Influence of time and length size feature selections for human activity sequences recognition.
Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran
2014-01-01
In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.
Fagot, Joël; De Lillo, Carlo
2011-12-01
Two experiments assessed if non-human primates can be meaningfully compared to humans in a non-verbal test of serial recall. A procedure was used that was derived from variations of the Corsi test, designed to test the effects of sequence structure and movement path length in humans. Two baboons were tested in Experiment 1. The monkeys showed several attributes of human serial recall. These included an easier recall of sequences with a shorter number of items and of sequences characterized by a shorter path length when the number of items was kept constant. However, the accuracy and speed of processing did not indicate that the monkeys were able to benefit from the spatiotemporal structure of sequences. Humans tested in Experiment 2 showed a quantitatively longer memory span, and, in contrast with monkeys, benefitted from sequence structure. The results are discussed in relation to differences in how human and non-human primates segment complex visual patterns. Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparing K-mer based methods for improved classification of 16S sequences.
Vinje, Hilde; Liland, Kristian Hovde; Almøy, Trygve; Snipen, Lars
2015-07-01
The need for precise and stable taxonomic classification is highly relevant in modern microbiology. Parallel to the explosion in the amount of sequence data accessible, there has also been a shift in focus for classification methods. Previously, alignment-based methods were the most applicable tools. Now, methods based on counting K-mers by sliding windows are the most interesting classification approach with respect to both speed and accuracy. Here, we present a systematic comparison on five different K-mer based classification methods for the 16S rRNA gene. The methods differ from each other both in data usage and modelling strategies. We have based our study on the commonly known and well-used naïve Bayes classifier from the RDP project, and four other methods were implemented and tested on two different data sets, on full-length sequences as well as fragments of typical read-length. The difference in classification error obtained by the methods seemed to be small, but they were stable and for both data sets tested. The Preprocessed nearest-neighbour (PLSNN) method performed best for full-length 16S rRNA sequences, significantly better than the naïve Bayes RDP method. On fragmented sequences the naïve Bayes Multinomial method performed best, significantly better than all other methods. For both data sets explored, and on both full-length and fragmented sequences, all the five methods reached an error-plateau. We conclude that no K-mer based method is universally best for classifying both full-length sequences and fragments (reads). All methods approach an error plateau indicating improved training data is needed to improve classification from here. Classification errors occur most frequent for genera with few sequences present. For improving the taxonomy and testing new classification methods, the need for a better and more universal and robust training data set is crucial.
How Does Sequence Structure Affect the Judgment of Time? Exploring a Weighted Sum of Segments Model
ERIC Educational Resources Information Center
Matthews, William J.
2013-01-01
This paper examines the judgment of segmented temporal intervals, using short tone sequences as a convenient test case. In four experiments, we investigate how the relative lengths, arrangement, and pitches of the tones in a sequence affect judgments of sequence duration, and ask whether the data can be described by a simple weighted sum of…
ERIC Educational Resources Information Center
Marcer, D.; And Others
1977-01-01
Compares the rates of forgetting of five-item sequences of acoustically similar and dissimilar consonants and words in the absence of proactive and retroactive interference in order to test whether within sequence similarity rather than stimulus length would have a greater influence on retention. (Author/RK)
High resolution identity testing of inactivated poliovirus vaccines
Mee, Edward T.; Minor, Philip D.; Martin, Javier
2015-01-01
Background Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. Methods We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. Results All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Conclusion Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. PMID:26049003
Correcting for sequencing error in maximum likelihood phylogeny inference.
Kuhner, Mary K; McGill, James
2014-11-04
Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.
Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.
Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu
2017-10-03
Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.
Universal sequence map (USM) of arbitrary discrete sequences
2002-01-01
Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM), is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR). The latter enables the representation of 4 unit type sequences (like DNA) as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules. PMID:11895567
Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou
2016-11-01
It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.
High resolution identity testing of inactivated poliovirus vaccines.
Mee, Edward T; Minor, Philip D; Martin, Javier
2015-07-09
Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A novel alignment-free method for detection of lateral genetic transfer based on TF-IDF.
Cong, Yingnan; Chan, Yao-Ban; Ragan, Mark A
2016-07-25
Lateral genetic transfer (LGT) plays an important role in the evolution of microbes. Existing computational methods for detecting genomic regions of putative lateral origin scale poorly to large data. Here, we propose a novel method based on TF-IDF (Term Frequency-Inverse Document Frequency) statistics to detect not only regions of lateral origin, but also their origin and direction of transfer, in sets of hierarchically structured nucleotide or protein sequences. This approach is based on the frequency distributions of k-mers in the sequences. If a set of contiguous k-mers appears sufficiently more frequently in another phyletic group than in its own, we infer that they have been transferred from the first group to the second. We performed rigorous tests of TF-IDF using simulated and empirical datasets. With the simulated data, we tested our method under different parameter settings for sequence length, substitution rate between and within groups and post-LGT, deletion rate, length of transferred region and k size, and found that we can detect LGT events with high precision and recall. Our method performs better than an established method, ALFY, which has high recall but low precision. Our method is efficient, with runtime increasing approximately linearly with sequence length.
Protein location prediction using atomic composition and global features of the amino acid sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.
2010-01-22
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less
Tests of two convection theories for red giant and red supergiant envelopes
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Chin, Chao-Wen
1995-01-01
Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.
Locating Encrypted Data Hidden Among Non-Encrypted Data Using Statistical Tools
2007-03-01
length of a compressed sequence). If a bit sequence can be significantly compressed , then it is not random. Lempel - Ziv Compression Test This test...communication, targeting, and a host other of tasks. This software will most assuredly contain classified data or algorithms requiring protection in...containing the classified data and algorithms . As the program is executed the solider would have access to the common unclassified tasks, however, to
Length bias correction in gene ontology enrichment analysis using logistic regression.
Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H
2012-01-01
When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.
ERIC Educational Resources Information Center
Furey, William M.; Marcotte, Amanda M.; Hintze, John M.; Shackett, Caroline M.
2016-01-01
The study presents a critical analysis of written expression curriculum-based measurement (WE-CBM) metrics derived from 3- and 10-min test lengths. Criterion validity and classification accuracy were examined for Total Words Written (TWW), Correct Writing Sequences (CWS), Percent Correct Writing Sequences (%CWS), and Correct Minus Incorrect…
Danilowicz, Claudia; Hermans, Laura; Coljee, Vincent; Prévost, Chantal
2017-01-01
Abstract During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20–30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products. PMID:28854739
Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.
Dasenko, Mark A.
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced. PMID:26716693
Mai, Uyen; Mirarab, Siavash
2018-05-08
Sequence data used in reconstructing phylogenetic trees may include various sources of error. Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an automatic method to detect such errors. We build a phylogeny including all the data then detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink .
Investigating Delamination Migration in Composite Tape Laminates
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; DeCarvalho, Nelson V.
2014-01-01
A modification to a recently developed test specimen designed to investigate migration of a delamination between neighboring ply interfaces in tape laminates is presented. The specimen is a cross-ply laminated beam consisting of 40 plies with a polytetrafluoroethylene insert spanning part way along its length. The insert is located between a lower 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The modification involved a stacking sequence that promotes stable delamination growth prior to migration, and included a relocation of the insert from the specimen midplane to the interface between plies 14 and 15. Specimens were clamped at both ends onto a rigid baseplate and loaded on their upper surface via a piano hinge assembly, resulting in a predominantly flexural loading condition. Tests were conducted with the load-application point positioned at various locations along a specimen's span. This position affected the sequence of damage events during a test.
Sequence investigation of 34 forensic autosomal STRs with massively parallel sequencing.
Zhang, Suhua; Niu, Yong; Bian, Yingnan; Dong, Rixia; Liu, Xiling; Bao, Yun; Jin, Chao; Zheng, Hancheng; Li, Chengtao
2018-05-01
STRs vary not only in the length of the repeat units and the number of repeats but also in the region with which they conform to an incremental repeat pattern. Massively parallel sequencing (MPS) offers new possibilities in the analysis of STRs since they can simultaneously sequence multiple targets in a single reaction and capture potential internal sequence variations. Here, we sequenced 34 STRs applied in the forensic community of China with a custom-designed panel. MPS performance were evaluated from sequencing reads analysis, concordance study and sensitivity testing. High coverage sequencing data were obtained to determine the constitute ratios and heterozygous balance. No actual inconsistent genotypes were observed between capillary electrophoresis (CE) and MPS, demonstrating the reliability of the panel and the MPS technology. With the sequencing data from the 200 investigated individuals, 346 and 418 alleles were obtained via CE and MPS technologies at the 34 STRs, indicating MPS technology provides higher discrimination than CE detection. The whole study demonstrated that STR genotyping with the custom panel and MPS technology has the potential not only to reveal length and sequence variations but also to satisfy the demands of high throughput and high multiplexing with acceptable sensitivity.
Epigenetic and genetic components of height regulation.
Benonisdottir, Stefania; Oddsson, Asmundur; Helgason, Agnar; Kristjansson, Ragnar P; Sveinbjornsson, Gardar; Oskarsdottir, Arna; Thorleifsson, Gudmar; Davidsson, Olafur B; Arnadottir, Gudny A; Sulem, Gerald; Jensson, Brynjar O; Holm, Hilma; Alexandersson, Kristjan F; Tryggvadottir, Laufey; Walters, G Bragi; Gudjonsson, Sigurjon A; Ward, Lucas D; Sigurdsson, Jon K; Iordache, Paul D; Frigge, Michael L; Rafnar, Thorunn; Kong, Augustine; Masson, Gisli; Helgason, Hannes; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F; Sulem, Patrick; Stefansson, Kari
2016-11-16
Adult height is a highly heritable trait. Here we identified 31.6 million sequence variants by whole-genome sequencing of 8,453 Icelanders and tested them for association with adult height by imputing them into 88,835 Icelanders. Here we discovered 13 novel height associations by testing four different models including parent-of-origin (|β|=0.4-10.6 cm). The minor alleles of three parent-of-origin signals associate with less height only when inherited from the father and are located within imprinted regions (IGF2-H19 and DLK1-MEG3). We also examined the association of these sequence variants in a set of 12,645 Icelanders with birth length measurements. Two of the novel variants, (IGF2-H19 and TET1), show significant association with both adult height and birth length, indicating a role in early growth regulation. Among the parent-of-origin signals, we observed opposing parental effects raising questions about underlying mechanisms. These findings demonstrate that common variations affect human growth by parental imprinting.
TIAN, PENG; LI, JIE; LIU, XIANG; LI, YUXI; CHEN, MEIHENG; MA, YUN; ZHENG, YI QING; FU, YONGGUI; ZOU, HUA
2014-01-01
Nasal polyps (NP) is highly associated with the disorder of immune cells. Alternative polyadenylation (APA) produces mRNA isoforms with different length of 3′-untranslated region (UTR) and regulates gene expression. It has been proven that this APA-mediated regulation of 3′UTR length is an immune-associated phenomenon. The aim of this study was to investigate the genome-wide alternative tandem 3′UTR length switching events in non-eosinophilic nasal polyp tissue. Thirteen patients diagnosed as having non-eosinophilic nasal polyps were included in this study. Nasal polyp tissue and control mucosa were collected during surgery. The 3′ end library of cDNA was constructed. The recovered libraries were sequenced with second sequencing technology, and the sequencing data were analyzed by an in-house bioinformatics pipeline. Tandem 3′UTR length switching between samples was detected by a test of linear trend alternative to independence. We found a significant alteration in the tandem 3′UTR length in 1,920 genes in nasal polyp samples. Functional annotation results showed that several gene ontology (GO) terms were enriched in the list of genes with switched APA sites, including regulation of transcription, macromolecule catabolic localization and mRNA processing. The results suggested that APA-mediated alternative 3′UTR regulation plays an important role in the post-transcriptional regulation of gene expression in non-eosinophilic nasal polyps. PMID:24715051
Just, Rebecca S; Irwin, Jodi A
2018-05-01
Some of the expected advantages of next generation sequencing (NGS) for short tandem repeat (STR) typing include enhanced mixture detection and genotype resolution via sequence variation among non-homologous alleles of the same length. However, at the same time that NGS methods for forensic DNA typing have advanced in recent years, many caseworking laboratories have implemented or are transitioning to probabilistic genotyping to assist the interpretation of complex autosomal STR typing results. Current probabilistic software programs are designed for length-based data, and were not intended to accommodate sequence strings as the product input. Yet to leverage the benefits of NGS for enhanced genotyping and mixture deconvolution, the sequence variation among same-length products must be utilized in some form. Here, we propose use of the longest uninterrupted stretch (LUS) in allele designations as a simple method to represent sequence variation within the STR repeat regions and facilitate - in the nearterm - probabilistic interpretation of NGS-based typing results. An examination of published population data indicated that a reference LUS region is straightforward to define for most autosomal STR loci, and that using repeat unit plus LUS length as the allele designator can represent greater than 80% of the alleles detected by sequencing. A proof of concept study performed using a freely available probabilistic software demonstrated that the LUS length can be used in allele designations when a program does not require alleles to be integers, and that utilizing sequence information improves interpretation of both single-source and mixed contributor STR typing results as compared to using repeat unit information alone. The LUS concept for allele designation maintains the repeat-based allele nomenclature that will permit backward compatibility to extant STR databases, and the LUS lengths themselves will be concordant regardless of the NGS assay or analysis tools employed. Further, these biologically based, easy-to-derive designations uphold clear relationships between parent alleles and their stutter products, enabling analysis in fully continuous probabilistic programs that model stutter while avoiding the algorithmic complexities that come with string based searches. Though using repeat unit plus LUS length as the allele designator does not capture variation that occurs outside of the core repeat regions, this straightforward approach would permit the large majority of known STR sequence variation to be used for mixture deconvolution and, in turn, result in more informative mixture statistics in the near term. Ultimately, the method could bridge the gap from current length-based probabilistic systems to facilitate broader adoption of NGS by forensic DNA testing laboratories. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks
NASA Astrophysics Data System (ADS)
Yue, Ming
This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection.
Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics
2008-03-01
Behavior Test .......................................................................................... 128 IV. Results and Analysis ...Circadian Rhythms and Diurnal Cycles. Just as humans have a rhythmic response to the environment, plants also have a periodic cycle governed by light...characteristics, fatty acid carbon lengths, G + C values, and 16S rRNA sequences. 16S RNA sequence analysis has identified eight genera of methanotrophs
Protein contact prediction using patterns of correlation.
