal prediction is crucial in providing a planning tool necessary for the future development and the construction of a septic sludge treatment plant (SSTP), especially in the developing countries. In order to investigate the expected functionality of the required standard, the prediction of the effluent quality, namely biological oxygen demand, chemical oxygen demand and total suspended solid of an SSTP was modelled using an artificial intelligence approach. In this paper, we adopt the clonal selection algorithm (CSA) to set up a prediction model, with a well-established method - namely the least-square support vector machine (LS-SVM) as a baseline model. The test results of the case study showed that the prediction of the CSA-based SSTP model worked well and provided model performance as satisfactory as the LS-SVM model. The CSA approach shows that fewer control and training parameters are required for model simulation as compared with the LS-SVM approach. The ability of a CSA approach in resolving limited data samples, non-linear sample function and multidimensional pattern recognition makes it a powerful tool in modelling the prediction of effluent removals in an SSTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, E.; Aparicio, I.; Santos, J.L.
2009-01-15
The content of heavy metals is the major limitation to the application of sewage sludge in soil. However, assessment of the pollution by total metal determination does not reveal the true environmental impact. It is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, sequential extraction of metals from sludge before and after aerobic digestion was applied to sludge from five WWTPs in southern Spain to obtain information about the influence of the digestion treatment in the concentration of the metals. The percentage of each metal as residual, oxidizable, reducible andmore » exchangeable form was calculated. For this purpose, sludge samples were collected from two different points of the plants, namely, sludge from the mixture (primary and secondary sludge) tank (mixed sludge, MS) and the digested-dewatered sludge (final sludge, FS). Heavy metals, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn, were extracted following the sequential extraction scheme proposed by the Standards, Measurements and Testing Programme of the European Commission and determined by inductively-coupled plasma atomic emission spectrometry. The total concentration of heavy metals in the measured sludge samples did not exceed the limits set out by European legislation and were mainly associated with the two less-available fractions (27-28% as oxidizable metal and 44-50% as residual metal). However, metals as Co (64% in MS and 52% in FS samples), Mn (82% in MS and 79% in FS), Ni (32% in MS and 26% in FS) and Zn (79% in MS and 62% in FS) were present at important percentages as available forms. In addition, results showed a clear increase of the concentration of metals after sludge treatment in the proportion of two less-available fractions (oxidizable and residual metal)« less
Alonso, E; Aparicio, I; Santos, J L; Villar, P; Santos, A
2009-01-01
The content of heavy metals is the major limitation to the application of sewage sludge in soil. However, assessment of the pollution by total metal determination does not reveal the true environmental impact. It is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, sequential extraction of metals from sludge before and after aerobic digestion was applied to sludge from five WWTPs in southern Spain to obtain information about the influence of the digestion treatment in the concentration of the metals. The percentage of each metal as residual, oxidizable, reducible and exchangeable form was calculated. For this purpose, sludge samples were collected from two different points of the plants, namely, sludge from the mixture (primary and secondary sludge) tank (mixed sludge, MS) and the digested-dewatered sludge (final sludge, FS). Heavy metals, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn, were extracted following the sequential extraction scheme proposed by the Standards, Measurements and Testing Programme of the European Commission and determined by inductively-coupled plasma atomic emission spectrometry. The total concentration of heavy metals in the measured sludge samples did not exceed the limits set out by European legislation and were mainly associated with the two less-available fractions (27-28% as oxidizable metal and 44-50% as residual metal). However, metals as Co (64% in MS and 52% in FS samples), Mn (82% in MS and 79% in FS), Ni (32% in MS and 26% in FS) and Zn (79% in MS and 62% in FS) were present at important percentages as available forms. In addition, results showed a clear increase of the concentration of metals after sludge treatment in the proportion of two less-available fractions (oxidizable and residual metal).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
[email protected] . 3. Fax: (312) 692-2543. 4. Mail: Carlton T. Nash, Chief, Toxics and Global Atmosphere... Boulevard, Chicago, Illinois 60604. 5. Hand Delivery: Carlton T. Nash, Chief, Toxics and Global Atmosphere...
Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.
Nguyen, Lan Huong; Chong, Nyuk-Min
2015-09-01
Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.
Cui, Daizong; Zhang, Hao; He, Rubao; Zhao, Min
2016-01-01
An anaerobic sludge (AS), capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD) removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N,N-dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N,N-dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid) were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes. PMID:27801853
Zeng, Jie; Gao, Jun-Min; Chen, You-Peng; Yan, Peng; Dong, Yang; Shen, Yu; Guo, Jin-Song; Zeng, Ni; Zhang, Peng
2016-01-01
As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes. PMID:27220287
Construction materials as a waste management solution for cellulose sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.
2011-02-15
Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less
Chen, Shen-Yi; Chou, Li-Chieh
2016-08-01
Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.
Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo
2013-09-01
An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Yifu; Yuan, Xingzhong; Wang, Dongbo; Wang, Hou; Wu, Zhibin; Jiang, Longbo; Mo, Dan; Yang, Guojing; Guan, Renpeng; Zeng, Guangming
2018-04-21
In this study, zero valent iron (ZVI) activated peroxymonosulfate (PMS) as novel technique (i.e. ZVI-PMS technology) was employed to enhance sludge dewatering. In optimal sludge dewatering conditions of ZVI and KHSO 5 dosages, the specific resistance to filtration (SRF) was reduced by 83.6%, which was further decreased to 90.6% after combination of ZVI-PMS with thermal treatment at 50 °C (i.e. ZVI-PMS-T technology). Subsequently, the ESR spectrum and quenching tests demonstrated that OH, rather than SO 4 - , was predominant radicals in ZVI-PMS conditioning. Thereafter, the variation of physicochemical properties and the distributions and compositions of extracellular polymeric substances (EPS) were further investigated to uncover the influence of these techniques on sludge bulk properties. The results indicated that sludge particles were disintegrated into smaller particles and surface charges were neutralized, sludge flowability were elevated obviously after treatments. In ZVI cycle experiment, the high dewatering efficiency was maintained by ZVI-PMS and ZVI-PMS-T pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zielińska, Anna; Oleszczuk, Patryk
2015-09-01
The present study investigated the sorption of phenanthrene (PHE) and pyrene (PYR) by sewage sludges and sewage sludge-derived biochars. The organic carbon normalized distribution coefficient (log K(OC) for C(w) = 0.01 S(w)) for the sewage sludges ranged from 5.62 L kg(-1) to 5.64 L kg(-1) for PHE and from 5.72 L kg(-1) to 5.75 L kg(-1) for PYR. The conversion of sewage sludges into biochar significantly increased their sorption capacity. The value of log K(OC) for the biochars ranged from 5.54 L kg(-1) to 6.23 L kg(-1) for PHE and from 5.95 L kg(-1) to 6.52 L kg(-1) for PYR depending on temperature of pyrolysis. The dominant process was monolayer adsorption in the micropores and/or multilayer surface adsorption (in the mesopores), which was indicated by the significant correlations between log K(OC) and surface properties of biochars. PYR was sorbed better on the tested materials than PHE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.
1996-01-01
Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.
Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.
Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I
2013-05-01
We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.
PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL
The purpose of this manual is to provide the engineering community and related industry with a new source of information to be used in the planning, design, and operation of present and future wastewater pollution control facilities. This manual supplements this existing knowledg...
NASA Astrophysics Data System (ADS)
Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María
2015-04-01
In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and reduces the application and storage costs due to its lower proportion of water than the other types of sludge tested. At the same time, the integration of trees in agricultural areas decreases the problem of environmental impact resulting from addition of organic and inorganic fertilisers on soils.
Water Utility Lime Sludge Reuse – An Environmental Sorbent ...
Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.
Wei, Na
2015-01-01
Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800
Inhibition Of Washed Sludge With Sodium Nitrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J. W.; Lozier, J. S.
2012-09-25
This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrationsmore » and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.« less
Qi, Juanjuan; Zhu, Fenfen; Wei, Xiang; Zhao, Luyao; Xiong, Yiqun; Wu, Xuemin; Yan, Fawei
2016-03-01
The potential of two types of sludge obtained from the anaerobic-anoxic-oxic (A(2)/O) and membrane bioreactor (MBR) processes as lipid feedstock for biodiesel production via in situ transesterification was investigated. Experiments were conducted to determine the optimum conditions for biodiesel yield using three-factor and four-level orthogonal and single-factor tests. Several factors, namely, methanol-to-sludge mass ratio, acid concentration, and temperature, were examined. The optimum yield of biodiesel (16.6% with a fatty acid methyl ester purity of 96.7%) from A(2)/O sludge was obtained at a methanol-to-sludge mass ratio of 10:1, a temperature of 60°C, and a H2SO4 concentration of 5% (v/v). Meanwhile, the optimum yield of biodiesel (4.2% with a fatty acid methyl ester purity of 92.7%) from MBR sludge was obtained at a methanol-to-sludge mass ratio of 8:1, a temperature of 50°C, and a H2SO4 concentration of 5% (v/v). In this research, A(2)/O technology with a primary sedimentation tank is more favorable for obtaining energy from wastewater than MBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ultrasound pre-treatment for anaerobic digestion improvement.
Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F
2009-01-01
Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.
Wei, Na
2015-05-07
Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.
Nguyen, Tien Thanh; Ngo, Huu Hao; Guo, Wenshan; Li, Jianxin; Listowski, Andrzej
2012-07-01
The performance of a novel sponge-submerged membrane bioreactor (SSMBR) was evaluated to treat primary treated sewage effluent at three different activated sludge concentrations. Polyurethane sponge cubes with size of 1 × 1 × 1 cm were used as attached growth media in the bioreactor. The results indicated the successful removal of organic carbon and phosphorous with the efficiency higher than 98% at all conditions. Acclimatised sponge MBR showed about 5% better ammonia nitrogen removal at 5 and 10 g/L sludge concentration as compared to the new sponge system. The respiration test revealed that the specific oxygen uptake rate was around 1.0-3.5 mgO(2)/gVSS.h and likely more stable at 10 g/L sludge concentration. The sludge volume index of less than 100 mL/g during the operation indicated the good settling property of the sludge. The low mixed liquor suspended solid increase indicated that SSMBR could control the sludge production. This SSMBR was also successful in reducing membrane fouling with significant lower transmembrane pressure (e.g. only 0.5 kPa/day) compared to the conventional MBR system. Further study will be conducted to optimise other operating conditions.
Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin
2016-04-01
Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.
Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.
Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun
2014-08-01
Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.
Production of sludge-incorporated paver blocks for efficient waste management.
Velumani, P; Senthilkumar, S
2018-06-01
Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.
Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta
2016-05-01
The application of municipal sewage sludge on energy crops is an alternative form of recycling nutrients, food materials, and organic matter from waste. Municipal sewage sludge constitutes a potential source of heavy metals in soil, which can be partially removed by the cultivation of energy crops. The aim of the research was to assess the effect of municipal sewage sludge on the uptake of heavy metals by monocotyledonous energy crops. Sewage sludge was applied at doses of 0, 10, 20, 40, and 60 Mg DM · ha(-1) once, before the sowing of plants. In a 6-year field experiment, the effect of four levels of fertilisation with sewage sludge on the uptake of heavy metals by two species of energy crops, reed canary grass (Phalaris arundinacea L.) of 'Bamse' cultivar and giant miscanthus (Miscanthus × giganteus GREEF et DEU), was analysed. It was established that the increasing doses of sewage sludge had a considerable effect on the increase in biomass yield from the tested plants. Due to the increasing doses of sewage sludge, a significant increase in heavy metals content in the energy crops was recorded. The heavy metal uptake with the miscanthus yield was the highest at a dose of 20 Mg DM · ha(-1), and at a dose of 40 Mg DM · ha(-1) in the case of reed canary grass. Research results indicate that on account of higher yields, higher bioaccumulation, and higher heavy metal uptake, miscanthus can be selected for the remediation of sewage sludge.
Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.
Takizawa, M; Straube, W L; Hill, R T; Colwell, R R
1993-10-01
The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.
Srivastava, Shefali; Chaudhary, Rubina; Khale, Divya
2008-05-30
The current work is related to inorganic species in sludge generated from Common Effluent Treatment Plant contaminated with hazardous wastes at relatively high concentration. The environmental sensitive metals studied in the sludge are Pb, Fe, Ni, Zn and Mn. The solidification/stabilization (S/S) of heavy metals within fly ash-cement-based matrix was conducted for low cost treatment and reuse of sludge. The study examines the strength of the S/S product by predicting the effect of supplementary cementing material from efficiency factor (k) at 60 degrees C curing temperature. The leaching test was performed at two different pH 7 and 4 to determine the efficiency of heavy metal immobilization. It was observed that replacing 76% OPC by 56% fly ash and 20% sludge for 28 days curing period shows increase in strength as well as rate of stabilization for zinc, iron and manganese at pH 7, lead and nickel were stabilized by 79 and 82%, respectively. Environmental stress test was performed to evaluate the tolerance of extreme adverse environmental condition.
Fuhrimann, Samuel; Winkler, Mirko S; Kabatereine, Narcis B; Tukahebwa, Edridah M; Halage, Abdulla A; Rutebemberwa, Elizeus; Medlicott, Kate; Schindler, Christian; Utzinger, Jürg; Cissé, Guéladio
2016-03-01
There are health risks associated with wastewater and fecal sludge management and use, but little is known about the magnitude, particularly in rapidly growing urban settings of low- and middle-income countries. We assessed the point-prevalence and risk factors of intestinal parasite infections in people with different exposures to wastewater and fecal sludge in Kampala, Uganda. A cross-sectional survey was carried out in September and October 2013, enrolling 915 adults from five distinct population groups: workers maintaining wastewater facilities; workers managing fecal sludge; urban farmers; slum dwellers at risk of flooding; and slum dwellers without risk of flooding. Stool samples were subjected to the Kato-Katz method and a formalin-ether concentration technique for the diagnosis of helminth and intestinal protozoa infections. A questionnaire was administered to determine self-reported signs and symptoms, and risk factors for intestinal parasite infections. Univariate and multivariate analyses, adjusted for sex, age, education, socioeconomic status, water, sanitation, and hygiene behaviors, were conducted to estimate the risk of infection with intestinal parasites and self-reported health outcomes, stratified by population group. The highest point-prevalence of intestinal parasite infections was found in urban farmers (75.9%), whereas lowest point-prevalence was found in workers managing fecal sludge (35.8%). Hookworm was the predominant helminth species (27.8%). In urban farmers, the prevalence of Trichuris trichiura, Schistosoma mansoni, Ascaris lumbricoides, and Entamoeba histolytica/E. dispar was 15% and above. For all investigated parasites, we found significantly higher odds of infection among urban farmers compared to the other groups (adjusted odds ratios ranging between 1.6 and 12.9). In general, female participants had significantly lower odds of infection with soil-transmitted helminths and S. mansoni compared to males. Higher educational attainment was negatively associated with the risk of intestinal protozoa infections, while socioeconomic status did not emerge as a significant risk factor for any tested health outcome. Urban farmers are particularly vulnerable to infections with soil-transmitted helminths, S. mansoni, and intestinal protozoa. Hence, our findings call for public health protection measures for urban farmers and marginalized communities, going hand-in-hand with integrated sanitation safety planning at city level.
Fuhrimann, Samuel; Winkler, Mirko S.; Kabatereine, Narcis B.; Tukahebwa, Edridah M.; Halage, Abdulla A.; Rutebemberwa, Elizeus; Medlicott, Kate; Schindler, Christian; Utzinger, Jürg; Cissé, Guéladio
2016-01-01
Background There are health risks associated with wastewater and fecal sludge management and use, but little is known about the magnitude, particularly in rapidly growing urban settings of low- and middle-income countries. We assessed the point-prevalence and risk factors of intestinal parasite infections in people with different exposures to wastewater and fecal sludge in Kampala, Uganda. Methodology A cross-sectional survey was carried out in September and October 2013, enrolling 915 adults from five distinct population groups: workers maintaining wastewater facilities; workers managing fecal sludge; urban farmers; slum dwellers at risk of flooding; and slum dwellers without risk of flooding. Stool samples were subjected to the Kato-Katz method and a formalin-ether concentration technique for the diagnosis of helminth and intestinal protozoa infections. A questionnaire was administered to determine self-reported signs and symptoms, and risk factors for intestinal parasite infections. Univariate and multivariate analyses, adjusted for sex, age, education, socioeconomic status, water, sanitation, and hygiene behaviors, were conducted to estimate the risk of infection with intestinal parasites and self-reported health outcomes, stratified by population group. Principal Findings The highest point-prevalence of intestinal parasite infections was found in urban farmers (75.9%), whereas lowest point-prevalence was found in workers managing fecal sludge (35.8%). Hookworm was the predominant helminth species (27.8%). In urban farmers, the prevalence of Trichuris trichiura, Schistosoma mansoni, Ascaris lumbricoides, and Entamoeba histolytica/E. dispar was 15% and above. For all investigated parasites, we found significantly higher odds of infection among urban farmers compared to the other groups (adjusted odds ratios ranging between 1.6 and 12.9). In general, female participants had significantly lower odds of infection with soil-transmitted helminths and S. mansoni compared to males. Higher educational attainment was negatively associated with the risk of intestinal protozoa infections, while socioeconomic status did not emerge as a significant risk factor for any tested health outcome. Conclusions/Significance Urban farmers are particularly vulnerable to infections with soil-transmitted helminths, S. mansoni, and intestinal protozoa. Hence, our findings call for public health protection measures for urban farmers and marginalized communities, going hand-in-hand with integrated sanitation safety planning at city level. PMID:26938060
Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge
Battersby, Nigel S.; Wilson, Valerie
1989-01-01
The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (≥80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851
Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C
2016-12-01
Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.
