Sample records for test reusable launch

  1. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  2. Thermal-Mechanical Cyclic Test of a Composite Cryogenic Tank for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Messinger, Ross; Pulley, John

    2003-01-01

    This viewgraph presentation provides an overview of thermal-mechanical cyclic tests conducted on a composite cryogenic tank designed for reusable launch vehicles. Topics covered include: a structural analysis of the composite cryogenic tank, a description of Marshall Space Flight Center's Cryogenic Structure Test Facility, cyclic test plans and accomplishments, burst test and analysis and post-testing evaluation.

  3. Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

    2003-01-01

    Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

  4. Orbital Debris Impact Damage to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Jennifer H.

    1998-01-01

    In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.

  5. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    1995-01-23

    Pictured here is a DC-XA Reusable Launch Vehicle (RLV) prototype concept with an RLV logo. The Delta Clipper-Experimental (DC-X) was originally developed by McDornell Douglas for the Department of Defense (DOD). The DC-XA is a single-stage-to-orbit, vertical takeoff/vertical landing, launch vehicle concept, whose development is geared to significantly reduce launch costs and will provide a test bed for NASA Reusable Launch Vehicle (RLV) technology as the Delta Clipper-Experimental Advanced (DC-XA).

  6. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1995-01-01

    A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

  7. Trajectory Approaches for Launching Hypersonic Flight Tests (Preprint)

    DTIC Science & Technology

    2014-08-01

    This paper presents some approaches toward designing trajectories for hypersonic testing at up to Mach 10 speed using a reusable rocket -powered first...Program to Optimize Simulated Trajectories (POST) code to look at different ways of flying to Mach 10 with a reusable first stage rocket . These trajectories...are good starting points for how to setup a trajectory simulation to meet hypersonic testing needs. 15. SUBJECT TERMS responsive and reusable rocket

  8. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  9. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  10. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  11. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  12. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  13. Quality Initiatives in the Commercial Development of Reusable Launch Vehicles

    DTIC Science & Technology

    2015-03-01

    National Reconnaissance Office OTV Orbital Test Vehicle RLV Reusable Launch Vehicles SpaceX Space Exploration Technology SRB Solid Rocket...activities within industry and private development efforts such as SpaceX , Blue Origin, and Scaled Composites and their partnership with Virgin Galactic...second section addresses specific activities within industry and private development efforts such as SpaceX , Blue Origin, and Scaled Composites and

  14. Future launcher demonstrator. Challenge and pathfinder

    NASA Astrophysics Data System (ADS)

    Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.

    1996-02-01

    For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which proposes a winged suborbital rocket launcher operations & technology demonstrator for vertical take-off and horizontal landing — using primarily conventional technology and materials as a first step towards the challenging goal of a reusable SSTO ETO launch vehicle.

  15. Test Results for Entry Guidance Methods for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2003-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.

  16. A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.

  17. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  18. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  19. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  20. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  1. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  2. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  3. Liquid Oxygen Propellant Densification Unit Ground Tested With a Large-Scale Flight-Weight Tank for the X-33 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2002-01-01

    Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.

  4. Cyclic Cryogenic Thermal-Mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    An important step in developing a cost-effective, reusable, launch vehicle is the development of durable, lightweight, insulated, cryogenic propellant tanks. Current cryogenic tanks are expendable so most of the existing technology is not directly applicable to future launch vehicles. As part of the X-33/Reusable Launch Vehicle (RLV) Program, an experimental apparatus developed at the NASA Langley Research Center for evaluating the effects of combined, cyclic, thermal and mechanical loading on cryogenic tank concepts was used to evaluate cryogenic propellant tank concepts for Lockheed-Martin Michoud Space Systems. An aluminum-lithium (Al 2195) liquid oxygen tank concept, insulated with SS-1171 and PDL-1034 cryogenic insulation, is tested under simulated mission conditions, and the results of those tests are reported. The tests consists of twenty-five simulated Launch/Abort missions and twenty-five simulated flight missions with temperatures ranging from -320 F to 350 F and a maximum mechanical load of 71,300 lb. in tension.

  5. 14 CFR 420.19 - Launch site location review-general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... site, at least one type of expendable or reusable launch vehicle can be flown from the launch point... × 10−6). (2) Types of launch vehicles include orbital expendable launch vehicles, guided sub-orbital expendable launch vehicles, unguided sub-orbital expendable launch vehicles, and reusable launch vehicles...

  6. Benefits of Government Incentives for Reusable Launch Vehicle Development

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.; Hamaker, Joseph W.; Prince, Frank A.

    1998-01-01

    Many exciting new opportunities in space, both government missions and business ventures, could be realized by a reduction in launch prices. Reusable launch vehicle (RLV) designs have the potential to lower launch costs dramatically from those of today's expendable and partially-expendable vehicles. Unfortunately, governments must budget to support existing launch capability, and so lack the resources necessary to completely fund development of new reusable systems. In addition, the new commercial space markets are too immature and uncertain to motivate the launch industry to undertake a project of this magnitude and risk. Low-cost launch vehicles will not be developed without a mature market to service; however, launch prices must be reduced in order for a commercial launch market to mature. This paper estimates and discusses the various benefits that may be reaped from government incentives for a commercial reusable launch vehicle program.

  7. X-33 Reusable Launch Vehicle Demonstrator, Spaceport and Range

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary F.

    2011-01-01

    The X-33 was a suborbital reusable spaceplane demonstrator, in development from 1996 to early 2001. The intent of the demonstrator was to lower the risk of building and operating a full-scale reusable vehicle fleet. Reusable spaceplanes offered the potential to lower the cost of access to space by an order of magnitude, compared with conventional expendable launch vehicles. Although a cryogenic tank failure during testing ultimately led to the end of the effort, the X-33 team celebrated many successes during the development. This paper summarizes some of the accomplishments and milestones of this X-vehicle program, from the perspective of an engineer who was a member of the team throughout the development. X-33 Program accomplishments include rapid, flight hardware design, subsystem testing and fabrication, aerospike engine development and testing, Flight Operations Center and Operations Control Center ground systems design and construction, rapid Environmental Impact Statement NEPA process approval, Range development and flight plan approval for test flights, and full-scale system concept design and refinement. Lessons from the X-33 Program may have potential application to new RLV and other aerospace systems being developed a decade later.

  8. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  9. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  10. Development Status of Reusable Rocket Engine

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi

    A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.

  11. Testing of Twin Linear Aerospike XRS-2200 Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.

  12. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  13. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  14. Pathfinder

    NASA Image and Video Library

    1966-05-21

    The Delta Clipper-Experimental Advanced (DC-XA) is a single-stage-to-orbit, vertical takeoff / vertical landing launch vehicle concept, whose development was geared to significantly reduce launch cost and provided a test bed for NASA Reusable Launch Vehicle (RLV) technology. This photograph shows the descending vehicle landing during the first successful test flight at White Sands Missile Range, New Mexico. The program was discontinued in 2003.

  15. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  16. 14 CFR 431.9 - Issuance of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Issuance of a reusable launch vehicle mission license. 431.9 Section 431.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.9 Issuance of a reusable launch vehicle mission license. (a) The FAA issues...

  17. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  18. 14 CFR 431.9 - Issuance of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Issuance of a reusable launch vehicle mission license. 431.9 Section 431.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.9 Issuance of a reusable launch vehicle mission license. (a) The FAA issues...

  19. 14 CFR 431.13 - Transfer of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transfer of a reusable launch vehicle mission license. 431.13 Section 431.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.13 Transfer of a reusable launch vehicle mission license. (a) Only the FAA may...

  20. 14 CFR 431.13 - Transfer of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transfer of a reusable launch vehicle mission license. 431.13 Section 431.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.13 Transfer of a reusable launch vehicle mission license. (a) Only the FAA may...

  1. 14 CFR 431.9 - Issuance of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Issuance of a reusable launch vehicle mission license. 431.9 Section 431.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.9 Issuance of a reusable launch vehicle mission license. (a) The FAA issues...

  2. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  3. 14 CFR 431.13 - Transfer of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transfer of a reusable launch vehicle mission license. 431.13 Section 431.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.13 Transfer of a reusable launch vehicle mission license. (a) Only the FAA may...

  4. 14 CFR 431.13 - Transfer of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transfer of a reusable launch vehicle mission license. 431.13 Section 431.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.13 Transfer of a reusable launch vehicle mission license. (a) Only the FAA may...

  5. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  6. 14 CFR 431.3 - Types of reusable launch vehicle mission licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Types of reusable launch vehicle mission licenses. 431.3 Section 431.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...) General § 431.3 Types of reusable launch vehicle mission licenses. (a) Mission-specific license. A mission...

  7. 14 CFR 431.13 - Transfer of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transfer of a reusable launch vehicle mission license. 431.13 Section 431.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.13 Transfer of a reusable launch vehicle mission license. (a) Only the FAA may...

  8. 14 CFR 431.9 - Issuance of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Issuance of a reusable launch vehicle mission license. 431.9 Section 431.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.9 Issuance of a reusable launch vehicle mission license. (a) The FAA issues...

  9. 14 CFR 431.9 - Issuance of a reusable launch vehicle mission license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Issuance of a reusable launch vehicle mission license. 431.9 Section 431.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) General § 431.9 Issuance of a reusable launch vehicle mission license. (a) The FAA issues...

  10. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip

    2016-01-01

    Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.

  11. Research Technology

    NASA Image and Video Library

    2001-08-06

    The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.

  12. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  13. Payload Performance Analysis for a Reusable Two-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Beaty, James R.; Lepsch, Roger A.; Gilbert, Michael G.

    2015-01-01

    This paper investigates a unique approach in the development of a reusable launch vehicle where, instead of designing the vehicle to be reusable from its inception, as was done for the Space Shuttle, an expendable two stage launch vehicle is evolved over time into a reusable launch vehicle. To accomplish this objective, each stage is made reusable by adding the systems necessary to perform functions such as thermal protection and landing, without significantly altering the primary subsystems and outer mold line of the original expendable vehicle. In addition, some of the propellant normally used for ascent is used instead for additional propulsive maneuvers after staging in order to return both stages to the launch site, keep loads within acceptable limits and perform a soft landing. This paper presents a performance analysis that was performed to investigate the feasibility of this approach by quantifying the reduction in payload capability of the original expendable launch vehicle after accounting for the mass additions, trajectory changes and increased propellant requirements necessary for reusability. Results show that it is feasible to return both stages to the launch site with a positive payload capability equal to approximately 50 percent of an equivalent expendable launch vehicle. Further discussion examines the ability to return a crew/cargo capsule to the launch site and presents technical challenges that would have to be overcome.

  14. 2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Rogacki, John R. (Technical Monitor)

    2001-01-01

    The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.

  15. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  16. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 431.33 Section 431.33... TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Safety Review and Approval for Launch and Reentry of a Reusable Launch Vehicle § 431.33 Safety organization. (a) An applicant shall...

  17. Simulation and Analyses of Stage Separation Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, Kelly J.; Covell, Peter F.

    2005-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(registered Trademark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  18. Simulation and Analyses of Stage Separation of Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, K. J.; Covell, Peter F.

    2007-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(Registerd TradeMark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  19. 14 CFR 431.23 - Policy review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Policy review. 431.23 Section 431.23... TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Policy Review and Approval for Launch and Reentry of a Reusable Launch Vehicle § 431.23 Policy review. (a) The FAA reviews an RLV...

  20. X-40A Free Flight #5

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.

  1. 24 Inch Reusable Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special 'solvent-spirning' process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  2. 14 CFR 440.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for the launch or reentry of a reusable suborbital rocket. Permitted activity means the launch or reentry of a reusable suborbital rocket conducted under a permit issued by the FAA. Property damage means...

  3. 14 CFR 440.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for the launch or reentry of a reusable suborbital rocket. Permitted activity means the launch or reentry of a reusable suborbital rocket conducted under a permit issued by the FAA. Property damage means...

  4. 14 CFR 440.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for the launch or reentry of a reusable suborbital rocket. Permitted activity means the launch or reentry of a reusable suborbital rocket conducted under a permit issued by the FAA. Property damage means...

  5. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  6. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  7. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  8. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  9. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  10. Testing the Shuttle heat-protection armor

    NASA Technical Reports Server (NTRS)

    Strouhal, G.; Tillian, D. J.

    1976-01-01

    The article deals with the thermal protection system (TPS) designed to keep Space Shuttle structures at 350 F ratings over a wide range of temperatures encountered in orbit, but also during prelaunch, launch, deorbit and re-entry, landing and turnaround. The structure, function, fabrication, and bonding of various types of reusable surface insulation and composite materials are described. Test programs are developed for insulation, seals, and adhesion bonds; leak tests and acoustic fatigue tests are mentioned. Test facilities include arc jets, radiant heaters, furnaces, and heated tunnels. The certification tests to demonstrate TPS reusability, structural integrity, thermal performance, and endurance will include full-scale assembly tests and initial orbital flight tests.

  11. Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.

  12. Kistler reusable vehicle facility design and operational approach

    NASA Astrophysics Data System (ADS)

    Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.

    Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.

  13. On the economics of staging for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Griffin, Michael D.; Claybaugh, William R.

    1996-03-01

    There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.

  14. Reusability aspects for space transportation rocket engines: programmatic status and outlook

    NASA Astrophysics Data System (ADS)

    Preclik, D.; Strunz, R.; Hagemann, G.; Langel, G.

    2011-09-01

    Rocket propulsion systems belong to the most critical subsystems of a space launch vehicle, being illustrated in this paper by comparing different types of transportation systems. The aspect of reusability is firstly discussed for the space shuttle main engine, the only rocket engine in the world that has demonstrated multiple reuses. Initial projections are contrasted against final reusability achievements summarizing three decades of operating the space shuttle main engine. The discussion is then extended to engines employed on expendable launch vehicles with an operational life requirement typically specifying structural integrities up to 20 cycles (start-ups) and an accumulated burning time of about 6,000 s (Vulcain engine family). Today, this life potential substantially exceeds the duty cycle of an expendable engine. It is actually exploited only during the development and qualification phase of an engine when system reliability is demonstrated on ground test facilities with a reduced number of hardware sets that are subjected to an extended number of test cycles and operation time. The paper will finally evaluate the logic and effort necessary to qualify a reusable engine for a required reliability and put this result in context of possible cost savings realized from reuse operations over a time span of 25 years.

  15. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... writing, of the time and date of the intended launch and reentry or other landing on Earth of the RLV and...

  16. First Stage of a Highly Reliable Reusable Launch System

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Pickrel, Jonathan B.; Sayles, Emily L.; Wright, Michael; Marriott, Darin; Holland, Leo; Kuznetsov, Stephen

    2009-01-01

    Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. A matching ramjet design was developed for use on the 300-Hz linear induction motor.

  17. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  18. Reusable launch vehicle: Technology development and test program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).

  19. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... telecommand operations for flight testing of aircraft and missiles, or their major components. The bands 2310... expendable and re-usable launch vehicles, whether or not such operations involve flight testing: 2364.5, 2370... Flight Test Stations § 87.303 Frequencies. (a) These frequencies are available for assignment to flight...

  20. Artist's Concept of X-37 Re-entry

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Pictured is an artist's concept of the experimental X-37 Reusable Launch Vehicle re-entering Earth`s atmosphere. NASA and the Boeing Company entered a cooperative agreement to develop and fly a new experimental space plane called the X-37 that would be ferried into orbit to test new technologies. The reusable space plane incorporated technologies aimed at significantly cutting the cost of space flight. The X-37 would be carried into orbit by the Space Shuttle or be launched by an expendable rocket. After the X-37 was deployed, it would remain in orbit up to 21 days, performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  1. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    Pictured is an artist's concept of the experimental X-37 Reusable Launch Vehicle re-entering Earth‘s atmosphere. NASA and the Boeing Company entered a cooperative agreement to develop and fly a new experimental space plane called the X-37 that would be ferried into orbit to test new technologies. The reusable space plane incorporated technologies aimed at significantly cutting the cost of space flight. The X-37 would be carried into orbit by the Space Shuttle or be launched by an expendable rocket. After the X-37 was deployed, it would remain in orbit up to 21 days, performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  2. KSC-99pc0142

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (top), known as the "iron bird," is lifted to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  3. KSC-99pc0145

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (top, right), known as the "iron bird," is lifted to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  4. KSC-99pc0144

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (left), known as the "iron bird," is fully raised to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  5. Merits of full flow vs. conventional staged combustion cycles for reusable launch vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Peery, Steven D.; Parsley, Randy C.

    1996-03-01

    This paper provides a comparison between full-flow and conventional staged combustion thermodynamic O2/H2 rocket engine cycles for Reusable Launch Vehicle, RLV, single-stage-to-orbit applications. The impact of the cycle thermodynamics, component configuration, and component operating parameters on engine performance and weight for the two approaches is presented. Both cycles were modeled with equivalent technology turbomachinery and chamber/nozzle RLV life requirements. The first order impact of cycle selection, pump exit pressure, and turbine temperature on the empty weight of an SSTO Reusable Launch Vehicle is presented.

  6. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  7. Testing of the X-33 umbilical system at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Launch Equipment Test Facility, , Will Reaves and Mike Solomon (kneeling), both with Lockheed Martin Technical Operations, observe parts of the X-33 umbilical system during testing. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar.

  8. Operations Analysis of the 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Noneman, Steven R.; Smith, C. A. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI) program is developing a second-generation reusable launch vehicle. The program goals include lowering the risk of loss of crew to 1 in 10,000 and reducing annual operations cost to one third of the cost of the Space Shuttle. The SLI missions include NASA, military and commercial satellite launches and crew and cargo launches to the space station. The SLI operations analyses provide an assessment of the operational support and infrastructure needed to operate candidate system architectures. Measures of the operability are estimated (i.e. system dependability, responsiveness, and efficiency). Operations analysis is used to determine the impact of specific technologies on operations. A conceptual path to reducing annual operations costs by two thirds is based on key design characteristics, such as reusability, and improved processes lowering labor costs. New operations risks can be expected to emerge. They can be mitigated with effective risk management with careful identification, assignment, tracking, and closure. SLI design characteristics such as nearly full reusability, high reliability, advanced automation, and lowered maintenance and servicing coupled with improved processes are contributors to operability and large operating cost reductions.

  9. Measuring Permeability of Composite Cryotank Laminants

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  10. NASA KSC/AFRL Reusable Booster System (RBS) Concept of Operations (ConOps)

    NASA Technical Reports Server (NTRS)

    Zeno, Dnany; Mosteller, Ted; McCleskey, Carey; Jhnson, Robert; Hopkins, Jason; Miller, Thomas

    2010-01-01

    This slide presentation reviews the study and findings of the study on the Concept of Operations (ConOps) for Reusable Booster System (RBS) centering on rapid turnaround and launch of a two-stage partially reusable payload delivery system (i.e., 8 hours between launches). The study was to develop rapid ground processing (aircraft like concepts) and identify areas for follow-on study, technology needs, and proof-of-concept demonstrations.