Hamilton, Nicholas; Burrage, Kevin; Ragan, Mark A; Huber, Thomas
2004-09-01
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations. Copyright 2004 Wiley-Liss, Inc.
Length-independent structural similarities enrich the antibody CDR canonical class model.
Nowak, Jaroslaw; Baker, Terry; Georges, Guy; Kelm, Sebastian; Klostermann, Stefan; Shi, Jiye; Sridharan, Sudharsan; Deane, Charlotte M
2016-01-01
Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Edgar, Robert C
2004-01-01
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor; Essex, M
2015-05-01
To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice.
Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor
2015-01-01
Abstract To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice. PMID:25560745
Authentication of Botanical Origin in Herbal Teas by Plastid Noncoding DNA Length Polymorphisms.
Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami
2015-07-01
The aim of this study was to develop a DNA barcode assay to authenticate the botanical origin of herbal teas. To reach this aim, we tested the efficiency of a PCR-capillary electrophoresis (PCR-CE) approach on commercial herbal tea samples using two noncoding plastid barcodes, the trnL intron and the intergenic spacer between trnL and trnF. Barcode DNA length polymorphisms proved successful in authenticating the species origin of herbal teas. We verified the validity of our approach by sequencing species-specific barcode amplicons from herbal tea samples. Moreover, we displayed the utility of PCR-CE assays coupled with sequencing to identify the origin of undeclared plant material in herbal tea samples. The PCR-CE assays proposed in this work can be applied as routine tests for the verification of botanical origin in herbal teas and can be extended to authenticate all types of herbal foodstuffs.
[cDNA library construction from panicle meristem of finger millet].
Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B
2014-01-01
The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.
Reilly, Kevin J.; Spencer, Kristie A.
2013-01-01
The current study investigated the processes responsible for selection of sounds and syllables during production of speech sequences in 10 adults with hypokinetic dysarthria from Parkinson’s disease, five adults with ataxic dysarthria, and 14 healthy control speakers. Speech production data from a choice reaction time task were analyzed to evaluate the effects of sequence length and practice on speech sound sequencing. Speakers produced sequences that were between one and five syllables in length over five experimental runs of 60 trials each. In contrast to the healthy speakers, speakers with hypokinetic dysarthria demonstrated exaggerated sequence length effects for both inter-syllable intervals (ISIs) and speech error rates. Conversely, speakers with ataxic dysarthria failed to demonstrate a sequence length effect on ISIs and were also the only group that did not exhibit practice-related changes in ISIs and speech error rates over the five experimental runs. The exaggerated sequence length effects in the hypokinetic speakers with Parkinson’s disease are consistent with an impairment of action selection during speech sequence production. The absent length effects observed in the speakers with ataxic dysarthria is consistent with previous findings that indicate a limited capacity to buffer speech sequences in advance of their execution. In addition, the lack of practice effects in these speakers suggests that learning-related improvements in the production rate and accuracy of speech sequences involves processing by structures of the cerebellum. Together, the current findings inform models of serial control for speech in healthy speakers and support the notion that sequencing deficits contribute to speech symptoms in speakers with hypokinetic or ataxic dysarthria. In addition, these findings indicate that speech sequencing is differentially impaired in hypokinetic and ataxic dysarthria. PMID:24137121
Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
Gardner, Shea N [San Leandro, CA; Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Young, Jennifer A [Berkeley, CA; Clague, David S [Livermore, CA
2011-01-18
A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.
Novel methodologies for spectral classification of exon and intron sequences
NASA Astrophysics Data System (ADS)
Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.
2012-12-01
Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.
Molecular basis of length polymorphism in the human zeta-globin gene complex.
Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J
1983-01-01
The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667
NASA Technical Reports Server (NTRS)
Wallace, G. R.; Weathers, G. D.; Graf, E. R.
1973-01-01
The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
Gardiner, Stuart K; Demirel, Shaban; De Moraes, Carlos Gustavo; Liebmann, Jeffrey M; Cioffi, George A; Ritch, Robert; Gordon, Mae O; Kass, Michael A
2013-02-15
Trend analysis techniques to detect glaucomatous progression typically assume a constant rate of change. This study uses data from the Ocular Hypertension Treatment Study to assess whether this assumption decreases sensitivity to changes in progression rate, by including earlier periods of stability. Series of visual fields (mean 24 per eye) completed at 6-month intervals from participants randomized initially to observation were split into subseries before and after the initiation of treatment (the "split-point"). The mean deviation rate of change (MDR) was derived using these entire subseries, and using only the window length (W) tests nearest the split-point, for different window lengths of W tests. A generalized estimating equation model was used to detect changes in MDR occurring at the split-point. Using shortened subseries with W = 7 tests, the MDR slowed by 0.142 dB/y upon initiation of treatment (P < 0.001), and the proportion of eyes showing "rapid deterioration" (MDR <-0.5 dB/y with P < 5%) decreased from 11.8% to 6.5% (P < 0.001). Using the entire sequence, no significant change in MDR was detected (P = 0.796), and there was no change in the proportion of eyes progressing (P = 0.084). Window lengths 6 ≤ W ≤ 9 produced similar benefits. Event analysis revealed a beneficial treatment effect in this dataset. This effect was not detected by linear trend analysis applied to entire series, but was detected when using shorter subseries of length between six and nine fields. Using linear trend analysis on the entire field sequence may not be optimal for detecting and monitoring progression. Nonlinear analyses may be needed for long series of fields. (ClinicalTrials.gov number, NCT00000125.).
Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest
2009-12-01
Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.
Xu, Li; Ding, Zhi-Shan; Zhou, Yun-Kai; Tao, Xue-Fen
2009-06-01
To obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis by RACE PCR,then investigate the character of Secoisolariciresinol Dehydrogenase gene. The full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene was obtained by 3'-RACE and 5'-RACE from Dysosma versipellis. We first reported the full cDNA sequences of Secoisolariciresinol Dehydrogenase in Dysosma versipellis. The acquired gene was 991bp in full length, including 5' untranslated region of 42bp, 3' untranslated region of 112bp with Poly (A). The open reading frame (ORF) encoding 278 amino acid with molecular weight 29253.3 Daltons and isolectric point 6.328. The gene accession nucleotide sequence number in GeneBank was EU573789. Semi-quantitative RT-PCR analysis revealed that the Secoisolariciresinol Dehydrogenase gene was highly expressed in stem. Alignment of the amino acid sequence of Secoisolariciresinol Dehydrogenase indicated there may be some significant amino acid sequence difference among different species. Obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis.
III. NIH Toolbox Cognition Battery (CB): measuring episodic memory.
Bauer, Patricia J; Dikmen, Sureyya S; Heaton, Robert K; Mungas, Dan; Slotkin, Jerry; Beaumont, Jennifer L
2013-08-01
One of the most significant domains of cognition is episodic memory, which allows for rapid acquisition and long-term storage of new information. For purposes of the NIH Toolbox, we devised a new test of episodic memory. The nonverbal NIH Toolbox Picture Sequence Memory Test (TPSMT) requires participants to reproduce the order of an arbitrarily ordered sequence of pictures presented on a computer. To adjust for ability, sequence length varies from 6 to 15 pictures. Multiple trials are administered to increase reliability. Pediatric data from the validation study revealed the TPSMT to be sensitive to age-related changes. The task also has high test-retest reliability and promising construct validity. Steps to further increase the sensitivity of the instrument to individual and age-related variability are described. © 2013 The Society for Research in Child Development, Inc.
Sequence-Dependent Persistence Length of Long DNA
NASA Astrophysics Data System (ADS)
Chuang, Hui-Min; Reifenberger, Jeffrey G.; Cao, Han; Dorfman, Kevin D.
2017-12-01
Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm ×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain percent GC contents between 32.5% and 60%. Using Odijk's theory for a channel-confined wormlike chain, these data reveal that the DNA persistence length increases by almost 20% as the percent GC content increases. The increased persistence length is rationalized by a model, containing no adjustable parameters, that treats the DNA as a statistical terpolymer with a sequence-dependent intrinsic persistence length and a sequence-independent electrostatic persistence length.
Data mining of enzymes using specific peptides
2009-01-01
Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs) that are unique to specific branches of the Enzyme Commission (EC) functional classification. We devise the Data Mining of Enzymes (DME) methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes) and true-negatives (non-enzymes), depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence). DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative numbers of enzymes observed for different EC categories. Conclusions Employing SPs for predicting enzymatic activity of proteins works well once one utilizes coverage-length criteria. In our analysis, L ≥ 7 has led to highly accurate results. PMID:20034383
Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction*
Rahman, Kh. Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard
2016-01-01
X-ray crystallography has shown that an antibody paratope typically binds 15–22 amino acids (aa) of an epitope, of which 2–5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6–11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7–12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16–30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences. PMID:27189949
Gibbs, Mark J; Armstrong, John S; Gibbs, Adrian J
2005-01-01
Background Most current DNA diagnostic tests for identifying organisms use specific oligonucleotide probes that are complementary in sequence to, and hence only hybridise with the DNA of one target species. By contrast, in traditional taxonomy, specimens are usually identified by 'dichotomous keys' that use combinations of characters shared by different members of the target set. Using one specific character for each target is the least efficient strategy for identification. Using combinations of shared bisectionally-distributed characters is much more efficient, and this strategy is most efficient when they separate the targets in a progressively binary way. Results We have developed a practical method for finding minimal sets of sub-sequences that identify individual sequences, and could be targeted by combinations of probes, so that the efficient strategy of traditional taxonomic identification could be used in DNA diagnosis. The sizes of minimal sub-sequence sets depended mostly on sequence diversity and sub-sequence length and interactions between these parameters. We found that 201 distinct cytochrome oxidase subunit-1 (CO1) genes from moths (Lepidoptera) were distinguished using only 15 sub-sequences 20 nucleotides long, whereas only 8–10 sub-sequences 6–10 nucleotides long were required to distinguish the CO1 genes of 92 species from the 9 largest orders of insects. Conclusion The presence/absence of sub-sequences in a set of gene sequences can be used like the questions in a traditional dichotomous taxonomic key; hybridisation probes complementary to such sub-sequences should provide a very efficient means for identifying individual species, subtypes or genotypes. Sequence diversity and sub-sequence length are the major factors that determine the numbers of distinguishing sub-sequences in any set of sequences. PMID:15817134
Watson, Christopher M; Camm, Nick; Crinnion, Laura A; Clokie, Samuel; Robinson, Rachel L; Adlard, Julian; Charlton, Ruth; Markham, Alexander F; Carr, Ian M; Bonthron, David T
2017-12-01
Diagnostic genetic testing programmes based on next-generation DNA sequencing have resulted in the accrual of large datasets of targeted raw sequence data. Most diagnostic laboratories process these data through an automated variant-calling pipeline. Validation of the chosen analytical methods typically depends on confirming the detection of known sequence variants. Despite improvements in short-read alignment methods, current pipelines are known to be comparatively poor at detecting large insertion/deletion mutations. We performed clinical validation of a local reassembly tool, ABRA (assembly-based realigner), through retrospective reanalysis of a cohort of more than 2000 hereditary cancer cases. ABRA enabled detection of a 96-bp deletion, 4-bp insertion mutation in PMS2 that had been initially identified using a comparative read-depth approach. We applied an updated pipeline incorporating ABRA to the entire cohort of 2000 cases and identified one previously undetected pathogenic variant, a 23-bp duplication in PTEN. We demonstrate the effect of read length on the ability to detect insertion/deletion variants by comparing HiSeq2500 (2 × 101-bp) and NextSeq500 (2 × 151-bp) sequence data for a range of variants and thereby show that the limitations of shorter read lengths can be mitigated using appropriate informatics tools. This work highlights the need for ongoing development of diagnostic pipelines to maximize test sensitivity. We also draw attention to the large differences in computational infrastructure required to perform day-to-day versus large-scale reprocessing tasks.
Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S
2013-06-25
A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.
Prakash, Celine; Haeseler, Arndt Von
2017-03-01
RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment.
Haeseler, Arndt Von
2017-01-01
Abstract RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment. PMID:27661099
LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.
Disdero, Eric; Filée, Jonathan
2017-01-01
Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed. LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences. LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.
Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.
Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio
2017-10-06
Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.
Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia
2014-01-01
Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543
Caws, Maxine; Tho, Dau Quang; Duy, Phan Minh; Lan, Nguyen Thi Ngoc; Hoa, Dai Viet; Torok, Mili Estee; Chau, Tran Thi Hong; Van Vinh Chau, Nguyen; Chinh, Nguyen Tran; Farrar, Jeremy
2007-01-01
PCR-restriction fragment length poymorphism (PCR-RFLP) is a simple, robust technique for the rapid identification of isoniazid-resistant Mycobacterium tuberculosis. One hundred consecutive isolates from a Vietnamese tuberculosis hospital were tested by MspA1I PCR-RFLP for the detection of isoniazid-resistant katG_315 mutants. The test had a sensitivity of 80% and a specificity of 100% against conventional phenotypic drug susceptibility testing. The positive and negative predictive values were 1 and 0.86, respectively. None of the discrepant isolates had mutant katG_315 codons by sequencing. The test is cheap (less than $1.50 per test), specific, and suitable for the rapid identification of isoniazid resistance in regions with a high prevalence of katG_315 mutants among isoniazid-resistant M. tuberculosis isolates. PMID:17428939
Full-length genomic characterization and molecular evolution of canine parvovirus in China.
Zhou, Ling; Tang, Qinghai; Shi, Lijun; Kong, Miaomiao; Liang, Lin; Mao, Qianqian; Bu, Bin; Yao, Lunguang; Zhao, Kai; Cui, Shangjin; Leal, Élcio
2016-06-01
Canine parvovirus type 2 (CPV-2) can cause acute haemorrhagic enteritis in dogs and myocarditis in puppies. This disease has become one of the most serious infectious diseases of dogs. During 2014 in China, there were many cases of acute infectious diarrhoea in dogs. Some faecal samples were negative for the CPV-2 antigen based on a colloidal gold test strip but were positive based on PCR, and a viral strain was isolated from one such sample. The cytopathic effect on susceptible cells and the results of the immunoperoxidase monolayer assay, PCR, and sequencing indicated that the pathogen was CPV-2. The strain was named CPV-NY-14, and the full-length genome was sequenced and analysed. A maximum likelihood tree was constructed using the full-length genome and all available CPV-2 genomes. New strains have replaced the original strain in Taiwan and Italy, although the CPV-2a strain is still predominant there. However, CPV-2a still causes many cases of acute infectious diarrhoea in dogs in China.