Bobade, Veena; Baudez, Jean Christophe; Evans, Geoffery; Eshtiaghi, Nicky
2017-05-01
Gas injection is known to play a major role on the particle size of the sludge, the oxygen transfer rate, as well as the mixing efficiency of membrane bioreactors and aeration basins in the waste water treatment plants. The rheological characteristics of sludge are closely related to the particle size of the sludge floc. However, particle size of sludge floc depends partly on the shear induced in the sludge and partly on physico-chemical nature of the sludge. The objective of this work is to determine the impact of gas injection on both the apparent viscosity and viscoelastic property of sludge. The apparent viscosity of sludge was investigated by two methods: in-situ and after sparging. Viscosity curves obtained by in-situ measurement showed that the apparent viscosity decreases significantly from 4000 Pa s to 10 Pa s at low shear rate range (below 10 s -1 ) with an increase in gas flow rate (0.5LPM to 3LPM); however the after sparging flow curve analysis showed that the reduction in apparent viscosity throughout the shear rate range is negligible to be displayed. Torque and displacement data at low shear rate range revealed that the obtained lower apparent viscosity in the in-situ method is not the material characteristics, but the slippage effect due to a preferred location of the bubbles close to the bob, causing an inconsistent decrease of torque and increase of displacement at low shear rate range. In linear viscoelastic regime, the elastic and viscous modulus of sludge was reduced by 33% & 25%, respectively, due to gas injection because of induced shear. The amount of induced shear measured through two different tests (creep and time sweep) were the same. The impact of this induced shear on sludge structure was also verified by microscopic images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida.
Rodríguez-Canché, L G; Cardoso Vigueros, L; Maldonado-Montiel, T; Martínez-Sanmiguel, M
2010-05-01
This study evaluated the potential of earthworms (Eisenia fetida) to remove pathogens from the sludge from septic tanks. Three earthworm population densities, equivalent to 1, 2, and 2.5kgm(-2), were tested for pathogen removal from sludge. The experimental phase lasted 60days, starting from the initial earthworm inoculation. After 60days, it was found that earthworms reduced concentrations of fecal coliforms, Salmonella spp., and helminth ova to permissible levels (<1000MPN/g, <3MPN/g, and <1viable ova/g on a dry weight basis, respectively) in accordance with Official Mexican Standard of environmental protection (NOM-004-SEMARNAT-2002) (SEMARNAT, 2002). Thus, sludge treatment with earthworms generated Class A biosolids, useful for forest, agricultural, and soil improvement. Copyright 2009 Elsevier Ltd. All rights reserved.
Fermentative hydrogen gas production using biosolids pellets as the inoculum source.
Kalogo, Youssouf; Bagley, David M
2008-02-01
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.
Improving the sludge conditioning potential of moringa seed
NASA Astrophysics Data System (ADS)
Ademiluyi, Joel O.; Eze, Romanus M.
1990-01-01
In the search for a cheaper material to effectively condition sludge, oil-free moringa seed was prepared and tested. A Soxhlet apparatus was used to extract the oil from moringa seed ( Moringa oleifera). The oil-free seed (marc) has been found to have higher conditioning potential than the ordinary moringa seed. However, the traditional ferric chloride is still a better sludge conditioner than moringa seed marc. For the digested domestic sludge used, optimum conditioning dosages were found to be 0.6, 0.80, and 1.10% of the total solids for ferric chloride, marc of the moringa seed, and ordinary moringa seed, respectively. Since little or no operational material is lost in the extraction process, the moringa seed marc is a promising conditioner in place of the ordinary seed.
TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B.
2011-08-24
Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less
Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2018-05-01
A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kavitha, S; Rajesh Banu, J; Kumar, Gopalakrishnan; Kaliappan, S; Yeom, Ick Tae
2018-04-01
In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sivrioğlu, Özge; Yonar, Taner
2015-04-01
In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohan, S. Mariraj
2017-12-01
In this study, it was aimed for effective utilization of paper mill sludge through vermicomposting by varying seed proportion with sp. Eisenia fetida. Nine plastic trays were used for the experimental work including control. Different seed proportions of cow dung and cattle dung were tested. The multiplication of earthworms in terms of number was counted at the end of vermicomposting. The N, K, Ca, Na values of the manure in each vermibin were estimated before and after vermicomposting. In this study, it was concluded that tray A2 which has combination of 75% Cow dung (CD) and 25% Paper Mill Sludge (PMS) provided better nitrogen synthesis and lowering C/N ratio, whereas tray A4 (25%CD + 75% PMS) yielded better Calcium recovery. Both the seed materials were found to be suitable for Potassium recovery. From this study, it was inferred that vermicomposting of paper mill sludge with sp. Eisenia fetida along with seed materials can also solve the problem of disposal of this sludge.
Gustavsson, Lillemor; Hollert, Henner; Jonsson, Sofie; van Bavel, Bert; Engwall, Magnus
2007-05-01
Sweden has prohibited the deposition of organic waste since January, 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a larger degree. One common method in the USA and parts of Europe is the use of wetlands to treat wastewater and sewage sludge. The capacity of reed beds to affect the toxicity of a complex mixture of nitroaromatics in sludge, however, is not fully elucidated. In this study, an industrial sludge containing explosives and pharmaceutical residues was therefore treated in artificial reed beds and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of many pharmaceuticals and explosives, are well known to cause cytotoxicity and genotoxicity. Recently performed studies have also showed that embryos of zebrafish (Danio rerio) are sensitive to nitroaromatic compounds. Therefore, we tested the sludge passing through constructed wetlands in order to detect any changes in levels of embryotoxicity, genotoxicity and dioxin-like activity (AhR-agonists). We also compared unplanted and planted systems in order to examine the impact of the root system on the fate of the toxicants. An industrial sludge containing a complex mixture of nitroaromatics was added daily to small-scale constructed wetlands (vertical flow), both unplanted and planted with Phragmites australis. Sludge with an average dry weight of 1.25%, was added with an average hydraulic loading rate of 1.2 L/day. Outgoing water was collected daily and stored at -20 degrees C. The artificial wetland sediment was Soxhlet extracted, followed by clean-up with multi-layer silica, or extracted by ultrasonic treatment, yielding one organic extract and one water extract of the same sample. Genotoxicity of the extracts was measured according to the ISO protocol for the umu-C genotoxicity assay (ISO/TC 147/SC 5/ WG9 N8), using Salmonella typhimurium TA1535/pSK1002 as test organism. Embryotoxicity and teratogenicity were studied using the fish egg assay with zebrafish (Danio rerio) and the dioxin-like activity was measured using the DR-CALUX assay. Chemical analyses of nitroaromatic compounds were performed using Solid Phase Micro Extraction (SPME) and GC-MS. Organic extracts of the bed material showed toxic potential in all three toxicity tests after two years of sludge loading. There was a difference between the planted and the unplanted beds, where the toxicity of organic extracts overall was higher in the bed material from the planted beds. The higher toxicity of the planted beds could have been caused by the higher levels of total carbon in the planted beds, which binds organic toxicants, and by enrichment caused by lower volumes of outgoing water from the planted beds. Developmental disorders were observed in zebrafish exposed directly in contact to bed material from unplanted beds, but not in fish exposed to bed material from planted beds. Hatching rates were slightly lower in zebrafish exposed to outgoing water from unplanted beds than in embryos exposed to outgoing water from planted beds. Genotoxicity in the outgoing water was below detection limit for both planted and unplanted beds. Most of the added toxicants via the sludge were unaccounted for in the outgoing water, suggesting that the beds had toxicant removal potential, although the mechanisms behind this remain unknown. During the experimental period, the beds received a sludge volume (dry weight) of around three times their own volume. In spite of this, the toxicity in the bed material was lower than in the sludge. Thus, the beds were probably able to actually decrease the toxicity of the added, sludge-associated toxicants. When testing the acetone extracts of the bed material, the planted bed showed a higher toxicity than the unplanted beds in all three toxicity tests. The toxicity of water extracts from the unplanted beds, detected by the fish egg assay, were higher than the water extracts from the planted beds. No genotoxicity was detected in outgoing water from either planted or unplanted beds. All this together indicates that the planted reed beds retained semi-lipophilic acetone-soluble toxic compounds from the sludge better than the unplanted beds, which tended to leak out more of the water soluble toxic compounds in the outgoing water. The compounds identified by SPME/GC in the outgoing water were not in sufficient concentrations to have caused induction in the genotoxicity test. This study has pointed out the benefits of using constructed wetlands receiving an industrial sludge containing a complex mixture of nitroaromatics to reduce toxicity in the outgoing water. The water from planted, constructed wetlands could therefore be directed to a recipient without further cleaning. The bed material should be investigated over a longer period of time in order to evaluate potential accumulation and leakage prior to proper usage or storage. The plants should be investigated in order to examine uptake and possible release when the plant biomass is degraded.
Qi, Lu; Wei, Yuan-song; Zhang, Jun-ya; Zhao, Chen-yang; Cai, Xing; Zhang, Yuan-li; Shao, Chun-yan; Li, Hong-mei
2016-01-15
The data on nitrogen gas (NH3, N2O, NO) emissions during sludge bio-drying process in China is scarce, especially NO due to its unstable chemical property. In this study, effect of two aeration modes on emissions of methane and nitrogenous gas was compared during the continuous aerated turning pile sludge bio-drying process at full scale. In these two aeration strategies, the one currently used in the plant was set as the control, and the other was set as the test in which the aeration was used for oxygen supply, pile temperature control, and moisture removal in the start-up, middle and final stages, respectively. The results showed that the aeration strategy used in the test could not only obviously accelerate the rate of sludge drying (the moisture contents of the test and the control were 36.6% and 42% on day 11) , but also had a better drying performance (the final moisture contents of the test and the control were 33.6% and 37.6%, respectively) and decreased the ammonia cumulative emission by 5%, (ammonia cumulative emission of the test and the control were 208 mg x m(-3) and 219.8 mg x m(-3), respectively). Though a lower accumulated emission (eCO2) of greenhouse gas in the test at 3.61 kg x t(-1) was observed than that of the control (3.73 kg x t(-1) dry weight) , the cumulative emission of NO in the test at 1.9 g x m(-2) was 15. 9% higher than that of the control (1.6 g x m(-2)).
Remediation of metal-contaminated land for plant cultivation in the Arctic/subarctic region
NASA Astrophysics Data System (ADS)
Kikuchi, Ryunosuke; Gorbacheva, Tamara T.; Ferreira, Carla S.
2017-04-01
Hazardous activities and/or industries involve the use, storage or disposal of hazardous substances. These substances can sometimes contaminate the soil, which can remain contaminated for many years. The metals can have severe effects of on ecosystems. In the Arctic/subarctic regions, the Kola Peninsula (66-70°N and 28°30'-41°30'E) in Russia is one of the seriously polluted regions: close to the nickel-copper smelters, the deposition of metal pollutants has severely damaged the soil and ground vegetation, resulting in a desert area. An area of 10-15 km around the smelters on the Kola Peninsula is today dry sandy and stony ground. A great amount of financial aid is usually required to recover theland. Considering cost performance, a pilot-scale (4ha) field test was carried out to investigate how to apply municipal sewage sludge for rehabilitation of degraded land near the Ni-Cu smelter complex on the Kola Peninsula. The above-mentioned field test for soil rehabilitation was performed while smelting activities were going on; thus, the survey fields were suffering from pollution emitted by the metallurgical industry, and may continue to suffer in the future. After the composting of sewage sludge, the artificial substratum made from the compost was introduced to the test field for the polluted-land remediation, and then willows, birches and grasses were planted on the substratum. The following remarkable points in pollution load were observed between the background field and the rehabilitation test field (e.g. polluted land): (i) the annual precipitation amount of SO42- (5668 g/ha) in the rehabilitation test field was over 5 times greater than that in the background field; (ii) the Pb amount (1.5 g/ha) in the rehabilitation test field was 29 times greater than that in the background field; (iii) the Co amount (10.9 g/ha) in the rehabilitation test field was 54 times greater than that in the background field; (iv) the Cu amount (752 g/ha) in the rehabilitation field was over 600 times greater than that in the background field; and (v) the Ni amount (448 g/ha) in the rehabilitation test field was over 1,000 times greater than that in the background field. The lost vegetation is being restored by the formation of an artificial substratum made from sewage sludge compost. Essentially, sewage sludge is a solid waste; however, the obtained data imply that sewage sludge is a helpful raw material for land remediation even where there is a harsh climate, poor-nutrient soil and metal-pollution load. The test results presented in this abstract seem to be a good example of how to combine natural conservation (remediation and maintenance) with recycling of resources (sewage sludge).
Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.
Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith
2016-01-01
There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.
Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae
2007-06-01
A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.
Evaluation of sludge from paper recycling as bedding material for broilers.
Villagrá, A; Olivas, I; Benitez, V; Lainez, M
2011-05-01
Several materials have been used as bedding substrates in broiler production. In this work, the sludge from paper recycling was tested for its potential use as litter material and was compared with wood shavings. Moisture content, apparent density, and water-holding capacity were measured and characterized in both materials. Later, 192 male broiler chickens were distributed among 16 experimental pens, 8 of which contained wood shavings as bedding material and 8 of which contained the sludge. Growth rate, consumption, tonic immobility, gait score, breast lesions, foot pad dermatitis, hock burn, tibial dyschondroplasia, and metatarsal thickness were determined in the birds. Although the moisture content of the sludge was high, it decreased strongly after 7 d of drying, reaching lower values than those of wood shavings. In general, few differences were found between the materials in terms of bird performance and welfare and only the incidence of hock burn was higher in the sludge than in the wood shavings. Although further research is needed, sludge from paper recycling is a possible alternative to traditional bedding materials because it achieves most of the requirements for broiler bedding materials and does not show negative effects on the birds.
Inertization of heavy metals present in galvanic sludge by DC thermal plasma.
Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan
2014-01-01
Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.
Biogasification of water hyacinth and sludge for methane production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chynoweth, D.P.; Biljetina, R.; Srivastava, V.J.
1985-01-01
Research is in progress to determine the technical and economic feasibility of treatment of domestic sewage using primary settling and water hyacinth ponds and conversion of the organic products of this treatment (primary sludge and hyacinth) to substitute natural gas. This paper describes the status of the conversion component of this program which is centered on anaerobic digestion of hyacinth/sludge blends to methane. The results of several experiments conducted successfully in a large-scale experimental test unit located at the hyacinth treatment facility at Walt Disney are presented. 11 refs., 5 figs., 4 tabs.
Mackie, Allison L; Walsh, Margaret E
2015-11-15
The purpose of this study was to investigate the potential to replace lime with cement kiln dust (CKD) in high density sludge (HDS) treatment of acid mine drainage (AMD). The bench-scale study used two water samples: AMD sampled from a lead-zinc mine with high concentrations of iron (Fe), zinc (Zn), and arsenic (As) (Fe/Zn-AMD) and a synthetic AMD solution (Syn-AMD) spiked with ferric sulfate (Fe2(SO4)3). Arsenic was found to be significantly reduced with CKD-HDS treatment of Fe/Zn-AMD compared to lime-HDS treatment, to concentrations below the stringent mine effluent discharge regulation of 0.10 mg As/L (i.e., 0.04 ± 0.02 mg/L). Both CKD- and lime-HDS treatment of the two AMD samples resulted in settled water Fe concentrations above the stringent discharge guideline of 0.3 mg Fe/L. CKD addition in the HDS process also resulted in high settled water turbidity, above typical discharge guidelines of 15 mg TSS/L. CKD-HDS treatment was found to result in significantly improved settled solids (i.e., sludge) quality compared to that generated in the lime-HDS process. HDS treatment with CKD resulted in 25-88% lower sludge volume indices, 2 to 9 times higher % wet solids, and 10 to 20 times higher % dry solids compared to lime addition. XRD and XPS testing indicated that CKD-HDS sludge consisted of mainly CaCO3 and SiO2 with Fe(3+) precipitates attached at particle surfaces. XRD and XPS testing of the lime-HDS generated sludge showed that it consisted of non-crystalline Fe oxides typical of sludge formed from precipitates with a high water concentration. Increased sedimentation rates were also found for CKD (1.3 cm/s) compared to lime (0.3 cm/s). The increased solids loading with CKD addition compared to lime addition in the HDS process was suggested to both promote surface complexation of metal precipitates with insoluble CKD particles and increase compression effects during Type IV sedimentation. These mechanisms collectively contributed to the reduced water content of CKD-HDS sludge. The results of this study suggest that solids loading is a significant factor in increased sludge density found with the HDS process compared to conventional lime precipitation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meng, Zhili; Zhou, Zhiwei; Zheng, Dan; Liu, Lujian; Dong, Jun; Yang, Yanling; Li, Xing; Zhang, Tingting
2018-07-01
Sludge dewatering has proven to be an effective method to reduce the volume of sludge. In this study, drinking water treatment sludge (DWTS) was treated by ultra-sonication under variable conditions comparing two sonoreactor types (bath and probe), four frequencies (25, 40, 68, 160 kHz) and four energy density levels (0.03, 1, 3, 5 W/mL). The effects of these conditions were studied using specific resistance to filtration and capillary suction time as measures of dewaterability, and floc size, the Brunauer, Emmett and Teller (BET) specific surface area and Zeta potential to determine treated sludge characteristics. The results indicated that the dewaterability of sonicated sludge improved at relatively low energy densities of 0.03 and 1.0 W/mL, while an optimum for sonication duration (within 10 min) was also identified. Higher frequencies (tested up to 160 kHz) with acoustic energy density of 0.03 W/mL also reduced the dewatering property. At higher energy densities of 3.0 and 5.0 W/mL, dewaterability of sludge deteriorated regardless of ultra-sonication time, with an increase of solubilized organic matter content and severely changed floc characteristics. The deterioration of the dewatering capacity was closely related to the considerably reduced floc sizes, dissolution of proteins and polysaccharides, and to the Zeta potential of sonicated sludge flocs. The dewaterability was not correlated with BET specific surface area. Mechanistic explanations for the observations were discussed by analyzing corrosion patterns of aluminum foil as a measure for cavitation field distribution. Copyright © 2018 Elsevier B.V. All rights reserved.