  11. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  12. Single-stage-to-orbit: Meeting the challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene

    1995-10-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  13. Single-stage-to-orbit — Meeting the challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, Robert Eugene

    1996-02-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  14. Future Launch Vehicle Structures - Expendable and Reusable Elements

    NASA Astrophysics Data System (ADS)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the important technology areas to be improved. This includes: - Primary structures - Thermal protection systems (for high and low temperatures) - Hot structures (leading edges, engine cowling, ...) - Tanks (for various propellants and fluids, cryo, ...) Requirements to be considered are including materials properties and a variety of loads definition - static and dynamic. Based on existing knowledge and experience for expendable LV (Ariane, ...) and aircraft there is the need to established a combined understanding to provide the basis for an efficient RLV design. Health monitoring will support the cost efficient operation of future reusable structures, but will also need a sound understanding of loads and failure mechanisms as basis. Risk mitigation will ask for several steps of demonstration towards a cost efficient RLV (structures) operation. Typically this has or will start with basic technology, to be evolved to components demonstration (TPS, tanks, ...) and finally to result in the demonstration of the cost efficient reuse operation. This paper will also include a programmatic logic concerning future LV structures demonstration.

  15. A Review of Recent RLV Research Activities in Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, Makoto; Watanabe, Atsutaro

    2004-02-01

    Researches on reusable launch vehicle (RLV) in Japan have been conducted mainly by the three space agencies: the National Space Development Agency of Japan (NASDA), the National Aerospace Laboratory of Japan (NAL) and the Institute of Space and Astronautical Science (ISAS). HOPE-X program by NASDA/NAL, spaceplane/scramjet related researches by NAL, and development studies of ATREX engine and small reusable vehicle testing (RVT) by ISAS are such major activities. After the consecutive launch failures of NASDA's H-II and ISAS's M-V rockets in 1999-2000, it was concluded that more intensive efforts should be concentrated on the reliability improvement of those major expendable vehicles and that RLV related researches should be promoted to establish fundamental technologies essential to future RLV. In past two years, NASDA succeeded in five consecutive launches of new H-IIA, and ISAS successfully resumed the launch of M-V. As for RLV researches, considerable progress has been achieved in the high speed flight demonstration (HSFD) tests of HOPE-X program, scramjet tests of Mach 4 to 8 by NAL, and ATREX engine and small RVT tests by ISAS. The current three space agencies will be merged into one in October 2003 to establish a new organization named Japan Aerospace Exploration Agency (JAXA). It is expected that the above research activities will be also merged to promote a higher-level research program on RLV.

  16. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  17. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  18. KSC-99pc0143

    NASA Image and Video Library

    1999-01-28

    As part of X-33 launch equipment testing at Edwards Air Force Base, CA, the KSC-developed X-33 weight simulator (top), known as the "iron bird," is lifted to a vertical position at the X-33 launch site. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  19. Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1996-01-01

    A reusable Thermal Protection System (TPS) that is not only lightweight, but durable, operable and cost effective is one of the technologies required by the Reusable Launch Vehicle (RLV) to achieve the goal of drastically reducing the cost of delivering payload to orbit. Metallic TPS is one of the systems being developed to meet this challenge. Current efforts involve improving the superalloy honeycomb TPS concept, which consists of a foil-gage metallic box encapsulating a low density fibrous insulation, and evaluating it for RLV requirements. The superalloy honeycomb TPS concept is mechanically attached to the vehicle structure. Improvements include more efficient internal insulation, a simpler, lighter weight configuration, and a quick-release fastener system for easier installation and removal. Evaluation includes thermal and structural analysis, fabrication and testing of both coupons and TPS panels under conditions simulating RLV environments. Coupons of metallic honeycomb sandwich, representative of the outer TPS surface, were subjected to low speed impact, hypervelocity impact, and rain erosion testing as well as subsequent arcjet exposure. Arrays of TPS panels have been subjected to radiant heating in a thermal/vacuum facility, aerodynamic heating in an arcjet facility and acoustic loading.

  20. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2002-10-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  1. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2002-10-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  2. SLI Artist's Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  3. SLI Artist's Concept-Stage Separation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  4. Future Concepts for Integrating the Space Launch System and the Multi-Purpose Crew Vehicle into a Reusable Space Transportation Infrastructure

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes the Space Launch System (SLS), the Mulit-Purpose Crew Vehicle (MPCV), the International Space Station (ISS), and propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for commercial crew, cargo, and propellant launches to a Low-Earth-Orbit (LEO) Depot and/or the ISS. The SLS provides all payload and propellant launches to the Earth-Moon Langrange Point 1 (EML1) Depot to support new reusable in-space transportation vehicles. The ISS or follow-on LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to Earth-Moon L1 for EML1 Depot missions. The EML1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. New vehicle design concepts are presented that can be launched utilizing the SLS and current ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) derived from the MPCV and a reusable Cryogenic Propulsion Stage (CPS) for crew transportation between the LEO Depot, EML1 Depot and missions beyond the Earth-Moon vicinity; a new reusable Lunar Lander for crew transportation between the EML1 Depot and the lunar surface; and a new reusable Deep Space Habitat (DSH) with a CTV to support crew missions from the EML1 Depot to ESL2, Asteroids, and a Mars Orbital Depot. The LEO Depot, EML1 Depot, and Mars Orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing SLS and current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure might be implemented incrementally over the next few decades. The potential benefits of this infrastructure include competitive bidding for ELV flights and propellant services, development of new reusable in-space vehicles, and development of a robust multiuse infrastructure that can support many government and commercial missions simultaneously.

  5. Reusable Launch Vehicle (RLV) Mission/Market Model

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.

    1999-01-01

    The goal of this model was to assess the Reusable Launch Vehicle's (RLV) capability to support the International Space Station (ISS) servicing, determine the potential to leverage the commercial marketplace to reduce NASA's cost, and to evaluate the RLV's ability to expand the space economy. The presentation is in view-graph format.

  6. Flight demonstrator concept for key technologies enabling future reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Ishimoto, Shinji; Fujii, Kenji; Mori, Takeshi

    2005-07-01

    A research center in JAXA has recently started research on reusable launch vehicles according to its plan placing emphasis on advanced launch technology. It is planned to demonstrate key technologies using a rocket-powered winged vehicle, and concept studies on the flight demonstrator have been conducted. This paper describes the present research plan and introduces the most compact vehicle concept among some versions under consideration.

  7. SSTO RLVs: More Global Reach? A Study of the Use of Single Stage to Orbit Reusable Launch Vehicles as Airlift Platforms.

    DTIC Science & Technology

    1996-11-01

    Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses

  8. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  9. The Cost-Optimal Size of Future Reusable Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.

  10. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    NASA Astrophysics Data System (ADS)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  11. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  12. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special "solvent-spirning" process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  13. Turnaround operations analysis for OTV. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Anaylses performed for ground processing, both expendable and reusable ground-based Orbital Transfer Vehicles (OTVs) launched on the Space Transportation System (STS), a reusable space-based OTV (SBOTV) launched on the STS, and a reusable ground-based OTV (GBOTV) launched on an unmanned cargo vehicle and recovered by the Orbiter are summarized. Also summarized are the analyses performed for space processing the reusable SBOTV at the Space Station in low Earth orbit (LEO) as well as the maintenance and servicing of the SBOTV accommodations at the Space Station. In addition, the candidate OTV concepts, design and interface requirements, and the Space Station design, support, and interface requirements are summarized. A development schedule and associated costs for the required SBOTV accommodations at the Space Station are presented. Finallly, the technology development plan to develop the capability to process both GBOTVs and SBOTVs are summarized.

  14. Low-cost management aspects for developing, producing and operating future space transportation systems

    NASA Astrophysics Data System (ADS)

    Goehlich, Robert A.; Rücker, Udo

    2005-01-01

    It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.

  15. KSC-99pp1072

    NASA Image and Video Library

    1999-06-18

    At the Launch Equipment Test Facility, , Will Reaves and Mike Solomon (kneeling), both with Lockheed Martin Technical Operations, observe parts of the X-33 umbilical system during testing. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar

  16. Testing of the X-33 umbilical system at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Launch Equipment Test Facility, Mike Solomon, with Lockheed Martin Technical Operations, studies a part of the X-33 umbilical system during testing. Pointing to the part is Will Reaves, also with Lockheed Martin Technical Operations. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar.

  17. Cost Per Pound From Orbit

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    2002-01-01

    Traditional studies of Reusable Launch Vehicle (RLV) designs have focused on designs that are completely reusable except for the fuel. This may not be realistic with current technology . An alternate approach is to look at partially reusable launch vehicles. This raises the question of which parts should be reused and which parts should be expendable. One approach is to consider the cost/pound of returning these parts from orbit. With the shuttle, this cost is about three times the cost/pound of launching payload into orbit. A subtle corollary is that RLVs are much less practical for higher orbits, such as the one on which the International Space Station resides, than they are for low earth orbits.

  18. 14 CFR 431.73 - Continuing accuracy of license application; application for modification of license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Continuing accuracy of license application; application for modification of license. 431.73 Section 431.73 Aeronautics and Space COMMERCIAL SPACE... REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and...

  19. 14 CFR 431.73 - Continuing accuracy of license application; application for modification of license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Continuing accuracy of license application; application for modification of license. 431.73 Section 431.73 Aeronautics and Space COMMERCIAL SPACE... REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and...

  20. 14 CFR 431.73 - Continuing accuracy of license application; application for modification of license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Continuing accuracy of license application; application for modification of license. 431.73 Section 431.73 Aeronautics and Space COMMERCIAL SPACE... REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and...

  1. 14 CFR 431.73 - Continuing accuracy of license application; application for modification of license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Continuing accuracy of license application; application for modification of license. 431.73 Section 431.73 Aeronautics and Space COMMERCIAL SPACE... REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and...

  2. 14 CFR 431.73 - Continuing accuracy of license application; application for modification of license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Continuing accuracy of license application; application for modification of license. 431.73 Section 431.73 Aeronautics and Space COMMERCIAL SPACE... REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and...

  3. The reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  4. The reusable launch vehicle technology program

    NASA Technical Reports Server (NTRS)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  5. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on December 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests that would validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  6. Composite Development and Applications for RLV Tankage

    NASA Technical Reports Server (NTRS)

    Wright, Richard J.; Achary, David C.; McBain, Michael C.

    2003-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 28%-41% reduction in weight that composite materials can provide over current aluminum technology. The development of composite cryogenic tanks, feedlines, and unpressurized structures are key enabling technologies for performance and cost enhancements for Reusable Launch Vehicles (RLVs). The technology development of composite tanks has provided direct and applicable data for feedlines, unpressurized structures, material compatibility, and cryogenic fluid containment for highly loaded complex structures and interfaces. All three types of structure have similar material systems, processing parameters, scaling issues, analysis methodologies, NDE development, damage tolerance, and repair scenarios. Composite cryogenic tankage is the most complex of the 3 areas and provides the largest breakthrough in technology. A building block approach has been employed to bring this family of difficult technologies to maturity. This approach has built up composite materials, processes, design, analysis and test methods technology through a series of composite test programs beginning with the NASP program to meet aggressive performance goals for reusable launch vehicles. In this paper, the development and application of advanced composites for RLV use is described.

  7. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  8. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  9. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  10. Reusable Metallic Thermal Protection Systems Development

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Martin, Carl J.; Daryabeigi, Kamran; Poteet, Carl C.

    1998-01-01

    Metallic thermal protection systems (TPS) are being developed to help meet the ambitious goals of future reusable launch vehicles. Recent metallic TPS development efforts at NASA Langley Research Center are described. Foil-gage metallic honeycomb coupons, representative of the outer surface of metallic TPS were subjected to low speed impact, hypervelocity impact, rain erosion, and subsequent arcjet exposure. TPS panels were subjected to thermal vacuum, acoustic, and hot gas flow testing. Results of the coupon and panel tests are presented. Experimental and analytical tools are being developed to characterize and improve internal insulations. Masses of metallic TPS and advanced ceramic tile and blanket TPS concepts are compared for a wide range of parameters.

  11. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2002-10-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  12. SLI Artist's Concept-Vehicle Enroute to Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  13. Methodology for Assessing Reusability of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Thomas, L. Dale; Farrington, Phillip

    2017-01-01

    In 2011 the Space Shuttle, the only Reusable Launch Vehicle (RLV) in the world, returned to earth for the final time. Upon retirement of the Space Shuttle, the United States (U.S.) no longer possessed a reusable vehicle or the capability to send American astronauts to space. With the National Aeronautics and Space Administration (NASA) out of the RLV business and now only pursuing Expendable Launch Vehicles (ELV), not only did companies within the U.S. start to actively pursue the development of either RLVs or reusable components, but entities around the world began to venture into the reusable market. For example, SpaceX and Blue Origin are developing reusable vehicles and engines. The Indian Space Research Organization is developing a reusable space plane and Airbus is exploring the possibility of reusing its first stage engines and avionics housed in the flyback propulsion unit referred to as the Advanced Expendable Launcher with Innovative engine Economy (Adeline). Even United Launch Alliance (ULA) has announced plans for eventually replacing the Atlas and Delta expendable rockets with a family of RLVs called Vulcan. Reuse can be categorized as either fully reusable, the situation in which the entire vehicle is recovered, or partially reusable such as the National Space Transportation System (NSTS) where only the Space Shuttle, Space Shuttle Main Engines (SSME), and Solid Rocket Boosters (SRB) are reused. With this influx of renewed interest in reusability for space applications, it is imperative that a systematic approach be developed for assessing the reusability of spaceflight hardware. The partially reusable NSTS offered many opportunities to glean lessons learned; however, when it came to efficient operability for reuse the Space Shuttle and its associated hardware fell short primarily because of its two to four-month turnaround time. Although there have been several attempts at designing RLVs in the past with the X-33, Venture Star and Delta Clipper Experimental (DC-X), reusability within the spaceflight arena is still in its infancy. With unlimited resources (namely, time and money), almost any launch vehicle and its associated hardware can be made reusable. However, an endless supply of funds for space exploration is not the case in today's economy for neither government agencies nor their commercial counterparts. Therefore, any organization wanting to be a leader in space exploration and remain competitive in this unforgiving space faring industry must confront shrinking budgets with more cost conscious and efficient designs. Therefore, standards for developing reusable spaceflight hardware need to be established. By having standards available to existing and emerging companies, some of the potential roadblocks and limitations that plagued previous attempts at reuse may be minimized or completely avoided.

  14. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Terms and Conditions of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  15. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Terms and Conditions of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  16. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Terms and Conditions of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  17. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Terms and Conditions of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  18. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Terms and Conditions of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  19. KSC-99pp1074

    NASA Image and Video Library

    1999-06-18

    At the Launch Equipment Test Facility, Mike Solomon, with Lockheed Martin Technical Operations, studies a part of the X-33 umbilical system during testing. Pointing to the part is Will Reaves, also with Lockheed Martin Technical Operations. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar

  20. Testing of the X-33 umbilical system at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Launch Equipment Test Facility, Mike Solomon (left) and Will Reaves (right), both with Lockheed Martin Technical Operations, move in for a close look at part of the X-33 umbilical system. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar.

  1. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  2. Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight

    NASA Image and Video Library

    2001-03-14

    Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  3. First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 feet on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 feet on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  4. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  5. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  6. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2011-01-01

    A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented for each primary mission capability. These profiles are the basis for propellant loads, numbers of vehicles/stages and launches for each mission capability. Data includes the number of launches required for each mission utilizing current expendable launch vehicle systems, and concluding remarks include ideas for reducing the number of launches through incorporation of heavy-lift launch vehicles, solar electric propulsion, and other transportation support concepts.

  7. Structures and materials technology issues for reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.; Tenney, D. R.; Rummler, D. R.; Wieting, A. R.; Bader, R. M.

    1985-01-01

    Projected space missions for both civil and defense needs require significant improvements in structures and materials technology for reusable launch vehicles: reductions in structural weight compared to the Space Shuttle Orbiter of up to 25% or more, a possible factor of 5 or more increase in mission life, increases in maximum use temperature of the external surface, reusable containment of cryogenic hydrogen and oxygen, significant reductions in operational costs, and possibly less lead time between technology readiness and initial operational capability. In addition, there is increasing interest in hypersonic airbreathing propulsion for launch and transmospheric vehicles, and such systems require regeneratively cooled structure. The technology issues are addressed, giving brief assessments of the state-of-the-art and proposed activities to meet the technology requirements in a timely manner.

  8. 78 FR 69741 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Permits for Reusable Suborbital Rockets AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... Number: 2120-0722. Title: Experimental Permits for Reusable Suborbital Rockets. Form Numbers: There are... experimental permits for reusable suborbital rockets to authorize launches for the purpose of research and...

  9. 78 FR 51807 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Permits for Reusable Suborbital Rockets AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... INFORMATION: OMB Control Number: 2120-0722. Title: Experimental Permits for Reusable Suborbital Rockets. Form... experimental permits for reusable suborbital rockets to authorize launches for the purpose of research and...

  10. Analyses of Noise from Reusable Solid Rocket Motor (RSRM) Firings

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Kenny, R. Jeremy; Jerome, Trevor W.; Neilsen, Tracianne B.; Hobbs, Christopher M.; James, Michael M.

    2012-01-01

    NASA s Space Launch Vehicle (SLS) program has chosen the Reusable Solid Rocket Motor V (RSRMV) as the booster system for initial flights. Lift off acoustics continue to be a consideration in overall vehicle vibroacoustic evaluations and launch pad modifications. Work started with the Ares program to understand solid rocket noise mechanisms is continuing through SLS program in conjunction with BYU/Blue Ridge Research Consulting.