Oba, Mami; Tsuchiaka, Shinobu; Omatsu, Tsutomu; Katayama, Yukie; Otomaru, Konosuke; Hirata, Teppei; Aoki, Hiroshi; Murata, Yoshiteru; Makino, Shinji; Nagai, Makoto; Mizutani, Tetsuya
2018-01-08
We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Knierim, Dennis; Maiss, Edgar; Kenyon, Lawrence; Winter, Stephan; Menzel, Wulf
2015-10-01
Luffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus. Analysis of sequences from sample TH24, which was collected in 2010 from a luffa plant in Thailand, reveals the presence of two different full-length genome consensus sequences.
Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis
2016-08-24
To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.
The Effects of Phonetic Similarity and List Length on Children's Sound Categorization Performance.
ERIC Educational Resources Information Center
Snowling, Margaret J.; And Others
1994-01-01
Examined the phonological analysis and verbal working memory components of the sound categorization task and their relationships to reading skill differences. Children were tested on sound categorization by having them identify odd words in sequences. Sound categorization performance was sensitive to individual differences in speech perception…
Solid state remote circuit selector switch
NASA Technical Reports Server (NTRS)
Peterson, V. S.
1970-01-01
Remote switching circuit utilizes voltage logic to switch on desired circuit. Circuit controls rotating multi-range pressure transducers in jet engine testing and can be used in coded remote circuit activator where sequence of switching has to occur in defined length of time to prevent false or undesired circuit activation.
Caldwell, Rachel; Lin, Yan-Xia; Zhang, Ren
2015-01-01
There is a continuing interest in the analysis of gene architecture and gene expression to determine the relationship that may exist. Advances in high-quality sequencing technologies and large-scale resource datasets have increased the understanding of relationships and cross-referencing of expression data to the large genome data. Although a negative correlation between expression level and gene (especially transcript) length has been generally accepted, there have been some conflicting results arising from the literature concerning the impacts of different regions of genes, and the underlying reason is not well understood. The research aims to apply quantile regression techniques for statistical analysis of coding and noncoding sequence length and gene expression data in the plant, Arabidopsis thaliana, and fruit fly, Drosophila melanogaster, to determine if a relationship exists and if there is any variation or similarities between these species. The quantile regression analysis found that the coding sequence length and gene expression correlations varied, and similarities emerged for the noncoding sequence length (5′ and 3′ UTRs) between animal and plant species. In conclusion, the information described in this study provides the basis for further exploration into gene regulation with regard to coding and noncoding sequence length. PMID:26114098
Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A
2009-01-01
Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386
Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR
Prada, Anne E.
2014-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation analysis has been implemented for Cystic Fibrosis (CF) carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD). Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM) curve analysis, allele-specific PCR (AS-PCR) and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing. PMID:25071991
Tang, Kujin; Lu, Yang Young; Sun, Fengzhu
2018-01-01
Horizontal gene transfer (HGT) plays an important role in the evolution of microbial organisms including bacteria. Alignment-free methods based on single genome compositional information have been used to detect HGT. Currently, Manhattan and Euclidean distances based on tetranucleotide frequencies are the most commonly used alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial sequences and real data sets with known horizontal transferred genomic regions, we found that more advanced alignment-free dissimilarity measures such as CVTree and [Formula: see text] that take into account the background Markov sequences can solve HGT detection problems with significantly improved performance. We also studied the influence of different factors such as evolutionary distance between host and donor sequences, size of sliding window, and host genome composition on the performances of alignment-free methods to detect HGT. Our study showed that alignment-free methods can predict HGT accurately when host and donor genomes are in different order levels. Among all methods, CVTree with word length of 3, [Formula: see text] with word length 3, Markov order 1 and [Formula: see text] with word length 4, Markov order 1 outperform others in terms of their highest F 1 -score and their robustness under the influence of different factors.
Coiled-coil length: Size does matter.
Surkont, Jaroslaw; Diekmann, Yoan; Ryder, Pearl V; Pereira-Leal, Jose B
2015-12-01
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. © 2015 Wiley Periodicals, Inc.
DNA Sequencing Using capillary Electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Barry Karger
2011-05-09
The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linkedmore » polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of individual components from the sequencing reaction and then developed a protocol to reduce the deleterious salts. We demonstrated a robust method for achieving long read length DNA sequencing. Continuing our advances, we next demonstrated the achievement of over 1000 bases in less than one hour with a base calling accuracy of between 98 and 99%. In this work, we implemented energy transfer dyes which allowed for cleaner differentiation of the 4 dye labeled terminal nucleotides. In addition, we developed improved base calling software to help read sequencing when the separation was only minimal as occurs at long read lengths. Another critical parameter we studied was column temperature. We demonstrated that read lengths improved as the column temperature was increased from room temperature to 60 C or 70 C. The higher temperature relaxed the DNA chains under the influence of the high electric field.« less
Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai
2017-06-01
Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.
Robicheau, Brent M; Susko, Edward; Harrigan, Amye M; Snyder, Marlene
2017-02-01
Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
High-Resolution Sequence-Function Mapping of Full-Length Proteins
Kowalsky, Caitlin A.; Klesmith, Justin R.; Stapleton, James A.; Kelly, Vince; Reichkitzer, Nolan; Whitehead, Timothy A.
2015-01-01
Comprehensive sequence-function mapping involves detailing the fitness contribution of every possible single mutation to a gene by comparing the abundance of each library variant before and after selection for the phenotype of interest. Deep sequencing of library DNA allows frequency reconstruction for tens of thousands of variants in a single experiment, yet short read lengths of current sequencers makes it challenging to probe genes encoding full-length proteins. Here we extend the scope of sequence-function maps to entire protein sequences with a modular, universal sequence tiling method. We demonstrate the approach with both growth-based selections and FACS screening, offer parameters and best practices that simplify design of experiments, and present analytical solutions to normalize data across independent selections. Using this protocol, sequence-function maps covering full sequences can be obtained in four to six weeks. Best practices introduced in this manuscript are fully compatible with, and complementary to, other recently published sequence-function mapping protocols. PMID:25790064
Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.
Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro
2010-05-07
Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.
Porter, Teresita M.; Golding, G. Brian
2012-01-01
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215
Hepp, Gary R; Kennamer, Robert A
2018-01-01
Incubation starts during egg laying for many bird species and causes developmental asynchrony within clutches. Faster development of late-laid eggs can help reduce developmental differences and synchronize hatching, which is important for precocial species whose young must leave the nest soon after hatching. In this study, we examined the effect of egg laying sequence on length of the incubation period in Wood Ducks (Aix sponsa). Because incubation temperature strongly influences embryonic development rates, we tested the interactive effects of laying sequence and incubation temperature on the ability of late-laid eggs to accelerate development and synchronize hatching. We also examined the potential cost of faster development on duckling body condition. Fresh eggs were collected and incubated at three biologically relevant temperatures (Low: 34.9°C, Medium: 35.8°C, and High: 37.6°C), and egg laying sequences from 1 to 12 were used. Length of the incubation period declined linearly as laying sequence advanced, but the relationship was strongest at medium temperatures followed by low temperatures and high temperatures. There was little support for including fresh egg mass in models of incubation period. Estimated differences in length of the incubation period between eggs 1 and 12 were 2.7 d, 1.2 d, and 0.7 d at medium, low and high temperatures, respectively. Only at intermediate incubation temperatures did development rates of late-laid eggs increase sufficiently to completely compensate for natural levels of developmental asynchrony that have been reported in Wood Duck clutches at the start of full incubation. Body condition of ducklings was strongly affected by fresh egg mass and incubation temperature but declined only slightly as laying sequence progressed. Our findings show that laying sequence and incubation temperature play important roles in helping to shape embryo development and hatching synchrony in a precocial bird.
Kennamer, Robert A.
2018-01-01
Incubation starts during egg laying for many bird species and causes developmental asynchrony within clutches. Faster development of late-laid eggs can help reduce developmental differences and synchronize hatching, which is important for precocial species whose young must leave the nest soon after hatching. In this study, we examined the effect of egg laying sequence on length of the incubation period in Wood Ducks (Aix sponsa). Because incubation temperature strongly influences embryonic development rates, we tested the interactive effects of laying sequence and incubation temperature on the ability of late-laid eggs to accelerate development and synchronize hatching. We also examined the potential cost of faster development on duckling body condition. Fresh eggs were collected and incubated at three biologically relevant temperatures (Low: 34.9°C, Medium: 35.8°C, and High: 37.6°C), and egg laying sequences from 1 to 12 were used. Length of the incubation period declined linearly as laying sequence advanced, but the relationship was strongest at medium temperatures followed by low temperatures and high temperatures. There was little support for including fresh egg mass in models of incubation period. Estimated differences in length of the incubation period between eggs 1 and 12 were 2.7 d, 1.2 d, and 0.7 d at medium, low and high temperatures, respectively. Only at intermediate incubation temperatures did development rates of late-laid eggs increase sufficiently to completely compensate for natural levels of developmental asynchrony that have been reported in Wood Duck clutches at the start of full incubation. Body condition of ducklings was strongly affected by fresh egg mass and incubation temperature but declined only slightly as laying sequence progressed. Our findings show that laying sequence and incubation temperature play important roles in helping to shape embryo development and hatching synchrony in a precocial bird. PMID:29373593
Hout, David R; Schweitzer, Brock L; Lawrence, Kasey; Morris, Stephan W; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly; Saltman, David L
2017-08-01
Patients with lung cancers harboring an activating anaplastic lymphoma kinase ( ALK ) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off Δ C t of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK.
Hout, David R.; Lawrence, Kasey; Morris, Stephan W.; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly
2017-01-01
Patients with lung cancers harboring an activating anaplastic lymphoma kinase (ALK) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off ΔCt of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK. PMID:28763012
Bashir, Ali; Bansal, Vikas; Bafna, Vineet
2010-06-18
Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.
Species identification of mutans streptococci by groESL gene sequence.
Hung, Wei-Chung; Tsai, Jui-Chang; Hsueh, Po-Ren; Chia, Jean-San; Teng, Lee-Jene
2005-09-01
The near full-length sequences of the groESL genes were determined and analysed among eight reference strains (serotypes a to h) representing five species of mutans group streptococci. The groES sequences from these reference strains revealed that there are two lengths (285 and 288 bp) in the five species. The intergenic spacer between groES and groEL appears to be a unique marker for species, with a variable size (ranging from 111 to 310 bp) and sequence. Phylogenetic analysis of groES and groEL separated the eight serotypes into two major clusters. Strains of serotypes b, c, e and f were highly related and had groES gene sequences of the same length, 288 bp, while strains of serotypes a, d, g and h were also closely related and their groES gene sequence lengths were 285 bp. The groESL sequences in clinical isolates of three serotypes of S. mutans were analysed for intraspecies polymorphism. The results showed that the groESL sequences could provide information for differentiation among species, but were unable to distinguish serotypes of the same species. Based on the determined sequences, a PCR assay was developed that could differentiate members of the mutans streptococci by amplicon size and provide an alternative way for distinguishing mutans streptococci from other viridans streptococci.
Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna
2017-12-12
The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.
Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules.
Li, Yueqi; Xiang, Limin; Palma, Julio L; Asai, Yoshihiro; Tao, Nongjian
2016-04-15
Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either a hopping- or tunnelling-dominated regimes. The thermoelectric effect is small and insensitive to the molecular length in the hopping regime. In contrast, the thermoelectric effect is large and sensitive to the length in the tunnelling regime. These findings indicate that one may control the thermoelectric effect in DNA by varying its sequence and length. We describe the experimental results in terms of hopping and tunnelling charge transport models.
Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules
Li, Yueqi; Xiang, Limin; Palma, Julio L.; Asai, Yoshihiro; Tao, Nongjian
2016-01-01
Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either a hopping- or tunnelling-dominated regimes. The thermoelectric effect is small and insensitive to the molecular length in the hopping regime. In contrast, the thermoelectric effect is large and sensitive to the length in the tunnelling regime. These findings indicate that one may control the thermoelectric effect in DNA by varying its sequence and length. We describe the experimental results in terms of hopping and tunnelling charge transport models. PMID:27079152
Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly
Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka
2010-01-01
Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877
Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.
1996-01-01
The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850
Au, Chun Hang; Wa, Anna; Ho, Dona N; Chan, Tsun Leung; Ma, Edmond S K
2016-01-22
Genomic techniques in recent years have allowed the identification of many mutated genes important in the pathogenesis of acute myeloid leukemia (AML). Together with cytogenetic aberrations, these gene mutations are powerful prognostic markers in AML and can be used to guide patient management, for example selection of optimal post-remission therapy. The mutated genes also hold promise as therapeutic targets themselves. We evaluated the applicability of a gene panel for the detection of AML mutations in a diagnostic molecular pathology laboratory. Fifty patient samples comprising 46 AML and 4 other myeloid neoplasms were accrued for the study. They consisted of 19 males and 31 females at a median age of 60 years (range: 18-88 years). A total of 54 genes (full coding exons of 15 genes and exonic hotspots of 39 genes) were targeted by 568 amplicons that ranged from 225 to 275 bp. The combined coverage was 141 kb in sequence length. Amplicon libraries were prepared by TruSight myeloid sequencing panel (Illumina, CA) and paired-end sequencing runs were performed on a MiSeq (Illumina) genome sequencer. Sequences obtained were analyzed by in-house bioinformatics pipeline, namely BWA-MEM, Samtools, GATK, Pindel, Ensembl Variant Effect Predictor and a novel algorithm ITDseek. The mean count of sequencing reads obtained per sample was 3.81 million and the mean sequencing depth was over 3000X. Seventy-seven mutations in 24 genes were detected in 37 of 50 samples (74 %). On average, 2 mutations (range 1-5) were detected per positive sample. TP53 gene mutations were found in 3 out of 4 patients with complex and unfavorable cytogenetics. Comparing NGS results with that of conventional molecular testing showed a concordance rate of 95.5 %. After further resolution and application of a novel bioinformatics algorithm ITDseek to aid the detection of FLT3 internal tandem duplication (ITD), the concordance rate was revised to 98.2 %. Gene panel testing by NGS approach was applicable for sensitive and accurate detection of actionable AML gene mutations in the clinical laboratory to individualize patient management. A novel algorithm ITDseek was presented that improved the detection of FLT3-ITD of varying length, position and at low allelic burden.