Feedstock and process influence on biodiesel produced from waste sewage sludge.
Capodaglio, Andrea G; Callegari, Arianna
2018-06-15
Disposal of sewage sludge is one of the most important issues in wastewater treatment throughout Europe, as EU sludge production, estimated at 9.5 million tons dry weight in 2005, is expected to approach 13 million tons in 2020. While sludge disposal costs may constitute 30-50% of the total operation costs of wastewater treatment processes, waste sewage sludge still contains resources that may be put to use, like nutrients and energy, that can be recovered through a variety of approaches. Research has shown that waste sewage sludge can be a valuable and very productive feedstock for biodiesel generation, containing lipids (the fats from which biofuels are extracted) in amounts that would require large areas cultivated with typical biodiesel feedstock, to produce, and at a much lower final cost. Several methods have been tested for the production of biodiesel from sewage sludge. To date, among the most efficient such process is pyrolysis, and in particular Microwave-Assisted Pyrolysis (MAP), under which process conditions are more favorable in energetic and economic terms. Sludge characteristics are very variable, depending on the characteristics of the wastewater-generating service area and on the wastewater treatment process itself. Each sludge can be considered a unique case, and as such experimental determination of the optimal biodiesel yields must be conducted on a case-by-case basis. In addition to biodiesel, other pyrolysis products can add to the energetic yield of the process (and not only). This paper discusses how feedstock properties and process characteristics may influence biodiesel (and other products) yield from pyrolytic (and in particular, MAP) processes, and discusses future possible technological developments. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Arasmith, E. E.
The determination of the thickness of a sludge blanket in primary and secondary clarifiers and in gravity thickness is important in making operational control decisions. Knowing the thickness and concentration will allow the operator to determine sludge volume and detention time. Designed for individuals who have completed National Pollutant…
2011-05-01
Sustainability Development to Integration NAVSTA Naval Station NT not tested O&M operation and maintenance OSHA Occupational Safety and Health ...Safety and Health Administration The results presented here and data from previous pilot scale and prototype (Hawaii) demonstrations of oily sludge...designed to treat. While additional degradation may have occurred if the system was supplemented with micronutrients and operated in series, it is
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil.more » CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.« less
Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua
2018-03-01
Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.
Removal of metals in leachate from sewage sludge using electrochemical technology.
Meunier, N; Drogui, P; Gourvenec, C; Mercier, G; Hausler, R; Blais, J F
2004-02-01
Heavy metals in acidic leachates from sewage sludge are usually removed by chemical precipitation, which often requires high concentration of chemicals and induces high metallic sludge production. Electrochemical technique has been explored as an alternative method in a laboratory pilot scale reactor for heavy metals (Cu and Zn) removal from sludge leachate. Three electrolytic cell arrangements using different electrodes materials were tested: mild steel or aluminium bipolar electrode (EC cell), Graphite/stainless steel monopolar electrodes (ER cell) and iron-monopolar electrodes (EC-ER cell). Results showed that the best performances of metal removal were obtained with EC and EC-ER cells using mild steel electrodes operated respectively at current intensities of 0.8 and 2.0 A through 30 and 60 min of treatment. The yields of Cu and Zn removal from leachate varied respectively from 92.4 to 98.9% and from 69.8 to 76.6%. The amounts of 55 and 44 kg tds(-1) of metallic sludge were respectively produced using EC and EC-ER cells. EC and EC-ER systems involved respectively a total cost of 21.2 and 13.1 CAN dollars per ton of dry sludge treated including only energy consumption and metallic sludge disposal. The treatment using EC-ER system was found to be effective and more economical than the traditional metal precipitation using either Ca(OH)2 and/or NaOH.
NASA Astrophysics Data System (ADS)
Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje
2016-12-01
Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2--N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management.
Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje
2016-01-01
Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2−-N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management. PMID:28004811
Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero
2013-04-01
This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge). Copyright © 2013 Elsevier Ltd. All rights reserved.
Mobilities and leachabilities of heavy metals in sludge with humus soil.
Zhu, Rui; Wu, Min; Yang, Jian
2011-01-01
Chemical forms of Zn, Ni, Cu, and Pb in municipal sewage sludge were investigated by adding humus soil to sludge and by performing sequential extraction procedures. In the final sludge mixtures, Zn and Ni were mainly found in Fe/Mn oxide-bound (F3) and organic matter/sulfide-bound (F4) forms. For Zn, exchangeable (F1), carbonate-bound (F2), and F3 forms were transformed to F4 and residual forms (F5). For Ni, F1 and F2 forms were transformed to F1, F2, and F3 forms. Both Cu and Pb were strongly associated with the stable forms F4 and F5. For Cu, F2 and F3 forms were major contributors, while for Pb, F3 and F4 forms were major contributors to F5. Humus soil dosage and pH conditions in the sludge were strongly correlated with the forms of heavy metals. Five forms were used to evaluate metal mobilities in the initial and final sludge mixtures. The mobilities of the four heavy metals studied decreased after 28 days. The metal mobilities in the final sludge mixtures were ranked in the following order: Ni > Zn > Cu = Pb. Leaching tests showed that the mobilities of Zn and Ni in lower pH conditions (pH 4) were higher than those in higher pH conditions (pH 8).
A study on polypropylene encapsulation and solidification of textile sludge.
Kumari, V Krishna; Kanmani, S
2011-10-01
The textile sludge is an inevitable solid waste from the textile wastewater process and is categorised under toxic substances by statutory authorities. In this study, an attempt has been made to encapsulate and solidify heavy metals and dyes present in textile sludge using polypropylene and Portland cement. Sludge samples (2 Nos.) were characterized for pH (8.5, 9.5), moisture content (1.5%, 1.96%) and chlorides (245mg/L, 425.4mg/L). Sludge samples were encapsulated into polypropylene with calcium carbonate (additive) and solidified with cement at four different proportions (20, 30, 40, 50%) of sludge. Encapsulated and solidified cubes were made and then tested for compressive strength. Maximum compressive strength of cubes (size, 7.06cm) containing sludge (50%) for encapsulation (16.72 N/mm2) and solidification (18.84 N/mm2) was more than that of standard M15 mortar cubes. The leachability of copper, nickel and chromium has been effectively reduced from 0.58 mg/L, 0.53 mg/L and 0.07 mg/L to 0.28mg/L, 0.26mg/L and BDL respectively in encapsulated products and to 0.24mg/L, BDL and BDL respectively in solidified products. This study has shown that the solidification process is slightly more effective than encapsulation process. Both the products were recommended for use in the construction of non-load bearing walls.
Jin, Zhengyu; Chang, Fengmin; Meng, Fanlin; Wang, Cuiping; Meng, Yao; Liu, Xiaoji; Wu, Jing; Zuo, Jiane; Wang, Kaijun
2017-10-01
Aiming at closed-loop sustainable sewage sludge treatment, an optimal and economical pyrolytic temperature was found at 400-450 °C considering its pyrolysis efficiency of 65%, fast cracking of hydrocarbons, proteins and lipids and development of aromatized porous structure. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) tests demonstrated the development of adsorptive functional groups and crystallographic phases of adsorptive minerals. The optimal sludge-char, with a medium specific surface area of 39.6 m 2 g -1 and an iodine number of 327 mgI 2 g -1 , performed low heavy metals lixiviation. The application of sludge-char in raw sewage could remove 30% of soluble chemical oxygen demand (SCOD), along with an acetic acid adsorption capacity of 18.0 mg g -1 . The developed mesopore and/or macropore structures, containing rich acidic and basic functional groups, led to good biofilm matrices for enhanced microbial activities and improved autotrophic nitrification in anoxic stage of an A/O reactor through adsorbed extra carbon source, and hence achieved the total nitrogen (TN) removal up to 50.3%. It is demonstrated that the closed-loop sewage sludge treatment that incorporates pyrolytic sludge-char into in-situ biological sewage treatment can be a promising sustainable strategy by further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sludge settling processes in SBR-related sewage treatment plants according to the Biocos method.
Meusel, S; Englert, R
2004-01-01
This paper describes the investigations in a sedimentation and circulation reactor (SU-reactor) of a three-phase Biocos plant. The aim of these investigations was the determination of the temporal and depth-dependent distribution of suspended solid contents, as well as describing the sludge sedimentation curves. The calculated results reveal peculiarities of the Biocos method with regard to sedimentation processes. In the hydraulically uninterrupted (pre-)settling phase, a sludge level depth was observed, which remained constant over the reactor surface and increased linearly according to the sludge volume. The settling and the thickening processes of this phase corresponded to a large extent to the well-known settling test in a one-litre measuring cylinder. During the discharge phase, the investigated settling rate was overlaid by the surface loading rate and the sludge level changed depending on the difference between those two parameters. The solid distribution of the A-phase indicated a formation of functional zones, which were influenced by the surface loading. The formation was comparable to the formation of layers in secondary settling tanks with vertical flow. The concentration equalisation between the biological reactor and the SU-reactor proved to be problematic during the circulation phase, because a type of internal sludge circulation occurred in the SU-reactor. A permanent sludge recirculation seems to be highly recommendable.
Proof of concept for a new energy-positive wastewater treatment scheme.
Remy, C; Boulestreau, M; Lesjean, B
2014-01-01
For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70-80% of total chemical oxygen demand into the sludge while dosing 15-20 mg/L Al and 5-7 mg/L polymer with stable operation of the microsieve and effluent limits below 2-3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.
Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters.
Bozkurt, Hande; Sanin, F Dilek
2014-06-01
Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties. Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge. In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol diethoxylate (NP2EO), for anaerobic digestion of sludge was determined. The test bottles were dosed with NP2EO in acetone, with concentrations ranging from 1 mg L(-1) to 30 mg L(-1). During the tests, gas productions and compositions in terms of methane and carbon dioxide were monitored. To be able to judge about the fate, the target compounds were extracted from water and sludge and analyzed using GC/MS. The sludge samples used for assembling the reactors were found to contain NP and NP1EO but no NP2EO. After the assay was completed, all the NP2EO spiked into the live reactors was found to disappear. The increase seen in NP1EO and NP and further accumulation of NP in the system, indicated the conversion of NP2EO to these metabolites. On the other hand, no conversion was observed in abiotic reactors. Inhibition of NP2EO for anaerobic microorganisms was not observed throughout the tests considering the biogas production of the test reactors in comparison to the control reactors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago
NASA Astrophysics Data System (ADS)
Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui
2017-12-01
In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.
Enhanced sludge dewatering by electrofiltration. A feasibility study.
Saveyn, H; Huybregts, L; Van der Meeren, P
2001-01-01
Sludge treatment is a major issue in today's waste water treatment. One of the problems encountered is the limiting dewaterability of mainly biological sludges, causing high final treatment costs for incineration or landfill. Although during recent years, improvements are realised in the field of dewatering, the actual dry solids content after dewatering remains at a maximum value of about 35%. In order to increase the dry solids content, the technique of electrofiltration was investigated. Electrofiltration is the combination of two known techniques, traditional pressure filtration and electroosmotic/electrophoretic dewatering. Pressure filtration is based on pressure as the driving force for dewatering a sludge. Limitations hereby lie in the clogging of the filter cloth due to the build-up of the filtercake. Electroosmotic/electrophoretic dewatering is based on an electric field to separate sludge colloid particles from the surrounding liquid by placing the sludge liquor between two oppositely charged electrodes. In this case, mobile sludge particles will move to one electrode due to their natural surface charge, and the liquid phase will be collected at the oppositely charged electrode. Combination of both techniques makes it possible to create a more homogeneous filter cake and prevent the filter from clogging, resulting in higher cake dry solids contents and shorter filtration cycles. To investigate the feasibility of this technique for the dewatering of activated sludge, a filter unit was developed for investigations on lab scale. Multiple dewatering tests were performed in which the electric parameters for electrofiltration were varied. It was derived from these experiments that very high filter cake dry solids contents (to more than 60%), and short filtration cycles were attainable by using a relatively small electric DC field. The power consumption was very low compared to the power needed to dewater sludge by thermal drying techniques. For this reason, this technique seems very promising for the dewatering of biological sludges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.
The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludgesmore » that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.« less
Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique
2015-03-15
Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor
2018-05-01
It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.
Ponce-Robles, Laura; Rivas, Gracia; Esteban, Belen; Oller, Isabel; Malato, Sixto; Agüera, Ana
2017-10-01
An analytical method was developed and validated for the determination of ten pesticides in sewage sludge coming from an agro-food industry. The method was based on the application of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction for solid sewage sludge and SPE extraction for sludge aqueous phase, followed by liquid chromatography (LC) coupled to hybrid quadrupole/linear ion trap mass spectrometry (QqLIT-MS). The QuEChERS method was reported 14 years ago and nowadays is mainly applied to the analysis of pesticides in food. More recent applications have been reported in other matrices as sewage sludge, but the complexity of the matrix makes necessary the optimization of the cleanup step to improve the efficiency of the analysis. With this aim, several dispersive solid-phase extraction cleanup sorbents were tested, choosing C18 + PSA as a d-SPE sorbent. The proposed method was satisfactorily validated for most compounds investigated, showing recoveries higher than 80% in most cases, with the only exception of prochloraz (71%) at low concentration level. Limits of quantification were lower than 40 ng l -1 in the aqueous phase and below 40 ng g -1 in the solid phase for the majority of the analytes. The method was applied to solid sludge and the sludge aqueous phase coming from an agro-food industry which processes fruits and vegetables. Graphical abstract Application of LC/MS/MS advanced analytical techniques for determination of pesticides contained in sewage sludge.
Kahru, A; Reiman, R; Rätsep, A
1998-07-01
Phenolic composition, toxicity and biodegradability of three different phenolic leachates/samples was studied. Samples A and C were the leachates from the oil-shale industry spent shale dumps at Kohtla-Järve, Estonia. Sample B was a laboratory-prepared synthetic mixture of 7 phenolic compounds mimmicking the phenolic composition of the leachate A. Toxicity of these 3 samples was analyzed using two photobacterial test (BioTox and Microtox), Daphnia test (DAPHTOXKIT F pulex) and rotifiers' test (ROTOXKIT F). All the LC50 values were in the range of 1-10%, leachate A being the most toxic. The growth and detoxifying potential (toxicity of the growth medium was measured using photobacterial tests) of 3 different phenol-utilizing bacteria and acclimated activated sludges was studied in shake-flask cultures. 30% leachate A (altogether 0.6 mM total phenolic compounds) was too toxic to rhodococci and they did not grow. Cell number of Kurthia sp. and Pseudomonas sp. in 30% leachate A increased by 2 orders of magnitude but despite of the growth of bacteria the toxicity of the leachate did not decrease even by 7 weeks of cultivation. However, if the activated sludge was used instead of pure bacterial cultures the toxicity of the 30% leachate A was eliminated already after 3 days of incubation. 30% samples B and C were detoxified by activated sludge even more rapidly, within 2 days. As the biodegradable part of samples A and B should be identical, the detoxification of leachate A compared to that of sample B was most probably inhibited by inorganic (e.g. sulphuric) compounds present in the leachate A. Also, the presence of toxic recalcitrant organic compounds in the leachate A (missed by chemical analysis) that were not readily biodegradable even by activated sludge consortium should not be excluded.
Artificial neural networks for modeling ammonia emissions released from sewage sludge composting
NASA Astrophysics Data System (ADS)
Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H.
2012-09-01
The project was designed to develop, test and validate an original Neural Model describing ammonia emissions generated in composting sewage sludge. The composting mix was to include the addition of such selected structural ingredients as cereal straw, sawdust and tree bark. All created neural models contain 7 input variables (chemical and physical parameters of composting) and 1 output (ammonia emission). The α data file was subdivided into three subfiles: the learning file (ZU) containing 330 cases, the validation file (ZW) containing 110 cases and the test file (ZT) containing 110 cases. The standard deviation ratios (for all 4 created networks) ranged from 0.193 to 0.218. For all of the selected models, the correlation coefficient reached the high values of 0.972-0.981. The results show that he predictive neural model describing ammonia emissions from composted sewage sludge is well suited for assessing such emissions. The sensitivity analysis of the model for the input of variables of the process in question has shown that the key parameters describing ammonia emissions released in composting sewage sludge are pH and the carbon to nitrogen ratio (C:N).
Jimenez, Julie; Gonidec, Estelle; Cacho Rivero, Jesús Andrés; Latrille, Eric; Vedrenne, Fabien; Steyer, Jean-Philippe
2014-03-01
Advanced dynamic anaerobic digestion models, such as ADM1, require both detailed organic matter characterisation and intimate knowledge of the involved metabolic pathways. In the current study, a methodology for municipal sludge characterization is investigated to describe two key parameters: biodegradability and bioaccessibility of organic matter. The methodology is based on coupling sequential chemical extractions with 3D fluorescence spectroscopy. The use of increasingly strong solvents reveals different levels of organic matter accessibility and the spectroscopy measurement leads to a detailed characterisation of the organic matter. The results obtained from testing 52 municipal sludge samples (primary, secondary, digested and thermally treated) showed a successful correlation with sludge biodegradability and bioaccessibility. The two parameters, traditionally obtained through the biochemical methane potential (BMP) lab tests, are now obtain in only 5 days compared to the 30-60 days usually required. Experimental data, obtained from two different laboratory scale reactors, were used to validate the ADM1 model. The proposed approach showed a strong application potential for reactor design and advanced control of anaerobic digestion processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Qi; Luo, Kun; Li, Xiao-ming; Wang, Dong-bo; Zheng, Wei; Zeng, Guang-ming; Liu, Jing-jin
2010-05-01
In this investigation, the effects of commercial enzyme preparation containing alpha amylase and neutral protease on hydrolysis of excess sludge and the kinetic analysis of hydrolysis process were evaluated. The results indicated that amylase treatment displayed higher hydrolysis efficiency than that of protease. VSS reduction greatly increased to 39.70% for protease and 54.24% for amylase at the enzyme dosage of 6% (w/w), respectively. The hydrolysis rate of sludge improved with temperature increasing from 40 to 50 degrees Celsius, which could be well described by the amended Arrhenius equation. Mixed-enzyme had great impact on sludge solubilisation than single enzyme. The mixture of two enzymes (protease:amylase=1:3) resulted in optimum hydrolysis efficiency, the efficiency of solids hydrolysis increased from 10% (control test) to 68.43% at the temperature of 50 degrees Celsius. Correspondingly, the concentration of reducing sugar and NH(4)(+)-N improved about 377% and 201%, respectively. According to the kinetic analysis of enzymatic hydrolysis process, VSS solubilisation process within prior 4 h followed first-order kinetics. Compared with control test, the hydrolysis rate improved significantly at 50 degrees Celsius when either single enzyme or mixed-enzyme was added. Copyright 2009. Published by Elsevier Ltd.