  11. F-106 tow cable attachment and release mechanism for Eclipse program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the tow cable attachment and release mechanism forward of the cockpit on the QF-106 Eclipse aircraft. This mechanism held and then released the Vectran rope used to tow the QF-106 behind an Air Force C-141A. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  12. Closeup of QF-106 release hook for Eclipse program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the release hook on the QF-106 that allowed the pilot to release the tow rope extending from the C-141A tow plane in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  13. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  14. KSC-2009-2211

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The booster segments for the Ares I-X test rocket were delivered to NASA's Kennedy Space Center in Florida by the Florida East Coast Railroad and the NASA Railroad. Accompanying the train on its route from Jacksonville, Fla., were NASA and ATK officials. Standing here, from left, are ATK Ares I Flight Tests Program Director Joe Oliva, ATK Ares I-X Florida Program Manager Russ Page, NASA Ares Program Manager Steve Cook, ATK Deputy Site Director in Florida Ted Shaffner, NASA KSC Ares I-X Deputy Mission Manager Jon Cowart, ATK Vice President of Space Launch Propulson Cary Ralston, ATK Ares I First Stage program Director Fred Brasfield, ATK Vice President Space Launch Systems Charlie Precourt, ATK Ares I Flight Tests Deputy Program Director Kathy Philpot, NASA Marshall Space Flight Center Reusable Solid Rocket Booster Integration Lead Roy Worthy, ATK Florida Site Director Bob Herman, NASA Res First Stage Project Manager Alex Priskos and NASA KSC Shuttle Launch Director Mike Leinbach. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  15. Technical and Economical Feasibility of SSTO and TSTO Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Lerch, Jens

    This paper discusses whether it is more cost effective to launch to low earth orbit in one or two stages, assuming current or near future technologies. First the paper provides an overview of the current state of the launch market and the hurdles to introducing new launch vehicles capable of significantly lowering the cost of access to space and discusses possible routes to solve those problems. It is assumed that reducing the complexity of launchers by reducing the number of stages and engines, and introducing reusability will result in lower launch costs. A number of operational and historic launch vehicle stages capable of near single stage to orbit (SSTO) performance are presented and the necessary steps to modify them into an expendable SSTO launcher and an optimized two stage to orbit (TSTO) launcher are shown, through parametric analysis. Then a ballistic reentry and recovery system is added to show that reusable SSTO and TSTO vehicles are also within the current state of the art. The development and recurring costs of the SSTO and the TSTO systems are estimated and compared. This analysis shows whether it is more economical to develop and operate expendable or reusable SSTO or TSTO systems under different assumption for launch rate and initial investment.

  16. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  17. 14 CFR 437.7 - Scope of an experimental permit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...

  18. 14 CFR 437.7 - Scope of an experimental permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...

  19. 14 CFR 437.7 - Scope of an experimental permit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...

  20. 14 CFR 437.7 - Scope of an experimental permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...

  1. 14 CFR 437.7 - Scope of an experimental permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...

  2. Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  3. Historical problem areas: Lessons learned for expendable and reusable vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.

    1991-01-01

    The following subject areas are covered: expendable launch vehicle lessons learned, upper stage/transfer vehicle lessons learned, shuttle systems - reuse, and reusable system issues and lessons learned.

  4. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  5. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on Dec. 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests to validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  6. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.

  7. Lockheed Martin approach to a Reusable Launch Vehicle (RLV)

    NASA Astrophysics Data System (ADS)

    Elvin, John D.

    1996-03-01

    This paper discusses Lockheed Martin's perspective on the development of a cost effective Reusable Launch Vehicle (RLV). Critical to a successful Single Stage To Orbit (SSTO) program are; an economic development plan sensitive to fiscal constraints; a vehicle concept satisfying present and future US launch needs; and an operations concept commensurate with a market driven program. Participation in the economic plan by government, industry, and the commercial sector is a key element of integrating our development plan and funding profile. The RLV baseline concept design, development evolution and several critical trade studies illustrate the superior performance achieved by our innovative approach to the problem of SSTO. Findings from initial aerodynamic and aerothermodynamic wind tunnel tests and trajectory analyses on this concept confirm the superior characteristics of the lifting body shape combined with the Linear Aerospike rocket engine. This Aero Ballistic Rocket (ABR) concept captures the essence of The Skunk Works approach to SSTO RLV technology integration and system engineering. These programmatic and concept development topics chronicle the key elements to implementing an innovative market driven next generation RLV.

  8. KSC-99pp1073

    NASA Image and Video Library

    1999-06-18

    At the Launch Equipment Test Facility, Mike Solomon (left) and Will Reaves (right), both with Lockheed Martin Technical Operations, move in for a close look at part of the X-33 umbilical system. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar

  9. Lifting Body Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1998-01-01

    NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.

  10. Commercial aspects of semi-reusable launch systems

    NASA Astrophysics Data System (ADS)

    Obersteiner, M. H.; Müller, H.; Spies, H.

    2003-07-01

    This paper presents a business planning model for a commercial space launch system. The financing model is based on market analyses and projections combined with market capture models. An operations model is used to derive the annual cash income. Parametric cost modeling, development and production schedules are used for quantifying the annual expenditures, the internal rate of return, break even point of positive cash flow and the respective prices per launch. Alternative consortia structures, cash flow methods, capture rates and launch prices are used to examine the sensitivity of the model. Then the model is applied for a promising semi-reusable launcher concept, showing the general achievability of the commercial approach and the necessary pre-conditions.

  11. KSC-2009-2206

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – ATK and NASA officials accompanied the Florida East Coast Railroad train carrying the booster segments for the Ares I-X test rocket on its route to NASA's Kennedy Space Center in Florida from Jacksonville, Fla. Seen here in the passenger car are, from left NASA KSC Shuttle Launch Director Mike Leinbach, a Florida East Coast Railroad representative, ATK Ares I First Stage program Director Fred Brasfield, a Florida East Coast Railroad representative, ATK Vice President Space Launch Systems Charlie Precourt, a Florida East Coast Railroad representative, and NASA Marshall Space Flight Center Reusable Solid Rocket Booster Integration Lead Roy Worthy. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  12. Research Technology

    NASA Image and Video Library

    2002-08-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  13. Reusable launch vehicle facts and fantasies

    NASA Astrophysics Data System (ADS)

    Kaplan, Marshall H.

    2002-01-01

    Many people refuse to address many of the realities of reusable launch vehicle systems, technologies, operations and economics. Basic principles of physics, space flight operations, and business limitations are applied to the creation of a practical vision of future expectations. While reusable launcher concepts have been proposed for several decades, serious review of potential designs began in the mid-1990s, when NASA decided that a Space Shuttle replacement had to be pursued. A great deal of excitement and interest was quickly generated by the prospect of ``orders-of-magnitude'' reduction in launch costs. The potential for a vastly expanded space program motivated the entire space community. By the late-1990s, and after over one billion dollars were spent on the technology development and privately-funded concepts, it had become clear that there would be no new, near-term operational reusable vehicle. Many factors contributed to a very expensive and disappointing effort to create a new generation of launch vehicles. It began with overly optimistic projections of technology advancements and the belief that a greatly increased demand for satellite launches would be realized early in the 21st century. Contractors contributed to the perception of quickly reachable technology and business goals, thus, accelerating the enthusiasm and helping to create a ``gold rush'' euphoria. Cost, schedule and performance margins were all highly optimistic. Several entrepreneurs launched start up companies to take advantage of the excitement and the availability of investor capital. Millions were raised from private investors and venture capitalists, based on little more than flashy presentations and animations. Well over $500 million were raised by little-known start up groups to create reusable systems, which might complete for the coming market in launch services. By 1999, it was clear that market projections, made just two years earlier, were not going to be realized. Investors stopped funding the many private projects, and NASA grew weary of the lack of progress in its funded programs. The elements leading to the demise of NASA's X-33 and other programs are addressed, and lessons for the future offered. .

  14. Airframe integration trade studies for a reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  15. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  16. Overview of Current Hot Water Propulsion Activities at Berlin University of Technology

    NASA Astrophysics Data System (ADS)

    Kolditz, M.; Pilz, N.; Adirim, H.; Rudloff, P.; Gorsch, M.; Kron, M.

    2004-10-01

    The AQUARIUS working group has been founded in 1991 on the initiative of students at the Institute of Aeronautics and Astronautics at Berlin University of Technology. It works mainly on the development, manufacturing and testing of hot water propulsion systems. Upon having launched numerous single stage rockets, a two stage hot water rocket (AQUARIUS X-PRO) was developed and launched for the first time in world history. In order to perform thrust experiments for a deeper understanding of the propulsion efficiency and the influence of varying nozzle parameters on exhaust characteristics, a dedicated hot water test facility has been built. For more than five years,ground-based take-off assistance systems for future reusable launch vehicles have been the subject of intense investigation.

  17. Delamination Assessment Tool for Spacecraft Composite Structures

    NASA Astrophysics Data System (ADS)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  18. Integrated operations/payloads/fleet analysis. Volume 3: System costs. Appendix A: Program direct costs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.

  19. Earth-to-orbit reusable launch vehicles: A comparative assessment

    NASA Technical Reports Server (NTRS)

    Chase, R. L.

    1978-01-01

    A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.

  20. The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above NASA's Dryden Flight Research Center at Edwards Air Force Base, California, on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above NASA's Dryden Flight Research Center at Edwards Air Force Base, California, on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  1. A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  2. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...

  3. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...

  4. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...

  5. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...

  6. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...

  7. Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Nguyen, Han

    2005-01-01

    A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.

  8. Pathfinder

    NASA Image and Video Library

    1997-06-04

    This shot offers a bird's eye-view of a Fastrac II engine duration test at Marshall's Test Stand 116. The Fastrac II engine was designed as a part of the low cost X-34 Reusable Launch Vehicle (RLV). The purpose for these tests was to test the different types of metal alloys in the nozzle. Beside the engine were six additional nozzels which spray a continuous stream of water onto the test stand to reduce damage to the test stand and the engines. The X-34 program was cancelled in 2001.

  9. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  10. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    NASA Astrophysics Data System (ADS)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The prototypes of such small orbital space vehicles, needed to trigger this line of development. Other technologies like Space Hotels and their size, structure and maintenance is another important factor in Space tourism.

  11. Hot Water Propulsion for Horizontal Rocket Assisted Take-Off Systems for Future Reusable Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Pilz, N.; Adirim, H.; Lo, R.; Schildknecht, A.

    2004-10-01

    Among other concepts, reusable space transportation systems that comprise winged reusable launch vehicles (RLV) with horizontal take-off and horizontal landing (HTHL) are under worldwide investigation, e.g. the respective concepts within ESA's FESTIP-Study (Future European Space Transportation Integration Program) or the HOPPER concept by EADS-ST. The payload of these RLVs could be significantly increased by means of a ground-based take-off assistance system that would accelerate the vehicle along a horizontal track until it reaches the desired speed to ignite its onboard engines for leaving the ground and launching into orbit. This paper illustrates the advantages of horizontal take-off for winged RLVs and provides an overview of launch-assist options for HTHL RLVs. It presents hot water propulsion for ground-based take-off assistance systems for future RLVs as an attractive choice besides magnetic levitation and acceleration (maglev) technology. Finally, preliminary design concepts are presented for a rocket assisted take-off system (RATOS) with hot water propulsion followed by an analysis of its improvement potential.

  12. Effect of 25 cycles of launch pad exposure and simulated mission heating on space shuttle reusable surface insulation coated with reaction cured glass

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.; Morrison, J. D.; Minster, J. E.

    1979-01-01

    Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.

  13. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Bellini, Peter X.

    1998-01-01

    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  14. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket ignition.

  15. Strutjet-powered reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Sasso, S. E.; Schnackel, J. A.

    1994-01-01

    Martin Marietta and Aerojet are co-investigating the feasibility and viability of reusable launch vehicle designs. We are assessing two vehicle concepts, each delivering 8000 lb to a geosynchronous transfer orbit (GTO). Both accomplish this task as a two-state system. The major difference between the two concepts is staging. The first concept, the two-stage-to-orbit (TSTO) system, stages at about 16 kft/sec, allowing immediate return of the first stage to the launch site using its airbreathing propulsion system for a powered cruise flight. The second concept, the single-stage-to-orit (SSTO) system, accomplishes stage separation in a stable low earth orbit (LEO).

  16. Cost effective launch operations of the SSME

    NASA Technical Reports Server (NTRS)

    Klatt, F. P.

    1985-01-01

    The Space Shuttle Main Engine (SSME) represents the beginning of reusable rocket engine operations in the space transportation system (STS). Steps taken to reduce the overall cost of flight operations of the SSME by improving turnaround operations, extending the life of the engine, and improving the cost effectiveness of overhaul operations at the Canoga Park home plant are described. Ground certification testing to ensure safe launch operations is described, as well as certification extension testing that leads to a service life equivalent to 40 flights. The proven flight record of the SSME, which has demonstrated the utility of the SSME as a key component of America's space transportation system, is discussed.

  17. X-33 LH2 Tank Failure Investigation Findings

    NASA Technical Reports Server (NTRS)

    Niedermeyer, Melinda

    2003-01-01

    This viewgraph presentation provides information on the composite sandwich-honeycomb structure of the liquid hydrogen tank of the X-33 reusable launch vehicle, and describes why the the first pressure test to determine the tank's structural integrity failed. The presentation includes images of the tank before and after the failed test, including photomicrographs. It then reaches conclusions on the nature of the microcracks which caused the liquid hydrogen leakage.

  18. Next Generation Spacecraft, Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.

  19. Ares I-X Launch Vehicle Modal Test Overview

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.

  20. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  1. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  2. Pathfinder

    NASA Image and Video Library

    1997-06-04

    A close-up view of Bantam duration testing of the 40K Fastrac II Engine for X-34 at Marshall Space Flight Center's (MSFC) test stand 116. The Bantam test refers to the super lightweight engines of the Fastrac program. The engines were designed as part of the low cost X-34 Reusable Launch Vehicle (RLV). The testing of these engines at MSFC allowed the engineers to determine the capabilities of these engines and the metal alloys that were used in their construction. The Fastrac and X-34 programs were cancelled in 2001.

  3. Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  4. Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  5. Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  6. 75 FR 20874 - Agency Information Collection Activity Seeking OMB Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... to issue Experimental Permits for reusable suborbital rockets to authorize launches for the purpose... Suborbital Rockets. Type of Request: Extension without change of a currently approved collection. OMB Control... FAA's new authority to issue Experimental Permits for reusable [[Page 20875

  7. Improved Re-Configurable Sliding Mode Controller for Reusable Launch Vehicle of Second Generation Addressing Aerodynamic Surface Failures and Thrust Deficiencies

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.

    2002-01-01

    In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.

  8. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    NASA Astrophysics Data System (ADS)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  9. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  10. Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1999-01-01

    Analytical models were developed to model the heat transfer through high-temperature fibrous insulation used in metallic thermal protection systems on reusable launch vehicles. The optically thick approximation was used to simulate radiation heat transfer through the insulation. Different models for gaseous conduction and solid conduction in the fibers, and for combining the various modes of heat transfer into a local, volume-averaged, thermal conductivity were considered. The governing heat transfer equations were solved numerically, and effective thermal conductivities were calculated from the steady-state results. An experimental apparatus was developed to measure the apparent thermal conductivity of insulation subjected to pressures, temperatures and temperature gradients representative of re-entry conditions for launch vehicles. The apparent thermal conductivity of an alumina fiber insulation was measured at nominal densities of 24, 48 and 96 kg/cu m. Data were obtained at environmental pressures from 10(exp 4) to 760 torr, with the insulation cold side maintained at room temperature and its hot side temperature varying up to 1000 C. The experimental results were used to evaluate the analytical models. The best analytical model resulted in effective thermal conductivity predictions that were within 8% of experimental results.

  11. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  12. Reusable aerospace system with horizontal take-off

    NASA Astrophysics Data System (ADS)

    Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.

    1990-10-01

    An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.

  13. Infrared Imagery of Solid Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  14. Heavy Lift Launch Vehicles for 1995 and Beyond

    NASA Technical Reports Server (NTRS)

    Toelle, R. (Compiler)

    1985-01-01

    A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.

  15. Improvements To Progressive Wave Tube Performance Through Closed-Loop Control

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2000-01-01

    This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.

  16. 14 CFR 437.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... suborbital rocket to the effects of altitude, velocity, acceleration, or burn duration that exceed a level or... area, that a reusable suborbital rocket's instantaneous impact point may not traverse. Key flight... permitted flights may take place. Permitted vehicle means a reusable suborbital rocket operated by a launch...

  17. 14 CFR 437.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... suborbital rocket to the effects of altitude, velocity, acceleration, or burn duration that exceed a level or... area, that a reusable suborbital rocket's instantaneous impact point may not traverse. Key flight... permitted flights may take place. Permitted vehicle means a reusable suborbital rocket operated by a launch...

  18. 14 CFR 437.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... suborbital rocket to the effects of altitude, velocity, acceleration, or burn duration that exceed a level or... area, that a reusable suborbital rocket's instantaneous impact point may not traverse. Key flight... permitted flights may take place. Permitted vehicle means a reusable suborbital rocket operated by a launch...

  19. 14 CFR 437.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... suborbital rocket to the effects of altitude, velocity, acceleration, or burn duration that exceed a level or... area, that a reusable suborbital rocket's instantaneous impact point may not traverse. Key flight... permitted flights may take place. Permitted vehicle means a reusable suborbital rocket operated by a launch...

  20. 14 CFR 437.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... suborbital rocket to the effects of altitude, velocity, acceleration, or burn duration that exceed a level or... area, that a reusable suborbital rocket's instantaneous impact point may not traverse. Key flight... permitted flights may take place. Permitted vehicle means a reusable suborbital rocket operated by a launch...

  1. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  2. Fabrication and Testing of Ceramic Matrix Composite Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Martha H.; Kiser, J. Douglas; Lang, Jerry

    2000-01-01

    A viewgraph presentation outlines NASA's goals for the Second and Third Generation Reusable Launch Vehicles, placing emphasis on improving safety and decreasing the cost of transporting payloads to orbit. The use of ceramic matrix composite (CMC) technology is discussed. The development of CMC components, such as the Simplex CMC Blisk, cooled CMC nozzle ramps, cooled CMC thrust chambers, and CMC gas generators, are described, including challenges, test results, and likely future developments.

  3. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, Randolph High School students are assembling their rocket in preparation for launch.

  4. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.

  5. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.

  6. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  7. Advanced Concept

    NASA Image and Video Library

    2000-06-22

    The photograph depicts the X-37 neutral buoyancy simulator mockup at Dryden Flight Research Center. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliabiltiy, while reducing launch costs from $10,000 per pound to $1000 per pound. Managed by Marshall Space Flight Center and built by the boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  8. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  9. Process Time Refinement for Reusable Launch Vehicle Regeneration Modeling

    DTIC Science & Technology

    2008-03-01

    predicted to fail, or have failed. 3) Augmenting existing space systems with redundant or additional capability to enhance space system performance or...Canopies, External Tanks/Pods/Pylon Ejectors , Armament Bay Doors, Missile Launchers, Wing and Fuselage Center Line Racks, Bomb Bay Release...Systems Test 04583 Thrust Maintenance Operation 04584 Silo Door Operation 04650 Initial Build-up-Recovery Vehicle (RV) 147 04610 Nondestructive

  10. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for 1 hour and 57 minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine, and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on the NASA SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement. The goal of the X-33 program, and a major goal for the NASA Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space.