New powerful statistics for alignment-free sequence comparison under a pattern transfer model.
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu
2011-09-07
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.
New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu
2011-01-01
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298
An improved and validated RNA HLA class I SBT approach for obtaining full length coding sequences.
Gerritsen, K E H; Olieslagers, T I; Groeneweg, M; Voorter, C E M; Tilanus, M G J
2014-11-01
The functional relevance of human leukocyte antigen (HLA) class I allele polymorphism beyond exons 2 and 3 is difficult to address because more than 70% of the HLA class I alleles are defined by exons 2 and 3 sequences only. For routine application on clinical samples we improved and validated the HLA sequence-based typing (SBT) approach based on RNA templates, using either a single locus-specific or two overlapping group-specific polymerase chain reaction (PCR) amplifications, with three forward and three reverse sequencing reactions for full length sequencing. Locus-specific HLA typing with RNA SBT of a reference panel, representing the major antigen groups, showed identical results compared to DNA SBT typing. Alleles encountered with unknown exons in the IMGT/HLA database and three samples, two with Null and one with a Low expressed allele, have been addressed by the group-specific RNA SBT approach to obtain full length coding sequences. This RNA SBT approach has proven its value in our routine full length definition of alleles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong
2016-11-21
Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum. These resources as a robust platform will be used in high-resolution mapping, gene cloning, assembly of genome sequences, comparative genomics and evolution for sweetpotato.
Spatial methods for deriving crop rotation history
NASA Astrophysics Data System (ADS)
Mueller-Warrant, George W.; Trippe, Kristin M.; Whittaker, Gerald W.; Anderson, Nicole P.; Sullivan, Clare S.
2017-08-01
Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers' desires to achieve specific objectives. Moran's I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.
Hybrid De Novo Genome Assembly Using MiSeq and SOLiD Short Read Data
Ikegami, Tsutomu; Inatsugi, Toyohiro; Kojima, Isao; Umemura, Myco; Hagiwara, Hiroko; Machida, Masayuki; Asai, Kiyoshi
2015-01-01
A hybrid de novo assembly pipeline was constructed to utilize both MiSeq and SOLiD short read data in combination in the assembly. The short read data were converted to a standard format of the pipeline, and were supplied to the pipeline components such as ABySS and SOAPdenovo. The assembly pipeline proceeded through several stages, and either MiSeq paired-end data, SOLiD mate-paired data, or both of them could be specified as input data at each stage separately. The pipeline was examined on the filamentous fungus Aspergillus oryzae RIB40, by aligning the assembly results against the reference sequences. Using both the MiSeq and the SOLiD data in the hybrid assembly, the alignment length was improved by a factor of 3 to 8, compared with the assemblies using either one of the data types. The number of the reproduced gene cluster regions encoding secondary metabolite biosyntheses (SMB) was also improved by the hybrid assemblies. These results imply that the MiSeq data with long read length are essential to construct accurate nucleotide sequences, while the SOLiD mate-paired reads with long insertion length enhance long-range arrangements of the sequences. The pipeline was also tested on the actinomycete Streptomyces avermitilis MA-4680, whose gene is known to have high-GC content. Although the quality of the SOLiD reads was too low to perform any meaningful assemblies by themselves, the alignment length to the reference was improved by a factor of 2, compared with the assembly using only the MiSeq data. PMID:25919614
Memory for tonal pitches: a music-length effect hypothesis.
Akiva-Kabiri, Lilach; Vecchi, Tomaso; Granot, Roni; Basso, Demis; Schön, Daniele
2009-07-01
One of the most studied effects of verbal working memory (WM) is the influence of the length of the words that compose the list to be remembered. This work aims to investigate the nature of musical WM by replicating the word length effect in the musical domain. Length and rate of presentation were manipulated in a recognition task of tone sequences. Results showed significant effects for both factors (length and presentation rate) as well as their interaction, suggesting the existence of different strategies (e.g., chunking and rehearsal) for the immediate memory of musical information, depending upon the length of the sequences.
On the normalization of the minimum free energy of RNAs by sequence length.
Trotta, Edoardo
2014-01-01
The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.
On the Normalization of the Minimum Free Energy of RNAs by Sequence Length
Trotta, Edoardo
2014-01-01
The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size. PMID:25405875
A note on chaotic unimodal maps and applications.
Zhou, C T; He, X T; Yu, M Y; Chew, L Y; Wang, X G
2006-09-01
Based on the word-lift technique of symbolic dynamics of one-dimensional unimodal maps, we investigate the relation between chaotic kneading sequences and linear maximum-length shift-register sequences. Theoretical and numerical evidence that the set of the maximum-length shift-register sequences is a subset of the set of the universal sequence of one-dimensional chaotic unimodal maps is given. By stabilizing unstable periodic orbits on superstable periodic orbits, we also develop techniques to control the generation of long binary sequences.
What is a melody? On the relationship between pitch and brightness of timbre.
Cousineau, Marion; Carcagno, Samuele; Demany, Laurent; Pressnitzer, Daniel
2013-01-01
Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners' task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities.
Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.
Beverly, Michael; Hagen, Caitlin; Slack, Olga
2018-02-01
The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.
Ma, Yuyuan; Lv, Maomin; Xu, Shu; Wu, Jianmin; Tian, Kegong; Zhang, Jingang
2010-07-01
Existence of porcine endogenous retrovirus (PERV) hinders pigs to be used in clinical xenotransplantation to alleviate the shortage of human transplants. Chinese miniature pigs are potential organ donors for xenotransplantation in China. However, so far, an adequate level of information on the molecular characteristics of PERV from Chinese miniature pigs has not been available. We described here the cloning and characterization of full-length proviral DNA of PERV from Chinese Wuzhishan miniature pigs inbred (WZSP). Full-length nucleotide sequences of PERV-WZSP and other PERVs were aligned and phylogenetic tree was constructed from deduced amino-acid sequences of env. The results demonstrated that the full-length proviral DNA of PERV-WZSP belongs to gammaretrovirus and shares high similarity with other PERVs. Sequence analysis also suggested that different patterns of LTR existed in the same porcine germ line and partial PERV-C sequence may recombine with PERV-A sequence in LTR. (c) 2008 Elsevier Ltd. All rights reserved.
Gibbons, Theodore R; Mount, Stephen M; Cooper, Endymion D; Delwiche, Charles F
2015-07-10
Clustering protein sequences according to inferred homology is a fundamental step in the analysis of many large data sets. Since the publication of the Markov Clustering (MCL) algorithm in 2002, it has been the centerpiece of several popular applications. Each of these approaches generates an undirected graph that represents sequences as nodes connected to each other by edges weighted with a BLAST-based metric. MCL is then used to infer clusters of homologous proteins by analyzing these graphs. The various approaches differ only by how they weight the edges, yet there has been very little direct examination of the relative performance of alternative edge-weighting metrics. This study compares the performance of four BLAST-based edge-weighting metrics: the bit score, bit score ratio (BSR), bit score over anchored length (BAL), and negative common log of the expectation value (NLE). Performance is tested using the Extended CEGMA KOGs (ECK) database, which we introduce here. All metrics performed similarly when analyzing full-length sequences, but dramatic differences emerged as progressively larger fractions of the test sequences were split into fragments. The BSR and BAL successfully rescued subsets of clusters by strengthening certain types of alignments between fragmented sequences, but also shifted the largest correct scores down near the range of scores generated from spurious alignments. This penalty outweighed the benefits in most test cases, and was greatly exacerbated by increasing the MCL inflation parameter, making these metrics less robust than the bit score or the more popular NLE. Notably, the bit score performed as well or better than the other three metrics in all scenarios. The results provide a strong case for use of the bit score, which appears to offer equivalent or superior performance to the more popular NLE. The insight that MCL-based clustering methods can be improved using a more tractable edge-weighting metric will greatly simplify future implementations. We demonstrate this with our own minimalist Python implementation: Porthos, which uses only standard libraries and can process a graph with 25 m + edges connecting the 60 k + KOG sequences in half a minute using less than half a gigabyte of memory.
Principles for Predicting RNA Secondary Structure Design Difficulty.
Anderson-Lee, Jeff; Fisker, Eli; Kosaraju, Vineet; Wu, Michelle; Kong, Justin; Lee, Jeehyung; Lee, Minjae; Zada, Mathew; Treuille, Adrien; Das, Rhiju
2016-02-27
Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Classification of HCV and HIV-1 Sequences with the Branching Index
Hraber, Peter; Kuiken, Carla; Waugh, Mark; Geer, Shaun; Bruno, William J.; Leitner, Thomas
2009-01-01
SUMMARY Classification of viral sequences should be fast, objective, accurate, and reproducible. Most methods that classify sequences use either pairwise distances or phylogenetic relations, but cannot discern when a sequence is unclassifiable. The branching index (BI) combines distance and phylogeny methods to compute a ratio that quantifies how closely a query sequence clusters with a subtype clade. In the hypothesis-testing framework of statistical inference, the BI is compared with a threshold to test whether sufficient evidence exists for the query sequence to be classified among known sequences. If above the threshold, the null hypothesis of no support for the subtype relation is rejected and the sequence is taken as belonging to the subtype clade with which it clusters on the tree. This study evaluates statistical properties of the branching index for subtype classification in HCV and HIV-1. Pairs of BI values with known positive and negative test results were computed from 10,000 random fragments of reference alignments. Sampled fragments were of sufficient length to contain phylogenetic signal that groups reference sequences together properly into subtype clades. For HCV, a threshold BI of 0.71 yields 95.1% agreement with reference subtypes, with equal false positive and false negative rates. For HIV-1, a threshold of 0.66 yields 93.5% agreement. Higher thresholds can be used where lower false positive rates are required. In synthetic recombinants, regions without breakpoints are recognized accurately; regions with breakpoints do not uniquely represent any known subtype. Web-based services for viral subtype classification with the branching index are available online. PMID:18753218
[Mutation Analysis of 19 STR Loci in 20 723 Cases of Paternity Testing].
Bi, J; Chang, J J; Li, M X; Yu, C Y
2017-06-01
To observe and analyze the confirmed cases of paternity testing, and to explore the mutation rules of STR loci. The mutant STR loci were screened from 20 723 confirmed cases of paternity testing by Goldeneye 20A system.The mutation rates, and the sources, fragment length, steps and increased or decreased repeat sequences of mutant alleles were counted for the analysis of the characteristics of mutation-related factors. A total of 548 mutations were found on 19 STR loci, and 557 mutation events were observed. The loci mutation rate was 0.07‰-2.23‰. The ratio of paternal to maternal mutant events was 3.06:1. One step mutation was the main mutation, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. The repeat sequences were more likely to decrease in two steps mutation and above. Mutation mainly occurred in the medium allele, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. In long allele mutations, the decreased repeat sequences were significantly more than the increased repeat sequences. The number of the increased repeat sequences was almost the same as the decreased repeat sequences in paternal mutation, while the decreased repeat sequences were more than the increased in maternal mutation. There are significant differences in the mutation rate of each locus. When one or two loci do not conform to the genetic law, other detection system should be added, and PI value should be calculated combined with the information of the mutate STR loci in order to further clarify the identification opinions. Copyright© by the Editorial Department of Journal of Forensic Medicine
Patnaik, Bharat Bhusan; Kim, Dong Hyun; Oh, Seung Han; Song, Yong-Su; Chanh, Nguyen Dang Minh; Kim, Jong Sun; Jung, Woo-jin; Saha, Atul Kumar; Bindroo, Bharat Bhushan; Han, Yeon Soo
2012-01-01
Background Silkworm fecal matter is considered one of the richest sources of antimicrobial and antiviral protein (substances) and such economically feasible and eco-friendly proteins acting as secondary metabolites from the insect system can be explored for their practical utility in conferring broad spectrum disease resistance against pathogenic microbial specimens. Methodology/Principal Findings Silkworm fecal matter extracts prepared in 0.02 M phosphate buffer saline (pH 7.4), at a temperature of 60°C was subjected to 40% saturated ammonium sulphate precipitation and purified by gel-filtration chromatography (GFC). SDS-PAGE under denaturing conditions showed a single band at about 21.5 kDa. The peak fraction, thus obtained by GFC wastested for homogeneityusing C18reverse-phase high performance liquid chromatography (HPLC). The activity of the purified protein was tested against selected Gram +/− bacteria and phytopathogenic Fusarium species with concentration-dependent inhibitionrelationship. The purified bioactive protein was subjected to matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS) and N-terminal sequencing by Edman degradation towards its identification. The N-terminal first 18 amino acid sequence following the predicted signal peptide showed homology to plant germin-like proteins (Glp). In order to characterize the full-length gene sequence in detail, the partial cDNA was cloned and sequenced using degenerate primers, followed by 5′- and 3′-rapid amplification of cDNA ends (RACE-PCR). The full-length cDNA sequence composed of 630 bp encoding 209 amino acids and corresponded to germin-like proteins (Glps) involved in plant development and defense. Conclusions/Significance The study reports, characterization of novel Glpbelonging to subfamily 3 from M. alba by the purification of mature active protein from silkworm fecal matter. The N-terminal amino acid sequence of the purified protein was found similar to the deduced amino acid sequence (without the transit peptide sequence) of the full length cDNA from M. alba. PMID:23284650
Kaul, M G; Stork, A; Bansmann, P M; Nolte-Ernsting, C; Lund, G K; Weber, C; Adam, G
2004-11-01
To test the feasibility of k-space segmented gradient-echo pulse sequences for free-breathing coronary magnetic resonance angiography (cMRA) on a clinical 3T system. T2-prepared, fat-suppressed turbo field echo (TFE, turboFLASH, SFPGR) as well as balanced TFE (b-TFE, trueFISP, FIESTA, segmented SSFP) sequences with navigator gating for prospective motion correction were applied on a 3T system equipped with a six-element phased-array cardiac coil. In 15 healthy volunteers, the right coronary artery (RCA) was examined with TFE and b-TFE sequences. Due to examination time limitations, the left coronary artery (LM/LAD) was examined exclusively with the TFE sequence in ten volunteers. Image quality was graded on a five point scale (0 = not visualized to 4 = excellent). The length, diameter and sharpness of the vessels and the contrast-to-noise ratios (CNR) were measured. 98 % of all major segments (proximal/middle/distal) of the RCA could be seen with the TFE sequence and 82 % with the b-TFE sequence. The image quality for the three segments was graded higher for the TFE sequence (2.7/2.7/1.5) than for the b-TFE sequence (1.9/1.6/0.9) with P: (< or = 0.001/< or = 0.004/< or = 0.056). The kappa of the interobserver variability was 0.75 for the TFE sequence and 0.8 for the b-TFE sequence. The measured vessel lengths were longer for the TFE sequence (95 +/- 22 mm) than for the b-TFE sequence (80 +/- 40 mm; P < or = 0.115). No significant changes (P < or = 0.074, P < or = 0.145) in diameter and vessel sharpness of the RCAs were observed between the TFE (2.4 +/- 0.3 mm, 60 % +/- 5) and b-TFE sequences (2.4 +/- 0.3 mm, 62 % +/- 6). The CNR was higher for the TFE sequence (10.1 +/- 3.4) than for the b-TFE sequence (6.6 +/- 2.1; P < or = 0.014). All ten main and proximal segments of the LM/LAD, which were examined exclusively with the TFE sequence, were visible with grade 2.5 and 2.1. The middle segment was visible in seven cases with grade 1.3. In three cases, the distal segment was visible with grade 0.5. The vessel length was 78 +/- 27 mm and the CNR 11.9 +/- 2.4. The conventional TFE technique has demonstrated good feasibility for cMRA at 3T. In its operational availability at 3T, the b-TFE sequence is inferior to the TFE sequence.
Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi
2016-01-01
Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. PMID:27037832
Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests
Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.
1999-01-01
Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815
Length and sequence variability in mitochondrial control region of the milkfish, Chanos chanos.
Ravago, Rachel G; Monje, Virginia D; Juinio-Meñez, Marie Antonette
2002-01-01
Extensive length variability was observed in the mitochondrial control region of the milkfish, Chanos chanos. The nucleotide sequence of the control region and flanking regions was determined. Length variability and heteroplasmy was due to the presence of varying numbers of a 41-bp tandemly repeated sequence and a 48-bp insertion/deletion (indel). The structure and organization of the milkfish control region is similar to that of other teleost fish and vertebrates. However, extensive variation in the copy number of tandem repeats (4-20 copies) and the presence of a relatively large (48-bp) indel, are apparently uncommon in teleost fish control region sequences reported to date. High sequence variability of control region peripheral domains indicates the potential utility of selected regions as markers for population-level studies.
Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng
2012-01-01
To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944
Farmery, James H R; Smith, Mike L; Lynch, Andy G
2018-01-22
Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype.
Lei, Yong-Liang; Wang, Xiao-Guang; Tao, Xiao-Yan; Li, Hao; Meng, Sheng-Li; Chen, Xiu-Ying; Liu, Fu-Ming; Ye, Bi-Feng; Tang, Qing
2010-01-01
Based on sequencing the full-length genomes of four Chinese Ferret-Badger and dog, we analyze the properties of rabies viruses genetic variation in molecular level, get the information about rabies viruses prevalence and variation in Zhejiang, and enrich the genome database of rabies viruses street strains isolated from China. Rabies viruses in suckling mice were isolated, overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses from Chinese Ferret-Badger, dog, sika deer, vole, used vaccine strain were determined. The four full-length genomes were sequenced completely and had the same genetic structure with the length of 11, 923 nts or 11, 925 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions(IGRs), 423 nts-Pseudogene-like sequence (psi), 70 nts-Trailer. The four full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by BLAST and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the four full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so the nucleotide mutations happened in these four genomes were most synonymous mutations. Compared with the reference rabies viruses, the lengths of the five protein coding regions had no change, no recombination, only with a few point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the four genomes were similar to the reference vaccine or street strains. And the four strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessed the distinct district characteristics of China. Therefore, these four rabies viruses are likely to be street viruses already existing in the natural world.
Kulikov, A M; Lazebnyĭ, O E; Chekunova, A I; Mitrofanov, V G
2010-01-01
The steadiness of the molecular clock was estimated in 11 Drosophila species of the virilis group by sequences of five genes by applying Tajima's Simple Method. The main characteristic of this method is the independence of its phylogenetic constructions. The obtained results have completely confirmed the conclusions drawn relying on the application of the two-cluster test and the Takezaki branch-length test. In addition, the deviation of the molecular clock has found confirmation in D. virilis evolutionary lineages.
Fundamental Bounds for Sequence Reconstruction from Nanopore Sequencers.
Magner, Abram; Duda, Jarosław; Szpankowski, Wojciech; Grama, Ananth
2016-06-01
Nanopore sequencers are emerging as promising new platforms for high-throughput sequencing. As with other technologies, sequencer errors pose a major challenge for their effective use. In this paper, we present a novel information theoretic analysis of the impact of insertion-deletion (indel) errors in nanopore sequencers. In particular, we consider the following problems: (i) for given indel error characteristics and rate, what is the probability of accurate reconstruction as a function of sequence length; (ii) using replicated extrusion (the process of passing a DNA strand through the nanopore), what is the number of replicas needed to accurately reconstruct the true sequence with high probability? Our results provide a number of important insights: (i) the probability of accurate reconstruction of a sequence from a single sample in the presence of indel errors tends quickly (i.e., exponentially) to zero as the length of the sequence increases; and (ii) replicated extrusion is an effective technique for accurate reconstruction. We show that for typical distributions of indel errors, the required number of replicas is a slow function (polylogarithmic) of sequence length - implying that through replicated extrusion, we can sequence large reads using nanopore sequencers. Moreover, we show that in certain cases, the required number of replicas can be related to information-theoretic parameters of the indel error distributions.
Sanchez, Daniel J; Reber, Paul J
2012-04-01
The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the implicit sequence learning mechanism, participants performed the serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment 2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to 80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A comparison of learning rates across all three experiments found a surprising degree of constancy in the rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be constant with the logarithm of the number of sequence repetitions practiced during training. The consistency in learning rate across experiments and conditions implies that the mechanisms supporting implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by high rates of irrelevant sequences during training.
2011-01-01
Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the library has a large number of transcription factors and will be interesting for discovery and validation of drought or abiotic stress related genes in common bean. PMID:22118559
On avoided words, absent words, and their application to biological sequence analysis.
Almirantis, Yannis; Charalampopoulos, Panagiotis; Gao, Jia; Iliopoulos, Costas S; Mohamed, Manal; Pissis, Solon P; Polychronopoulos, Dimitris
2017-01-01
The deviation of the observed frequency of a word w from its expected frequency in a given sequence x is used to determine whether or not the word is avoided . This concept is particularly useful in DNA linguistic analysis. The value of the deviation of w , denoted by [Formula: see text], effectively characterises the extent of a word by its edge contrast in the context in which it occurs. A word w of length [Formula: see text] is a [Formula: see text]-avoided word in x if [Formula: see text], for a given threshold [Formula: see text]. Notice that such a word may be completely absent from x . Hence, computing all such words naïvely can be a very time-consuming procedure, in particular for large k . In this article, we propose an [Formula: see text]-time and [Formula: see text]-space algorithm to compute all [Formula: see text]-avoided words of length k in a given sequence of length n over a fixed-sized alphabet. We also present a time-optimal [Formula: see text]-time algorithm to compute all [Formula: see text]-avoided words (of any length) in a sequence of length n over an integer alphabet of size [Formula: see text]. In addition, we provide a tight asymptotic upper bound for the number of [Formula: see text]-avoided words over an integer alphabet and the expected length of the longest one. We make available an implementation of our algorithm. Experimental results, using both real and synthetic data, show the efficiency and applicability of our implementation in biological sequence analysis. The systematic search for avoided words is particularly useful for biological sequence analysis. We present a linear-time and linear-space algorithm for the computation of avoided words of length k in a given sequence x . We suggest a modification to this algorithm so that it computes all avoided words of x , irrespective of their length, within the same time complexity. We also present combinatorial results with regards to avoided words and absent words.
Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)
Nishizawa, T.; Kurath, G.; Winton, J.R.
1997-01-01
We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.
Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M
2016-07-01
The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.
A new molecular evolution model for limited insertion independent of substitution.
Lèbre, Sophie; Michel, Christian J
2013-10-01
We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion Independent of Substitution [13,14]. In the IDIS model, the three independent processes of substitution, insertion and deletion of residues have constant rates. In order to control the genome expansion during evolution, we generalize here the IDIS model by introducing an insertion rate which decreases when the sequence grows and tends to 0 for a maximum sequence length nmax. This new model, called LIIS for Limited Insertion Independent of Substitution, defines a matrix differential equation satisfied by a vector P(t) describing the sequence content in each residue at evolution time t. An analytical solution is obtained for any diagonalizable substitution matrix M. Thus, the LIIS model gives an expression of the sequence content vector P(t) in each residue under evolution time t as a function of the eigenvalues and the eigenvectors of matrix M, the residue insertion rate vector R, the total insertion rate r, the initial and maximum sequence lengths n0 and nmax, respectively, and the sequence content vector P(t0) at initial time t0. The derivation of the analytical solution is much more technical, compared to the IDIS model, as it involves Gauss hypergeometric functions. Several propositions of the LIIS model are derived: proof that the IDIS model is a particular case of the LIIS model when the maximum sequence length nmax tends to infinity, fixed point, time scale, time step and time inversion. Using a relation between the sequence length l and the evolution time t, an expression of the LIIS model as a function of the sequence length l=n(t) is obtained. Formulas for 'insertion only', i.e. when the substitution rates are all equal to 0, are derived at evolution time t and sequence length l. Analytical solutions of the LIIS model are explicitly derived, as a function of either evolution time t or sequence length l, for two classical substitution matrices: the 3-parameter symmetric substitution matrix [12] (LIIS-SYM3) and the HKY asymmetric substitution matrix[9] (LIIS-HKY). An evaluation of the LIIS model (precisely, LIIS-HKY) based on four statistical analyses of the GC content in complete genomes of four prokaryotic taxonomic groups, namely Chlamydiae, Crenarchaeota, Spirochaetes and Thermotogae, shows the expected improvement from the theory of the LIIS model compared to the IDIS model. Copyright © 2013 Elsevier Inc. All rights reserved.
What is a melody? On the relationship between pitch and brightness of timbre
Cousineau, Marion; Carcagno, Samuele; Demany, Laurent; Pressnitzer, Daniel
2014-01-01
Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners’ task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities. PMID:24478638
Evolutionary tree reconstruction
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Kanefsky, Bob
1990-01-01
It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.
Length and sequence dependence in the association of Huntingtin protein with lipid membranes
NASA Astrophysics Data System (ADS)
Jawahery, Sudi; Nagarajan, Anu; Matysiak, Silvina
2013-03-01
There is a fundamental gap in our understanding of how aggregates of mutant Huntingtin protein (htt) with overextended polyglutamine (polyQ) sequences gain the toxic properties that cause Huntington's disease (HD). Experimental studies have shown that the most important step associated with toxicity is the binding of mutant htt aggregates to lipid membranes. Studies have also shown that flanking amino acid sequences around the polyQ sequence directly affect interactions with the lipid bilayer, and that polyQ sequences of greater than 35 glutamine repeats in htt are a characteristic of HD. The key steps that determine how flanking sequences and polyQ length affect the structure of lipid bilayers remain unknown. In this study, we use atomistic molecular dynamics simulations to study the interactions between lipid membranes of varying compositions and polyQ peptides of varying lengths and flanking sequences. We find that overextended polyQ interactions do cause deformation in model membranes, and that the flanking sequences do play a role in intensifying this deformation by altering the shape of the affected regions.
Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation.
De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter
2010-09-01
Two lactic acid bacteria, strains 257(T) and 252, were isolated from traditional heap fermentations of Ghanaian cocoa beans. 16S rRNA gene sequence analysis of these strains allocated them to the genus Weissella, showing 99.5 % 16S rRNA gene sequence similarity towards Weissella ghanensis LMG 24286(T). Whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and biochemical tests confirmed their unique taxonomic position. DNA-DNA hybridization experiments towards their nearest phylogenetic neighbour demonstrated that the two strains represent a novel species, for which we propose the name Weissella fabaria sp. nov., with strain 257(T) (=LMG 24289(T) =DSM 21416(T)) as the type strain. Additional sequence analysis using pheS gene sequences proved useful for identification of all Weissella-Leuconostoc-Oenococcus species and for the recognition of the novel species.
Surendranath, V; Albrecht, V; Hayhurst, J D; Schöne, B; Robinson, J; Marsh, S G E; Schmidt, A H; Lange, V
2017-07-01
Recent years have seen a rapid increase in the discovery of novel allelic variants of the human leukocyte antigen (HLA) genes. Commonly, only the exons encoding the peptide binding domains of novel HLA alleles are submitted. As a result, the IPD-IMGT/HLA Database lacks sequence information outside those regions for the majority of known alleles. This has implications for the application of the new sequencing technologies, which deliver sequence data often covering the complete gene. As these technologies simplify the characterization of the complete gene regions, it is desirable for novel alleles to be submitted as full-length sequences to the database. However, the manual annotation of full-length alleles and the generation of specific formats required by the sequence repositories is prone to error and time consuming. We have developed TypeLoader to address both these facets. With only the full-length sequence as a starting point, Typeloader performs automatic sequence annotation and subsequently handles all steps involved in preparing the specific formats for submission with very little manual intervention. TypeLoader is routinely used at the DKMS Life Science Lab and has aided in the successful submission of more than 900 novel HLA alleles as full-length sequences to the European Nucleotide Archive repository and the IPD-IMGT/HLA Database with a 95% reduction in the time spent on annotation and submission when compared with handling these processes manually. TypeLoader is implemented as a web application and can be easily installed and used on a standalone Linux desktop system or within a Linux client/server architecture. TypeLoader is downloadable from http://www.github.com/DKMS-LSL/typeloader. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi
2018-02-12
Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.
Genotyping of Chromobacterium violaceum isolates by recA PCR-RFLP analysis.