Da Ros, C; Cavinato, C; Cecchi, F; Bolzonella, D
2014-01-01
In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m(3)d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm(3)biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.
Zhang, Miao; Li, Rong; Cao, Liangliang; Shi, Juanjuan; Liu, Hongjun; Huang, Yan; Shen, Qirong
2014-01-01
Large amounts of refloated algal sludge from Taihu Lake result in secondary environmental pollution due to annual refloatation. This study investigated the possibility to produce bio-organic fertilizer (BIO) using algal sludge as a solid-state fermentation (SSF) medium. Results showed that addition of algal sludge contributed to efficient SFF by a plant growth-promoting rhizobacteria (PGPR) strain SQR9 and improved the nutrient contents in the novel BIO. The optimum water content and initial inoculation size were 45% and 5%, respectively. After 6 days of SSF, the biomass of strain SQR9 was increased to a cell density of more than 5 × 10(7) CFU g(-1). Microcystins were rapidly degraded, and a high germination index value was observed. Plant growth experiments showed that the produced BIO efficiently promoted plant growth. Additional testing showed that the novel SSF process was also suitable for other PGPR strains. This study provides a novel way of high-value utilization of algal sludge from Taihu Lake by producing low-cost but high-quality BIOs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gajski, Goran; Oreščanin, Višnja; Garaj-Vrhovac, Vera
2011-07-01
Present study aimed to establish the chemical composition of sewage sludge leachate before/after calcium oxide-based solidification using energy dispersive X-ray fluorescence (EDXRF). The other aim was to determine leachate effects on human lymphocyte and DNA integrity in vitro using a battery of bioassays (DNA diffusion assay, micronucleus test and comet assay) to determine effects of those complex mixtures of elements on cell and DNA integrity. EDXRF showed that nickel concentration in the leachate of untreated sludge was 18.5 times higher than the upper permissible limit for inert waste landfills. Other elements were kept below the permissible values. After sludge solidification, leachate concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb dropped 1.6, 2.7, 37, 5.9, 3.2, 7.8, and 2.6 times, respectively. Untreated sludge leachate was cytogenotoxic to lymphocytes, and may lead to adverse effects on the exposed human populations, but calcium oxide-based solidification reduced these effects in significant manner. Copyright © 2011 Elsevier Inc. All rights reserved.
Ding, Huihuang H; Chang, Sheng; Liu, Yi
2017-11-01
The performance of biological hydrolysis (BH) pretreatment on municipal secondary sludge was evaluated in this study. During 6-day BH at 42°C (BH42), soluble chemical oxygen demand (sCOD) increased from 175.2±38.2mg/L to 3314.5±683.4mg/L; the dominant volatile fatty acid (VFA) was acetic acid, and its concentration increased from 41.5±2.1mg/L to 786.0±133.2mg/L. The extracted extracellular polymeric substances (EPS) from untreated secondary sludge contained three main fractions, and Fraction I gradually decreased from 133.9kDa to 24.9kDa during 6-day BH42. The BH pre-treatment at 42°C and 55°C both achieved more than 4-log reduction of total coliforms and 3-log reduction of E. coli. The BH pretreated secondary sludge at 15-day biochemical methane potential (BMP) test was comparable with the untreated secondary sludge after 30-day BMP, showing a significant enhancement on the acceleration of biogas production by BH pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G
2013-09-01
The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.
NASA Tech Briefs, November 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics include: Wireless Measurement of Contact and Motion Between Contact Surfaces; Wireless Measurement of Rotation and Displacement Rate; Portable Microleak-Detection System; Free-to-Roll Testing of Airplane Models in Wind Tunnels; Cryogenic Shrouds for Testing Thermal-Insulation Panels; Optoelectronic System Measures Distances to Multiple Targets; Tachometers Derived From a Brushless DC Motor; Algorithm-Based Fault Tolerance for Numerical Subroutines; Computational Support for Technology- Investment Decisions; DSN Resource Scheduling; Distributed Operations Planning; Phase-Oriented Gear Systems; Freeze Tape Casting of Functionally Graded Porous Ceramics; Electrophoretic Deposition on Porous Non- Conductors; Two Devices for Removing Sludge From Bioreactor Wastewater; Portable Unit for Metabolic Analysis; Flash Diffusivity Technique Applied to Individual Fibers; System for Thermal Imaging of Hot Moving Objects; Large Solar-Rejection Filter; Improved Readout Scheme for SQUID-Based Thermometry; Error Rates and Channel Capacities in Multipulse PPM; Two Mathematical Models of Nonlinear Vibrations; Simpler Adaptive Selection of Golomb Power-of- Two Codes; VCO PLL Frequency Synthesizers for Spacecraft Transponders; Wide Tuning Capability for Spacecraft Transponders; Adaptive Deadband Synchronization for a Spacecraft Formation; Analysis of Performance of Stereoscopic-Vision Software; Estimating the Inertia Matrix of a Spacecraft; Spatial Coverage Planning for Exploration Robots; and Increasing the Life of a Xenon-Ion Spacecraft Thruster.
Romero-Pareja, P M; Aragon, C A; Quiroga, J M; Coello, M D
2017-05-01
Sludge production is an undesirable by-product of biological wastewater treatment. The oxic-settling-anaerobic (OSA) process constitutes one of the most promising techniques for reducing the sludge produced at the treatment plant without negative consequences for its overall performance. In the present study, the OSA process is applied in combination with ultrasound treatment, a lysis technique, in a lab-scale wastewater treatment plant to assess whether sludge reduction is enhanced as a result of mechanical treatment. Reported sludge reductions of 45.72% and 78.56% were obtained for the two regimes of combined treatment tested in this study during two respective stages: UO1 and UO2. During the UO1 stage, the general performance and nutrient removal improved, obtaining 47.28% TN removal versus 21.95% in the conventional stage. However, the performance of the system was seriously damaged during the UO2 stage. Increases in dehydrogenase and protease activities were observed during both stages. The advantages of the combined process are not necessarily economic, but operational, as US treatment acts as contributing factor in the OSA process, inducing mechanisms that lead to sludge reduction in the OSA process and improving performance parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping
2014-10-07
Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.
Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D
2015-01-01
A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.
Zubrowska-Sudol, M
2018-04-01
The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).
Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos
2015-01-01
This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.
[Helminth prevalence in a waste-water plant at El Rosal, Cundinamarca].
Ortiz, Carolina; López, Myriam C; Rivas, Favio A
2012-01-01
Assessing helminth egg prevalence in sludge and raw and treated wastewater from a wastewater treatment system located in the village of El Rosal, Cundinamarca. 30 wastewater and 10 sludge samples from the El Rosal plant were taken during a 10-week period. The sludge and water samples were processed according to the Bailinger and the official Mexican standard methodology, respectively. Egg viability was determined by the method described by Victórica & Galván and the Mexican official standard. Descriptive statistics were used for analysing data. 100 % of the untreated wastewater samples showed the presence of eggs and at least one viable helminth egg/litre was found in 90 % of them. 90 % of the treated wastewater samples were positive for the presence of eggs, finding that 70 % had at least one viable egg. All raw wastewater samples being dumped directly into the stream were positive for helminths; the same situation was found at the time of the viability test. All sludge samples were positive for helminths, finding that 100 % of these had at least one viable egg. Using this water for crop irrigation and using the sludge as fertiliser is a potential risk for public health. The sludge can only be used in forestry activities, as long as it does not come into contact with humans.
Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei
2008-08-15
This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.
Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.
Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R
2006-11-01
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).
Chirwa, Charles F. C.; Hall, Ralph P.; Krometis, Leigh-Anne H.; Vance, Eric A.; Edwards, Adam; Guan, Ting; Holm, Rochelle H.
2017-01-01
Pit latrines can provide improved household sanitation, but without effective and inexpensive emptying options, they are often abandoned once full and may pose a public health threat. Emptying techniques can be difficult, as the sludge contents of each pit latrine are different. The design of effective emptying techniques (e.g., pumps) is limited by a lack of data characterizing typical in situ latrine sludge resistance. This investigation aimed to better understand the community education and technical engineering needs necessary to improve pit latrine management. In low income areas within Mzuzu city, Malawi, 300 pit latrines from three distinct areas were assessed using a dynamic cone penetrometer to quantify fecal sludge strength, and household members were surveyed to determine their knowledge of desludging procedures and practices likely to impact fecal sludge characteristics. The results demonstrate that there is a significant difference in sludge strength between lined and unlined pits within a defined area, though sludge hardened with depth, regardless of the pit type or region. There was only limited association between cone penetration depth and household survey data. To promote the adoption of pit emptying, it is recommended that households be provided with information that supports pit emptying, such as latrine construction designs, local pit emptying options, and cost. This study indicates that the use of a penetrometer test in the field prior to pit latrine emptying may facilitate the selection of appropriate pit emptying technology. PMID:28165378
Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.
O'Kelly, Brendan C
2008-01-01
The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials.
Determination of sorption of seventy-five pharmaceuticals in sewage sludge.
Hörsing, Maritha; Ledin, Anna; Grabic, Roman; Fick, Jerker; Tysklind, Mats; la Cour Jansen, Jes; Andersen, Henrik R
2011-10-01
Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentrations to water containing 1 g of sludge. The range of APIs concentrations was between ng L(-1) to μg L(-1) which are found in the wastewater effluents. Isotherms were obtained for approximately 45 of the APIs, providing distribution coefficients for linear (Kd), Freundlich (Kf) and Langmuir (KL) isotherms. Kd, Kf and KL ranging between 7.1×10(4) and 3.8×10(7), 1.1×10(-2) and 6.1×10(4) and 9.2×10(-3) and 1.1 L kg(-1), respectively. The obtained coefficients were applied to estimate the fraction of APIs in the water phase (see Abstract Graphic). For 37 of the 75 APIs, the predicted presence in the liquid phase was estimated to >80%. 24 APIs were estimated to be present in the liquid phase between 20 and 80%, and 14 APIs were found to have <20% presence in the liquid phase, i.e. high affinity towards sludge. Furthermore, the effect of pH at values 6, 7 and 8 was evaluated using one way ANOVA-test. A significant difference in Kds due to pH changes were found for 6 of the APIs (variation 10-20%). Copyright © 2011 Elsevier Ltd. All rights reserved.
Howie, Barbara
1992-01-01
Four test fields in the south Dade agricultural area were studied to determine the effects of sludge application on ground-water quality. Two fields had been cultivated for 10 years or more, and two had not been farmed for at least 10 years. The fields were representative of the area's two soil types (Rockdale and Perrine marl) and two major crop types (row crops and groves). Before the application of sludge, wells upgradient of, within, and downgradient of each field were sampled for possible sludge contaminants at the end of wet and dry seasons. Municipal wastewater treatment sludge from the Dade County Water and Sewe Authority Department was then applied to the fields at varying application rates. The wells at each field were sampled over a 2-year period under different hydrologic conditions for possible sludge-related constituents (specific conductance, pH, alkalinity, nitrogen, phosphorus, total organic carbon, copper, iron, magnesium, manganese, potassium, zinc, arsenic, cadmium, chloride, chromium, lead, mercury, nickel, and sodium). Comparisons were made between water quality in the vicinity of the test fields and Florida Department of Environmental Regulation primary and secondary drinking-water regulations, an between water quality upgradient of, beneath, and downgradient of the fields. Comparisons between presludge and postsludge water quality did not indicate any improvement because of retention of agrichemicals by the sludge nor did they indicate any deterioration because of leaching from the sludge. Comparisons of water quality upgradient of the fields to water quality beneath and downgradient of the fields also did not indicate any changes related to sludge. Florida Department of Environmental Regulation primary and secondary drinking-water regulations wer exceeded at the Rockdale maximum-application field by mercury (9.5 ug/L (micrograms per liter)), and the Perrine marl maximum-application field by manganese (60 ug/L) and lead (85 ug/L), and at the Perrine marl row-crop field by mercury (5.2 ug/L). All other exceedances were either in presludge or upgradient samples, or they were for constituents or properties, such as iron and color, which typically exceed standards in native ground water. Acid-extractable and base-neutral compounds, volatile organic compounds, chlorophenoxy herbicides, organophosphorus insecticides, and organochlorine compounds were analyzed for one shallow well at each field twice annually. Those compounds that equaled or exceeded the detection limit after sludge was applied included benzene (0.3 and 1.2 ug/L), chloroform (0.2 and 0.3 ug/L), bis(2-Ethylhexyl)phthalate (29 and 42 ug/L), methylene chloride (14 ug/L), tolulene (0.2, 0.4, 0.5, 1.3, and 4.4 ug/L), 1, 1,1-trichloroethana (0.6 ug/L), trichloroethylene (0.3 ug/L), 2.4-D (0.01 ug/L), and xylene (0.3 ug/L). It ws not possible to ascertain the origin of these compounds becuase they are available from sources other than sludge.
Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Reis, Marco S; Saraiva, Pedro M; Vílchez, José L
2011-01-01
In this work we present a monitoring study of linear alkylbenzene sulfonates (LAS) and insoluble soap performed on Spanish sewage sludge samples. This work focuses on finding statistical relations between LAS concentrations and insoluble soap in sewage sludge samples and variables related to wastewater treatment plants such as water hardness, population and treatment type. It is worth to mention that 38 samples, collected from different Spanish regions, were studied. The statistical tool we used was Principal Component Analysis (PC), in order to reduce the number of response variables. The analysis of variance (ANOVA) test and a non-parametric test such as the Kruskal-Wallis test were also studied through the estimation of the p-value (probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true) in order to study possible relations between the concentration of both analytes and the rest of variables. We also compared LAS and insoluble soap behaviors. In addition, the results obtained for LAS (mean value) were compared with the limit value proposed by the future Directive entitled "Working Document on Sludge". According to the results, the mean obtained for soap and LAS was 26.49 g kg(-1) and 6.15 g kg(-1) respectively. It is worth noting that LAS mean was significantly higher than the limit value (2.6 g kg(-1)). In addition, LAS and soap concentrations depend largely on water hardness. However, only LAS concentration depends on treatment type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.
A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data frommore » this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading plant scales and feedstock credit (current cost of disposal). It is assumed that the sludge is currently disposed of at $16.20/wet ton ($46/dry ton at 35% solids; $50/ton dry, ash-free basis) and this is included as a feedstock credit in the operating costs. The base case assumptions result in a minimum biocrude selling price of $3.8/gge and a minimum final upgraded fuel selling price of $4.9/gge. Several areas of process improvement and refinements to the analysis have the potential to significantly improve economics relative to the base case: •Optimization of HTL sludge feed solids content •Optimization of HTL biocrude yield •Optimization of HTL reactor liquid hourly space velocity (LHSV) •Optimization of fuel yield from hydrotreating •Combined large and small HTL scales specific to regions (e.g., metropolitan and suburban plants) Combined improvements believed to be achievable in these areas can potentially reduce the minimum selling price of biocrude and final upgraded fuel by about 50%. Further improvements may be possible through recovery of higher value components from the HTL aqueous phase, as being investigated under separate PNNL projects. Upgrading the biocrude at an existing petroleum refinery could also reduce the MFSP, although this option requires further testing to ensure compatibility and mitigation of risks to a refinery. And finally, recycling the HTL aqueous phase product stream back to the headworks of the WWTP (with no catalytic hydrothermal gasification treatment) can significantly reduce cost. This option is uniquely appropriate for application at a water treatment facility but also requires further investigation to determine any technical and economic challenges related to the extra chemical oxygen demand (COD) associated with the recycled water.« less
Utilization of sewage sludge in the manufacture of lightweight aggregate.
Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena
2016-01-01
This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports the swelling of the raw material, thereby causing an increase in the porosity of aggregates. The LWA2 has a lower value of bulk particle density (0.414 g/cm(3)), apparent particle density (0.87 g/cm(3)), and dry particle density (2.59 g/cm(3)) than it is in the case of LWA1 where these parameters were as follows: bulk particle density 0.685 g/cm(3), apparent particle density 1.05 g/cm(3), and dry particle density 2.69 g/cm(3). Water absorption and porosity of LWA1 (WA = 14.4 %, P = 60 %) are lower than the LWA2 (WA = 16.2 % and P = 66 %). This is due to the higher heating temperature of granules which make the waste gases, liberating them from the decomposition of organic sewage sludge. The compressive strength of LWA2 aggregate is 4.64 MPa and for LWA1 is 0.79 MPa. Results of leaching tests of heavy metals from examined aggregates have shown that insoluble metal compounds are placed in silicate and aluminosilicate structure of the starting materials (clays and sludges), whereas soluble substances formed crystalline skeleton of the aggregates. The thermal synthesis of lightweight aggregates from clay and sludge mixture is a waste-free method of their development.