  11. The Importance of Detailed Component Simulations in the Feedsystem Development for a Two-Stage-to Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Grayson, Gary

    2005-01-01

    To meet the requirements for the 2nd Generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and development cost by approximately 25%. A Main Propulsion System (MPS) crossfeed water demonstration test program was configured to address all the activities required to reduce the risks for the MPS crossfeed system. A transient, one-dimensional system simulation was developed for the subscale crossfeed water flow tests. To ensure accurate representation of the crossfeed valve's dynamics in the system model, a high-fidelity, three-dimensional, computational fluid-dynamics (CFD) model was employed. The results from the CFD model were used to specify the valve's flow characteristics in the system simulation. This yielded a crossfeed system model that was anchored to the specific valve hardware and achieved good agreement with the measured test data. These results allowed the transient models to be correlated and validated and used for full scale mission predictions. The full scale model simulations indicate crossfeed is ' viable with the system pressure disturbances at the crossfeed transition being less than experienced by the propulsion system during engine start and shutdown transients.

  12. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    NASA Astrophysics Data System (ADS)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  13. Incrementally developing a cultural and regulatory infrastructure for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Simberg, Rand

    1998-01-01

    At this point in time, technology is perhaps the least significant barrier to the development of high-flight-rate, reusable launchers, necessary for low-cost space access. Much more daunting are the issues of regulatory regimes, needed markets, and public/investor perception of their feasibility. The approach currently the focus of the government (X-33) assumes that the necessary conditions will be in place to support a new reusable launch vehicle in the Shuttle class at the end of the X-33 development. For a number of reasons (market size, lack of confidence in the technology, regulations designed for expendable vehicles, difficulties in capital formation) such an approach may prove too rapid a leap for success. More incremental steps, both experimental and operational, could be a higher-probability path to achieving the goal of cheap access through reusables. Such incrementalism, via intermediate vehicles (possibly multi-stage) exploiting suborbital and smaller-payload markets, could provide the gradual acclimatization of the public, regulatory and investment communities to reusable launchers, and build the confidence necessary to go on to subsequent steps to provide truly cheap access, while providing lower-cost access much sooner.

  14. Review of X-33 Hypersonic Aerodynamic and Aerothermodynamic Development

    DTIC Science & Technology

    2000-09-01

    proposed development of a fully reusable, rocket pow- ered, single-stage-to-orbit ( SSTO ) vehicle capa- ble of delivering 25,000 lbs (including crew...space at greatly reduced cost. The “Access-to-Space” study identified critical technologies that required development before a SSTO reusable launch

  15. IV&V Project Assessment Process Validation

    NASA Technical Reports Server (NTRS)

    Driskell, Stephen

    2012-01-01

    The Space Launch System (SLS) will launch NASA's Multi-Purpose Crew Vehicle (MPCV). This launch vehicle will provide American launch capability for human exploration and travelling beyond Earth orbit. SLS is designed to be flexible for crew or cargo missions. The first test flight is scheduled for December 2017. The SLS SRR/SDR provided insight into the project development life cycle. NASA IV&V ran the standard Risk Based Assessment and Portfolio Based Risk Assessment to identify analysis tasking for the SLS program. This presentation examines the SLS System Requirements Review/System Definition Review (SRR/SDR), IV&V findings for IV&V process validation correlation to/from the selected IV&V tasking and capabilities. It also provides a reusable IEEE 1012 scorecard for programmatic completeness across the software development life cycle.

  16. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  17. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  18. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  19. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.; Greenberg, Joel

    1998-01-01

    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  20. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  1. FAA's Implementation of the Commercial Space Launch Amendments Act of 2004- The Experimental Permit

    NASA Astrophysics Data System (ADS)

    Repcheck, J. Randall

    2005-12-01

    A number of entrepreneurs are committed to the goal of developing and operating reusable launch vehicles for private human space travel. In order to promote this emerging industry, and to create a clear legal, regulatory, and safety regime, the United States (U.S.) Congress passed the Commercial Space Launch Amendments Act of 2004 (CSLAA). Signed on December 23, 2004 by U.S. President George W. Bush, the CSLAA makes the Federal Aviation Administration (FAA) responsible for regulating human spaceflight. The CSLAA, among other things, establishes an experimental permit regime for developmental reusable suborbital rockets. This paper describes the FAA's approach in developing guidelines for obtaining and maintaining an experimental permit, and describes the core safety elements of those guidelines.

  2. X-33 Reusable Launch Vehicle (RLV) Liftoff

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The wedge-shaped X-33 was a sub-scale technology demonstration prototype of a Reusable Launch Vehicle (RLV). Through demonstration flights and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin (builder of the X-33 Venture Star) to decide by the year 2000 whether to proceed with the development of a full-scale, commercial RLV program. This program would dramatically increase reliability and lower the costs of putting a payload into space. This would in turn create new opportunities for space access and significantly improve U.S. economic competitiveness in the worldwide launch marketplace. NASA would be a customer, not the operator in the commercial RLV. The X-33 program was cancelled in 2001.

  3. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    NASA Astrophysics Data System (ADS)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  4. Structures for the 3rd Generation Reusable Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2001-01-01

    A major goal of NASA is to create an advance space transportation system that provides a safe, affordable highway through the air and into space. The long-term plans are to reduce the risk of crew loss to 1 in 1,000,000 missions and reduce the cost of Low-Earth Orbit by a factor of 100 from today's costs. A third generation reusable concept vehicle (RCV) was developed to assess technologies required to meet NASA's space access goals. The vehicle will launch from Cape Kennedy carrying a 25,000 lb. payload to the International Space Station (ISS). The system is an air breathing launch vehicle (ABLV) hypersonic lifting body with rockets and uses triple point hydrogen and liquid oxygen propellant. The focus of this paper is on the structural concepts and analysis methods used in developing the third generation reusable launch vehicle (RLV). Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  5. Global atmospheric response to emissions from a proposed reusable space launch system

    NASA Astrophysics Data System (ADS)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  6. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.

  7. Developing Primary Propulsion for the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.; Williams, Thomas L.; Ezell, Timothy G.; Burt, Rick

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The first stage of NASA's new Ares I crew launch vehicle (Figure 1), which will loft the Orion crew exploration vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle's core stage propulsion system. This paper will discuss the basis for choosing this particular propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is engaged in at present to develop the first stage; and offer a preview of future development activities related to the first Ares l integrated test flight, which is planned for 2009.

  8. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    NASA Astrophysics Data System (ADS)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  9. EELV reliability : building on experience : first quarter 2002 Quarterly Launch Report

    DOT National Transportation Integrated Search

    2002-01-01

    The National Space Transportation Policy, signed by President Clinton on August 5, 1994, gave the National Aeronautics and Space Administration (NASA) responsibility for reusable launch vehicle development, while tasking the Department of Defense (Do...

  10. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  11. Highly reusable space transportation: Approaches for reducing ETO launch costs to $100 - $200 per pound of payload

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1995-01-01

    The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around $400 per pound of payload. If these low prices can be achieved, annual payload delivered to low earth orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation. By establishing a cost target of $100-$200 per pound of payload for a new launch system, the Highly Reusable Space Transportation (HRST) program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs. In particular, achieving the goal of $100-$200 per pound of payload will require significant coordinated efforts in (1) marketing strategy development, (2) business planning, (3) system operational strategy, (4) vehicle technical design, and (5) vehicle maintenance strategy.

  12. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  13. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  14. A reusable rocket engine intelligen control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.

  15. A reusable rocket engine intelligent control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.

  16. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  17. Booster propulsion/vehicle impact study

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric

    1988-01-01

    The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.

  18. The X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.

    1998-01-01

    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.

  19. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.

  20. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.

  1. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.

  2. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    This photograph is an artist's cutaway view of the X-37 flight demonstrator showing its components. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1000 per pound. The X-37 can be carried into orbit by the Space Shuttle or be launched by an expendable rocket. Managed by Marshall Space Flight Center and built by the Boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  3. Students Compete in NASA's Student Launch Competition

    NASA Image and Video Library

    2018-03-30

    NASA's Student Launch competition challenges middle school, high school and college teams to design, build, test and fly a high-powered, reusable rocket to an altitude of one mile above ground level while carrying a payload. During the eight-month process, the selected teams will go through a series of design, test and readiness reviews that resemble the real-world process of rocket development. In addition to building and preparing their rocket and payload, the teams must also create and execute an education and outreach program that will share their work with their communities and help inspire the next generation of scientists, engineers and explorers. Student Launch is hosted by NASA's Marshall Space Flight Center in Huntsville, Alabama, and is managed by Marshall's Academic Affairs Office to further NASA’s major education goal of attracting and encouraging students to pursue degrees and careers in the STEM fields of science, technology, engineering and mathematics.

  4. Delta clipper lessons learned for increased operability in reusable space vehicles

    NASA Astrophysics Data System (ADS)

    Charette, Ray O.; Steinmeyer, Don A.; Smiljanic, Ray R.

    1998-01-01

    Important lessons were learned from the design, development, and test (DD&T), and operation of the Delta Clipper Experimental (DC-X/XA) Reusable Launch Vehicle (RLV) which apply to increased operability for the operational Reusable Space Vehicles (RSVs). Boeing maintains a continuous process improvement program that provides the opportunity to ``institutionalize'' the results from projects such as Delta Clipper for application to product improvement in future programs. During the design phase, operations and supportability (O&S) were emphasized to ensure aircraft-like operations, traceable to an operational RSV. The operations personnel, flight, and ground crew and crew chief were actively involved in the design, manufacture, and checkout of the systems. Changes and additions to capability were implemented as they evolved from knowledge gained in each phase of development. This paper presents key lessons learned with respect to design and implementation of flight systems, propulsion, airframe, hydraulics, avionics, and ground operations. Information was obtained from discussions with personnel associated with this program concerning their experience and lessons learned. Additionally, field process records and operations timelines were evaluated for applicability to RSVs. The DC-X program pursued reusability in all aspects of the design, a unique approach in rocket system development.

  5. Determination of Interlaminar Toughness of IM7/977-2 Composites at Temperature Extremes and Different Thicknesses

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Pavlick, M. M.; Oliver, M. S.

    2005-01-01

    Composite materials are being used in the aerospace industry as a means of reducing vehicle weight. In particular, polymer matrix composites (PMC) are good candidates due to their high strength-to-weight and high stiffness-to-weight ratios. Future reusable space launch vehicles and space exploration structures will need advanced light weight composites in order to minimize vehicle weight while demonstrating robustness and durability, guaranteeing high factors of safety. In particular, the implementation of composite cryogenic propellant fuel tanks (cryotanks) for future reusable launch vehicles (RLVs) could greatly reduce the vehicle's weight versus identically sized cryotanks constructed of metallic materials. One candidate composite material for future cryotank designs is IM7/977-2, which is a graphite/epoxy system. A successful candidate must demonstrate reasonable structural properties over a wide range of temperatures. Since the matrix material is normally the weak link in the composite, tests that emphasize matrix-dominated behavior need to be conducted. Therefore, the objective of this work is to determine the mode I interlaminar fracture toughness of "unidirectional" 8-ply and 16-ply IM7/977-2 through experimental testing. Tests were performed at -196 degrees Celsius (-320 degrees Fahrenheit), 22 degrees Celsius (72 degrees Fahrenheit), 93 degrees Celsius (200 degrees Fahrenheit) and 160 degrees C (320 degrees Fahrenheit). Low temperature testing was completed while the specimen was submerged in a liquid nitrogen bath. High temperature testing was completed in a temperature-controlled oven.

  6. Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Robinson, Raymond C.; Ghosn, Louis J.

    2005-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure.

  7. X-33 Injector Ignition Single Cell Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.

  8. X-34 Experimental Aeroheating at Mach 6 and 10

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; DiFulvio, Michael; Glass, Christopher; Merski, N. Ronald

    1998-01-01

    Critical technologies are being developed to support the goals of the NASA Office of Aeronautics and Space Transportation Technology Access to Space initiative for next-generation reusable space transportation systems. From the perspective of aerothermodynamic performance throughout the flight trajectory, the Reusable Launch Vehicle program incorporates conceptual analysis, ground-based testing, and computational fluid dynamics to provide flyable suborbital flight demonstrator vehicles. This report provides an overview of the hypersonic aeroheating wind tunnel test program conducted at the NASA Langley Research Center in support of one of these vehicles, the X-34 small reusable technology demonstrator program. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.0153- and 0.0183-scale models of proposed X-34 flight vehicles at Mach 6 and 10 in air. The primary parametrics that were investigated include angles-of-attack from 0 to 35 deg. and freestream unit Reynolds numbers from 0.5 to 8 million per foot (which was sufficient to produce laminar, transitional, and turbulent heating data), both with and without control surface deflections. Comparisons of the experimental data to computational predictions are included, along with a discussion of the implications of some of the experimental flow features for the flight vehicle.

  9. NIH Data Commons Pilot Phase | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The NIH, under the BD2K program, will be launching a Data Commons Pilot Phase to test ways to store, access and share Findable, Accessible, Interoperable and Reusable (FAIR) biomedical data and associated tools in the cloud. The NIH Data Commons Pilot Phase is expected to span fiscal years 2017-2020, with an estimated total budget of approximately $55.5 Million, pending available funds.

  10. Real-Time Sensor Validation System Developed for Reusable Launch Vehicle Testbed

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy L.

    1997-01-01

    A real-time system for validating sensor health has been developed for the reusable launch vehicle (RLV) program. This system, which is part of the propulsion checkout and control system (PCCS), was designed for use in an integrated propulsion technology demonstrator testbed built by Rockwell International and located at the NASA Marshall Space Flight Center. Work on the sensor health validation system, a result of an industry-NASA partnership, was completed at the NASA Lewis Research Center, then delivered to Marshall for integration and testing. The sensor validation software performs three basic functions: it identifies failed sensors, it provides reconstructed signals for failed sensors, and it identifies off-nominal system transient behavior that cannot be attributed to a failed sensor. The code is initiated by host software before the start of a propulsion system test, and it is called by the host program every control cycle. The output is posted to global memory for use by other PCCS modules. Output includes a list indicating the status of each sensor (i.e., failed, healthy, or reconstructed) and a list of features that are not due to a sensor failure. If a sensor failure is found, the system modifies that sensor's data array by substituting a reconstructed signal, when possible, for use by other PCCS modules.

  11. Five-Segment Reusable Solid Rocket Booster Upgrade

    NASA Technical Reports Server (NTRS)

    Sauvageau, Don

    1999-01-01

    The Five Segment Reusable Solid Rocket Booster (RSRB) feasibility status is presented in viewgraph form. The Five Segment Booster (FSB) objective is to provide a low cost, low risk approach to increase reliability and safety of the Shuttle system. Topics include: booster upgrade requirements; design summary; reliability issues; booster trajectories; launch site assessment; and enhanced abort modes.

  12. Access to Space : The Future of U.S. Space Transportation Systems

    DOT National Transportation Integrated Search

    1990-04-01

    The United States now has an operating, mixed fleet comprised of reusable Space Shuttle orbiters and expendable launch vehicles (ELVs). The government and the private sector have invested in new launch technologies and established a fledgling private...

  13. LASRE ground hotfire #2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at NASA Dryden Flight Research Center, Edwards, California, in November 1998. The experiment's goal was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds of up to approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on NASA's SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement.The goal of the X-33 program, and a major goal for NASA's Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space. The following 19-second clip shows one of two 'hot firings' of the Linear Aerospike engine on it's SR-71 test aircraft while on the ground at NASA Dryden Flight Research Center.

  14. KSC-2012-4577

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, XCOR Director of Flight Test Operations Rick Searfoss, a former NASA astronaut, addresses guests at a presentation during which XCOR Aerospace announced plans to open a manufacturing operation in Brevard County. Space Florida President Frank DiBello is seated to the right. The company's suborbital Lynx Mark II spacecraft possibly will take off and land at Kennedy's shuttle landing facility. XCOR Aerospace is a small, privately held California corporation with focus on the research, development, project management and production of reusable launch vehicles, rocket engines and rocket propulsion systems. XCOR will focus on space tourism, experimental flights and launching satellites. Photo credit: NASA/ Frankie Martin

  15. Reusable Boosters in a European-Russian Perspective

    NASA Astrophysics Data System (ADS)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  16. Beta 2: A near term, fully reusable, horizontal takeoff and landing two-stage-to-orbit launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Burkardt, Leo A.

    1992-01-01

    A recent study has confirmed the feasibility of a near term, fully reusable, horizontal takeoff and landing two-stage-to-orbit (TSTO) launch vehicle concept. The vehicle stages at Mach 6.5. The first stage is powered by a turboramjet propulsion system with the turbojets being fueled by JP and the ramjet by LH2. The second stage is powered by a space shuttle main engine (SSME) rocket engine. For about the same gross weight as growth versions of the 747, the vehicle can place 10,000 lbm. in low polar orbit or 16,000 lbm. to Space Station Freedom.

  17. Controls for Reusable Launch Vehicles During Terminal Area Energy Management

    NASA Technical Reports Server (NTRS)

    Driessen, Brian J.

    2005-01-01

    During the terminal energy management phase of flight (last of three phases) for a reusable launch vehicle, it is common for the controller to receive guidance commands specifying desired values for (i) the roll angle roll q(sub roll), (ii) the acceleration a(sub n) in the body negative z direction, -k(sub A)-bar, and (iii) omega(sub 3), the projection of onto the body-fixed axis k(sub A)-bar, is always indicated by guidance to be zero. The objective of the controller is to regulate the actual values of these three quantities, i.e make them close to the commanded values, while maintaining system stability.

  18. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  19. Military applications of reusable launch vehicles (RLVs)

    NASA Astrophysics Data System (ADS)

    Sponable, Jess M.

    1996-03-01

    With the development and operational fielding of fully reusable launch vehicles (RLVs) becoming imminent, coupled with the ``end of the Cold War'' and fractionalization of the former ``bi-polar'' world into a ``multi-polar'' one, the need and potential for military versions of RLVs are being recognized by the military strategic planner. Recognizing the instability of the world order, especially with the potential for terrorism from all quarters, planning for the development of systems capable of defending our critical space based assests is becoming more essential. This paper presents some of the potential military applications of RLVs to support the Nation's defense and security interests world-wide.

  20. Research Technology

    NASA Image and Video Library

    2001-08-01

    The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.

  1. Reusable Agena study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L.

    1974-01-01

    The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined.

  2. Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology

    NASA Technical Reports Server (NTRS)

    Bodan-Sanders, Patricia; Bouvier, Carl

    1998-01-01

    The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.

  3. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  4. 14 CFR 431.93 - Environmental information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Environmental information. 431.93 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Environmental Review § 431.93 Environmental information. An applicant shall submit environmental information concerning...