Scholz, Holger Christian; Witte, Angela; Tomaso, Herbert; Al Dahouk, Sascha; Neubauer, Heinrich
2005-03-15
Intraspecies variation of Chromobacterium violaceum was examined by comparative sequence - and by restriction fragment length polymorphism analysis of the recombinase A gene (recA-PCR-RFLP). Primers deduced from the known recA gene sequence of the type strain C. violaceum ATCC 12472(T) allowed the specific amplification of a 1040bp recA fragment from each of the 13 C. violaceum strains investigated, whereas other closely related organisms tested negative. HindII-PstI-recA RFLP analysis generated from 13 representative C. violaceum strains enabled us to identify at least three different genospecies. In conclusion, analysis of the recA gene provides a rapid and robust nucleotide sequence-based approach to specifically identify and classify C. violaceum on genospecies level.
Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming
2016-01-01
Background and Aims Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Methods Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Key Results Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5′ end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. Conclusions The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1. PMID:27582362
NASA Astrophysics Data System (ADS)
Zhou, Wei; Ding, Hongye; Sui, Zhenghong; Wang, Zhongxia; Wang, Jinguo
2014-05-01
The red alga Gracilariopsis lemaneiformis (Bory) is an economically valuable macroalgae. As a means to identify the sex of immature Gracilariopsis lemaneiformis, the amplified fragment length polymorphism (AFLP) technique was used to search for possible sex- or phase-related markers in male gametophytes, female gametophytes, and tetrasporophytes, respectively. Seven AFLP selective amplification primers were used in this study. The primer combination E-TG/M-CCA detected a specific band linked to male gametophytes. The DNA fragment was recovered and a 402-bp fragment was sequenced. However, no DNA sequence match was found in public databases. Sequence characterized amplified region (SCAR) primers were designed from the sequence to test the repeatability of the relationship to the sex, using 69 male gametophytes, 139 female gametophytes, and 47 tetrasporophytes. The test results demonstrate a good linkage and repeatability of the SCAR marker to sex. The SCAR primers developed in this study could reduce the time required for sex identification of Gracilariopsis lemaneiformis by four to six months. This can reduce both the time investment and number of specimens required in breeding experiments.
Vibration transfer mobility measurements using maximum length sequences
NASA Astrophysics Data System (ADS)
Singleton, Herbert L.
2005-09-01
Vibration transfer mobility measurements are required under Federal Transit Administration guidelines when developing detailed predictions of ground-borne vibration for rail transit systems. These measurements typically use a large instrumented hammer to generate impulses in the soil. These impulses are measured by an array of accelerometers to characterize the transfer mobility of the ground in a localized area. While effective, these measurements often make use of heavy, custom-engineered equipment to produce the impulse signal. To obtain satisfactory signal-to-noise ratios, it is necessary to generate multiple impulses to generate an average value, but this process involves considerable physical labor in the field. To address these shortcomings, a transfer mobility measurement system utilizing a tactile transducer and maximum length sequences (MLS) was developed. This system uses lightweight off-the-shelf components to significantly reduce the weight and cost of the system. The use of MLS allows for adequate signal-to-noise ratio from the tactile transducer, while minimizing the length of the measurement. Tests of the MLS system show good agreement with the impulse-based method. The combination of the cost savings and reduced weight of this new system facilitates transfer mobility measurements that are less physically demanding, and more economical when compared with current methods.
Wang, L; Eriksson, S
2000-01-01
The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy. PMID:11023833
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples
Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.
2016-01-01
Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273
ERIC Educational Resources Information Center
Hasselmo, Michael E.
2007-01-01
Many memory models focus on encoding of sequences by excitatory recurrent synapses in region CA3 of the hippocampus. However, data and modeling suggest an alternate mechanism for encoding of sequences in which interference between theta frequency oscillations encodes the position within a sequence based on spatial arc length or time. Arc length…
A space-efficient algorithm for local similarities.
Huang, X Q; Hardison, R C; Miller, W
1990-10-01
Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.
LenVarDB: database of length-variant protein domains.
Mutt, Eshita; Mathew, Oommen K; Sowdhamini, Ramanathan
2014-01-01
Protein domains are functionally and structurally independent modules, which add to the functional variety of proteins. This array of functional diversity has been enabled by evolutionary changes, such as amino acid substitutions or insertions or deletions, occurring in these protein domains. Length variations (indels) can introduce changes at structural, functional and interaction levels. LenVarDB (freely available at http://caps.ncbs.res.in/lenvardb/) traces these length variations, starting from structure-based sequence alignments in our Protein Alignments organized as Structural Superfamilies (PASS2) database, across 731 structural classification of proteins (SCOP)-based protein domain superfamilies connected to 2 730 625 sequence homologues. Alignment of sequence homologues corresponding to a structural domain is available, starting from a structure-based sequence alignment of the superfamily. Orientation of the length-variant (indel) regions in protein domains can be visualized by mapping them on the structure and on the alignment. Knowledge about location of length variations within protein domains and their visual representation will be useful in predicting changes within structurally or functionally relevant sites, which may ultimately regulate protein function. Non-technical summary: Evolutionary changes bring about natural changes to proteins that may be found in many organisms. Such changes could be reflected as amino acid substitutions or insertions-deletions (indels) in protein sequences. LenVarDB is a database that provides an early overview of observed length variations that were set among 731 protein families and after examining >2 million sequences. Indels are followed up to observe if they are close to the active site such that they can affect the activity of proteins. Inclusion of such information can aid the design of bioengineering experiments.
Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform.
Schirmer, Melanie; Ijaz, Umer Z; D'Amore, Rosalinda; Hall, Neil; Sloan, William T; Quince, Christopher
2015-03-31
With read lengths of currently up to 2 × 300 bp, high throughput and low sequencing costs Illumina's MiSeq is becoming one of the most utilized sequencing platforms worldwide. The platform is manageable and affordable even for smaller labs. This enables quick turnaround on a broad range of applications such as targeted gene sequencing, metagenomics, small genome sequencing and clinical molecular diagnostics. However, Illumina error profiles are still poorly understood and programs are therefore not designed for the idiosyncrasies of Illumina data. A better knowledge of the error patterns is essential for sequence analysis and vital if we are to draw valid conclusions. Studying true genetic variation in a population sample is fundamental for understanding diseases, evolution and origin. We conducted a large study on the error patterns for the MiSeq based on 16S rRNA amplicon sequencing data. We tested state-of-the-art library preparation methods for amplicon sequencing and showed that the library preparation method and the choice of primers are the most significant sources of bias and cause distinct error patterns. Furthermore we tested the efficiency of various error correction strategies and identified quality trimming (Sickle) combined with error correction (BayesHammer) followed by read overlapping (PANDAseq) as the most successful approach, reducing substitution error rates on average by 93%. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Indexing a sequence for mapping reads with a single mismatch.
Crochemore, Maxime; Langiu, Alessio; Rahman, M Sohel
2014-05-28
Mapping reads against a genome sequence is an interesting and useful problem in computational molecular biology and bioinformatics. In this paper, we focus on the problem of indexing a sequence for mapping reads with a single mismatch. We first focus on a simpler problem where the length of the pattern is given beforehand during the data structure construction. This version of the problem is interesting in its own right in the context of the next generation sequencing. In the sequel, we show how to solve the more general problem. In both cases, our algorithm can construct an efficient data structure in O(n log(1+ε) n) time and space and can answer subsequent queries in O(m log log n + K) time. Here, n is the length of the sequence, m is the length of the read, 0<ε<1 and is the optimal output size.
Design of the hairpin ribozyme for targeting specific RNA sequences.
Hampel, A; DeYoung, M B; Galasinski, S; Siwkowski, A
1997-01-01
The following steps should be taken when designing the hairpin ribozyme to cleave a specific target sequence: 1. Select a target sequence containing BN*GUC where B is C, G, or U. 2. Select the target sequence in areas least likely to have extensive interfering structure. 3. Design the conventional hairpin ribozyme as shown in Fig. 1, such that it can form a 4 bp helix 2 and helix 1 lengths up to 10 bp. 4. Synthesize this ribozyme from single-stranded DNA templates with a double-stranded T7 promoter. 5. Prepare a series of short substrates capable of forming a range of helix 1 lengths of 5-10 bp. 6. Identify these by direct RNA sequencing. 7. Assay the extent of cleavage of each substrate to identify the optimal length of helix 1. 8. Prepare the hairpin tetraloop ribozyme to determine if catalytic efficiency can be improved.
Frankham, Greta J.; McEwing, Ross; The, Dang Tat; Hogg, Carolyn J.; Lo, Nathan; Johnson, Rebecca N.
2018-01-01
Rhinoceros (rhinos) have suffered a dramatic increase in poaching over the past decade due to the growing demand for rhino horn products in Asia. One way to reverse this trend is to enhance enforcement and intelligence gathering tools used for species identification of horns, in particular making them fast, inexpensive and accurate. Traditionally, species identification tests are based on DNA sequence data, which, depending on laboratory resources, can be either time or cost prohibitive. This study presents a rapid rhino species identification test, utilizing species-specific primers within the cytochrome b gene multiplexed in a single reaction, with a presumptive species identification based on the length of the resultant amplicon. This multiplex PCR assay can provide a presumptive species identification result in less than 24 hours. Sequence-based definitive testing can be conducted if/when required (e.g. court purposes). This work also presents an actual casework scenario in which the presumptive test was successfully utlitised, in concert with sequence-based definitive testing. The test was carried out on seized suspected rhino horns tested at the Institute of Ecology and Biological Resources, the CITES mandated laboratory in Vietnam, a country that is known to be a major source of demand for rhino horns. This test represents the basis for which future ‘rapid species identification tests’ can be trialed. PMID:29902212
Hiraoka, Koichi; Kinoshita, Atsushi; Kunimura, Hiroshi; Matsuoka, Masakazu
2018-05-31
This study investigated whether the variability of the sequence length of the go trials preceding a stop trial enhanced or interfered with inhibitory control. The hypotheses tested were either inhibitory control improves when the sequence length of the go trials varies as a consequence of increased preparatory effort or it degrades as a consequence of the switching cost from the go trial to the stop trial. The right-handed participants abducted the left or right index finger in response to a go cue during the go trials. A stop cue was given at 50, 90, or 130 ms after the go cue, with 0.25 probability in the stop trial. In the less variable session, a stop trial was presented after two, three, or four consecutive go trials. In the variable session, a stop trial was presented after one, two, three, four, or five consecutive go trials. The reaction time and stop-signal reaction time were not significantly different between the sessions and between the response sides. Nevertheless, the probability of successful inhibition of the right-hand response in the variable session was higher than that in the less variable session when the stop cue was given 50 ms after a go cue. This finding supports the view that preparatory effort due to less predictability of the chance of a forthcoming response inhibition enhances the ability of the right-hand response inhibition when the stop process begins earlier.
Creager, Hannah M; Becker, Ericka A; Sandman, Kelly K; Karl, Julie A; Lank, Simon M; Bimber, Benjamin N; Wiseman, Roger W; Hughes, Austin L; O'Connor, Shelby L; O'Connor, David H
2011-09-01
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.
Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi
2016-06-01
Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Assessing the performance of the Oxford Nanopore Technologies MinION
Laver, T.; Harrison, J.; O’Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme, D.J.
2015-01-01
The Oxford Nanopore Technologies (ONT) MinION is a new sequencing technology that potentially offers read lengths of tens of kilobases (kb) limited only by the length of DNA molecules presented to it. The device has a low capital cost, is by far the most portable DNA sequencer available, and can produce data in real-time. It has numerous prospective applications including improving genome sequence assemblies and resolution of repeat-rich regions. Before such a technology is widely adopted, it is important to assess its performance and limitations in respect of throughput and accuracy. In this study we assessed the performance of the MinION by re-sequencing three bacterial genomes, with very different nucleotide compositions ranging from 28.6% to 70.7%; the high G + C strain was underrepresented in the sequencing reads. We estimate the error rate of the MinION (after base calling) to be 38.2%. Mean and median read lengths were 2 kb and 1 kb respectively, while the longest single read was 98 kb. The whole length of a 5 kb rRNA operon was covered by a single read. As the first nanopore-based single molecule sequencer available to researchers, the MinION is an exciting prospect; however, the current error rate limits its ability to compete with existing sequencing technologies, though we do show that MinION sequence reads can enhance contiguity of de novo assembly when used in conjunction with Illumina MiSeq data. PMID:26753127
An efficient study design to test parent-of-origin effects in family trios.
Yu, Xiaobo; Chen, Gao; Feng, Rui
2017-11-01
Increasing evidence has shown that genes may cause prenatal, neonatal, and pediatric diseases depending on their parental origins. Statistical models that incorporate parent-of-origin effects (POEs) can improve the power of detecting disease-associated genes and help explain the missing heritability of diseases. In many studies, children have been sequenced for genome-wide association testing. But it may become unaffordable to sequence their parents and evaluate POEs. Motivated by the reality, we proposed a budget-friendly study design of sequencing children and only genotyping their parents through single nucleotide polymorphism array. We developed a powerful likelihood-based method, which takes into account both sequence reads and linkage disequilibrium to infer the parental origins of children's alleles and estimate their POEs on the outcome. We evaluated the performance of our proposed method and compared it with an existing method using only genotypes, through extensive simulations. Our method showed higher power than the genotype-based method. When either the mean read depth or the pair-end length was reasonably large, our method achieved ideal power. When single parents' genotypes were unavailable or parental genotypes at the testing locus were not typed, both methods lost power compared with when complete data were available; but the power loss from our method was smaller than the genotype-based method. We also extended our method to accommodate mixed genotype, low-, and high-coverage sequence data from children and their parents. At presence of sequence errors, low-coverage parental sequence data may lead to lower power than parental genotype data. © 2017 WILEY PERIODICALS, INC.
Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah
2015-08-21
Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ning, ZhongHua; Hincke, Maxwell T.; Yang, Ning; Hou, ZhuoCheng
2014-01-01
Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not ‘finished’. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences. PMID:24676480
Zhang, Quan; Liu, Long; Zhu, Feng; Ning, ZhongHua; Hincke, Maxwell T; Yang, Ning; Hou, ZhuoCheng
2014-01-01
Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not 'finished'. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences.