Ferrer-Polonio, E; Fernández-Navarro, J; Alonso-Molina, J L; Amorós-Muñoz, I; Bes-Piá, A; Mendoza-Roca, J A
2017-12-01
Sludge production in wastewater treatment plants is nowadays a big concern due to the high produced amounts and their characteristics. Consequently, the study of techniques that reduce the sludge generation in wastewater treatment plants is becoming of great importance. In this work, four laboratory sequencing batch reactors (SBRs), which treated municipal wastewater, were operated to study the effect of adding the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) on the sludge reduction, the SBRs performance and the microbial hydrolytic enzymatic activities (MHEA). In addition, different operating conditions of the SBRs were tested to study the effect of the TCS on the process: two dissolved oxygen (DO) concentrations (2 and 9 mg L -1 ) and two F/M ratio (0.18 and 0.35 g COD·g MLVSS -1 ·d -1 ). The sludge production decreased under high DO concentrations. At the same time, the DNA and EPS production increased in the four SBRs. After these stress conditions, the performance of the reactors were recovered when DO was around 2 mg L -1 . From that moment on, results showed that TCS addition implied a reduction of the adenosine triphosphate (ATP) production, which implied a decrease in the sludge production. In spite of this reduction, the SBRs performances did not decay due to the increase in the global MHEA. Additionally, the sludge reduction was enhanced by the increase of the F/M ratio, achieving 28% and 60% of reduction for the low and the high F/M ratio, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heavy metal speciation and toxicity characteristics of tannery sludge
NASA Astrophysics Data System (ADS)
Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir
2016-07-01
Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.
Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F
2016-01-01
In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.
Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.
Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E
2016-07-15
Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gulde, Rebekka; Anliker, Sabine; Kohler, Hans-Peter E; Fenner, Kathrin
2018-01-02
To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.
Sludge reduction by ozone: Insights and modeling of the dose-response effects.
Fall, C; Silva-Hernández, B C; Hooijmans, C M; Lopez-Vazquez, C M; Esparza-Soto, M; Lucero-Chávez, M; van Loosdrecht, M C M
2018-01-15
Applying ozone to the return flow in an activated sludge (AS) process is a way for reducing the residual solids production. To be able to extend the activated sludge models to the ozone-AS process, adequate prediction of the tri-atoms effects on the particulate COD fractions is needed. In this study, the biomass inactivation, COD mineralization, and solids dissolution were quantified in batch tests and dose-response models were developed as a function of the reacted ozone doses (ROD). Three kinds of model-sludge were used. S1 was a lab-cultivated synthetic sludge with two components (heterotrophs X H and X P ). S2 was a digestate of S1 almost made by the endogenous residues, X P . S3 was from a municipal activated sludge plant. The specific ozone uptake rate (SO 3 UR, mgO 3 /gCOD.h) was determined as a tool for characterizing the reactivity of the sludges. SO 3 UR increased with the X H fraction and decreased with more X P . Biomass inactivation was exponential (e -β.ROD ) as a function of the ROD doses. The percentage of solids reduction was predictable through a linear model (C Miner + Y sol ROD), with a fixed part due to mineralization (C Miner ) and a variable part from the solubilization process. The parameters of the models, i.e. the inactivation and the dissolution yields (β, 0.008-0.029 (mgO 3 /mgCOD ini ) -1 vs Y sol , 0.5-2.8 mg COD sol /mgO 3 ) varied in magnitude, depending on the intensity of the scavenging reactions and potentially the compactness of the flocs for each sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pilot plant experience on anaerobic codigestion of source selected OFMSW and sewage sludge.
Cabbai, Valentina; De Bortoli, Nicola; Goi, Daniele
2016-03-01
Anaerobic codigestion of source selected organic fraction of municipal solid waste (SS-OFMSW) and sewage sludge may be one of the most viable solutions to optimize oversized digesters efficiency in wastewater treatment plants. Based on results of BMP tests obtained for sewage sludge and SS-OFMSW, pilot plant tests were carried out by 3.4 m(3) CSTR reactor at mesophilic temperature. A mix of fruit and vegetable waste from wholesale market and canteen waste was used as SS-OFMSW substrate. Tests were conducted applying an OLR (organic loading rate) ramp with 6 different phases until a value of 3.2 kgVS/m(3) d. Feedstock and digestate characteristics, efficiency and process parameters were monitored. The anaerobic codigestion development was stable in each phase: early indicators like VFA (volatile fatty acids) and FOS/TAC ratio were always below instability threshold values. The maximum OLR tested determined a GPR (gas production rate) of 0.95 N m(3)/m(3) d and SGP (specific gas production) of 0.49 N m(3)/kgVS with a VS abatement of 67.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paixão, S M; Anselmo, A M
2002-01-01
The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. Copyright 2002 John Wiley & Sons, Ltd.
40 CFR 60.5110 - How do I comply with the increment of progress for submittal of a control plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Model Rule... pollution control and process changes that you will use to comply with the emission limits and standards and...
Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.
ERIC Educational Resources Information Center
Klopping, Paul H.
This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-30
The 1,500-acre Ciba-Geigy site is an active chemical manufacturer in an industrial area in McIntosh, Washington County, Alabama. From 1952 to present, Ciba-Geigy, formerly Geigy Chemical Corporation, has produced various chemicals including DDT, laundry products, herbicides, insecticides, agricultural chelating agents, sequestering agents, plastic resins and additives, antioxidants, and specialty chemicals. In 1985, EPA issued a RCRA permit that included a corrective action plan requiring Ciba-Geigy to remove and treat ground water and surface water contamination at the site. In 1987, as part of the corrective action plan requirements, Ciba-Geigy installed an additional wastewater treatment system and ground water monitoring wells.more » The ROD addresses highly contaminated soil and sludge at 10 of the 11 former waste management areas as OU2. The primary contaminants of concern affecting the soil, sludge, and debris are VOCs including benzene and toluene; other organics including PCBs and pesticides (e.g., DDT); and metals including lead. The selected remedial action for the site is included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, D.
2011-07-14
A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheetmore » includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not consider the impact of proposed future alternative DWPF CPC flowsheets. The impact of the SCIX streams on DWPF processing using the selected flowsheet need to be considered as part of the technical baseline studies for coupled processing with the selected flowsheet. In addition, the downstream impact of aluminum dissolution on waste containing CST and MST has not yet been evaluated. The current baseline would not subject CST to the aluminum dissolution process and technical concerns with performing the dissolution with CST have been expressed. Should this option become feasible, the downstream impact should be considered. The main area of concern for DWPF from aluminum dissolution is an impact on rheology. The SCIX project is planning for SRNL to complete MST, CST, and sludge rheology testing to evaluate any expected changes. The impact of ground CST transport and flush water on the DWPF CPC feed tank (and potential need for decanting) has not been defined or studied.« less
Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan
2014-12-01
Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component.
Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.
Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf
2016-04-05
Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of <50 nm extending into the sub-nm range was revealed by electron microscopy analyses. The rapid formation of Ag(0)-NP from Ag2S during sewage sludge incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.
Xiao, Keke; Pei, Kangyue; Wang, Hui; Yu, Wenbo; Liang, Sha; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Yang, Jiakuan
2018-09-01
Fenton's reagent has been widely used to enhance sludge dewaterability. However, drawbacks associated with hydrogen peroxide (H 2 O 2 ) in Fenton's reagents exist, since it is a hazardous chemical and shows carcinogenicity, explosivity, instability, and corrosivity. Moreover, initial acidification and subsequent neutralization are needed as optimal conditions for homogeneous Fenton conditioning and final filtrate discharge. In this study, a Fenton-like process for the enhanced dewaterability of waste activated sludge with in-situ generation of H 2 O 2 and without extra pH adjustment was firstly proposed, namely citric acid (CA)-assisted oxygen activation in an air/nano zero-valent iron (nZVI) system and chemical re-coagulation with polydiallyldimethylammonium chloride (PDMDAAC). Using the response surface methodology (RSM), the optimal doses of CA, nZVI, and PDMDAAC were determined to be 13, 33, and 9 mg g -1 dry solids (DS), respectively. This composite conditioner showed a good dewatering capability compared with the raw sludge, e.g. the capillary suction time decreased from 130.0 to 9.5 s. The enhanced sludge dewaterability was further confirmed by laboratory-scale diaphragm filter press dewatering tests, which produced a lower cake moisture content compared with the raw sludge, and the final pH of the filtrate was close to neutrality. The citric acid promoted the production of H 2 O 2 and Fe(II)/Fe(III) species, the degradation of protein in tightly-bound extracellular polymeric substances, and the decomposition of protein-N in the solid phase of sludge, resulting a greater conversion of bound water to free water. The results of electron spin resonance indicated that the hydroxyl radicals were mainly responsible for the decomposition of proteinaceous compounds. The subsequent chemical re-coagulation with PDMDAAC can make the zeta potential of sludge samples less negative, reduce the repulsive electrostatic interactions, and agglomerate the smaller particles into larger aggregates, thus enhancing sludge dewaterability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anaerobic digestion of water hyacinth and sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.
1986-01-01
The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs.,more » 5 figs., 5 tabs.« less
Slatter, P T
2001-01-01
The need for the design engineer to have a sound basis for designing sludge pumping and pipelining plant is becoming more critical. This paper examines both a traditional text-book approach and one of the latest approaches from the literature, and compares them with experimental data. The pipelining problem can be divided into the following main areas; rheological characterisation, laminar, transitional and turbulent flow and each is addressed in turn. Experimental data for a digested sludge tested in large pipes is analysed and compared with the two different theoretical approaches. Discussion is centred on the differences between the two methods and the degree of agreement with the data. It is concluded that the new approach has merit and can be used for practical design.
Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, Edward; Spires, Renee; Davis, Neil
2009-02-11
At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full advantage of the many CORD-UV{reg_sign} benefits, performance demonstration testing was initiated using available SRS sludge simulant. The demonstration testing confirmed that ECC is a viable technology, as it can dissolve greater than 90% of the sludge simulant and destroy greater than 90% of the oxalates. Additional simulant and real waste testing are planned.« less
Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela
2016-01-01
This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.
Lensch, D; Schaum, C; Cornel, P
2016-01-01
Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load.
Chemical and toxicological characterization of the bricks produced from clay/sewage sludge mixture.
Gerić, Marko; Gajski, Goran; Oreščanin, Višnja; Kollar, Robert; Garaj-Vrhovac, Vera
2012-01-01
The present study aimed to characterize chemical properties of clay bricks containing 20 % of sewage sludge. After detection of potentially hazardous metals, we simulated precipitation exposure of such material to determine the amount of heavy metals that could leach out of the bricks. Metals, such as copper, zinc, nickel, cobalt, chromium, etc., were detected in leachate in low concentrations. Moreover, human peripheral blood lymphocytes were exposed to brick leachate for 24 h in order to evaluate its possible negative impact on human cells and genome in vitro. Cytotoxicity tests showed no effect on human peripheral blood lymphocytes viability after exposure to brick's leachate. On the contrary, the alkaline comet assay showed slight but significant increase in DNA damage with all three parameters tested. As we might predict, interactions of several heavy metals in low concentrations could be responsible for DNA damaging effect. In that manner, our findings suggest that leachates from sewage sludge-produced bricks may lead to adverse effects on the exposed human population, and that more stabile bricks should be developed to minimize leaching of heavy metals into the environment. Bricks with lower percentage of the sludge may be one of the solutions to reduce the toxic effect of the final product.
Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tara E.; Newell, J. David; Woodham, Wesley H.
The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less
Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan
2017-08-02
A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhern, D.W.; Robel, R.J.; Furness, J.C.
Disposal of scrubber sludge and fly ash waste from coal-fired power plants is a costly problem for utilities. Current regulations call for the retired waste areas to be covered with topsoil, then seeded to produce a protective vegetative cap. We conducted field tests over a 3-yr period to determine if a vegetative cover could be established without first adding topsoil to waste sites. Seven herbaceous and six tree species were planted on scrubber sludge and bottom ash sites. These substrates were first amended with fertilizer, and then hay, woodchips, or cow (Bos taurus) manure. The bottom ash was not capablemore » of supporting vegetative growth, even with amendment. Tall wheatgrass (Agropyron elongatum, (Host) Beauv.), tall fescue (Festuca arundinacea Schreb.), yellow sweet clover (Melilotus officinalis Lam.), and Japanese millet (Echinochloa crusgalli (L.) Beauv.) grew well on scrubber sludge, as did eastern cottonwood (Populus deltoides Marsh.) and eastern red cedar trees (Juniperus virginiana L.). Generally, herbaceous plants grew best on scrubber sludge to which manure and fertilizer were added, the trees survived and grew best on scrubber sludge amended with woodchips and fertilizer. This study demonstrates that a good vegetative cover can be produced on scrubber sludge waste areas without first covering them with topsoil.« less
Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun
2017-02-01
Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.
The effect of sewage sludge fertilization on the concentration of PAHs in urban soils.
Wołejko, Elżbieta; Wydro, Urszula; Jabłońska-Trypuć, Agata; Butarewicz, Andrzej; Łoboda, Tadeusz
2018-01-01
This paper analyses sources of sixteen PAHs - polycyclic aromatic hydrocarbons in urbanized areas by using selected diagnostic ratios. Simultaneously, an attempt was made to determine how sewage sludge changes PAHs content in urbanized areas soils. In the experiment three lawns along the main roads in Bialystok with different traffic intensity, three doses of sewage sludge and two years of study were considered. There was no effect of fertilization with sewage sludge on the sum of 16 PAHs in urban soil samples, nevertheless, the sum of 16 PAHs was reduced from 2.6 in 2011 to 2.3 mg/kg in 2012. Among 16 tested PAHs compounds, benzo[a]pyrene was the most dominant compound in samples collected in both years - about 15% of all PAHs. The results suggest that application of sludge into the soil did not influence the concentration of 2-3-ring, 4-ring and 5-6-ring PAHs. For the objects fertilized with a dose 150.0 Mg/ha, of sludge the total sum of potentially carcinogenic PAHs in the urban soil lowered by approximately 68% in comparison with the control plots. PAHs contamination of the urban soil samples resulted from the influence of coal, petroleum and biomass combustion. Moreover, PAHs can enter soil via at mospheric deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioflocculation of mesophilic and thermophilic activated sludge.
Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G
2005-01-01
Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.
Effect of domestication on microorganism diversity and anaerobic digestion of food waste.
Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D
2016-08-19
To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.
Gaspard, Philippe G; Schwartzbrod, Janine
2003-03-01
The use of sludge in agriculture must be carried out according to many guidelines, especially regarding a precise knowledge of the pathogenic microorganisms it contains. The control of the produced sludge requires a sampling strategy that is representative of the contamination present in the sludge. Thus, we evaluated the distribution of helminth eggs in sludge to determine how to sample and at what frequency. Two plants were studied, firstly we studied sludge that was undergoing biological treatment (anaerobic digestion, prolonged aeration), secondly we evaluated the dehydration step (centrifugation and filter press). The helminth egg concentrations were measured over short periods (between 5 minutes and 7 hours) and for periods of over 24 hours (7 to 28 days). The results showed that there was much homogeneity in periods of less than 7 hours, thus it was advisable to take grab samples. An appropriate sample weight was 30 g dry matter, because this allowed an analysis in triplicate when testing treatment processes according to standards of France, (less than 3 viable eggs/10 g dry matter). Determination of the egg concentration in the plants during periods of over 24 hours showed that the parasite flow was stable. In some cases, large variations were due to the treatment processes (storage or thickening, mixing of different sludges). These results have been confirmed with the study of 6 other plants during a one year period. Thus, the recommended sampling frequency can be limited to every 3 to 6 months, by adapting the sampling methods to the characteristics of the plant.
A decision support tool for selecting the optimal sewage sludge treatment.
Turunen, Ville; Sorvari, Jaana; Mikola, Anna
2018-02-01
Sewage sludge contains significant amounts of resources, such as nutrients and organic matter. At the same time, the organic contaminants (OC) found in sewage sludge are of growing concern. Consequently, in many European countries incineration is currently favored over recycling in agriculture. This study presents a Multi-Attribute Value Theory (MAVT)-based decision support tool (DST) for facilitating sludge treatment decisions. Essential decision criteria were recognized and prioritized, i.e., weighted, by experts from water utilities. Since the fate of organic contaminants was in focus, a simple scoring method was developed to take into account their environmental risks. The final DST assigns each sludge treatment method a preference score expressing its superiority compared to alternative methods. The DST was validated by testing it with data from two Finnish municipal wastewater treatment plants (WWTP). The validation results of the first case study preferred sludge pyrolysis (preference score: 0.629) to other alternatives: composting and incineration (score 0.580, and 0.484 respectively). The preference scores were influenced by WWTP dependent factors, i.e., the operating environment and the weighting of the criteria. A lack of data emerged as the main practical limitation. Therefore, not all of the relevant criteria could be included in the value tree. More data are needed on the effects of treatment methods on the availability of nutrients, the quality of organic matter and sludge-borne OCs. Despite these shortcomings, the DST proved useful and adaptable in decision-making. It can also help achieve a more transparent, understandable and comprehensive decision-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of electro acoustics for dewatering pharmaceutical sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golla, P.S.; Johnson, H.W.