  5. Artist concept of X-33 and Reusable Launch Vehicle (RLV)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's rendering depicts the NASA/Lockheed Martin X-33 technology demonstrator alongside the Venturestar, a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). The X-33, a half-scale prototype for the Venturestar, is scheduled to be flight tested in 1999. NASA's Dryden Flight Research Center, Edwards, California, plays a key role in the development and flight testing of the X-33. The RLV technology program is a cooperative agreement between NASA and industry. The goal of the RLV technology program is to enable signifigant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology is overseeing the RLV program, which is being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  6. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    NASA Astrophysics Data System (ADS)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  7. Estimating the Cost of NASA's Space Launch Initiative: How SLI Cost Stack Up Against the Shuttle

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph H.; Roth, Axel (Technical Monitor)

    2002-01-01

    NASA is planning to replace the Space Shuttle with a new completely reusable Second Generation Launch System by approximately 2012. Numerous contracted and NASA in-house Space Transportation Architecture Studies and various technology maturation activities are proceeding and have resulted in scores of competing architecture configurations being proposed. Life cycle cost is a key discriminator between all these various concepts. However, the one obvious analogy for costing purposes remains the current Shuttle system. Are there credible reasons to believe that a second generation reusable launch system can be accomplished at less cost than the Shuttle? The need for a credible answer to this question is critical. This paper reviews the cost estimating approaches being used by the contractors and the government estimators to address this issue and explores the rationale behind the numbers.

  8. 14 CFR 431.41 - Communications plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Communications plan. 431.41 Section 431.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Launch and Reentry of a Reusable Launch Vehicle § 431.41 Communications plan. (a) An applicant shall...

  9. Analysis of the staging maneuver and booster glideback guidance for a two-stage, winged, fully reusable launch vehicle. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Naftel, J. Christopher; Powell, Richard W.

    1993-01-01

    One of the promising launch concepts that could replace the current space shuttle launch system is a two-stage, winged, vertical-takeoff, fully reusable launch vehicle. During the boost phase of ascent, the booster provides propellant for the orbiter engines through a cross-feed system. When the vehicle reaches a Mach number of 3, the booster propellants are depleted and the booster is staged and glides unpowered to a horizontal landing at a launch site runway. Two major design issues for this class of vehicle are the staging maneuver and the booster glideback. For the staging maneuver analysis, a technique was developed that provides for a successful separation of the booster from the orbiter over a wide range of staging angles of attack. A longitudinal flight control system was developed for control of the booster during the staging maneuver. For the booster glide back analysis, a guidance algorithm was developed that successfully guides the booster from the completion of the staging maneuver to a launch site runway while encountering many off-nominal atmospheric, aerodynamic, and staging conditions.

  10. X33 Reusable Launch Vehicle Control on Sliding Modes: Concepts for a Control System Development

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.

    1998-01-01

    Control of the X33 reusable launch vehicle is considered. The launch control problem consists of automatic tracking of the launch trajectory which is assumed to be optimally precalculated. It requires development of a reliable, robust control algorithm that can automatically adjust to some changes in mission specifications (mass of payload, target orbit) and the operating environment (atmospheric perturbations, interconnection perturbations from the other subsystems of the vehicle, thrust deficiencies, failure scenarios). One of the effective control strategies successfully applied in nonlinear systems is the Sliding Mode Control. The main advantage of the Sliding Mode Control is that the system's state response in the sliding surface remains insensitive to certain parameter variations, nonlinearities and disturbances. Employing the time scaling concept, a new two (three)-loop structure of the control system for the X33 launch vehicle was developed. Smoothed sliding mode controllers were designed to robustly enforce the given closed-loop dynamics. Simulations of the 3-DOF model of the X33 launch vehicle with the table-look-up models for Euler angle reference profiles and disturbance torque profiles showed a very accurate, robust tracking performance.

  11. Assessment of the Feasibility of Innovative Reusable Launchers

    NASA Astrophysics Data System (ADS)

    Chiesa, S.; Corpino, S.; Viola, N.

    The demand for getting access to space, in particular to Low Earth Orbit, is increasing and fully reusable launch vehicles (RLVs) are likely to play a key role in the development of future space activities. Up until now this kind of space systems has not been successfully carried out: in fact today only the Space Shuttle, which belongs to the old generation of launchers, is operative and furthermore it is not a fully reusable system. In the nineties many studies regarding advanced transatmospheric planes were started, but no one was accomplished because of the technological problems encountered and the high financial resources required with the corresponding industrial risk. One of the most promising project was the Lockheed Venture Star, which seemed to have serious chances to be carried out. Anyway, if this ever happens, it will take quite a long time thus the operative life of Space Shuttle will have to be extended for the International Space Station support. The purpose of the present work is to assess the feasibility of different kinds of advanced reusable launch vehicles to gain access to space and to meet the requirements of today space flight needs, which are mainly safety and affordability. Single stage to orbit (SSTO), two stage to orbit (TSTO) and the so called "one and a half" stage to orbit vehicles are here taken into account to highlight their advantages and disadvantages. The "one and a half" stage to orbit vehicle takes off and climbs to meet a tanker aircraft to be aerially refuelled and then, after disconnecting from the tanker, it flies to reach the orbit. In this case, apart from the space vehicle, also the tanker aircraft needs a dedicated study to examine the problems related to the refuelling at high subsonic speeds and at a height near the tropopause. Only winged vehicles which take off and land horizontally are considered but different architectural layouts and propulsive configurations are hypothesised. Unlike the Venture Star, which takes off like the Space Shuttle, this kind of reusable launch vehicles, called spaceplanes, should all be able to be maintained and operated from airports, thus making the launch and recovery phases easier and more affordable. Apart from being an innovative attempt to get access to space, spaceplanes look likely to revolutionize long distance plane travel, with travel times between any two cities connecting USA, Europe, Japan and Australia being only a few hours. SSTO winged vehicles may be at the margins of feasibility as a reusable SSTO design attempts to take two major steps at once: step one being a fully reusable vehicle and step two being a single-stage reusable vehicle. It is well known that the accomplishment of the SSTO vehicle requires a dramatic effort from the technological point of view even though the integration design appears to be quite easy. If compared to the SSTO, the TSTO reusable vehicle is less technically demanding as, for example, state-of-the-art engines can be used but the integration design is surely more complex. An optimum solution may be represented by the "one and a half" stage to orbit vehicle. In fact getting the "one and a half" reusable vehicle into orbit doesn't look impossible but it surely does look challenging. In this paper the study of the feasibility and the technological assessment of new space systems concepts are accomplished by: The work we are involved in is still under way but the first results we have had are encouraging.

  12. Around Marshall

    NASA Image and Video Library

    2006-07-14

    A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.

  13. A view toward future launch vehicles - A civil perspective

    NASA Technical Reports Server (NTRS)

    Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn

    1989-01-01

    Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.

  14. 14 CFR 431.75 - Agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Agreements. 431.75 Section 431.75...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.75 Agreements. (a) Launch and reentry site use agreements. Before conducting a licensed RLV mission using property and services of a Federal...

  15. 14 CFR 431.75 - Agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Agreements. 431.75 Section 431.75...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.75 Agreements. (a) Launch and reentry site use agreements. Before conducting a licensed RLV mission using property and services of a Federal...

  16. 14 CFR 431.75 - Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Agreements. 431.75 Section 431.75...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.75 Agreements. (a) Launch and reentry site use agreements. Before conducting a licensed RLV mission using property and services of a Federal...

  17. 14 CFR 431.75 - Agreements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Agreements. 431.75 Section 431.75...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.75 Agreements. (a) Launch and reentry site use agreements. Before conducting a licensed RLV mission using property and services of a Federal...

  18. 14 CFR 431.75 - Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Agreements. 431.75 Section 431.75...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.75 Agreements. (a) Launch and reentry site use agreements. Before conducting a licensed RLV mission using property and services of a Federal...

  19. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... payload reentry review; (d) Type, amount, and container of hazardous materials, as defined in § 401.5 of this chapter, and radioactive materials in the payload; (e) Explosive potential of payload materials...

  20. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... payload reentry review; (d) Type, amount, and container of hazardous materials, as defined in § 401.5 of this chapter, and radioactive materials in the payload; (e) Explosive potential of payload materials...

  1. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... payload reentry review; (d) Type, amount, and container of hazardous materials, as defined in § 401.5 of this chapter, and radioactive materials in the payload; (e) Explosive potential of payload materials...

  2. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... payload reentry review; (d) Type, amount, and container of hazardous materials, as defined in § 401.5 of this chapter, and radioactive materials in the payload; (e) Explosive potential of payload materials...

  3. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  4. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  5. Reusable Rapid Prototyped Blunt Impact Simulator

    DTIC Science & Technology

    2016-08-01

    for a nonclassical gun experimental application. 15. SUBJECT TERMS rapid prototype, additive manufacturing, reusable projectile, 3-axis accelerometer... gun -launched applications.1,2 SLS technology uses a bed of powdered material that is introduced to a laser. The laser is controlled by a computer to...in creating internal gun -hardened electronics for a variety of high-g applications, GTB developed an internal electronics package containing a COTS

  6. Pressure Sensitive Tape in the Manufacture of Reusable Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Champneys, Jeff

    2007-01-01

    ATK Launch Systems Inc. manufactures the reusable solid rocket motor (RSRM) for NASA's Space Shuttle program. They are used in pairs to launch the Space Shuttle. Pressure sensitive tape (PST) is used throughout the RSRM manufacturing process. A few PST functions are: 1) Secure labels; 2) Provide security seals; and 3) Protect tooling and flight hardware during various inert and live operations. Some of the PSTs used are: Cloth, Paper, Reinforced Teflon, Double face, Masking, and Vinyl. Factors given consideration for determining the type of tape to be used are: 1) Ability to hold fast; 2) Ability to release easily; 3) Ability to endure abuse; 4) Strength; and 5) Absence of adhesive residue after removal.

  7. CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests

    NASA Astrophysics Data System (ADS)

    Pichon, T.; Barreteau, R.; Soyris, P.; Foucault, A.; Parenteau, J. M.; Prel, Y.; Guedron, S.

    2009-07-01

    Experimental re-entry demonstrators are currently being developed in Europe, with the objective of increasing the technology readiness level (TRL) of technologies applicable to future reusable launch vehicles. Among these are the Pre-X programme, currently funded by CNES, the French Space Agency, and which is about to enter into development phase B, and the IXV, within the future launcher preparatory programme (FLPP) funded by ESA. One of the major technologies necessary for such vehicles is the thermal protection system (TPS), and in particular the ceramic matrix composites (CMC) based windward TPS. In support of this goal, technology maturation activities named "generic shingle" were initiated beginning of 2003 by SPS, under a CNES contract, with the objective of performing a test campaign of a complete shingle of generic design, in preparation of the development of a re-entry experimental vehicle decided in Europe. The activities performed to date include: the design, manufacturing of two C/SiC panels, finite element model (FEM) calculation of the design, testing of technological samples extracted from a dedicated panel, mechanical pressure testing of a panel, and a complete study of the attachment system. Additional testing is currently under preparation on the panel equipped with its insulation, seal, attachment device, and representative portion of cold structure, to further assess its behaviour in environments relevant to its application The paper will present the activities that will have been performed in 2006 on the prediction and preparation of these modal characterization, dynamic, acoustic as well as thermal and thermo-mechanical tests. Results of these tests will be presented and the lessons learned will be discussed.

  8. A Quantitative Reliability, Maintainability and Supportability Approach for NASA's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Daniel, Charles; Kalia, Prince; Smith, Charles A. (Technical Monitor)

    2002-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a 10-year Second Generation Reusable Launch Vehicle (RLV) program to improve its space transportation capabilities for both cargo and crewed missions. The objectives of the program are to: significantly increase safety and reliability, reduce the cost of accessing low-earth orbit, attempt to leverage commercial launch capabilities, and provide a growth path for manned space exploration. The safety, reliability and life cycle cost of the next generation vehicles are major concerns, and NASA aims to achieve orders of magnitude improvement in these areas. To get these significant improvements, requires a rigorous process that addresses Reliability, Maintainability and Supportability (RMS) and safety through all the phases of the life cycle of the program. This paper discusses the RMS process being implemented for the Second Generation RLV program.

  9. Research Technology

    NASA Image and Video Library

    1998-01-01

    Engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, are working with industry partners to develop a new generation of more cost-efficient space vehicles. Lightweight fuel tanks and components under development will be the critical elements in tomorrow's reusable launch vehicles and will tremendously curb the costs of getting to space. In this photo, Tom DeLay, a materials processes engineer for MSFC, uses a new graphite epoxy technology to create lightweight cryogenic fuel lines for futuristic reusable launch vehicles. He is wrapping a water-soluble mandrel, or mold, with a graphite fabric coated with an epoxy resin. Once wrapped, the pipe will be vacuum-bagged and autoclave-cured. The disposable mold will be removed to reveal a thin-walled fuel line. In addition to being much lighter and stronger than metal, this material won't expand or contract as much in the extreme temperatures encountered by launch vehicles.

  10. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  11. STS-1 - LAUNCH - KSC

    NASA Image and Video Library

    1981-04-15

    The Space Shuttle Columbia begins a new era of space transportation when it lifts off from NASA Kennedy Space Center (KSC). The reusable Orbiter, its two (2) fuel tanks and two (2) Solid Rocket Boosters (SRB) has just cleared the launch tower. Aboard the spacecraft are Astronauts John W. Young, Commander, and Robert L. Crippen, Pilot . 1. STS-I - LAUNCH KSC, FL KSC, FL Also available in 4x5 BW

  12. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 431.33 Section 431.33... Launch and Reentry of a Reusable Launch Vehicle § 431.33 Safety organization. (a) An applicant shall maintain a safety organization and document it by identifying lines of communication and approval authority...

  13. A Discrete Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Prelaunch Operations

    DTIC Science & Technology

    2006-03-01

    by 2018 . The Air Force will require the HLV OS to be highly responsive, with a goal of launching a pre-integrated payload with a 24 to 48 hour...136 Vita Captain Adam T. Stiegelmeier graduated high school from Sunshine Bible

  14. Chapter 7: Materials for Launch Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Henson, Grant; Jone, Clyde S. III

    2017-01-01

    This chapter concerns materials for expendable and reusable launch vehicle (LV) structures. An emphasis is placed on applications and design requirements, and how these requirements are met by the optimum choice of materials. Structural analysis and qualification strategies, which cannot be separated from the materials selection process, are described.

  15. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  16. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  17. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  18. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  19. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...

  20. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. UAH students designed and built the rocket and AM students designed the payload. In this picture, AM students prepare their payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity, prior to launch.

  1. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  2. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  3. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the University students prepare their rocket for launch. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  4. Lockheed Martin Skunk Works Single Stage to Orbit/Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Lockheed Martin's contribution to the program. The following is a summary of the Lockheed Martin Centers involved and work reviewed under their portion of the agreement: (1) Lockheed Martin Skunk Works - Vehicle Development, Operations Development, X-33 and RLV Systems Engineering, Manufacturing, Ground Operations, Reliability, Maintainability/Testability, Supportability, & Special Analysis Team, and X-33 Flight Assurance; (2) Lockheed Martin Technical Operations - Launch Support Systems, Ground Support Equipment, Flight Test Operations, and RLV Operations Development Support; (3) Lockheed Martin Space Operations - TAEM and A/L Guidance and Flight Control Design, Evaluation of Vehicle Configuration, TAEM and A/L Dispersion Analysis, Modeling and Simulations, Frequency Domain Analysis, Verification and Validation Activities, and Ancillary Support; (4) Lockheed Martin Astronautics-Denver - Systems Engineering, X-33 Development; (5) Sanders - A Lockheed Martin Company - Vehicle Health Management Subsystem Progress, GSS Progress; and (6) Lockheed Martin Michoud Space Systems - X-33 Liquid Oxygen (LOX) Tank, Key Challenges, Lessons Learned, X-33/RLV Composite Technology, Reusable Cyrogenic Insulation (RCI) and Vehicle Health Monitoring, Main Propulsion Systems (MPS), Structural Testing, X-33 System Integration and Analysis, and Cyrogenic Systems Operations.

  5. Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success

    NASA Technical Reports Server (NTRS)

    Moore, D. R.; Phelps, W. J.

    2011-01-01

    The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.

  6. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  7. Magnetic levitation systems for future aeronautics and space research and missions

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  8. The effect of exfoliated graphite on carbon fiber reinforced composites for cryogenic applications

    NASA Astrophysics Data System (ADS)

    McLaughlin, Adam Michael

    It is desirable to lighten cryogenic fuel tanks through the use of composites for the development of a reusable single stage launch vehicle. Conventional composites fall victim to microcracking due to the cyclic loading and temperature change experienced during launch and re-entry conditions. Also, the strength of a composite is generally limited by the properties of the matrix. The introduction of the nanoplatelet, exfoliated graphite or graphene, to the matrix shows promise of increasing both the microcracking resistivity and the mechanical characteristics. Several carbon fiber composite plates were manufactured with varying concentrations of graphene and tested under both room and cryogenic conditions to characterize graphene's effect on the composite. Results from tensile and fracture testing indicate that the ideal concentration of graphene in our carbon fiber reinforced polymer composites for cryogenic applications is 0.08% mass graphene.

  9. X-40A Free Flight #5

    NASA Image and Video Library

    2001-05-08

    X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  10. NASA X-34 Technology in Motion

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey; Chandler, Kristie

    1997-01-01

    The X-34 technology development program is a joint industry/government project to develop, test, and operate a small, fully-reusable hypersonic flight vehicle. The objective is to demonstrate key technologies and operating concepts applicable to future reusable launch vehicles. Integrated in the vehicle are various systems to assure successful completion of mission objectives, including the Main Propulsion System (MPS). NASA-Marshall Space Flight Center (MSFC) is responsible for developing the X-34's MPS including the design and complete build package for the propulsion system components. The X-34 will be powered by the Fastrac Engine, which is currently in design and development at NASA-MSFC. Fastrac is a single-stage main engine, which burns a mixture of liquid oxygen (LOX) and kerosene(RP-1). The interface between the MPS and Fastrac engine are critical for proper system operation and technologies applicable to future reusable launch vehicles. Deneb's IGRIP software package with the Dynamic analysis option provided a key tool for conducting studies critical to this interface as well as a mechanism to drive the design of the LOX and RP-1 feedlines. Kinematic models were created for the Fastrac Engine and the feedlines for various design concepts. Based on the kinematic simulation within Envision, design and joint limits were verified and system interference controlled. It was also critical to the program to evaluate the effect of dynamic loads visually, providing a verification tool for dynamic analysis and in some cases uncovering areas that had not been considered. Deneb's software put the X-34 technology in motion and has been a key factor in facilitating the strenuous design schedule.

  11. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  12. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  13. Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc

    1997-01-01

    This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.

  14. Thermal Management Design for the X-33 Lifting Body

    NASA Technical Reports Server (NTRS)

    Bouslog, S.; Mammano, J.; Strauss, B.