Khrapko, Konstantin R [Moscow, RU; Khorlin, Alexandr A [Moscow, RU; Ivanov, Igor B [Moskovskaya, RU; Ershov, Gennady M [Moscow, RU; Lysov, Jury P [Moscow, RU; Florentiev, Vladimir L [Moscow, RU; Mirzabekov, Andrei D [Moscow, RU
1996-09-03
A method for sequencing DNA by hybridization that includes the following steps: forming an array of oligonucleotides at such concentrations that either ensure the same dissociation temperature for all fully complementary duplexes or allows hybridization and washing of such duplexes to be conducted at the same temperature; hybridizing said oligonucleotide array with labeled test DNA; washing in duplex dissociation conditions; identifying single-base substitutions in the test DNA by analyzing the distribution of the dissociation temperatures and reconstructing the DNA nucleotide sequence based on the above analysis. A device for carrying out the method comprises a solid substrate and a matrix rigidly bound to the substrate. The matrix contains the oligonucleotide array and consists of a multiplicity of gel portions. Each gel portion contains one oligonucleotide of desired length. The gel portions are separated from one another by interstices and have a thickness not exceeding 30 .mu.m.
Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation.
De Bruyne, Katrien; Camu, Nicholas; Lefebvre, Karen; De Vuyst, Luc; Vandamme, Peter
2008-12-01
During a study on lactic acid bacteria (and their species diversity) in spontaneous heap fermentations of Ghanaian cocoa beans, two strains, designated 215(T) and 194B, were isolated. A phylogenetic analysis based on 16S rRNA gene sequences demonstrated that these strains represented a distinct lineage close to the genus Weissella and showing only 92.1 % 16S rRNA gene sequence similarity with respect to their closest neighbour, Weissella soli LMG 20113(T). Whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and physiological and biochemical tests confirmed the unique taxonomic position of the two novel isolates. On the basis of the results of the morphological and biochemical tests and 16S rRNA gene sequence analysis, strains 215(T) and 194B represent the most peripheral lineage of the genus Weissella, for which we propose the name Weissella ghanensis sp. nov. The type strain is 215(T) (=LMG 24286(T)=DSM 19935(T)).
Long-range correlations and charge transport properties of DNA sequences
NASA Astrophysics Data System (ADS)
Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui
2010-04-01
By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5
Fong, Wai-Ying; Ho, Chi-Chun; Poon, Wing-Tat
2017-05-12
Thiopurine intolerance and treatment-related toxicity, such as fatal myelosuppression, is related to non-function genetic variants encoding thiopurine S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15). Genetic testing of the common variants NUDT15:NM_018283.2:c.415C>T (Arg139Cys, dbSNP rs116855232 T allele) and TPMT: NM_000367.4:c.719A>G (TPMT*3C, dbSNP rs1142345 G allele) in East Asians including Chinese can potentially prevent treatment-related complications. Two complementary genotyping approaches, real-time PCR-high resolution melt (PCR-HRM) and PCR-restriction fragment length morphism (PCR-RFLP) analysis were evaluated using conventional PCR and Sanger sequencing genotyping as the gold standard. Sixty patient samples were tested, revealing seven patients (11.7%) heterozygous for NUDT15 c.415C>T, one patient homozygous for the variant and one patient heterozygous for the TPMT*3C non-function allele. No patient was found to harbor both variants. In total, nine out of 60 (15%) patients tested had genotypic evidence of thiopurine intolerance, which may require dosage adjustment or alternative medication should they be started on azathioprine, mercaptopurine or thioguanine. The two newly developed assays were more efficient and showed complete concordance (60/60, 100%) compared to the Sanger sequencing results. Accurate and cost-effective genotyping assays by real-time PCR-HRM and PCR-RFLP for NUDT15 c.415C>T and TPMT*3C were successfully developed. Further studies may establish their roles in genotype-informed clinical decision-making in the prevention of morbidity and mortality due to thiopurine intolerance.
Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike
2018-01-01
ABSTRACT Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have developed a new reference viral database (RVDB) that provides a broad representation of different virus species from eukaryotes by including all viral, virus-like, and virus-related sequences (excluding bacteriophages), regardless of their size. In particular, RVDB contains endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Sequences were clustered to reduce redundancy while retaining high viral sequence diversity. A particularly useful feature of RVDB is the reduction of cellular sequences, which can enhance the run efficiency of large transcriptomic and genomic data analysis and increase the specificity of virus detection. PMID:29564396
Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike; Khan, Arifa S
2018-01-01
Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have developed a new reference viral database (RVDB) that provides a broad representation of different virus species from eukaryotes by including all viral, virus-like, and virus-related sequences (excluding bacteriophages), regardless of their size. In particular, RVDB contains endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Sequences were clustered to reduce redundancy while retaining high viral sequence diversity. A particularly useful feature of RVDB is the reduction of cellular sequences, which can enhance the run efficiency of large transcriptomic and genomic data analysis and increase the specificity of virus detection.
Wu, Chi; Xie, Zuowei; Zhang, Guangzhao; Zi, Guofu; Tu, Yingfeng; Yang, Yali; Cai, Ping; Nie, Ting
2002-12-07
A combination of polymer physics and synthetic chemistry has enabled us to develop self-assembly assisted polymerization (SAAP), leading to the preparation of long multi-block copolymers with an ordered chain sequence and controllable block lengths.
Lu, Min; An, Huaming; Li, Liangliang
2016-01-01
Rosa roxburghii Tratt is an important commercial horticultural crop in China that is recognized for its nutritional and medicinal values. In spite of the economic significance, genomic information on this rose species is currently unavailable. In the present research, a genome survey of R. roxburghii was carried out using next-generation sequencing (NGS) technologies. Total 30.29 Gb sequence data was obtained by HiSeq 2500 sequencing and an estimated genome size of R. roxburghii was 480.97 Mb, in which the guanine plus cytosine (GC) content was calculated to be 38.63%. All of these reads were technically assembled and a total of 627,554 contigs with a N50 length of 1.484 kb and furthermore 335,902 scaffolds with a total length of 409.36 Mb were obtained. Transposable elements (TE) sequence of 90.84 Mb which comprised 29.20% of the genome, and 167,859 simple sequence repeats (SSRs) were identified from the scaffolds. Among these, the mono-(66.30%), di-(25.67%), and tri-(6.64%) nucleotide repeats contributed to nearly 99% of the SSRs, and sequence motifs AG/CT (28.81%) and GAA/TTC (14.76%) were the most abundant among the dinucleotide and trinucleotide repeat motifs, respectively. Genome analysis predicted a total of 22,721 genes which have an average length of 2311.52 bp, an average exon length of 228.15 bp, and average intron length of 401.18 bp. Eleven genes putatively involved in ascorbate metabolism were identified and its expression in R. roxburghii leaves was validated by quantitative real-time PCR (qRT-PCR). This is the first report of genome-wide characterization of this rose species.
Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C
2013-01-16
The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof
Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter
2016-02-16
The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having beta-glucosidase activity and uses thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less
Polypeptide having swollenin activity and uses thereof
Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius
2015-11-04
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having beta-glucosidase activity and uses thereof
Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius
2015-09-01
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having cellobiohydrolase activity and uses thereof
Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter
2015-09-15
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having acetyl xylan esterase activity and uses thereof
Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter
2015-10-20
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having carbohydrate degrading activity and uses thereof
Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius
2015-08-18
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nierman, William C.
At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phredmore » Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.« less
Seal, B S; Neill, J D; Ridpath, J F
1994-07-01
Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.
Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque
Chou, Fang-Chieh; Lipfert, Jan; Das, Rhiju
2014-01-01
Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA's “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology. PMID:25102226
Tripathi, Pooja; Pandey, Paras N
2017-07-07
The present work employs pseudo amino acid composition (PseAAC) for encoding the protein sequences in their numeric form. Later this will be arranged in the similarity matrix, which serves as input for spectral graph clustering method. Spectral methods are used previously also for clustering of protein sequences, but they uses pair wise alignment scores of protein sequences, in similarity matrix. The alignment score depends on the length of sequences, so clustering short and long sequences together may not good idea. Therefore the idea of introducing PseAAC with spectral clustering algorithm came into scene. We extensively tested our method and compared its performance with other existing machine learning methods. It is consistently observed that, the number of clusters that we obtained for a given set of proteins is close to the number of superfamilies in that set and PseAAC combined with spectral graph clustering shows the best classification results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genome features of moderately halophilic polyhydroxyalkanoate-producing Yangia sp. CCB-MM3.
Lau, Nyok-Sean; Sam, Ka-Kei; Amirul, Abdullah Al-Ashraf
2017-01-01
Yangia sp. CCB-MM3 was one of several halophilic bacteria isolated from soil sediment in the estuarine Matang Mangrove, Malaysia. So far, no member from the genus Yangia , a member of the Rhodobacteraceae family, has been reported sequenced. In the current study, we present the first complete genome sequence of Yangia sp. strain CCB-MM3. The genome includes two chromosomes and five plasmids with a total length of 5,522,061 bp and an average GC content of 65%. Since a different strain of Yangia sp. (ND199) was reported to produce a polyhydroxyalkanoate copolymer, the ability for this production was tested in vitro and confirmed for strain CCB-MM3. Analysis of its genome sequence confirmed presence of a pathway for production of propionyl-CoA and gene cluster for PHA production in the sequenced strain. The genome sequence described will be a useful resource for understanding the physiology and metabolic potential of Yangia as well as for comparative genomic analysis with other Rhodobacteraceae .
IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
Genome-wide mapping of autonomous promoter activity in human cells
van Arensbergen, Joris; FitzPatrick, Vincent D.; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J.; van Steensel, Bas
2017-01-01
Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of sequences that could be tested. Here we present Survey of Regulatory Elements (SuRE), a method to assay more than 108 DNA fragments, each 0.2–2kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library is constructed of random genomic fragments upstream of a 20bp barcode and decoded by paired-end sequencing. This library is then transfected into cells and transcribed barcodes are quantified in the RNA by high throughput sequencing. When applied to the human genome, we achieved a 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide. By computational modeling we delineated subregions within promoters that are relevant for their activity. For instance, we show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites. PMID:28024146
Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Takahashi, Fuminori; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo
2013-01-01
A comprehensive collection of full-length cDNAs is essential for correct structural gene annotation and functional analyses of genes. We constructed a mixed full-length cDNA library from 21 different tissues of Brachypodium distachyon Bd21, and obtained 78,163 high quality expressed sequence tags (ESTs) from both ends of ca. 40,000 clones (including 16,079 contigs). We updated gene structure annotations of Brachypodium genes based on full-length cDNA sequences in comparison with the latest publicly available annotations. About 10,000 non-redundant gene models were supported by full-length cDNAs; ca. 6,000 showed some transcription unit modifications. We also found ca. 580 novel gene models, including 362 newly identified in Bd21. Using the updated transcription start sites, we searched a total of 580 plant cis-motifs in the −3 kb promoter regions and determined a genome-wide Brachypodium promoter architecture. Furthermore, we integrated the Brachypodium full-length cDNAs and updated gene structures with available sequence resources in wheat and barley in a web-accessible database, the RIKEN Brachypodium FL cDNA database. The database represents a “one-stop” information resource for all genomic information in the Pooideae, facilitating functional analysis of genes in this model grass plant and seamless knowledge transfer to the Triticeae crops. PMID:24130698
Stretching chimeric DNA: A test for the putative S-form
NASA Astrophysics Data System (ADS)
Whitelam, Stephen; Pronk, Sander; Geissler, Phillip L.
2008-11-01
Double-stranded DNA "overstretches" at a pulling force of about 65 pN, increasing in length by a factor of 1.7. The nature of the overstretched state is unknown, despite its considerable importance for DNA's biological function and technological application. Overstretching is thought by some to be a force-induced denaturation and by others to consist of a transition to an elongated, hybridized state called S-DNA. Within a statistical mechanical model, we consider the effect upon overstretching of extreme sequence heterogeneity. "Chimeric" sequences possessing halves of markedly different AT composition elongate under fixed external conditions via distinct, spatially segregated transitions. The corresponding force-extension data vary with pulling rate in a manner that depends qualitatively and strikingly upon whether the hybridized S-form is accessible. This observation implies a test for S-DNA that could be performed in experiment.
Paiva, Anthony M; Sheardy, Richard D
2005-04-20
The formation of unusual structures during DNA replication has been invoked for gene expansion in genomes possessing triplet repeat sequences, CNG, where N = A, C, G, or T. In particular, it has been suggested that the daughter strand of the leading strand partially dissociates from the parent strand and forms a hairpin. The equilibrium between the fully duplexed parent:daugter species and the parent:hairpin species is dependent upon their relative stabilities and the rates of reannealing of the daughter strand back to the parent. These stabilities and rates are ultimately influenced by the sequence context of the DNA and its length. Previous work has demonstrated that longer strands are more stable than shorter strands and that the identity of N also influences the thermal stability [Paiva, A. M.; Sheardy, R. D. Biochemistry 2004, 43, 14218-14227]. Here, we show that the rate of duplex formation from complementary hairpins is also sequence context and length dependent. In particular, longer duplexes have higher activation energies than shorter duplexes of the same sequence context. Further, [(CCG):(GGC)] duplexes have lower activation energies than corresponding [(CAG):(GTC)] duplexes of the same length. Hence, hairpins formed from long CNG sequences are more thermodynamically stable and have slower kinetics for reannealing to their complement than shorter analogues. Gene expansion can now be explained in terms of thermodynamics and kinetics.
Gelada vocal sequences follow Menzerath's linguistic law.
Gustison, Morgan L; Semple, Stuart; Ferrer-I-Cancho, Ramon; Bergman, Thore J
2016-05-10
Identifying universal principles underpinning diverse natural systems is a key goal of the life sciences. A powerful approach in addressing this goal has been to test whether patterns consistent with linguistic laws are found in nonhuman animals. Menzerath's law is a linguistic law that states that, the larger the construct, the smaller the size of its constituents. Here, to our knowledge, we present the first evidence that Menzerath's law holds in the vocal communication of a nonhuman species. We show that, in vocal sequences of wild male geladas (Theropithecus gelada), construct size (sequence size in number of calls) is negatively correlated with constituent size (duration of calls). Call duration does not vary significantly with position in the sequence, but call sequence composition does change with sequence size and most call types are abbreviated in larger sequences. We also find that intercall intervals follow the same relationship with sequence size as do calls. Finally, we provide formal mathematical support for the idea that Menzerath's law reflects compression-the principle of minimizing the expected length of a code. Our findings suggest that a common principle underpins human and gelada vocal communication, highlighting the value of exploring the applicability of linguistic laws in vocal systems outside the realm of language.