1992-02-01
Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by anmore » electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.« less
NASA Astrophysics Data System (ADS)
Chen, Huixia; Dou, Junfeng; Xu, Hongbin
2017-12-01
Sewage sludge compost biomass was used as a novel biosorbent to remove hexavalent chromium from water. Surface area analysis, scanning electron microscopy, fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and point zero charge was applied to study the microstructure, compositions and chemical bonding states of the biomass adsorbent. Effects of contact time, biomass dosage, agitation speed, pH, the initial concentration of Cr(VI) and Cr(Ⅲ) on its adsorption removal were also performed in the batch experiments. A model describing adsorption, desorption and reduction phenomena during the sorption process has been referenced to model Cr(VI) sorption onto sewage sludge compost biomass. The result of characterization test shows that adsorption of Cr(VI) onto sewage sludge compost biomass followed by the partial reduction to Cr(Ⅲ) by biomass groups such as hydroxyl, carboxyl, and amino groups. The absorption kinetics model in the description of adsorption-coupled reduction of Cr(VI) fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The study shows that sewage sludge compost biomass could be used as a potential biosorbent for removal of hexavalent chromium from wastewaters.
Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun
2015-12-01
Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).
Lippert, Thomas; Bandelin, Jochen; Musch, Alexandra; Drewes, Jörg E; Koch, Konrad
2018-05-20
The performance of a novel ultrasonic flatbed reactor for sewage sludge pre-treatment was assessed for three different waste activated sludges. The study systematically investigated the impact of specific energy input (200 - 3,000 kJ/kg TS ) on the degree of disintegration (DD COD , i.e. ratio between ultrasonically and maximum chemically solubilized COD) and methane production enhancement. Relationship between DD COD and energy input was linear, for all sludges tested. Methane yields were significantly increased for both low (200 kJ/kg TS ) and high (2,000 - 3,000 kJ/kg TS ) energy inputs, while intermediate inputs (400 - 1,000 kJ/kg TS ) showed no significant improvement. High inputs additionally accelerated reaction kinetics, but were limited to similar gains as low inputs (max. 12%), despite the considerably higher DD COD values. Energy balance was only positive for 200 kJ/kg TS -treatments, with a maximum energy recovery of 122%. Results suggest that floc deagglomeration rather than cell lysis (DD COD =1% - 5% at 200 kJ/kg TS ) is the key principle of energy-positive sludge sonication. Copyright © 2018 Elsevier Ltd. All rights reserved.
Khezri, Seyed Mostafa; Shariat, Seyed Mahmood; Tabibian, Sahar
2012-06-01
Paint sludge of car manufacturing industries are not disposed in landfills, since they contain hazardous materials with a high concentration of chromium, aluminum, titanium, barium, copper, Iron, magnesium, strontium, and so on. Thus, it is essential to find solutions in order to neutralize them or suggest cost-effective techniques, which are also environmentally acceptable. Because, this sludge contains considerable amounts of Ti pigments and unbaked resins, recycling these pigments--which could be used in a variety of industries such as paint factories--is an appropriate subject for further research. In this article, with the aim of identification of main pollutants in order to eliminate them and suggest a cost-effective solution to recover the sludge, a large number of tests including X-ray fluorescence spectroscopy, X ray diffraction spectroscopy, and diffusion thermal analysis are conducted to determine types and concentration of elements, and combinations of paint sludge in car manufacturing industries. As titanium dioxide (TiO₂) is widely used as the main pigment of automobile paints, an optimal technique is suggested for extracting TiO₂ with high purity percentage through adopting scientific methods such as membrane and electrolysis.
Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan
2016-01-01
Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0–28, day 29–56, and day 57–91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid—rapidest—slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17–0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way. PMID:27257977
Li, Yukui; Liu, Qingchuan; Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan
2016-01-01
Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0-28, day 29-56, and day 57-91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid-rapidest-slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17-0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way.
A novel acrylamide-free flocculant and its application for sludge dewatering.
Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing
2014-06-15
In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial fuel cells operating on mixed fatty acids.
Freguia, Stefano; Teh, Ee Hoi; Boon, Nico; Leung, Kar Man; Keller, Jurg; Rabaey, Korneel
2010-02-01
Strategies are being developed to harvest the energy content of the wasted sludge generated from the treatment of domestic wastewater. Sludge can be hydrolysed and fermented, giving a mixture of volatile fatty acids (VFAs). Based on the composition of such a fermented stream, synthetic media were created and tested for VFA conversion in microbial fuel cells (MFCs). Mainly acetate and propionate were preferred as electron donors in the mixed VFA system, which generated a power density of 49+/-1 mW L(NAC)(-1). The other VFAs (butyrates/valerates/caproic acid) were also removed, albeit at lower rates. In single VFA tests, each VFA could be removed, but particularly i-butyrate did not provide significant current generation. PCR-DGGE indicated that the microbial community structure was highly determined by the fed VFA, rather than by the initial inoculum. The communities were dominated by Proteobacteria such as Geobacter, Comamonas, Pseudomonas and Pelobacter species. This study demonstrated the feasibility of using fatty acids, as present in fermented sludge hydrolysates, for current generation.
40 CFR 60.5075 - How does the model rule relate to the required elements of my state plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Use of Model Rule...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.
A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from thismore » effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading plant scales and feedstock credit (current cost of disposal). It is assumed that the sludge is currently disposed of at $16.20/wet ton ($46/dry ton at 35% solids; $50/ton dry, ash-free basis) and this is included as a feedstock credit in the operating costs. The base case assumptions result in a minimum biocrude selling price of $3.8/gge and a minimum final upgraded fuel selling price of $4.9/gge. Several areas of process improvement and refinements to the analysis have the potential to significantly improve economics relative to the base case: • Optimization of HTL sludge feed solids content • Optimization of HTL biocrude yield • Optimization of HTL reactor liquid hourly space velocity (LHSV) • Optimization of fuel yield from hydrotreating • Combined large and small HTL scales specific to regions (e.g., metropolitan and suburban plants) Combined improvements believed to be achievable in these areas can potentially reduce the minimum selling price of biocrude and final upgraded fuel by about 50%. Further improvements may be possible through recovery of higher value components from the HTL aqueous phase, as being investigated under separate PNNL projects. Upgrading the biocrude at an existing petroleum refinery could also reduce the MFSP, although this option requires further testing to ensure compatibility and mitigate risks to a refinery. And finally, recycling the HTL aqueous phase product stream back to the headworks of the WWTP (with no catalytic hydrothermal gasification treatment) can significantly reduce cost. This option is uniquely appropriate for application at a water treatment facility but also requires further investigation to determine any technical and economic challenges related to the extra chemical oxygen demand (COD) associated with the recycled water.« less
Fall, C; Rogel-Dorantes, J A; Millán-Lagunas, E L; Martínez-García, C G; Silva-Hernández, B C; Silva-Trejo, F S
2014-12-01
Long-term aerobic digestion batch tests were performed on a sludge that contained mainly two fractions, a heterotrophic biomass XH and its endogenous residues XP, which were cultivated in conditions known to favor bio-storage (XSto). The objective was to model the stabilization of the sludge and determine the parameters of the endogenous decay processes, based on simultaneous measurements of the chemical oxygen demand (COD) and oxygen uptake rates (OUR). The respirograms were shown to have a two-phase structure that was describable with activated sludge model 3 (ASM3), but not with ASM1. Comparing the information from the COD and OUR data suggested the presence of two different groups of heterotrophs (XHa and XHb), one that decays with oxygen consumption and another without using O2. A modified ASM3 model was proposed, which was able to fit the OUR and COD data from the digesters, as well as cases from the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Guoqiang; Chen, Ziwen; Fang, Fei; He, Yuefeng; Sun, Haili; Shi, Huixiang
2015-09-01
For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst (PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmet-Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue (MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover, leaching tests indicated that the leached iron is negligible (<0.5mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst. Copyright © 2015. Published by Elsevier B.V.
Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.
Maeng, Min Ho; Cha, Daniel K
2018-02-01
Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.
Solidification of Dredged Sludge by Hydraulic Ash-Slag Cementitious Materials
NASA Astrophysics Data System (ADS)
Zhu, Shu-Jing; Qin, Ying; Hwang, Jiann-Yang
Solidification treatment is used to treat hazardous wastes for disposal and to remediate the contaminated land. It is an increasingly popular technology for redevelopment of brown fields since treated wastes can often be left on-site, which can improve the site's soil for subsequent construction. In order to find home for the dredged sludge from the Pearl River Estuary Channel in China, the potential uses of treated dredged sludge by solidification treatment as valuable structural fill was investigated. Structure fills were prepared under various formula and curing conditions. Modulus of elasticity was detemined at 7 days, 14 days and 28 days with different types of load application. Atterberg limit, compactibility and CBR values are reported. The relationship between the microstructure and engineering properties of treated sludge are examined. The results clearly show the technical benefits by stabilizing soft soils with Hydraulic ash-slag cementitious materials. XRD and DTA-TG tests were carried out on certain samples to characterize the hydraulic compounds formed.
Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi
2010-02-01
Anaerobic sludges, pretreated by chloroform, base, acid, heat and loading-shock, as well as untreated sludge were evaluated for their thermophilic fermentative hydrogen-producing characters from cassava stillage in both batch and continuous experiments. Results showed that the highest hydrogen production was obtained by untreated sludge and there were significant differences (p<0.05) in hydrogen yields (varied from 32.9 to 65.3mlH(2)/gVS) among the tested pretreatment methods in batch experiments. However, the differences in hydrogen yields disappeared in continuous experiments, which indicated the pretreatment methods had only short-term effects on the hydrogen production. Further study showed that alkalinity was a crucial parameter influencing the fermentation process. When the influent was adjusted to pH 6 by NaHCO(3) instead of NaOH, the hydrogen yield increased from about 40 to 52mlH(2)/gVS in all the experiments. Therefore, pretreatment of anaerobic sludge is unnecessary for practical thermophilic fermentative hydrogen production from cassava stillage.
Huiliñir, César; Montalvo, Silvio; Guerrero, Lorna
2015-01-01
The effect of fly ash on biodegradability and methane production from secondary paper and pulp sludge, including its modeling, was evaluated. Three tests with fly ash concentrations of 0, 10 and 20 mg/L were evaluated at 32 °C. Methane production was modeled using the modified Gompertz equation. The results show that the doses used produce a statistically significant increase of accumulated methane, giving values greater than 225 mL of CH4 per gram of volatile solids (VS) added, and 135% greater than that obtained in the control assay. Biodegradability of VS increased 143% with respect to the control assays, giving values around 43%. The modified Gompertz model can describe well methane generation from residual sludge of the paper industry water treatment, with parameter values between those reported in the literature. Thus, the addition of fly ash to the process causes a significant increase of accumulated methane and VS removal, improving the biodegradability of paper and pulp sludge.
Tomei, M C; Braguglia, C M; Mininni, G
2008-09-01
Degradation kinetics of particulate matter in anaerobic digestion of secondary sludge, untreated and sonicated, was investigated by carrying out batch tests at different feed/inoculum ratio (F/I) (in the range of 0.1-4.0). Particulate COD degradation data were analysed using the four equations most widely utilized to model the hydrolysis process and the related kinetic parameters were evaluated. The increase of F/I results in a correspondent increase of the process rate up to one order of magnitude in the investigated interval for both untreated and sonicated sludge. The maximum step increase is observed in the range of 0.1-2.0 while for F/I varying from 2.0 to 4.0 only a modest enhancement of the process kinetics is detected. The effect of sonication on kinetics is not appreciable at low F/I, due to the low fraction of fed sludge and to the consequent strong substrate limitation, whereas at high F/I a slight increase is evidenced.
Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater.
Bowen, Emma J; Dolfing, Jan; Davenport, Russell J; Read, Fiona L; Curtis, Thomas P
2014-01-01
Two strategies exist for seeding low-temperature anaerobic reactors: the use of specialist psychrophilic biomass or mesophilic bioreactor sludge acclimated to low temperature. We sought to determine the low-temperature limitation of anaerobic sludge from a bioreactor acclimated to UK temperatures (<15 °C). Anaerobic incubation tests using low-strength real domestic wastewater (DWW) and various alternative soluble COD sources were conducted at 4, 8 and 15 °C; methanogenesis and acidogenesis were monitored separately. Production of methane and acetate was observed; decreasing temperature resulted in decreased yields and increased 'start-up' times. At 4 °C methanogenesis not hydrolysis/acidogenesis was rate-limiting. The final methane yields at 4 °C were less than 35% of the theoretical potential whilst at 8 and 15 °C more than 75 and 100% of the theoretical yield was achieved respectively. We propose that the lower temperature limit for DWW treatment with anaerobic bioreactor sludge lies between 8 and 4 °C and that 8 °C is the threshold for reliable operation.
Microbiologically Influenced Corrosion
2015-11-05
high in water content, are less corrosive owing to their elevated viscosity and resulting low conductivity (-7 S/cm) [30]. Asphaltenes and resins...wet surface to a water-wet surface. Sludge deposits are combinations of hydrocarbons, sand, clay , corTosion prod- ucts, and biomass that can reach 50...fine clay sun·ounded by a film of water. Under low flow conditions, these particles precipitate and form a sludge deposit. 27.4 TESTING 27 .4.1 A
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr
2013-12-01
Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.
Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.
Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna
2010-10-01
A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. Copyright © 2010 Elsevier Ltd. All rights reserved.
DWPF Simulant CPC Studies For SB8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, J. D.
2013-09-25
Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51more » heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected during SME processing. Mercury behavior was consistent with that seen in previous SRAT runs. Mercury was stripped below the DWPF limit on 0.8 wt% for all runs. Rheology yield stress fell within or below the design basis of 1-5 Pa. The low acid Tank 40 run (106% acid stoichiometry) had the highest yield stress at 3.78 Pa.« less
NASA Astrophysics Data System (ADS)
Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi
An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.
Wen, Qinxue; Chen, Zhiqiang; Wang, Changyong; Ren, Nanqi
2012-01-01
Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response. Although kinetic selection based on storage response should bring about a predominance of floc-formers, a bulking sludge with storage response comparable to well-settled sludge was steadily established. An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1), however, due to the consequent increased feast/famine ratio, the performance of SBR #1, in terms of both the maximum PHB (polyhydroxybutyrate) cell content and deltaPHB, was lower than that of SBR #2. SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation. The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X x hr) and 0.18 Cmol Ac/(Cmol PHB x hr), respectively, resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase. A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB x hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation. The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge. Furthermore, the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.
Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.
Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo
2013-07-01
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don
2011-11-15
Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E
2012-09-15
Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki
2008-12-01
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.
Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo
2015-03-15
Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vermicomposting of sewage sludge: a new technology for Mexico.
Vigueros, L Cardosa; Ramírez Camperos, E
2002-01-01
In Mexico 31% of the treatment plants have a flow less than 60 l/s. This study offers a simple and economical alternative through vermicomposting to resolve the management of sewage sludge and water hyacinth for these small treatment plants. This study was developed with laboratory and pilot scale systems. In the laboratory Eisenia foetida survival was quantified. They were fed three doses of sludge and water hyacinth and different percentages of humidity were applied. The production of worm cocoons was quantified as biomass production and the reduction in the TV/STS ratio as an indicator of stability. To install the pilot system the mixture with the highest cocoon production was chosen. In the pilot test the effect of the worm population density on the waste degradation was observed, the experiment was divided into five modules, four with densities from 2.5 to 15 kg/m2 and one module without worms that served as a blank test. the best mixture was 70% sewage sludge and 30% water hyacinth, with 80% humidity and an average production of 298 cocoons/kg of vermicompost. There were no significant differences in the TVS/TS reduction between the different modules with worms, but in the blank test module there was no reduction. The Type A vermicompost obtained, with non-restricted use, 900 fecal coliforms NMP/g, 0.0 helminth ova/g, highly organic (60% M.O.), high concentration of total nitrogen (2.5%), phosphorus (0.96%) and cationic exchange capacity (60.2 meq/100 g), which indicates that soil fertility would increase if used in agriculture.
NASA Astrophysics Data System (ADS)
Murshid, N.; Kamil, N. A. F. M.; Kadir, A. A.
2018-04-01
Petroleum sludge is one of the major solid wastes generated in the petroleum industry. Generally, there are numbers of heavy metals in petroleum sludge and one treatment that is gaining prominence to treat a variety of mixed organic and inorganic waste is solidification/stabilization (S/S) method. The treatment protects human health and the environment by immobilizing contaminants within the treated material and prevents migration of the contaminants. In this study, solidification/stabilization (S/S) method has been used to treat the petroleum sludge. The comparison of hydration days, namely, 7th and 28th days in these cement-based waste materials were studied by using Synthetic Precipitate Leaching Procedure (SPLP). The results were compared to the United States Environmental Protection Agency (USEPA) standards. The results for leaching test concluded that less percentage OPC gave maximum concentration of heavy metals leaching due to deficient in Calcium Oxide (CaO), which is can caused weak solidification in the mixture. Physical and mechanical properties conducted such as compressive strength and density test. From the results, it shows addition up to of 30percentage PS give results which comply with minimum landfill dispose limit. The results shows correlation between strength and density are strong regression coefficient of 82.7%. In conclusion, S/S method can be alternative disposal method for PS in the same time complies with standard for minimum landfill disposal limit. The results for leaching test concluded the less OPC percentage gave maximum concentration of heavy metals leaching.
Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang
2012-08-01
In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.
Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes
NASA Astrophysics Data System (ADS)
Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.
2015-11-01
Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.
Heck, Karina; De Marco, Évilin Giordana; Duarte, Mariana Wanderlei; Salamoni, Sabrina Pinto; Van Der Sand, Sueli
2015-06-01
The composting process is a viable alternative for the recycling of household organic waste and sewage sludge generated during wastewater treatment. However, this technique can select microorganisms resistant to antimicrobials and heavy metals as a result of excess chemicals present in compost windrow. This study evaluates the antimicrobial multiresistant and tolerance to heavy metals in bacteria isolated from the composting process with sewage sludge. Fourteen antimicrobials were used in 344 strains for the resistance profile and four heavy metals (chromium, copper, zinc, and lead) for the minimum biocide concentration assay. The strains used were from the sewage sludge sample (beginning of the process) and the compost sample (end of the process). Strains with higher antimicrobial and heavy metal profile were identified by 16S rRNA gene sequencing. The results showed a multiresistant profile in 48 % of the strains, with the highest percentage of strains resistant to nitrofurantoin (65 %) and β-lactams (58 %). The strains isolated from the sewage sludge and the end of the composting process were more tolerant to copper, with a lethal dose of approximately 900 mg L(-1) for about 50 % of the strains. The genera that showed the highest multiresistant profile and increased tolerance to the metals tested were Pseudomonas and Ochrobactrum. The results of this study may contribute to future research and the revision and regulation of legislation on sewage sludge reuse in soils.