    1998-01-01

    The X-33 Advantage Technology Demonstrator offers a rare and exciting opportunity in Thermal Protection System development. The experimental program incorporates the latest design innovation in re-useable, low life cycle cost, and highly dependable Thermal Protection materials and constructions into both ground based and flight test vehicle validations. The unique attributes of the X-33 demonstrator for design application validation for the full scale Reusable Launch Vehicle, (RLV), are represented by both the configuration of the stand-off aeroshell, and the extreme exposures of sub-orbital hypersonic re-entry simulation. There are several challenges of producing a sub-orbital prototype demonstrator of Single Stage to Orbit/Reusable Launch Vehicle (SSTO/RLV) operations. An aggressive schedule with budgetary constraints precludes the opportunity for an extensive verification and qualification program of vehicle flight hardware. However, taking advantage of off the shelf components with proven technologies reduces some of the requirements for additional testing. The effects of scale on thermal heating rates must also be taken into account during trajectory design and analysis. Described in this document are the unique Thermal Protection System (TPS) design opportunities that are available with the lifting body configuration of the X-33. The two principal objectives for the TPS are to shield the primary airframe structure from excessive thermal loads and to provide an aerodynamic mold line surface. With the relatively benign aeroheating capability of the lifting body, an integrated stand-off aeroshell design with minimal weight and reduced procurement and operational costs is allowed. This paper summarizes the design objectives of the X-33 TPS, the flight test requirements driven configuration, and design benefits. Comparisons are made of the X-33 flight profiles and Space Shuttle Orbiter, and lifting body Reusable Launch Vehicle aerothermal environments. The X-33 TPS is based on a design to cost configuration concept. Only RLV critical technologies are verified to conform to cost and schedule restrictions. The one-off prototype vehicle configuration has evolved to minimize the tooling costs by reducing the number of unique components. Low cost approaches such as a composite/blanket leeward aeroshell and the use of Shuttle technology are implemented where applicable. The success of the X-33 will overcome the ballistic re-entry TPS mindset. The X-33 TPS is tailored to an aircraft type mission while maintaining sufficient operational margins. The flight test program for the X-33 will demonstrate that TPS for the RLV is not simply a surface insulation but rather an integrated aeroshell system.

  15. Business Plan for the Southwest Regional Spaceport: Executive Summary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A proposal for a commercial, full-service launch, tracking, and recovery complex for Reusable Launch Vehicles in New Mexico is presented. Vision, mission, business definition, competitive advantages, and business approach are formulated. Management plan and team structure are detailed, and anticipated market is described. Finance and marketing plans are presented. Financial analysis is performed.

  16. X-33

    NASA Image and Video Library

    1977-10-01

    This is an artist's concept of an X-33 Advanced Technology Demonstrator, a subscale protoptye launch vehicle being developed by NASA Lockheed Martin Skunk Works. (Vehicle configuration current as of 10/97) The X-33 is a subscale prototype of a Reusable Launch Vehicle (RLV) Lockheed Martin has labeled "Venture Star TM." The X-33 program was cancelled in 2001.

  17. Development costs of reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Koelle, D.

    2002-07-01

    The paper deals first with the definition and understanding of "Development Costs" in general. Usually there is large difference between initial "development cost guesses", "Proposal Cost Estimations" and the final "Cost-to-Completion". The reasons for the usual development cost increases during development are discussed. The second part discusses the range of historic launch systems' development costs under "Business-as-Usual" (BaU) - Conditions and potential cost reductions for future developments of RLVs, as well as the comparison to commercial, industrial development cost. Part three covers the potential reduction of development cost by application of "Cost Engineering Principles". An example of the large potential cost range (between 6 and 17 Billion USD) for the development of the same winged rocket-propelled SSTO launch vehicle concept is presented. Finally the tremendous development cost differences are shown which exist for the different potential Reusable Launch System Options which are under discussion. There remains an unresolved problem between the primary goals of the national space agencies with emphasis on new technology development/national prestige and the commercial market requirement of a simple low-cost RLV-System.

  18. New developments in the field of launchers

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.; Arend, H.

    The current status of launch-system technology is discussed in a global survey. Topics addressed include the factors influencing launcher cost effectiveness; the capabilities of state-of-the-art Soviet, U.S., European, Chinese, and Japanese systems; possible improvements to the current launchers; alternative technologies (the ESA Hermes shuttle, SSTO vehicles, etc.); and future trends in the commercial launch market. Particular attention is given to the Neptun two-stage reusable ballistic launcher proposed by Apel et al. (1985). It is suggested that it may be possible to lower specific transport costs to about $500/kg, or even to $100/kg if the lifetime cargo capacity of reusable launchers can be extended to the order of 2 Tg. Extensive diagrams, drawings, and tables of numerical data are provided.

  19. Large Composite Structures Processing Technologies for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.

    2001-01-01

    Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.

  20. The space laboratory: A European-American cooperative effort

    NASA Technical Reports Server (NTRS)

    Hoffmann, H. E. W.

    1981-01-01

    A review of the history of the European participation in the American space shuttle project is presented. Some early work carried out in West Germany on the rocket-powered second state of a reusable launch vehicle system is cited, in particular wind tunnel studies of the aerodynamic and flight-mechanical behavior of various lifting body configurations in the subsonic range. The offer made by the U.S. to Europe of participating in the space shuttle program by developing a reusable launch vehicle is discussed, noting West Germany's good preparation in this area, as well as the ultimate decision of the U.S. to exclude Europe from participation in the design of the Orbiter and the booster stage of the shuttle.

  1. Effect of Environment on the Stress- Rupture Behavior of a C/SiC Composite Studied

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kiser, J. Douglas; Opila, Elizabeth J.; Calomino, Anthony M.

    2002-01-01

    Advanced reusable launch vehicles will likely incorporate fiber-reinforced ceramic matrix composites (CMC's) in critical propulsion and airframe components. The use of CMC's is highly desirable to save weight, improve reuse capability, and increase performance. One of the candidate CMC materials is carbon-fiber-reinforced silicon carbide (C/SiC). In potential propulsion applications, such as turbopump rotors and nozzle exit ramps, C/SiC components will be subjected to a service cycle that includes mechanical loading under complex, high-pressure environments containing hydrogen, oxygen, and steam. Degradation of both the C fibers and the SiC matrix are possible in these environments. The objective of this effort was to evaluate the mechanical behavior of C/SiC in various environments relevant to reusable launch vehicle applications. Stress-rupture testing was conducted at the NASA Glenn Research Center on C/SiC specimens in air and steam-containing environments. Also, the oxidation kinetics of the carbon fibers that reinforce the composite were monitored by thermogravimetric analysis in the same environments and temperatures used for the stress-rupture tests of the C/SiC composite specimens. The stress-rupture lives obtained for C/SiC tested in air and in steam/argon mixtures are shown in the following bar chart. As is typical for most materials, lives obtained at the lower temperature (600 C) are longer than for the higher temperature (1200 C). The effect of environment was most pronounced at the lower temperature, where the average test duration in steam at 600 C was at least 30 times longer than the lives obtained in air. The 1200 C data revealed little difference between the lives of specimens tested in air and steam at atmospheric pressure.

  2. Test plan. GCPS task 7, subtask 7.1: IHM development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The overall objective of Task 7 is to identify cost-effective life cycle integrated health management (IHM) approaches for a reusable launch vehicle's primary structure. Acceptable IHM approaches must: eliminate and accommodate faults through robust designs, identify optimum inspection/maintenance periods, automate ground and on-board test and check-out, and accommodate and detect structural faults by providing wide and localized area sensor and test coverage as required. These requirements are elements of our targeted primary structure low cost operations approach using airline-like maintenance by exception philosophies. This development plan will follow an evolutionary path paving the way to the ultimate development of flight-quality production, operations, and vehicle systems. This effort will be focused on maturing the recommended sensor technologies required for localized and wide area health monitoring to a technology readiness level (TRL) of 6 and to establish flight ready system design requirements. The following is a brief list of IHM program objectives: design out faults by analyzing material properties, structural geometry, and load and environment variables and identify failure modes and damage tolerance requirements; design in system robustness while meeting performance objectives (weight limitations) of the reusable launch vehicle primary structure; establish structural integrity margins to preclude the need for test and checkout and predict optimum inspection/maintenance periods through life prediction analysis; identify optimum fault protection system concept definitions combining system robustness and integrity margins established above with cost effective health monitoring technologies; and use coupons, panels, and integrated full scale primary structure test articles to identify, evaluate, and characterize the preferred NDE/NDI/IHM sensor technologies that will be a part of the fault protection system.

  3. LAUNCH (IGOR) - STS-1

    NASA Image and Video Library

    1981-04-12

    S81-33179 (12 April 1981) --- Though their STS-1 task has been performed, the two solid rocket boosters (SRB) still glow following their jettisoning from the space shuttle Columbia on its way to many firsts. Among the history recorded by the spacecraft is the marking of a mission in a reusable spacecraft. STS-1 is NASA's first manned mission since the Apollo-Soyuz Test Project in 1975. Inside the cabin of the climbing spacecraft are astronauts John W. Young and Robert L. Crippen. Photo credit: NASA

  4. The Launch Systems Operations Cost Model

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to support models, databases, and operations assessments.

  5. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  6. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  7. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 3: Booster vehicle modifications and ground systems definition

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.

  8. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  9. NASA's Hypersonic Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Hutt, John; McClinton, Charles

    2002-01-01

    NASA has established long term goals for access to space. The third generation launch systems are to be fully reusable and operational around 2025. The goal for third-generation launch systems represents significant reduction in cost and improved safety over the current first generation system. The Advanced Space Transportation Office (ASTP) at NASA s Marshall Space Flight Center (MSFC) has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonic Investment Area (HIA), third generation technologies are being pursued in the areas of propulsion, airframe, integrated vehicle health management (IVHM), avionics, power, operations and system analysis. These technologies are being matured through research and both ground and flight-testing. This paper provides an overview of the HIA program plans and recent accomplishments.

  10. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  11. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  12. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the University students prepare their rocket for launch. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  13. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. UAH students designed and built the rocket and AM students designed the payload. In this picture, AM students prepare their payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity, prior to launch.

  14. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  15. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  16. KSC-2009-2207

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – ATK and NASA officials accompanied the Florida East Coast Railroad train carrying the booster segments for the Ares I-X test rocket on its route to NASA's Kennedy Space Center in Florida from Jacksonville, Fla. Seen here in the passenger car are, from left, ATK Vice President Space Launch Systems Charlie Precourt, a Florida East Coast Railroad representative, ATK Deputy Site Director in Florida Ted Shaffner, ATK Vice President Of Space Launch Propulsion Cary Ralston, NASA KSC Shuttle Launch Director Mike Leinbach, a Florida East Coast Railroad representative and ATK Ares I First Stage program Director Fred Brasfield. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  17. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  18. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  19. KSC-07pd1494

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Another view of the area of orbiter Endeavour's orbital maneuvering system, or OMS, pod where the tear occurred on Atlantis during launch of mission STS-117 on June 8, 2007. Repair is under consideration following testing at KSC and Houston. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles were flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd1495

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Another view of the area of orbiter Endeavour's orbital maneuvering system, or OMS, pod where the tear occurred on Atlantis during launch of mission STS-117 on June 8, 2007. Repair is under consideration following testing at KSC and Houston. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles were flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Photo credit: NASA/Kim Shiflett

  1. Kerosene-Fuel Engine Testing Under Way

    NASA Image and Video Library

    2003-11-17

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  2. Kerosene-Fuel Engine Testing Under Way

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  3. 14 CFR 431.45 - Mishap investigation plan and emergency response plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... materials, as defined in § 401.5 of this chapter, involved in the event, whether on the vehicle, payload, or... dissemination of up to date information to the public, and for doing so in advance of reentry or other landing...

  4. 14 CFR 431.45 - Mishap investigation plan and emergency response plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... materials, as defined in § 401.5 of this chapter, involved in the event, whether on the vehicle, payload, or... dissemination of up to date information to the public, and for doing so in advance of reentry or other landing...

  5. 14 CFR 431.45 - Mishap investigation plan and emergency response plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH... materials, as defined in § 401.5 of this chapter, involved in the event, whether on the vehicle, payload, or... dissemination of up to date information to the public, and for doing so in advance of reentry or other landing...

  6. Computer graphic of Lockheed Martin Venturestar Reusable Launch Vehicle (RLV) releasing a satellite

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the earth. NASA's Dryden Flight Research Center, Edwards, California, was to play a key role in the development and flight testing of the X-33, which is a technology demonstrator vehicle for the RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that were to improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  7. Support to X-33/Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.

  8. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.

  9. A semireusable launch vehicle concept as a reference system for reusability analyses

    NASA Astrophysics Data System (ADS)

    Kleinau, W.

    A two-stage concept called AR-X1, which uses H2O2 propellant and the HM 60 engine is presented. The first stage is reusable, the second expendable. The use of LH2/LOX in the first stage reduces the number of stages for geosynchronous transfer orbit (GTO) missions because of the higher performance. An 8 Mg payload can be injected in GTO (launch mass = 435 Mg). The first stage comprises four parallel stretched second stage tanks with 320 Mg propellants (total) and eight HM 60 engines arranged within the heat shield, plus one central HM 60 thruster for the soft landing maneuver. Engine performance is increased by adapting the expansion ratio to the external pressure. Trajectory calculations show that the first stage flight range is 1 500 km. Braking before touchdown is performed by retro thrust, requiring 2.5 to 3 Mg propellants. First-stage reuse reduces cost per launch by 50% compared with an expendable three stage design.

  10. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  11. Space Access for Small Satellites on the K-1

    NASA Astrophysics Data System (ADS)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans. With sufficient demand, Kistler can schedule regular fixed "departures" for small payloads. Kistler and Astrium, Ltd., have initiated an effort to design reusable Multiple Payload Adapter Systems (MPAS) for use on the K-1. These adapters borrow from the heritage and standard interfaces used by Astrium in the Ariane Structure for Auxiliary Payloads (ASAP). One of these dispensers may be used to deploy small satellites during K-1 flights #2-#4.

  12. Buckling Testing and Analysis of Space Shuttle Solid Rocket Motor Cylinders

    NASA Technical Reports Server (NTRS)

    Weidner, Thomas J.; Larsen, David V.; McCool, Alex (Technical Monitor)

    2002-01-01

    A series of full-scale buckling tests were performed on the space shuttle Reusable Solid Rocket Motor (RSRM) cylinders. The tests were performed to determine the buckling capability of the cylinders and to provide data for analytical comparison. A nonlinear ANSYS Finite Element Analysis (FEA) model was used to represent and evaluate the testing. Analytical results demonstrated excellent correlation to test results, predicting the failure load within 5%. The analytical value was on the conservative side, predicting a lower failure load than was applied to the test. The resulting study and analysis indicated the important parameters for FEA to accurately predict buckling failure. The resulting method was subsequently used to establish the pre-launch buckling capability of the space shuttle system.

  13. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  14. Aeroheating Design Issues for Reusable Launch Vehicles: A Perspective

    NASA Technical Reports Server (NTRS)

    Zoby, E. Vincent; Thompson, Richard A.; Wurster, Kathryn E.

    2004-01-01

    An overview of basic aeroheating design issues for Reusable Launch Vehicles (RLV), which addresses the application of hypersonic ground-based testing, and computational fluid dynamic (CFD) and engineering codes, is presented. Challenges inherent to the prediction of aeroheating environments required for the successful design of the RLV Thermal Protection System (TPS) are discussed in conjunction with the importance of employing appropriate experimental/computational tools. The impact of the information garnered by using these tools in the resulting analyses, ultimately enhancing the RLV TPS design is illustrated. A wide range of topics is presented in this overview; e.g. the impact of flow physics issues such as boundary-layer transition, including effects of distributed and discrete roughness, shock-shock interactions, and flow separation/reattachment. Also, the benefit of integrating experimental and computational studies to gain an improved understanding of flow phenomena is illustrated. From computational studies, the effect of low-density conditions and of uncertainties in material surface properties on the computed heating rates a r e highlighted as well as the significant role of CFD in improving the Outer Mold Line (OML) definition to reduce aeroheating while maintaining aerodynamic performance. Appropriate selection of the TPS design trajectories and trajectory shaping to mitigate aeroheating levels and loads are discussed. Lastly, an illustration of an aeroheating design process is presented whereby data from hypersonic wind-tunnel tests are integrated with predictions from CFD codes and engineering methods to provide heating environments along an entry trajectory as required for TPS design.

  15. Aeroheating Design Issues for Reusable Launch Vehicles: A Perspective

    NASA Technical Reports Server (NTRS)

    Zoby, E. Vincent; Thompson, Richard A.; Wurster, Kathryn E.

    2004-01-01

    An overview of basic aeroheating design issues for Reusable Launch Vehicles (RLV), which addresses the application of hypersonic ground-based testing, and computational fluid dynamic (CFD) and engineering codes, is presented. Challenges inherent to the prediction of aeroheating environments required for the successful design of the RLV Thermal Protection System (TPS) are discussed in conjunction with the importance of employing appropriate experimental/computational tools. The impact of the information garnered by using these tools in the resulting analyses, ultimately enhancing the RLV TPS design is illustrated. A wide range of topics is presented in this overview; e.g. the impact of flow physics issues such as boundary-layer transition, including effects of distributed and discrete roughness, shockshock interactions, and flow separation/reattachment. Also, the benefit of integrating experimental and computational studies to gain an improved understanding of flow phenomena is illustrated. From computational studies, the effect of low-density conditions and of uncertainties in material surface properties on the computed heating rates are highlighted as well as the significant role of CFD in improving the Outer Mold Line (OML) definition to reduce aeroheating while maintaining aerodynamic performance. Appropriate selection of the TPS design trajectories and trajectory shaping to mitigate aeroheating levels and loads are discussed. Lastly, an illustration of an aeroheating design process is presented whereby data from hypersonic wind-tunnel tests are integrated with predictions from CFD codes and engineering methods to provide heating environments along an entry trajectory as required for TPS design.

  16. Parameter Validation for Evaluation of Spaceflight Hardware Reusability

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Dale, Thomas L.; Farrington, Phillip

    2017-01-01

    Within recent years, there has been an influx of companies around the world pursuing reusable systems for space flight. Much like NASA, many of these new entrants are learning that reusable systems are complex and difficult to acheive. For instance, in its first attempts to retrieve spaceflight hardware for future reuse, SpaceX unsuccessfully tried to land on a barge at sea, resulting in a crash-landing. As this new generation of launch developers continues to develop concepts for reusable systems, having a systematic approach for determining the most effective systems for reuse is paramount. Three factors that influence the effective implementation of reusability are cost, operability and reliability. Therefore, a method that integrates these factors into the decision-making process must be utilized to adequately determine whether hardware used in space flight should be reused or discarded. Previous research has identified seven features that contribute to the successful implementation of reusability for space flight applications, defined reusability for space flight applications, highlighted the importance of reusability, and presented areas that hinder successful implementation of reusability. The next step is to ensure that the list of reusability parameters previously identified is comprehensive, and any duplication is either removed or consolidated. The characteristics to judge the seven features as good indicators for successful reuse are identified and then assessed using multiattribute decision making. Next, discriminators in the form of metrics or descriptors are assigned to each parameter. This paper explains the approach used to evaluate these parameters, define the Measures of Effectiveness (MOE) for reusability, and quantify these parameters. Using the MOEs, each parameter is assessed for its contribution to the reusability of the hardware. Potential data sources needed to validate the approach will be identified.

  17. Linear Aerospike SR-71 Experiment (LASRE) ground cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  18. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  19. Orbital Space Plane (OSP) Program at Lockheed Martin

    NASA Technical Reports Server (NTRS)

    Ford, Robert

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  20. Informed maintenance for next generation reusable launch systems

    NASA Astrophysics Data System (ADS)

    Fox, Jack J.; Gormley, Thomas J.

    2001-03-01

    Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives - maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2 nd Generation Reusable Launch Vehicle Program.

  1. Space Ops 2002: Bringing Space Operations into the 21st Century. Track 3: Operations, Mission Planning and Control. 2nd Generation Reusable Launch Vehicle-Concepts for Flight Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff

    2002-01-01

    With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions performed by crew and ground controllers. This experience has also identified the need for new approaches to staffing and training for both crew and ground controllers. This paper provides a brief overview of the mission capabilities provided by the 2nd Gen RLV, a description of NASA's approach to developing the 2nd Gen RLV, a discussion of operations concepts, and a list of challenges to implementing those concepts.

  2. Sprayable Phase Change Coating Thermal Protection Material

    NASA Technical Reports Server (NTRS)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce the launch and processing costs of a reusable space vehicle to an affordable level, refurbishment costs must be substantially reduced. A key component of such a cost effective approach is the use of a reusable, phase change, thermal protection coating.

  3. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  4. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    NASA Technical Reports Server (NTRS)

    Bonometti, J. A.; Dankanich, J. W.; Frame, K. L.

    2005-01-01

    The primary obstacle to any space-based mission is, and has always been, the cost of access to space. Even with impressive efforts toward reusability, no system has come close to lowering the cost a significant amount. It is postulated here, that architectural innovation is necessary to make reusability feasible, not incremental subsystem changes. This paper shows two architectural approaches of reusability that merit further study investments. Both #inherently# have performance increases and cost advantages to make affordable access to space a near term reality. A rocket launched from a subsonic aircraft (specifically the Crossbow methodology) and a momentum exchange tether, reboosted by electrodynamics, offer possibilities of substantial reductions in the total transportation architecture mass - making access-to-space cost-effective. They also offer intangible benefits that reduce risk or offer large growth potential. The cost analysis indicates that approximately a 50% savings is obtained using today#s aerospace materials and practices.

  5. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  6. Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.

    2000-01-01

    This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.

  7. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    ng, Ten-See

    2005-01-01

    Nozzle side loads are potentially detrimental to the integrity and life of almost all launch vehicles. the lack of a detailed prediction capability results in reducing life and increased weight for reusable nozzle systems. A clear understanding of the mechanism that contribute to side loads during engine startup, shutdown, and steady-state operations must be established. A CFD based predictive tool must be developed to aid the understanding of side load physics and development of future reusable engine.

  8. Status report on nuclear electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  9. Preliminary MIPCC Enhanced F-4 and F-15 Preformance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Clark, Casie M.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  10. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  11. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  12. Preliminary MIPCC Enhanced F-4 and F-15 Performance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  13. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  14. Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Wagner, John; Domack, Marcia; Hoffman, Eric

    2007-01-01

    Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.

  15. Advanced Concept

    NASA Image and Video Library

    2004-04-15

    It is predicted that by the year 2040, there will be no distinction between a commercial airliner and a commercial launch vehicle. Fourth Generation Reusable Launch Vehicles (RLVs) will be so safe and reliable that no crew escape system will be necessary. Every year there will be in excess of 10,000 flights and the turn-around time between flights will be just hours. The onboard crew will be able to accomplish a launch without any assistance from the ground. Provided is an artist's concept of these fourth generation space vehicles.

  16. Oxidation-Reduction Resistance of Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.

    2003-01-01

    Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.

  17. Launch - STS-6 - KSC

    NASA Image and Video Library

    1983-04-12

    S83-30222 (4 April 1983) --- The second reusable spacecraft in history successfully launches from Launch Pad 39A at 1:30:00:88 p.m. (EST) on April 4, 1983, and heads for its history making five-day mission in Earth orbit. The space shuttle Challenger, its two solid rocket boosters (SRB), and a new lightweight?external fuel tank were captured on film by an automatically-tripped camera in a protected station nearer to the launch pad than human beings are able to be at launch time. Onboard the spacecraft are astronauts Paul J. Wietz, Karol J. Bobko, Dr. Story Musgrave and Donald H. Peterson. Photo credit: NASA

  18. Airframe/TPS Session

    NASA Technical Reports Server (NTRS)

    Welch, Sharon; Bowles, David

    2000-01-01

    This viewgraph presentation gives an overview of the second generation Reusable Launch Vehicle (RLV) airframe configuration, including details on the structures and materials, tanks, airframe/cryotank demonstrations, internal assemblies, weight growth and margin, and safety and cost requirements.

  19. Optimal technology investment strategies for a reusable launch vehicle

    NASA Technical Reports Server (NTRS)

    Moore, A. A.; Braun, R. D.; Powell, R. W.

    1995-01-01

    Within the present budgetary environment, developing the technology that leads to an operationally efficient space transportation system with the required performance is a challenge. The present research focuses on a methodology to determine high payoff technology investment strategies. Research has been conducted at Langley Research Center in which design codes for the conceptual analysis of space transportation systems have been integrated in a multidisciplinary design optimization approach. The current study integrates trajectory, propulsion, weights and sizing, and cost disciplines where the effect of technology maturation on the development cost of a single stage to orbit reusable launch vehicle is examined. Results show that the technology investment prior to full-scale development has a significant economic payoff. The design optimization process is used to determine strategic allocations of limited technology funding to maximize the economic payoff.

  20. Ares I First Stage Booster Deceleration System: An Overview

    NASA Technical Reports Server (NTRS)

    King, Ron; Hengel, John E.; Wolf, Dean

    2009-01-01

    In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences, including how and why it is being developed, the requirements it must meet, and the testing involved in its implementation.

  1. Reusable space systems (Eugen Saenger Lecture, 1987)

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1988-01-01

    The history and current status of reusable launch vehicle (RLV) development are surveyed, with emphases on the contributions of Eugen Saenger and ongoing NASA projects. Topics addressed include the capabilities and achievements of the Space Shuttle, the need to maintain a fleet with both ELVs and RLVs to meet different mission requirements, the X-30 testbed aircraft for the National Aerospace Plane program, current design concepts for Shuttle II (a 1000-ton fully reusable two-stage rocket-powered spacecraft capable of carrying 11,000 kg to Space Station orbit), proposals for dual-fuel-propulsion SSTO RLVs, and the Space Station Orbital Maneuvering Vehicle and Orbital Transfer Vehicle. The importance of RLVs and of international cooperation in establishing the LEO infrastructure needed for planetary exploration missions is stressed.

  2. KSC-2012-5909

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s New Shepard crew capsule touched down 1,630 feet from the its simulated propulsion module launch pad at the company's West Texas launch site, completing a successful test of its New Shepard crew capsule escape system. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  3. Long Duration Balloon flights development. (Italian Space Agency)

    NASA Astrophysics Data System (ADS)

    Peterzen, S.; Masi, S.; Dragoy, P.; Ibba, R.; Spoto, D.

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, earth observations, near space research and commercial component testing, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78º N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennial oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultra-light payloads and TM systems ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program. This paper discusses the development of the launch facilities and international LDB development.

  4. Around Marshall

    NASA Image and Video Library

    2002-05-23

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  5. University of Virginia infrared sensor experiment (UVIRSE)

    NASA Astrophysics Data System (ADS)

    Dawson, Jeffrey R.; Bell, Meredith A.; Powers, Michael C.; Laufer, Gabriel

    2001-03-01

    A suite consisting of an infrared sensor, optical sensors and a video camera are prepared for launch by a group of students at University of Virginia (UVA) and James Madison University (JMU). The sensors are a first step in the development of a Gas Filter Correlation Radiometer (GFCR) that will detect stratospheric methane (CH4) when flown on sub-orbital sounding rockets and/or from the hypersonic X-34 reusable launch vehicle. The current payload has a threefold purpose: (a) to provide space heritage to a thermoelectrically cooled mercury cadmium telluride sensor, (b) to demonstrate methods for correlating the IR reading of the sensor with ground topography, and (c) to flight test all the payload components that will become part of the sub- orbital methane GFCR sensor. Once completed the system will serve as host to other undergraduate research design projects that require space environment, microgravity, or remote sensing capabilities. The payload components have been received and tested, and the supporting structure has been designed and built. Data from previous rocket flights was used to analyze the environmental strains placed on the experiment and components. Payload components are being integrated and tested as a system to ensure functionality in the flight environment. This includes thermal testing for individual components, vibration testing from individual components and overall payload, and load testing of the external structure. Launch is scheduled for Spring 2001.

  6. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  7. A Simplified Test for Blanching Susceptibility of Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald; Setlock, John

    2003-01-01

    GRCop-84 (Cu-8Cr-4Nb) is a dispersion-strengthened alloy developed for space-launch rocket engine applications, as a liner for the combustion chamber and nozzle ramp. Its main advantage over rival alloys, particularly NARloy-Z (Cu-Ag-Zr), the current liner alloy, is in high temperature mechanical properties. Further validation required that the two alloys be compared with respect to service performance and durability. This has been done, under conditions resembling those expected in reusable launch engine applications. GRCop-84 was found to have a superior resistance to static and cyclic oxidation up to approx. 700 C. In order to improve its performance above 700 C, Cu-Cr coatings have also been developed and evaluated. The major oxidative issue with Cu alloys is blanching, a mode of degradation induced by oxidation-reduction fluctuations in hydrogen-fueled engines. That fluctuation cannot be addressed with conventional static or cyclic oxidation testing. Hence, a further evaluation of the alloy substrates and Cu-Cr coating material necessitated our devising a test protocol that involves oxidaton-reduction cycles. This paper describes the test protocols used and the results obtained.

  8. Construction bidding cost of KSC's space shuttle facilities

    NASA Technical Reports Server (NTRS)

    Brown, Joseph Andrew

    1977-01-01

    The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.

  9. Advanced aviation technology for reusable launch vehicle improvement

    NASA Astrophysics Data System (ADS)

    Filatyev, Alexander S.; Buzuluk, Valentin; Yanova, Olga; Ryabukha, Nikolay; Petrov, Andrey

    2014-07-01

    The new project of a spacecraft launcher (SL) with reusable winged 1st stage boosters (RWB) developed by Khrunichev Space Center is considered. Since SL is operated in the atmosphere only, it makes sense to employ technologies which may be new for the space industry but have been applied in aviation. Particular attention is given to RWB power-off reentry to a suitable airfield along the ascent lane instead of direct flying back to the launch site after staging, as well as a profound controlled RWB reconfiguration before reentry. The paper talks about results of integrated analysis of aerodynamics, through-optimized trajectories and masses of the RWB and SL, as well as an expert assessment of the maintenance costs sufficient to substantiate effectiveness of the recovery airfields solution in terms of the payload mass, launch reliability, and operational costs reduction. Four RWB layouts are considered, including ones with a delta- and unswept tilting wing, with and without subsonic air-breathing engines, and the original RWB-transformer. Objective peculiarities of the RWB recovery are highlighted for Russian and Kourou cosmodromes.

  10. Reusable Suborbital Launch Vehicles: Modeling and Assessment of Global Changes Associated With High Flight Rates

    NASA Astrophysics Data System (ADS)

    Ross, M.

    2011-12-01

    Reusable Suborbital Launch Vehicles (RSLVs) are expected to play a large role in the space transport sector in coming decades, opening a new chapter in middle and upper atmospheric flight. RSLV flight rates of up to 1000 per year are forecast as early as 2025. While combustion emissions from each RSLV launch are small, less than 10 metric tons or less, the cumulative stratospheric emissions loading from RSLV flights could significantly exceed the loading from present day orbital launches. Recent GCM results suggest that black carbon (BC) emissions from hydrocarbon fueled rocket engines - including engine types planned for some RSLVs - are of particular interest because BC emitted by rockets could affect global direct radiative forcing and composition in the middle atmosphere to a much greater extent than other rocket emissions such as carbon dioxide and water. We present arguments and model results indicating that 1000 RSLV launches per year could regionally increase stratospheric BC by at least tens of percent over the background and change surface temperatures by over one degree. We also show how the new middle atmospheric measurement capabilities offered by RSLVs permit heretofore unavailable measurements of background stratospheric and mesospheric particle populations and an assessment of the buildup of RSLV exhaust particles during the time that RSLV flight rates are expected to surge (2015-2025).

  11. Hydrazine Materials Compatibility Database

    NASA Astrophysics Data System (ADS)

    Schmidt, E. W.

    2004-10-01

    Anhydrous hydrazine and its methyl derivatives MMH and UDMH have been safely used as monopropellants and bipropellant fuels in thousands of satellites and space probes, hundreds of expendable launch vehicles and hundreds of piloted reusable launch vehicle flights. The term hydrazine(s) is used here to describe the three propellant hydrazines and their mixtures. Over the years, a significant amount of experience has accumulated in the selection of compatible materials of construction for these and other rocket propellants. Only a few materials incompatibility issues have arisen in the recent past. New materials of construction have become available during the past decades which have not yet been extensively tested for long-term compatibility with hydrazine(s). These new materials promise lightweight (i. e., lighter weight) propulsion system designs and increased payloads in launch vehicles and satellites. Other new materials offer reduced contamination caused by leached ingredients, e. g. less silica leaching from diaphragms in propellant management devices in propellant tanks. This translates into longer mission life.

  12. Orbit on demand - Structural analysis finds vertical launchers weigh less

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Cruz, C. I.; Jackson, L. R.; Naftel, J. C.; Wurster, K. E.; Cerro, J. A.

    1985-01-01

    Structural considerations arising from favored design concepts for the next generation on-demand launch vehicles are explored. The two emerging concepts are a two stage fully reusable vertical take-off vehicle (V-2) and a horizontal take-off, two stage subsonic boost launch vehicle (H-2-Sub). Both designs have an 1100 n. mi. cross-range capability, with the V-2 orbiter having small wings with winglets for hypersonic trim and the H-2-Sub requiring larger, swept wings. The rockets would be cryogenic, while airbreathing initial boosters would be either turbofans, turbojets and/or ramjets. Dynamic loading is lower in the launch of a V-2. The TPS is a critical factor due to thinner leading edges than on the Shuttle and may require heat-pipe cooling. Airframe structures made of metal matrix composites have passed finite element simulations of projected loads and can now undergo proof-of-concept tests, although whisker-reinforced materials may be superior once long-whisker technology is developed.

  13. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel data acquired in the Phase B development have been compiled into a data base and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include booster, orbiter and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbital configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. This is Volume 3 (Part 2) of the report -- Launch Configuration -- which includes booster and orbiter components in various stacked and tandem combinations.

  14. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  15. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  16. Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.

    2004-01-01

    A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.

  17. Analysis of noise from reusable solid rocket motor firings

    NASA Astrophysics Data System (ADS)

    Jerome, Trevor W.; Gee, Kent L.; Neilsen, Tracianne B.

    2012-10-01

    As part of investigations into the design of next-generation launch vehicles, near and far-field data were collected during horizontal static firings of reusable solid rocket motors. Spatial variation of overall and one-third octave band pressure levels at sideline and polar arc arrays is analyzed. Spectra at individual microphone locations were analyzed. Positively-skewed pressure waveforms were observed in the probability density functions. Extreme skewness in the first-order estimate of the time derivative was found as a result of the presence of significant acoustic shocks.

  18. Integrated operations payloads/fleet analysis study extension report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An analysis of the factors affecting the cost effectiveness of space shuttle operations is presented. The subjects discussed are: (1)payload data bank, (2) program risk analysis, (3)navigation satellite program, and (4) reusable launch systems.

  19. Methodology for Variable Fidelity Multistage Optimization under Uncertainty

    DTIC Science & Technology

    2011-03-31

    problem selected for the application of the new optimization methodology is a Single Stage To Orbit ( SSTO ) expendable launch vehicle (ELV). Three...the primary exercise of the variable fidelity optimization portion of the code. SSTO vehicles have been discussed almost exclusively in the context...of reusable launch vehicles (RLV). There is very little discussion in recent literature of SSTO designs which are expendable. In the light of the

  20. NASA 2nd Generation RLV Program Introduction, Status and Future Plans

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.

  1. The K-1 Active Dispenser for Orbit Transfer

    NASA Astrophysics Data System (ADS)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  2. Advanced Guidance and Control Project for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.

    2000-01-01

    The goals of this project are to significantly reduce the time and cost associated with guidance and control design for reusable launch vehicles, and to increase their safety and reliability. Success will lead to reduced cycle times during vehicle design and to reduced costs associated with flying to new orbits, with new payloads, and with modified vehicles. Success will also lead to more robustness to unforeseen circumstances in flight thereby enhancing safety and reducing risk. There are many guidance and control methods available that hold some promise for improvement in the desired areas. Investigators are developing a representative set of independent guidance and control methods for this project. These methods are being incorporated into a high-fidelity off is being conducted across a broad range of flight requirements. The guidance and control methods that perform the best will have demonstrated the desired qualities.

  3. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  4. Advanced High Temperature Structural Seals

    NASA Astrophysics Data System (ADS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  5. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  6. NASA Ares 1 Crew Launch Vehicle Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.

    2006-01-01

    The Upper Stage Element of NASA s Ares I Crew Launch Vehicle (CLV) is a "clean-sheet" approach that is being designed and developed in-house, with Element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115 long and 216" in diameter. While the Reusable Solid Rocket Booster (RSRB) design has changed since the CLV inception, the Upper Stage Element design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system.

  7. Manufacturing and NDE of Large Composite Structures for Space Transportation at MSFC

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Russell, Sam

    2000-01-01

    This paper presents the Marshall Space Flight Center's (MSFC's) vision to manufacture, increase safety and reduce the cost of launch vehicles. Nondestructive evaluations of large composite structures are tested for space transportation at MSFC. The topics include: 1) 6 1/2 Generations of Airplanes in a Century; 2) Shuttle Safety Upgrades; 3) Generations of Reusable Launch Vehicles; 4) RLV Technology Demonstration Path; 5) Second Generation; 6) Key NASA Requirements; 7) X-33 Elements; 8) Future-X Pathfinder Projects and Experiments; 9) Focus Area Technical Goals; 10) X-34 Expanded View; 11) X-38 Spacecraft with De-Orbit Propulsion Stage (DPS); 12) Deorbit Module (DM) Critical Design Review (CDR) Design; 13) Forward Structural Adapter (FSA) CDR Design; 14) X-38 DPS CDR Design; 15) RLV Focused Propulsion Technologies; and 16) Challenges in Technology. This paper is presented in viewgraph form.