Kjellerup, B V; Keiding, K; Nielsen, P H
2001-01-01
A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory had started after summer closedown. Possible reasons for the changes in floc properties in the process tanks were found by a) analysing change in wastewater composition by evaluating the different production lines in the industrial plant, b) evaluating the operation of the plant, and c) performing short-term laboratory experiments testing factors that could potentially affect floc properties (absence of oxygen, presence of sulphide, detergents, etc). Among several measured parameters, the use of floc strength measurements in particular proved useful to monitor the activated sludge floc properties at this industrial plant. The described strategy can be useful in general to find and solve many solid/liquid separation problems in activated sludge wastewater treatment plants.
Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin
2014-12-01
The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wawrzynczyk, J; Szewczyk, E; Norrlöw, O; Dey, E Szwajcer
2007-06-30
The study describes extraction of extracellular polymeric substances (EPS) from sewage sludge by applying enzymes and enzymes combined with sodium tripolyphosphate (STPP). Additionally, a systematic study of two non-enzymatic extraction agents is described. The assessment of the released products is made by colorimetrical methods and polysaccharides/glycoconjugates identification by the interaction with four immobilized lectins. Bio-sludge from Helsingborg (Sweden) and Damhusåen (Denmark) were used as two case studies for testing enzymatic extractability and thereby to make useful prediction of sludge bio-digestibility. From Helsingborg sludge the enzymes extracted about 40% more of EPS than from Damhusåen. The polysaccharides/glycoconjugates in both sludges maintained the same level, and showed substantial different interaction motifs with lectins panel. Damhusåen enzymatic extracted EPS had an enhanced amount of suspended material that was post-hydrolysed by the use of polygalacturonase and lysozyme resulting in pectin like polymers and petiptidoglycans. Petiptidoglycan is a marker from bacterial cell debris. STPP and cation exchange resin (CER) released different quantities of EPS. The CER released polysaccharides/glycoconjugates had higher molecular weight and stronger affinity towards Concanavalin A than the one released by the action of STPP. Independent of the extraction conditions, STPP released elevated amounts of polyvalent cations and humic substances in contrast to the very low amounts of released by CER.
Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang
2016-04-01
Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.
1997-12-31
The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less
Chen, Wei; Jia, Yuan-Yuan; Zheng, Wei; Li, Xiao-Ming; Zhou, Jun; Yang, Qi; Luo, Kun
2011-08-01
The effect of extracellular polymeric substance (EPS) on the enzymatic solubilisation of sludge and the changes of chemical components was investigated. Sludge solubilization with and without EPS was studied in the enzymatic system, and in the normal system without enzyme addition, respectively. The result indicated that only EPS could be hydrolyzed when the enzyme addition less than 20 mg/g, while the cell lysis occurred significantly with the doses of enzymes increasing. Treatment with lysozyme for the original sludge was proved to have a higher hydrolysis efficiency, and the SCOD/TCOD rate reached up to 28.14%. And at the enzyme dosage of 60 mg/g, the VSS removal rate increased to 51.66% and the concentration of DNA attained 68.34 mg/g (calculated by VSS) after 48 h reaction, which were 29.01% and 59.63 mg/g higher than the control test, respectively, and were 24.86% and 53.39 mg/g higher than that with EPS removed in advance, respectively. Meanwhile, NH4+ -N, PO4(3-)-P and SCOD showed high dissolution efficiency, and the maximal concentrations achieved to 503 mg/L, 78.9 mg/L and 3171 mg/L, respectively. After removal of extracellular polymers, higher lysis efficiency was also observed by protease and cellulose, by which VSS reduction rate reached to 49.95% and 39.85%, respectively. The concentration of DNA showed a correlation coefficient of more than 0.9 with the concentrations of SCOD, NH4+ -N and PO4(3-)-P. And the highest hydrolysis rate obtained in 6 hours, which was about 3 hours earlier than the control test. Moreover, under those condition, sludge hydrolyzation could be well realized by only small amount of the enzyme addition.
Co-conditioning and dewatering of chemical sludge and waste activated sludge.
Chang, G R; Liu, J C; Lee, D J
2001-03-01
The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.
NASA Astrophysics Data System (ADS)
Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco
2014-05-01
Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge distribution, but also in calculating sludge accumulation rates, and in evaluating pond hydraulic efficiency (e.g., as input bathymetry for computational fluid dynamics models). This technology is not limited to application for wastewater management, and could potentially have a wider application in the monitoring of other small to medium water bodies, including reservoirs, channels, recreational water bodies, river beds, mine tailings dams and commercial ports.
Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer
2008-11-01
The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.
Epoxy matrix composites filled with micro-sized LD sludge: wear characterization and analysis
NASA Astrophysics Data System (ADS)
Purohit, Abhilash; Satapathy, Alok
2016-02-01
Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In view of this, the present work includes the development and the wear performance evaluation of a new class of composites consisting of epoxy and microsized LD sludge. LD sludge or the Linz-Donawitz Sludge (LDS) are the fine solid particles recovered after wet cleaning of the gas emerging from LD convertors during steel making. Epoxy composites filled with different proportions (0, 5, 10, 15 and 20 wt %) of LDS are fabricated by conventional hand lay-up technique. Dry sliding wear trials are performed on the composite specimens under different test conditions as per ASTM G 99 following a design of experiment approach based on Taguchi's orthogonal arrays. The Taguchi approach leads to the recognition of most powerful variables that predominantly control the wear rate. This parametric analysis reveals that LDS content and sliding velocity affects the specific wear rate more significantly than normal load and sliding distance. Furthermore with increase in LDS content specific wear rate of the composite decreases for a constant sliding velocity. The sliding wear behavior of these composites under an extended range of test conditions is predicted by a model based on the artificial neural network (ANN).
Glycolic acid physical properties and impurities assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Pickenheim, B. R.; Hay, M. S.
This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However,more » these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.« less
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-21
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952
Majuste, Daniel; Mansur, Marcelo Borges
2008-05-01
The argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry is a hazardous waste due to the presence of chromium. While its coarse fraction is usually recycled into the own industrial process, the fine fraction is normally disposed in landfills. Techniques such as briquetting or magnetic separation were found to be inadequate to treat it for reuse purposes. So, in this work, the fine fraction of the AOD-L sludge was characterized aiming to find alternative methods to treat it. This sludge consists of a fine powder (mean diameter of 1 microm) containing 34 +/- 2% (w/w) of iron, 10.2 +/- 0.9% (w/w) of chromium and 1.4 +/- 0.1% (w/w) of nickel. The main crystalline phases identified in this study were chromite (FeCr(2)O(4)), magnetite (Fe(3)O(4)), hematite (Fe(2)O(3)) and calcite (CaCO(3)). In the digestion tests, the addition of HClO(4) has favored the dissolution of chromite which is a very stable oxide in aqueous media. Nickel was found in very fine particles, probably in the metallic form or associated with iron and oxygen. The sludge was classified as hazardous waste, so its disposal in landfills should be avoided.
Karaca, Gizem; Tasdemir, Yucel
2013-01-01
Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.
The slag original from the process of sewage sludge incineration selected properties characteristic
NASA Astrophysics Data System (ADS)
Głowacka, Anna; Rucińska, Teresa; Kiper, Justyna
2017-11-01
This work characterizes the physical and chemical properties of slag from combustion of municipal sewage sludge in "Pomorzany" waste treatment plant in Szczecin. The technology of sludge management is based on drying the sludge in low-temperature belt driers, to a content level of at least 90%, dry mass., and then burning in a grate boiler with mobile grate. The research of the slag resulting from combustion of municipal sewage sludge was conducted using reference methods, presenting images from a scanning electron microscope. The tested waste contained from 16.300 to 23.150% P2O5 completely soluble in strong acids, pH 8.03, mineral substance 98.73% dry mass. The content of heavy metals did not exceed the permissible amount specified in the Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws of 2008 No. 119, item. 765). The screening trials showed that 48.4% are fractions of 630 µm-1.25 mm. The results show that the waste code 19 01 12 may be used as: alternative source of phosphorus for direct application to soil treatment, for production of organic - mineral fertilizers and as construction aggregate for production of concrete mortars.
Khouja, Layla Ben Ayed; Cama, Vitaliano; Xiao, Lihua
2010-06-01
The limited availability of water results in the reuse of wastewater or sludge. The Tunisian wastewater regulatory guidelines have specific limits for ova of helminths (<1 egg/l) but none for protozoan parasites. We assessed the presence and loads of parasites in 20 samples of raw, treated wastewater and sludge collected from six wastewater treatment plants. Samples were tested by microscopy using the modified Bailenger method (MBM), immunomagnetic separation (IMS) followed by immunofluorescent assay microscopy, and PCR and sequence analysis for the protozoa Cryptosporidium and Giardia. The seven samples of raw wastewater had a high diversity of helminth and protozoa contamination. Giardia spp., Entamoeba histolytica/dispar, Entamoeba coli, Ascaris spp., Enterobius vermicularis, and Taenia saginata were detected by MBM, and protozoan loads were greater than helminth loads. Cryptosporidium and Giardia were also detected by IMS microscopy and PCR. Six of the eight samples of treated wastewater had parasites: helminths (n = 1), Cryptosporidium (n = 1), Giardia (n = 4), and Entamoeba (n = 4). Four of five samples of sludge had microscopically detectable parasites, and all had both Cryptosporidium and Giardia. The genotypes and subtypes of Cryptosporidium and Giardia were of both human and animal origin. These findings suggest that it may be important to monitor the presence of protozoan parasites in treated wastewater and sludge in Tunisia.
Chanona, J; Ribes, J; Seco, A; Ferrer, J
2006-01-01
This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.
Zhou, Qingyang; Gao, Jingqing; Li, Yonghong; Zhu, Songfeng; He, Lulu; Nie, Wei; Zhang, Ruiqin
2017-09-01
Bioleaching is a promising technology for removal of metals from sludge and improvement of its dewaterability. Most of the previous studies of bioleaching were focused on removal of metals; bioleaching in cold environments has not been studied extensively. In this study, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were acclimated at 15 °C and co-inoculated to explore the optimal conditions for improvement of sludge dewaterability and removal of metals by the sequencing batch reactors. The data show after 6 days of bioleaching at 15 °C, 89.6% of Zn, 72.8% of Cu and 39.4% of Pb were removed and the specific resistance to filtration (SRF) was reduced to ∼12%. In addition, the best conditions for bioleaching are an initial pH of 6, a 15% (v/v) inoculum concentration, and A. thiooxidans and A. ferrooxidans mixed in a ratio of 4:1. We found that bioleaching of heavy metals is closely related to final pH, while the sludge SRF is dominated by other factors. Bioleaching can be completed in 6 days, and the sludge dewaterability and removal of metals at 15 °C meet the requirements of most sewage treatment plants.
The role of selected tree species in industrial sewage sludge/flotation tailing management.
Mleczek, Mirosław; Rutkowski, Paweł; Niedzielski, Przemysław; Goliński, Piotr; Gąsecka, Monika; Kozubik, Tomisław; Dąbrowski, Jędrzej; Budzyńska, Sylwia; Pakuła, Jarosław
2016-11-01
The aim of the study was to estimate the ability of ten tree and bush species to tolerate and accumulate Cd, Cu, Pb, Zn, and As species [As(III), As(V), and total organic arsenic] in industrial sewage sludge extremely contaminated with arsenic (almost 27.5 g kg(-1)) in a pot experiment. The premise being that it will then be possible to select the most promising tree/bush species, able to grow in the vicinity of dams where sewage sludge/flotation tailings are used as landfill. Six of the ten tested tree species were able to grow on the sludge. The highest content of total As was observed in Betula pendula roots (30.0 ± 1.3 mg kg(-1) DW), where the dominant As species was the toxic As(V). The highest biomass of Quercus Q1 robur (77.3 § 2.6 g) and Acer platanoides (76.0 § 4.9 g) was observed. A proper planting of selected tree species that are able to thrive on sewage sludge/flotation tailings could be an interesting and promising way to protect dams. By utilizing differences in their root systems and water needs, we will be able to reduce the risk of fatal environmental disasters.
NASA Astrophysics Data System (ADS)
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Evaluation of sewage sludge incineration ash as a potential land reclamation material.
Lin, Wenlin Yvonne; Ng, Wei Cheng; Wong, Belinda Shu Ee; Teo, Serena Lay-Ming; Sivananthan, Gayathiri D/O; Baeg, Gyeong Hun; Ok, Yong Sik; Wang, Chi-Hwa
2018-05-23
This study evaluated the potential of utilising sewage sludge incineration ash as a land reclamation material. Toxicity assessment of the leachate of the ash was carried out for both terrestrial and marine organisms. Both the fruit fly Drosophila melanogaster and barnacle Amphibalanus amphitrite showed that both bottom and fly ash leached at liquid-to-solid (L/S) ratio 5 did not substantially affect viabilities. The leachate carried out at L/S 10 was compared to the European Waste Acceptance Criteria and the sewage sludge ashes could be classified as non-hazardous waste. The geotechnical properties of the sewage sludge ash were studied and compared to sand, a conventional land reclamation material, for further evaluation of its potential as a land reclamation material. It was found from direct shear test that both bottom and fly ashes displayed similar and comparable shear strength to that of typical compacted sandy soil based on the range of internal friction angle obtained. However, the consolidation profile of bottom ash was significantly different from sand, while that of fly ash was more similar to sand. Our study showed that the sewage sludge ash has the potential to be used as a land reclamation material. Copyright © 2018 Elsevier B.V. All rights reserved.
Strategic Investment Plan Fiscal Year 1993.
1993-09-01
Groundwater ........................ 283 Heavy Metals in Soils, Sludges, Sediments and Water .................... 321 Energetics in Soils and Groundwater...technologies and tools to achieve a design for reconfiguring existing PEP production facilities into agile factories which will reduce total life cycle wastes...facilities. When use of existing facilities is not practical, a special demonstration testbed may be built. The factory design will then be developed
Zhai, Xiao-Min; Gao, Xu; Zhang, Man-Man; Jia, Li; Guo, Jin-Song
2012-07-01
In order to deeply explore the mechanism of sludge reduction in OSA system, carbon balance was performed in an anoxic-oxic-settling-anaerobic (A + OSA) system and a reference AO system to investigate effects of inserting a sludge holding tank in sludge cycle line on the sludge reduction process. Meanwhile, carbon mass change in each reaction unit was identified in terms of solid, liquid and gas phases. The causes of excess sludge reduction in A + OSA system were deduced. The carbon balance results show that when the hydraulic retention time in the sludge holding tank is 7.14 h, carbon percent in solid phase of the sludge reduction system is nearly 50% higher than that of the reference system, supporting the consequence that sludge reduction rate of 49.98% had been achieved. The insertion of a sludge holding tank in the sludge return circuit can be effective in sludge reduction. Carbon changes in each unit reveal that the amount of carbon consumed for biosynthesis in the anoxic and oxic tanks (main reaction zone) of the sludge reduction system is higher than in that of the reference system. Sludge decay is observed in the sludge holding tank. Furthermore, CH4 released from the sludge holding tank is significantly higher than that from the main reaction zone. The DGGE profiles show that there are hydrolytic-fermentative bacteria in the sludge holding tank related to sludge decay. The excess sludge reduction in the A + OSA system could be a result of the combination of sludge decay in the sludge holding tank and sludge compensatory growth in the main reaction cell.
Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou
2012-10-01
Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with the corresponding sludge from Chengdong wastewater treatment plant for most of heavy metals. It can be concluded that the biochars from wastewater sludge could be used as soil amendments to adjust soil acidity. Application of sludge biochars did not increase activity and availability of heavy metals compared with direct incorporation of the sludge.
Yamaguchi, T; Yao, Y; Kihara, Y
2006-01-01
A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.
Łebkowska, Maria; Rutkowska-Narożniak, Anna; Pajor, Elżbieta; Tabernacka, Agnieszka; Załęska-Radziwiłł, Monika
2018-05-29
The current study presents results concerning the effect of a static magnetic field (SMF) on synthetic wastewater biodegradation by activated sludge and on dehydrogenase activity of microorganisms of activated sludge. The highest process efficiency was obtained for a SMF of 0.0075 T among the tested magnetic flux density values of 0.005-0.14 T. Decrease in COD was 25% higher for the bioreactor exposed to SMF compared with control experiments. The positive effect of SMF 0.0075-0.0080 T was confirmed in experiments on the dehydrogenase activity of activated sludge. It was also shown that a SMF of 0.007 T increased p-nitroaniline removal from wastewater and influenced the recombination frequency in a streptomycin-resistant bacteria strain of Eschercihia coli.
Regeneration of paint sludge and reuse in cement concrete
NASA Astrophysics Data System (ADS)
Feng, Enqi; Sun, Jitao; Feng, Liming
2018-06-01
Paint Sludge (PS) is a hazardous waste. Inappropriate disposal of PS might be harmful to public health and the environment. Various size of Paint Sludge Solid Powder (PSSP) particles have been produced by automatic processing equipment via dewatering, crushing, screening removing Volatile Organic Compounds (VOCs), and etc. Meanwhile, the test results show that PSSP is not a hazardous waste. Both flexural and compressive strength are increased by adding PSSP of polyurethane to cement concrete at a level of below 10% of cement weight. However, the strength has a significant reduction at a level of above 15% of cement weight. The reason for the increase of strength is probably due to a slow coagulation and copolymerization of PSSP and cement. The reduction is likely due to the self-reunion of PSSP.
POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R; Erich Hansen, E; Bradley Pickenheim, B
2007-03-29
High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.« less
[Adsorption of a dye by sludges and the roles of extracellular polymeric substances].
Kong, Wang-sheng; Liu, Yan
2007-12-01
This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).
Irradiation of municipal sludge for agricultural use
NASA Astrophysics Data System (ADS)
Ahlstrom, Scott B.
Research has demonstrated that irradiation is an effective means for reducing pathogens in sewage sludge to levels where sludge reuse in public areas meets criteria for protection of the public health. Complementary research has demonstrated the value of the irradiated sludge in both agronomic and animal science applications. The benefits of sludge application to cropland are well documented. The irradiation process does not increase the extractability and plant uptake of a broad range of nutrients and heavy metals from sludge-amended soils. However, it does eliminate the hazards associated with pathogen contamination when applying sludge to agricultural land. Irradiated sludge has also been evaluated as a supplemental foodstuff for cattle and sheep. The data indicate that products derived from raw sewage may have a substantial nutritive value for ruminant animals. Irradiation of sewage sludge is a practical means of sludge disinfection. Where a highly disinfected sludge is required, it should be considered as a viable sludge management alternative. Evaluation of sludge irradiation technology and its associated costs must be done with consideration of other sludge treatment processes to develop an acceptable sludge management system.
Dose-mortality assessment upon reuse and recycling of industrial sludge.
Lin, Kae-Long; Chen, Bor-Yann
2007-09-05
This study provides a novel attempt to put forward, in general toxicological terms, quantitative ranking of toxicity of various sources of sludge for possible reusability in further applications. The high leaching concentrations of copper in printed circuit board (PCB) sludge and chromium in leather sludge apparently exceeded current Taiwan's EPA regulatory thresholds and should be classified as hazardous wastes. Dose-mortality analysis indicated that the toxicity ranking of different sources of sludge was PCB sludge>CaF(2) sludge>leather sludge. PCB sludge was also confirmed as a hazardous waste since the toxicity potency of PCB sludge was nearly identical to CdCl(2). However, leather sludge seemed to be much less toxic than as anticipated, perhaps due to a significant decrease of toxic species bioavailable in the aqueous phase to the reporter bacterium Escherichia coli DH5alpha. For possible reusability of sludge, maximum concentrations allowable to be considered "safe" (ca. EC(100)/100) were 9.68, 42.1 and 176 mgL(-1) for CaF(2) sludge, PCB sludge and leather sludge, respectively.
Use of a water treatment sludge in a sewage sludge dewatering process
NASA Astrophysics Data System (ADS)
Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata
2018-02-01
The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.
Fernandez, Mario
1978-01-01
From November 1973 to July 1977, water samples were collected from wells to identify background water-quality conditions and to determine the effects on ground-water quality by St. Petersburg 's sludge-disposal operation (sod farm). Specific conductance and pH were determined in the field. Samples were collected for laboratory determination of selected nitrogen and phosphorus species, sodium, potassium, calcium, magnesium, chloride, trace metals, chemical and biochemical oxygen demand, and coliforms. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.
1977-01-01
A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.
Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures.
Eshtiaghi, Nicky; Markis, Flora; Zain, Dwen; Mai, Kiet Hung
2016-05-15
The legal banning of conventional sludge disposal methods such as landfill has led to a global movement towards achieving a sustainable sludge management strategy. Reusing sludge for energy production (biogas production) through the anaerobic digestion of sludge can provide a sustainable solution. However, for the optimum performance of digesters with minimal use of energy input, operating conditions must be regulated in accordance with the rheological characteristics of the sludge. If it is assumed that only secondary sludge enters the anaerobic digesters, an impact of variations to the solids concentration and volume fraction of each sludge type must be investigated to understand how the apparent viscosity and yield stress of the secondary and digested sludge mixture inside the digesters changes. In this study, five different total solids concentration of secondary and digested sludge were mixed at different digested sludge volume fractions ranging from 0 to 1. It was found that if secondary sludge was mixed with digested sludge at the same total solids concentration, the apparent viscosity and the yield stress of the mixture increased exponentially by increasing the volume fraction of digested sludge. However, if secondary sludge was added to digested sludge with a different solids concentration, the apparent viscosity and yield stress of the resulting mixed sludge was controlled by the concentrated sludge regardless of its type. Semi - empirical correlations were proposed to predict the apparent viscosity and yield stress of the mixed digested and secondary sludge. A master curve was also developed to predict the flow behaviour of sludge mixtures regardless of the total solid concentration and volume fraction of each sludge type within the studied solids concentration range of 1.4 and 7%TS. This model can be used for digesters optimization and design by predicting the rheology of sludge mixture inside digester. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zamanzadeh, Mirzaman; Parker, Wayne J
2018-01-01
The hydrolysis of mixed primary and secondary sludges in two-stage anaerobic digestion was evaluated and compared with conventional single-stage digestion, using various temperature-phased configurations of M1-M2, M1-T3, T1-T2, and T1-M3. A dual hydrolysis model best described the hydrolysis in all tests. This model was also able to consistently estimate the readily and slowly fractions of particulate chemical oxygen demand (COD) of raw sludge used in the tests. The hydrolysis kinetic coefficients (Khyd_s and Khyd_r) estimated for the mesophilic digesters were significantly greater in the short hydraulic retention time (HRT) M1 digester than those of the extended HRT digesters. Conversely, at thermophilic temperatures only Khyd_r was greater in short HRT T1 digester when compared to the extended HRT digesters. The increased Khyd_r and reduced Khyd_s values due to staging effect were explained with surface reaction models and endogenous decay. The temperature dependency of Khyd_s and Khyd_r was also explored in the staged digesters.
Chen, S T; Berthouex, P M
2001-01-01
The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Salem Acres, Incorporated site is a 235 acre parcel located in Salem, Essex County, Massachusetts. There are pits at the site which have apparently been filled with sewage sludge and tannery wastes. Organic compounds and metals have been found in the sludge in the pits, generally in the high parts-per-million range in very limited testing. Compounds detected in sludge included PCB-1254, lead, chromium, and mercury. Soil samples in the area did not show evident contamination. Off-site surface water had elevated levels of lead; two measurements were 64 ug/l and 89 ug/l, approximately. An oil sheen in surface water andmore » vegetation typical of polluted areas indicated water quality degradation. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via continued direct exposure to soils, sediments and sludge residues in marginal areas of the site, and any consumption of any fish from the streams draining the site.« less
Yang, Shan-Shan; Guo, Wan-Qian; Cao, Guang-Li; Zheng, He-Shan; Ren, Nan-Qi
2012-11-01
This paper offers an effective pretreatment method that can simultaneously achieve excess sludge reduction and bio-hydrogen production from sludge self-fermentation. Batch tests demonstrated that the combinative use of ozone/ultrasound pretreatment had an advantage over the individual ozone and ultrasound pretreatments. The optimal condition (ozone dose of 0.158 g O(3)/g DS and ultrasound energy density of 1.423 W/mL) was recommended by response surface methodology. The maximum hydrogen yield was achieved at 9.28 mL H(2)/g DS under the optimal condition. According to the kinetic analysis, the highest hydrogen production rate (1.84 mL/h) was also obtained using combined pretreatment, which well fitted the predicted equation (the squared regression statistic was 0.9969). The disintegration degrees (DD) were limited to 19.57% and 46.10% in individual ozone and ultrasound pretreatments, while it reached up to 60.88% in combined pretreatment. The combined ozone/ultrasound pretreatment provides an ideal and environmental friendly solution to the problem of sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.
Dede, Gulgun; Ozdemir, Saim
2016-01-15
In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.
Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O
2007-01-01
In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.
Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.
Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse
2014-11-01
The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Utilization of solar energy in sewage sludge composting: Fertilizer effect and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yiqun; Yu, Fang; Liang, Shengwen
2014-11-15
Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stablemore » heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.« less
Martínez-García, C G; Olguín, M T; Fall, C
2014-08-01
Aerobic digestion batch tests were run on a sludge model that contained only two fractions, the heterotrophic biomass (XH) and its endogenous residue (XP). The objective was to describe the stabilization of the sludge and estimate the endogenous decay parameters. Modeling was performed with Aquasim, based on long-term data of volatile suspended solids and chemical oxygen demand (VSS, COD). Sensitivity analyses were carried out to determine the conditions for unique identifiability of the parameters. Importantly, it was found that the COD/VSS ratio of the endogenous residues (1.06) was significantly lower than for the active biomass fraction (1.48). The decay rate constant of the studied sludge (low bH, 0.025 d(-1)) was one-tenth that usually observed (0.2d(-1)), which has two main practical significances. Digestion time required is much more long; also the oxygen uptake rate might be <1.5 mg O₂/gTSSh (biosolids standards), without there being significant decline in the biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Qian; Lu, Xuebin; Guo, Haigang; Yang, Zengjun; Li, Yingte; Zhi, Suli; Zhang, Keqiang
2018-04-30
In this study, pressurized electro-osmotic dewatering (PEOD) as a pretreatment process, instead of the conventional practice of adding bulking agents, for sewage sludge bio-drying was proposed. Initially, various parameters were optimized for obtaining dewatered sewage sludge (DSS), treated by an efficient, quick, and energy-saving PEOD process. The results show that the moisture content (MC) of sewage sludge could decrease from 83.41% to 60.0% within 7.5 min in the optimum conditions of the PEOD process. Subsequently, two DSS bio-drying tests were carried out to investigate the effects of inoculation. The highest temperature (68.1 °C) was obtained for T2 (inoculation), which was 3.6 °C higher than that for T1 (non- inoculation). The MC accumulative removal rate for T1 (41.49%) was slightly less than that for T2 (44.60%). Lastly, the volatile solid degradation dynamics model parameters were measured. The degradation rate constants (k) for T1 and T2 were 0.00501 and 0.00498, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.
Zhou, Xu; Chen, Chuan; Wang, Aijie; Jiang, Guangming; Liu, Lihong; Xu, Xijun; Yuan, Ye; Lee, Duu-Jung; Ren, Nanqi
2013-01-01
Copper(II) biosorption processes by two pre-treated powdered anaerobic granular sludges (PAGS) (original sludges were methanogenic anaerobic granules and denitrifying sulfide removal (DSR) anaerobic granules) were investigated through batch tests. Factors affecting the biosorption process, such as pH, temperature and initial copper concentrations, were examined. Also, the physico-chemical characteristics of the anaerobic sludge were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy image, surface area and elemental analysis. A second-order kinetic model was applied to describe the biosorption process, and the model could fit the biosorption process. The Freundlich model was used for describing the adsorption equilibrium data and could fit the equilibrium data well. It was found that the methanogenic PAGS was more effective in Copper(II) biosorption process than the DSR PAGS, whose maximum biosorption capacity was 39.6% lower. The mechanisms of the biosorption capacities for different PAGS were discussed, and the conclusion suggested that the environment and biochemical reactions during the growth of biomass may have affected the structure of the PAGS. The methanogenic PAGS had larger specific surface area and more biosorption capacity than the DSR PAGS.
Dewil, Raf; Baeyens, Jan; Appels, Lise
2007-06-18
Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.
Toxicant inhibition in activated sludge: fractionation of the physiological status of bacteria.
Foladori, P; Bruni, L; Tamburini, S
2014-09-15
In wastewater treatment plants the sensitivity of activated sludge to a toxicant depends on the toxicity test chosen, and thus the use of more than one test is suggested. The physiological status of bacteria in response to toxicants was analysed by flow cytometry to distinguish intact, permeabilised, active cells and cells disrupted. Results were compared with respirometry and bioluminescence bioassay (Vibrio fischeri). 3,5-Dichlorophenol (DCP) was used as reference xenobiotic. DCP has a strong effect on cellular integrity, causing an increase in permeabilised and disrupted cells. A reduction of 44-80% of intact cells with 6-30 mgDCP/L for 5h was found. Inhibition of active cells was 25-49%, at 6-30 mgDCP/L for 5h. The bioluminescence bioassay resulted oversensitive to DCP compared to tests based on activated sludge, while oxygen uptake rate was affected similarly to intact cells measured by flow cytometry. Landfill leachate was tested: a detrimental impact on both cellular integrity and enzymatic activity was observed. Reduction of intact cells and active cells was by 32% and 61% respectively after addition of 50% (v/v) of leachate for 5h. The flow cytometry analysis proposed here might be widely applicable in the monitoring of various toxicants and in other aquatic biosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
Men, Yujie; Achermann, Stefan; Helbling, Damian E; Johnson, David R; Fenner, Kathrin
2017-02-01
Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU- and OCT-treated samples, as well as before and after ammonia oxidation was recovered in OCT-treated samples, we were able to demonstrate that ammonia-oxidizing bacteria were highly involved in the biotransformation of four compounds: asulam, clomazone, monuron and trimethoprim. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fermentation and chemical treatment of pulp and paper mill sludge
Lee, Yoon Y; Wang, Wei; Kang, Li
2014-12-02
A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.
Hydration and leaching characteristics of cement pastes made from electroplating sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying-Liang; Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan; Ko, Ming-Sheng
2011-06-15
The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, includingmore » nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.« less
Soares, Ana; Kampas, Pantelis; Maillard, Sarah; Wood, Elizabeth; Brigg, Jon; Tillotson, Martin; Parsons, Simon A; Cartmell, Elise
2010-03-15
There is a need to investigate processes that enable sludge re-use while enhancing sewage treatment efficiency. Mechanically disintegrated thickened surplus activated sludge (SAS) and fermented primary sludge were compared for their capacity to produce a carbon source suitable for BNR by completing nutrient removal predictive tests. Mechanically disintegration of SAS using a deflaker enhanced volatile fatty acids (VFAs) content from 92 to 374 mg l(-1) (4.1-fold increase). In comparison, primary sludge fermentation increased the VFAs content from 3.5 g l(-1) to a final concentration of 8.7 g l(-1) (2.5-fold increase). The carbon source obtained from disintegration and fermentation treatments improved phosphate (PO(4)-P) release and denitrification by up to 0.04 mg NO(3)-Ng(-1)VSS min(-1) and 0.031 mg PO(4)-Pg(-1)VSS min(-1), respectively, in comparison to acetate (0.023 mg NO(3)-Ng(-1)VSS min(-1)and 0.010 mg PO(4)-Pg(-1)VSS min(-1)). Overall, both types of sludge were suitable for BNR but disintegrated SAS displayed lower carbon to nutrient ratios of 8 for SCOD:PO(4)-P and 9 for SCOD:NO(3)-N. On the other hand, SAS increased the concentration of PO(4)-P in the settled sewage by a further 0.97 g PO(4)-P kg(-1)SCOD indicating its potential negative impact towards nutrient recycling in the BNR process. (c) 2009 Elsevier B.V. All rights reserved.
Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.
Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe
2011-07-01
A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup
2015-04-01
Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.
Zhang, Peng; Chen, Yinguang; Zhou, Qi; Zheng, Xiong; Zhu, Xiaoyu; Zhao, Yuxiao
2010-12-15
Most of the studies on sewage sludge treatment in literature were conducted for methane generation under acidic or near neutral pH conditions. It was reported in our previous studies that the accumulation of short-chain fatty acids (SCFAs), the preferred carbon source of biological wastewater nutrient removal, was significantly enhanced when sludge was fermented under alkaline conditions, but the optimal pH was temperature-dependent (pH 10 at ambient temperature, pH 9 at mesophilic, and pH 8 at thermophilic), and the maximal SCFAs yields were in the following order: thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH. In this study the kinetic and microbiological features of waste activated sludge fermented in the range of pH 7-10 were investigated to understand the mechanism of remarkably high SCFAs accumulation under alkaline conditions. The developed sludge alkaline fermentation model could be applied to predicate the experimental data in either batch or semicontinuous sludge alkaline fermentation tests, and the relationships among alkaline pH, kinetic parameters, and SCFAs were discussed. Further analyses with fluorescence in situ hybridization (FISH) and PCR-based 16S rRNA gene clone library indicated that both the ratio of bacteria to archaea and the fraction of SCFAs producer accounting for bacteria were in the sequence of thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH, which was in correspondence with the observed order of maximal SCFAs yields.
Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.
Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann
2010-05-01
Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. Copyright 2010 Elsevier Inc. All rights reserved.
Browne, James D; Allen, Eoin; Murphy, Jerry D
2013-01-01
This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.
Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang
2015-09-01
Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Influence of accessories mixing ratio on sludge biophysical co-drying].
Yang, Jin-Long; Du, Qiong; Li, Dong; Han, Rong; Zhao, Yan; Wang, Hong-Tao
2011-08-01
Parameters (temperature, water content and so on) in the process of sludge biophysical co-drying were studied in self-made biophysical co-drying reactor. The sludge: tree bark: recycled sludge was set as 7: 3: 0.5, 9: 3: 0.5, 12: 3: 0.5 respectively. The results suggested that sludge temperature first increased then decreased along with drying time, water content decreased in the first 96 h, then had no obvious variability. While sludge: tree bark: recycled sludge was 9: 3: 0.5, the temperature of sludge spiraling, received to max 67 degrees C at 48 h under three different accessories mixture ratio, and was kept for 72 h above 55 degrees C, then spiraling, the final water content of sludge decreased from 74.1% to 61.8%, received the optimal water content removing rate 43.5%. Accessories mixing ratio had important influence on the process of sludge biophysical co-drying, sludge with proper mixing ratio can modify the structure of sludge, improve sludge permeability, arouse and keep microorganic activity, which will enhance sludge temperature and strengthen water content removal rate.
An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlstrom, S.B.; McGuire, H.E.
1977-11-01
The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost thanmore » any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.« less