  8. Linear Aerospike SR-71 Experiment (LASRE) during first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the LASRE pod on the upper rear fuselage of an SR-71 aircraft during take-off of the first flight to experience an in-flight cold flow test. The flight occurred on 4 March 1998. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  9. KSC-2009-2210

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – Leaving the Florida East Coast Railroad train that delivered the booster segments for the Ares I-X test rocket to NASA's Kennedy Space Center in Florida are Senior Manager of Regional Communications for ATK Jessica Rye and ATK Vice President of Space Launch Systems Charlie Precourt, who is a former astronaut. ATK and NASA officials accompanied the train on its route from Jacksonville, Fla. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  10. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  11. Sterilization of reusable implant components: a pilot study.

    PubMed

    Cain, J R; Mitchell, D L; Gillespie, J C

    2000-12-01

    The placement and restoration of dental implants require the use of numerous reusable instruments and components. The adequate sterilization of reusable instruments and components is essential to prevent cross contamination between patients. Sterilization usually is accomplished with single-use sterilization envelopes. A reusable sterilization vehicle would reduce costs as well as the waste generated in patient care. This study was designed to determine the efficacy of a 10-cc Pyrex test tube as a sterilization vehicle for reusable dental implant instruments and components. In this study, a reusable dental implant component was placed in a Pyrex test tube, along with a biologic test strip. A control biologic test strip was kept for each test tube. The test tube was closed with a cotton roll folded in half and placed in the opening. Twenty test tubes were prepared. five sets of 4 test tubes were placed in an autoclave in different locations with varying orientations. The autoclave completed a standard sterilization cycle. The biological monitoring service indicated that the biologic test strips in 100% of the test tubes were sterile, whereas the control strips were 100% nonsterile. A Pyrex test tube sealed with a cotton roll can serve as a sterilization vehicle for reusable dental implant instruments and components.

  12. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  13. LAUNCH - STS-1 - KSC

    NASA Image and Video Library

    1981-04-12

    S81-30498 (12 April 1981) --- After six years of silence, the thunder of manned spaceflight is heard again, as the successful launch of the first space shuttle ushers in a new concept in utilization of space. The April 12, 1981 launch, at Pad 39A, just seconds past 7 a.m., carries astronaut John Young and Robert Crippen into an Earth-orbital mission scheduled to last for 54 hours, ending with unpowered landing at Edwards Air Force Base in California. STS-1, the first in a series of shuttle vehicles planned for the Space Transportation System, utilizes reusable launch and return components. Photo credit: NASA or National Aeronautics and Space Administration

  14. Entry Guidance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1999-01-01

    The X-33 Advanced Technology Demonstrator is a half-scale prototype developed to test the key technologies needed for a full-scale single-stage reusable launch vehicle (RLV). The X-33 is a suborbital vehicle that will be launched vertically, and land horizontally. The goals of this research were to develop an alternate entry guidance scheme for the X-33 in parallel to the actual X-33 entry guidance algorithms, provide comparative and complementary study, and identify potential new ways to improve entry guidance performance. Toward these goals, the nominal entry trajectory is defined by a piecewise linear drag-acceleration-versus-energy profile, which is in turn obtained by the solution of a semi-analytical parameter optimization problem. The closed-loop guidance is accomplished by tracking the nominal drag profile with primarily bank-angle modulation on-board. The bank-angle is commanded by a single full-envelope nonlinear trajectory control law. Near the end of the entry flight, the guidance logic is switched to heading control in order to meet strict conditions at the terminal area energy management interface. Two methods, one on ground-track control and the other on heading control, were proposed and examined for this phase of entry guidance where lateral control is emphasized. Trajectory dispersion studies were performed to evaluate the effectiveness of the entry guidance algorithms against a number of uncertainties including those in propulsion system, atmospheric properties, winds, aerodynamics, and propellant loading. Finally, a new trajectory-regulation method is introduced at the end as a promising precision entry guidance method. The guidance principle is very different and preliminary application in X-33 entry guidance simulation showed high precision that is difficult to achieve by existing methods.

  15. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  16. Upper Stage Flight Experiment 10K Engine Design and Test Results

    NASA Technical Reports Server (NTRS)

    Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.

    2000-01-01

    A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.

  17. Triggered lightning risk assessment for reusable launch vehicles at four regional spaceports

    DOT National Transportation Integrated Search

    2010-04-30

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation, in assessing the risks involved with triggered li...

  18. Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles

    DOT National Transportation Integrated Search

    2007-01-26

    The Aerospace Corporation was tasked to assess radio frequency (RF) blackout phenomena caused by plasma generation around vehicles during reentry and presently known methodologies for mitigation of this condition inhibiting communications. The purpos...

  19. KSC-07pd1499

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  20. KSC-07pd1498

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  1. KSC-07pd1497

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  2. KSC-07pd1501

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  3. KSC-07pd1496

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance employee prepares a test article that will be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  4. KSC-07pd1500

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  5. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  6. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.

  7. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs. Design and technology features bear special relevance to early program research and development directions. Given the uncertainties involved in both their actual performance promise and their relation to costs of operational systems, this later relationship is also given special attention.

  8. Modifications to the NASA SP-8072 Distributed Source Method II for Ares I Lift-off Environment Predictions

    NASA Technical Reports Server (NTRS)

    Haynes, Jared; Kenny, Jeremy

    2009-01-01

    Lift-off acoustic environments for NASA's Ares I - Crew Launch Vehicle are predicted using the second source distribution methodology described in the NASA SP-8072. Three modifications made to the model include a shorter core length approximation, a core termination procedure upon plume deflection, and a new set of directivity indices measured from static test firings of the Reusable Solid Rocket Motor (RSRM). The modified sound pressure level predictions increased more than 5 dB overall, and the peak levels shifted two third-octave bands higher in frequency.

  9. LASRE pod being mated to SR-71

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Linear Aerospike SR-71 Experiment is mounted on a NASA SR-71 aircraft Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for the experiment's first flight, which took place on 31 October 1997. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  10. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    NASA Technical Reports Server (NTRS)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  11. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  12. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  13. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    Pictured is an artist's concept of the experimental Reusable Launch Vehicle (RLV), the X-37 located in the cargo bay of a space shuttle with Earth in the background. The X-37 was designed to launch from the space shuttle's cargo bay as a secondary payload. Once deployed, the X-37 would remain on-orbit up to 21 days performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  14. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.

  15. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  16. X-33 by Lockheed Martin on Launch Pad - Computer Graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is an artist's conception of the X-33 technology demonstrator on its launch pad, ready for lift-off into orbit. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increase reliability and lowered costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting delays and increased costs, the X-33 program was cancelled in February 2001.

  17. Macro Level Simulation Model Of Space Shuttle Processing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  18. 14 CFR 431.81 - Financial responsibility requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Financial responsibility requirements. 431.81 Section 431.81 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.81 Financial...

  19. 14 CFR 431.81 - Financial responsibility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Financial responsibility requirements. 431.81 Section 431.81 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.81 Financial...

  20. 14 CFR 431.81 - Financial responsibility requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Financial responsibility requirements. 431.81 Section 431.81 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.81 Financial...

  1. 14 CFR 431.81 - Financial responsibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Financial responsibility requirements. 431.81 Section 431.81 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.81 Financial...

  2. 14 CFR 431.81 - Financial responsibility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Financial responsibility requirements. 431.81 Section 431.81 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.81 Financial...

  3. First reusable spaceship prepared for second mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The inspection, repair, and modification of the space shuttle Columbia prior vehicle assembly and roll out for the second space transportation system flight are described. The schedule for launch countdown and a preliminary sketch of plans for the second flight are presented.

  4. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing simulation support. This paper highlights the accomplishments of this task agreement, while also introducing the capabilities of simulation software.

  5. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  6. X-33 Combustion-Wave Ignition System Tested

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1999-01-01

    The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.

  7. Operational Issues in the Development of a Cost-Effective Reusable LOX/LH2 Engine

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2003-01-01

    The NASA Space Launch Initiative (SLI) was initiated in early 2001 to conduct technology development and to reduce the business and technical risk associated with developing the next-generation reusable launch system. In the field of main propulsion, two LOXLH2 rocket engine systems, the Pratt & Whitney / Aerojet Joint Venture (JV) COBRA and the Rocketdyne RS-83, were funded to develop a safe, economical, and reusable propulsion system. Given that a large-thrust reusable rocket engine program had not been started in the U.S. since 1971, with the Space Shuttle Main Engine (SSME), this provided an opportunity to build on the experience developed on the SSME system, while exploiting advances in technology that had occurred in the intervening 30 years. One facet of engine development that was identified as being especially vital in order to produce an optimal system was in the areas of operability and maintainability. In order to achieve the high levels of performance required by the Space Shuttle, the SSME system is highly complex with very tight tolerances and detailed requirements. Over the lifetime of the SSME program, the engine has required a high level of manpower to support the performance of inspections, maintenance (scheduled and unscheduled) and operations (prelaunch and post-flight). As a consequence, the labor- intensive needs of the SSME provide a significant impact to the overall cost efficiency of the Space Transportation System (STS). One of the strategic goals of the SLI is to reduce cost by requiring the engine(s) to be easier (Le. less expensive) to operate and maintain. The most effective means of accomplishing this goal is to infuse the operability and maintainability features into the engine design from the start. This paper discusses some of the operational issues relevant to a reusable LOx/LH2 main engine, and the means by which their impact is mitigated in the design phase.

  8. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    NASA Astrophysics Data System (ADS)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  9. KSC-2012-5907

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s pusher escape system rockets its New Shepard crew capsule away from a simulated propulsion module launch pad at the company's West Texas launch site, demonstrating a key safety system for both suborbital and orbital flights. The pad escape test took the company's suborbital crew capsule to an altitude of 2,307 feet during the flight test before descending safely by parachute to a soft landing 1,630 feet away. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  10. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  11. Space and Earth Observations from Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  12. Space Shuttle Reusable Solid Rocket Motor (RSRM) Hand Cleaning Solvent Replacement at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; DeWeese, Darrell C.; Key, Leigh W.

    1997-01-01

    At Kennedy Space Center (KSC), Thiokol Corporation provides the engineering to assemble and prepare the Space Shuttle Reusable Solid Rocket Motor (RSRM) for launch. This requires hand cleaning over 86 surfaces including metals, adhesives, rubber and electrical insulations, various painted surfaces and thermal protective materials. Due to the phase-out of certain ozone depleting chemical (ODC) solvents, all RSRM hand wipe operations being performed at KSC using l,l,1-trichloroethane (TCA) were eliminated. This presentation summarizes the approach used and the data gathered in the effort to eliminate TCA from KSC hand wipe operations.

  13. SR-71 #844 with LASRE pod parked on ramp, rear view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Linear Aerospike SR-71 Experiment is seen here almost ready for its first flight aboard NASA's SR-71 No. 844. The initial test flight took place on 31 October 1997. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  14. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph; Frame, Kyle L.; Dankanich, John W.

    2005-01-01

    Two transportation architecture changes are presented at either end of a conventional two-stage rocket flight: 1) Air launch using a large, conventional, pod hauler design (i.e., Crossbow)ans 2) Momentum exchange tether (i.e., an in-space asset like MXER). Air launch has ana analytically justified cost reduction of approx. 10%, but its intangible benefits suggest real-world operations cost reductions much higher: 1) Inherent launch safety; 2) Mission Risk Reduction; 3) Favorable payload/rocket limitations; and 4) Leveraging the aircraft for other uses (military transport, commercial cargo, public outreach activities, etc.)

  15. ksc-81pc-382

    NASA Image and Video Library

    1981-04-12

    KENNEDY SPACE CENTER, FLA. -- After six years of silence, the thunder of manned space flight is heard again as the successful launch of the first Space Shuttle ushers in a new concept in utilization of space. The April 12 launch at Pad 39A, just seconds past 7 a.m., carries astronauts John Young and Robert Crippen into an Earth orbital mission scheduled to last for 54 hours, ending with unpowered landing at Edwards Air Force Base in California. STS-1, the first in a series of shuttle vehicles planned for the Space Transportation sysstem, utilizes reusable launch and return components

  16. KSC-2012-1859

    NASA Image and Video Library

    2012-02-17

    Space Shuttle Orbiters: From its establishment in 1958, NASA studied aspects of reusable launch vehicles and spacecraft that could return to earth. On January 5, 1972, President Richard Nixon announced that the United States would develop the space shuttle, a delta-winged orbiter about the size of a DC-9 aircraft. Between the first launch on April 12, 1981, and the final landing on July 21, 2011, NASA's space shuttle fleet -- Columbia, Challenger, Discovery, Atlantis and Endeavour – launched on 135 missions, helped construct the International Space Station and inspired generations. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  17. The Lifting Body Legacy...X-33

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1999-01-01

    NASA has a technology program in place to enable the development of a next generation Reusable Launch Vehicle that will carry our future payloads into orbit at a much-reduced cost. The VentureStar, Lifting Body (LB) flight vehicle, is one of the potential reusable launch vehicle configurations being studied. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines the flight stability and control aspects of our LB heritage which was utilized in the design of the VentureStar LB and its test version, the X-33. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. In the initial LB Program, eight LB's were built and over 225 LB test flights were conducted through 1975. Three LB series were most significant in the advancement of today's LB technolocy: the M2-F; the HL-10; and the X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the U. S. Air Force. LB vehicles are alive again today with the X- 33, X-38, and VentureStar.

  18. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility to have a representative in Firing Room 2 at KSC in case of potential motor problems. However, the last time ATK was responsible for a space shuttle launch slip was 1989. During launch, engineers were also stationed in Promontory on teleconference with counterparts at KSC in the event their support was required.

  19. New Suborbital Flight Opportunities and Funding

    NASA Astrophysics Data System (ADS)

    Saltman, Alexander

    2013-07-01

    New opportunities for suborbital research are on the horizon. Reusable suborbital vehicles will offer immediate and routine space access for scientific payloads, provide access to altitudes around 100 kilometers, create opportunities for low-cost monitoring of upper atmospheric phenomena, as well as small scale solar observation. Reduced operational cost and quick turn-around will enable equipment to be flown opportunistically, in response to specific solar activity, or in continuous test and improvement cycles. Suborbital test flights will also provide opportunities to test prospective satellite instruments in an extended microgravity environment before being launched to orbit, raising the technology readiness level (TRL) of flight hardware and reducing the risk of anomalies during missions. I discuss the capabilities of emerging suborbital vehicles, payload and integration requirements, and funding opportunities for suborbital flights at NASA.

  20. Stage Separation CFD Tool Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Droege, Alan; Gomez, Reynaldo; Wang, Ten-See

    2002-01-01

    This viewgraph presentation evaluates CFD (Computational Fluid Dynamics) tools for solving stage separation problems. The demonstration and validation of the tools is for a second generation RLV (Reusable Launch Vehicle) stage separation. The flow solvers are: Cart3D; Overflow/Overflow-D; Unic.

  1. 14 CFR 431.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Scope. 431.1 Section 431.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... requirements for obtaining a reusable launch vehicle (RLV) mission license and post-licensing requirements with...

  2. 14 CFR 431.77 - Records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Records. 431.77 Section 431.77 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.77 Records. (a) Except as specified in...

  3. 14 CFR 431.83 - Compliance monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance monitoring. 431.83 Section 431.83 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.83 Compliance monitoring. A...

  4. 14 CFR 431.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Scope. 431.1 Section 431.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... requirements for obtaining a reusable launch vehicle (RLV) mission license and post-licensing requirements with...

  5. 14 CFR 431.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Scope. 431.1 Section 431.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... requirements for obtaining a reusable launch vehicle (RLV) mission license and post-licensing requirements with...

  6. 14 CFR 431.71 - Public safety responsibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Public safety responsibility. 431.71 Section 431.71 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.71 Public safety responsibility...

  7. 14 CFR 431.71 - Public safety responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Public safety responsibility. 431.71 Section 431.71 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.71 Public safety responsibility...

  8. 14 CFR 431.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Scope. 431.1 Section 431.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... requirements for obtaining a reusable launch vehicle (RLV) mission license and post-licensing requirements with...

  9. 14 CFR 431.77 - Records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Records. 431.77 Section 431.77 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-Reusable Launch Vehicle Mission License Terms and Conditions § 431.77 Records. (a) Except as specified in...

  10. 14 CFR 431.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Scope. 431.1 Section 431.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... requirements for obtaining a reusable launch vehicle (RLV) mission license and post-licensing requirements with...

  11. 14 CFR 431.71 - Public safety responsibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Public safety responsibility. 431.71 Section 431.71 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.71 Public safety responsibility...

  12. 14 CFR 431.83 - Compliance monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance monitoring. 431.83 Section 431.83 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.83 Compliance monitoring. A...

  13. Progress in Unsteady Turbopump Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Chan, William; Kwak, Dochan; Williams, Robert

    2002-01-01

    This viewgraph presentation discusses unsteady flow simulations for a turbopump intended for a reusable launch vehicle (RLV). The simulation process makes use of computational grids and parallel processing. The architecture of the parallel computers used is discussed, as is the scripting of turbopump simulations.

  14. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  15. Thermographic testing used on the X-33 space launch vehicle program by BFGoodrich Aerospace

    NASA Astrophysics Data System (ADS)

    Burleigh, Douglas D.

    1999-03-01

    The X-33 program is a team effort sponsored by NASA under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStarTM, an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite- epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor (1) Arc Jet tests at NASA Ames Research Center in Mountain view, CA and NASA Johnson Space Center in Houston, TX, (2) High Temperature (wind) Tunnel Tests (HTT) at Nasa Langley Research Center in Langley, VA, and (3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.

  16. Ground Processing Affordability for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and standard repairs need to be in-place as well as easily added. Many routine inspections and maintenance can be like an aircraft overhaul. Modifications and technology upgrades should be expected. Another factor affecting ground operations efficiency is trending. It is essential for RLV's, and also useful for ELV's which fly the same or similar models again. Good data analysis of technical and processing performance will determine fixes and improvements needed for safety, design, and future processing. Collecting such data on new or low-frequency vehicles is a challenge. Lessons can be learned from the Space Shuttle, or even the Concorde aircraft. For all of the above topics, efficient business systems must be established for comprehensive program management and good throughput. Drawings, specifications, and manuals for an entire launch vehicle are often in different formats from multiple vendors, plus they have proprietary constraints. Nonetheless, the integration team must ensure that all data needed is compatible and visible to each appropriate team member. Ground processing systems for scheduling, tracking, problem resolution, etc. must be well laid-out. The balance between COTS (commercial off the shelf) and custom software is difficult. Multiple customers, vendors, launch sites, and landing sites add to the complexity of efficient IT (Information Technology) tools.

  17. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    NASA Technical Reports Server (NTRS)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  18. Response Surface Model Building Using Orthogonal Arrays for Computer Experiments

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.

    1997-01-01

    This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.

  19. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...

  20. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of space...

Top