A retrotransposable element from the mosquito Anopheles gambiae .
Besansky, N J
1990-01-01
A family of middle repetitive elements from the African malaria vector Anopheles gambiae is described. Approximately 100 copies of the element, designated T1Ag, are dispersed in the genome. Full-length elements are 4.6 kilobase pairs in length, but truncation of the 5' end is common. Nucleotide sequences of one full-length, two 5'-truncated, and two 5' ends of T1Ag elements were determined and aligned to define a consensus sequence. Sequence analysis revealed two long, overlapping open reading frames followed by a polyadenylation signal, AATAAA, and a tail consisting of tandem repetitions of the motif TGAAA. No direct or inverted long terminal repeats (LTRs) were detected. The first open reading frame, 442 amino acids in length, includes a domain resembling that of nucleic acid-binding proteins. The second open reading frame, 975 amino acids long, resembles the reverse transcriptases of a category of retrotransposable elements without LTRs, variously termed class II retrotransposons, class III elements or non-LTR retrotransposons. Similarity at the sequence and structural levels places T1Ag in this category. Images PMID:1689457
Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu
2015-01-01
In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.
Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize; Zhao, Yun; Zhao, Hai
2017-01-01
Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela , Landoltia , Lemna , Wolffiella , and Wolffia . This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.
Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions
Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize
2017-01-01
Background Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. Discussion This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds. PMID:29302399
Occurrence and characterization of hitherto unknown Streptomyces species in semi-arid soils.
Kumar, Surendra; Priya, E; Singh Solanki, Dilip; Sharma, Ruchika; Gehlot, Praveen; Pathak, Rakesh; Singh, S K
2016-09-01
Streptomyces the predominant genus of Actinobacteria and plays an important role in the recycling of soil organic matter and production of important secondary metabolites. The occurrence and diversity assessment of Streptomyces species revealed alkaline and poor nutrient status of soils of semi-arid region of Jodhpur, Rajasthan. The morphological and biochemical characterization of 21 Streptomyces isolates facilitated Genus level identification but were insufficient to designate species. Species designation based on 16S rRNA gene delineated 21 isolates into 14 Streptomyces species. Upon BLAST search, the test isolates exhibited 98 to 100% identities with that of the best aligned sequences of the NCBI database. The GC content of 16S rRNA gene sequences of all the Streptomyces isolates tested ranged from 59.03% to 60.94%. The multiple sequence alignment of all the 21 Streptomyces isolates generated a phylogram with high bootstrap values indicating reliable grouping of isolates based on nucleotide sequence variations by way of insertion, deletion and substitutions and 16S rRNA length polymorphism. Some of the Streptomyces species molecularly identified under present study are reported for the first time from semi-arid region of Jodhpur.
Oliveros, R; Cutillas, C; De Rojas, M; Arias, P
2000-12-01
Adult worms of Trichuris ovis and T. globulosa were collected from Ovis aries (sheep) and Capra hircus (goats). T. suis was isolated from Sus scrofa domestica (swine) and T. leporis was isolated from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and a ribosomal internal transcribed spacer (ITS2) was amplified and sequenced using polymerase-chain-reaction (PCR) techniques. The ITS2 of T. ovis and T. globulosa was 407 nucleotides in length and had a GC content of about 62%. Furthermore, the ITS2 of T. suis and T. leporis was 534 and 418 nucleotides in length and had a GC content of about 64.8% and 62.4%, respectively. There was evidence of slight variation in the sequence within individuals of all species analyzed, indicating intraindividual variation in the sequence of different copies of the ribosomal DNA. Furthermore, low-level intraspecific variation was detected. Sequence analyses of ITS2 products of T. ovis and T. globulosa demonstrated no sequence difference between them. Nevertheless, differences were detected between the ITS2 sequences of T. suis, T. leporis, and T. ovis, indicating that Trichuris species can reliably be differentiated by their ITS2 sequences and PCR-linked restriction-fragment-length polymorphism (RFLP).
Bioinformatic analysis of phage AB3, a phiKMV-like virus infecting Acinetobacter baumannii.
Zhang, J; Liu, X; Li, X-J
2015-01-16
The phages of Acinetobacter baumannii has drawn increasing attention because of the multi-drug resistance of A. baumanni. The aim of this study was to sequence Acinetobacter baumannii phage AB3 and conduct bioinformatic analysis to lay a foundation for genome remodeling and phage therapy. We isolated and sequenced A. baumannii phage AB3 and attempted to annotate and analyze its genome. The results showed that the genome is a double-stranded DNA with a total length of 31,185 base pairs (bp) and 97 open reading frames greater than 100 bp. The genome includes 28 predicted genes, of which 24 are homologous to phage AB1. The entire coding sequence is located on the negative strand, representing 90.8% of the total length. The G+C mol% was 39.18%, without areas of high G+C content over 200 bp in length. No GC island, tRNA gene, or repeated sequence was identified. Gene lengths were 120-3099 bp, with an average of 1011 bp. Six genes were found to be greater than 2000 bp in length. Genomic alignment and phylogenetic analysis of the RNA polymerase gene showed that similar to phage AB1, phage AB3 is a phiKMV-like virus in the T7 phage family.
Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq
Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru
2015-01-01
Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome. PMID:26617593
Nyaga, Martin M; Tan, Yi; Seheri, Mapaseka L; Halpin, Rebecca A; Akopov, Asmik; Stucker, Karla M; Fedorova, Nadia B; Shrivastava, Susmita; Duncan Steele, A; Mwenda, Jason M; Pickett, Brett E; Das, Suman R; Jeffrey Mphahlele, M
2018-05-18
Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity. Copyright © 2018 Elsevier B.V. All rights reserved.
Yamamoto, Eiji; Ito, Toshihiro; Ito, Hiroshi
2016-11-01
The nucleotide sequences of nucleocapsid protein (N); phosphoprotein (P); matrix protein (M); hemagglutinin-neuraminidase (HN); and large polymerase protein (L) genes, 3'-end leader, 5'-end trailer and intergenic regions of the avian paramyxovirus (APMV) strain goose/Shimane/67/2000 (APMV/Shimane67) were determined. Together with previously reported data on fusion protein (F) gene sequence [46], the determination of the genome sequence of APMV/Shimane67 has been completed in this study. The genome of APMV/Shimane67 comprised 16,146 nucleotides in length and contains six genes in the order of 3'-N-P-M-F-HN-L-5'. The features of the APMV/Shimane67 genome (e.g., nucleotide length of whole genome and each of the six genes, and predicted amino acid length of each of the six genes) were distinct from those of other APMV serotypes. Phylogenetic analysis indicated that although APMV/Shimane67 was grouped with APMV-1, -9 and -12, the evolutionary distance between APMV/Shimane67 and these viruses was longer than that observed between intra-serotype viruses. These results show that the genome sequence of APMV/Shimane67 contains specific characteristics and is distinguishable from other types of APMV.
Molecular identification of Trichuris vulpis and Trichuris suis isolated from different hosts.
Cutillas, Cristina; de Rojas, Manuel; Ariza, Concepción; Ubeda, José Manuel; Guevara, Diego
2007-01-01
Trichuris suis was isolated from the cecum of two different hosts (Sus scrofa domestica -- swine and Sus scrofa scrofa -- wild boar) and Trichuris vulpis from dogs in Sevilla, Spain. Genomic DNA was isolated and internal transcribed spacers (ITS)1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced using polymerase chain reaction techniques. The sequence of T. suis from both hosts was 1,396 bp in length while that of T. vulpis was 1,044 bp. ITS1 of both populations isolated of T. suis was 661 nucleotides in length, while the ITS2 was 534 nucleotides in length. Furthermore, the ITS1 of T. vulpis was 410 nucleotides in length, while the ITS2 was 433 nucleotides in length. One hundred fifty-four nucleotides were observed along the 5.8S gene of T. suis and T. vulpis. Intraindividual and intraspecific variations were detected in the rDNA of both species. The presence of microsatellites was observed in all the individuals assayed. Sequence analysis of the ITSs and the 5.8S gene has demonstrated no sequence differences between T. suis isolated from both hosts (S. scrofa domestica -- swine and S. scrofa scrofa -- wild boar). Nevertheless, clear differences were detected between the ITS1 and ITS2 of T. suis and T. vulpis. Furthermore, a comparative molecular analysis between both species and the previously published ITS1-5.8S-ITS2 sequence data of Trichuris ovis, Trichuris leporis, Trichuris muris, Trichuris arvicolae, and Trichuris skrjabini was carried out. A common homology zone was detected in the ITS1 sequence of all species of trichurids.
Zhang, Jing-Nan; Song, Ping; Hu, Jia-Rui; Mo, Sai-Jun; Peng, Mao-Yu; Zhou, Wei; Zou, Ji-Xing; Hu, Yin-Chang
2005-01-01
In this study,the full-length cDNAs of GH (Growth Hormone) gene was isolated from six important economic fishes, Siniperca kneri, Epinephelus coioides, Monopterus albus, Silurus asotus, Misgurnus anguillicaudatus and Carassius auratus gibelio Bloch. It is the first time to clone these GH sequences except E. coioides GH. The lengths of the above cDNAs are as follows: 953 bp, 1 023 bp, 825 bp, 1 082 bp, 1 154 bp and 1 180 bp. Each sequence includes an ORF of about 600 bp which encodes a protein of about 200 amino acid: S. kneri, E. coioides and M. albus GHs of 204 amino acid, S. asotus GH of 200 amino acid, M. anguillicaudatus and C. auratus gibelio GHs of 210 amino acid. Then detailed sequence analysis of the six GHs with many other fish sequences was performed. The six sequences all showed high homology to other sequences, especially to sequences within the same order, and many conserved residues were identified, most localized in five domains. The phylogenetic trees (MP and NJ) of many fish GH ORF sequences (including the new six) with Amia calva as outgroup were generally resolved and largely congruent with the morphology-based tree though some incongruities were observed, suggesting GH ORF should be paid more attention to in teleostean phylogeny.
Li, Zhoufang; Liu, Guangjie; Tong, Yin; Zhang, Meng; Xu, Ying; Qin, Li; Wang, Zhanhui; Chen, Xiaoping; He, Jiankui
2015-01-01
Profiling immune repertoires by high throughput sequencing enhances our understanding of immune system complexity and immune-related diseases in humans. Previously, cloning and Sanger sequencing identified limited numbers of T cell receptor (TCR) nucleotide sequences in rhesus monkeys, thus their full immune repertoire is unknown. We applied multiplex PCR and Illumina high throughput sequencing to study the TCRβ of rhesus monkeys. We identified 1.26 million TCRβ sequences corresponding to 643,570 unique TCRβ sequences and 270,557 unique complementarity-determining region 3 (CDR3) gene sequences. Precise measurements of CDR3 length distribution, CDR3 amino acid distribution, length distribution of N nucleotide of junctional region, and TCRV and TCRJ gene usage preferences were performed. A comprehensive profile of rhesus monkey immune repertoire might aid human infectious disease studies using rhesus monkeys. PMID:25961410
MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach
Watson, Mick; Minot, Samuel S.; Rivera, Maria C.; Franklin, Rima B.
2017-01-01
Abstract Background: Environmental metagenomic analysis is typically accomplished by assigning taxonomy and/or function from whole genome sequencing or 16S amplicon sequences. Both of these approaches are limited, however, by read length, among other technical and biological factors. A nanopore-based sequencing platform, MinION™, produces reads that are ≥1 × 104 bp in length, potentially providing for more precise assignment, thereby alleviating some of the limitations inherent in determining metagenome composition from short reads. We tested the ability of sequence data produced by MinION (R7.3 flow cells) to correctly assign taxonomy in single bacterial species runs and in three types of low-complexity synthetic communities: a mixture of DNA using equal mass from four species, a community with one relatively rare (1%) and three abundant (33% each) components, and a mixture of genomic DNA from 20 bacterial strains of staggered representation. Taxonomic composition of the low-complexity communities was assessed by analyzing the MinION sequence data with three different bioinformatic approaches: Kraken, MG-RAST, and One Codex. Results: Long read sequences generated from libraries prepared from single strains using the version 5 kit and chemistry, run on the original MinION device, yielded as few as 224 to as many as 3497 bidirectional high-quality (2D) reads with an average overall study length of 6000 bp. For the single-strain analyses, assignment of reads to the correct genus by different methods ranged from 53.1% to 99.5%, assignment to the correct species ranged from 23.9% to 99.5%, and the majority of misassigned reads were to closely related organisms. A synthetic metagenome sequenced with the same setup yielded 714 high quality 2D reads of approximately 5500 bp that were up to 98% correctly assigned to the species level. Synthetic metagenome MinION libraries generated using version 6 kit and chemistry yielded from 899 to 3497 2D reads with lengths averaging 5700 bp with up to 98% assignment accuracy at the species level. The observed community proportions for “equal” and “rare” synthetic libraries were close to the known proportions, deviating from 0.1% to 10% across all tests. For a 20-species mock community with staggered contributions, a sequencing run detected all but 3 species (each included at <0.05% of DNA in the total mixture), 91% of reads were assigned to the correct species, 93% of reads were assigned to the correct genus, and >99% of reads were assigned to the correct family. Conclusions: At the current level of output and sequence quality (just under 4 × 103 2D reads for a synthetic metagenome), MinION sequencing followed by Kraken or One Codex analysis has the potential to provide rapid and accurate metagenomic analysis where the consortium is comprised of a limited number of taxa. Important considerations noted in this study included: high sensitivity of the MinION platform to the quality of input DNA, high variability of sequencing results across libraries and flow cells, and relatively small numbers of 2D reads per analysis limit. Together, these limited detection of very rare components of the microbial consortia, and would likely limit the utility of MinION for the sequencing of high-complexity metagenomic communities where thousands of taxa are expected. Furthermore, the limitations of the currently available data analysis tools suggest there is considerable room for improvement in the analytical approaches for the characterization of microbial communities using long reads. Nevertheless, the fact that the accurate taxonomic assignment of high-quality reads generated by MinION is approaching 99.5% and, in most cases, the inferred community structure mirrors the known proportions of a synthetic mixture warrants further exploration of practical application to environmental metagenomics as the platform continues to develop and improve. With further improvement in sequence throughput and error rate reduction, this platform shows great promise for precise real-time analysis of the composition and structure of more complex microbial communities. PMID:28327976
MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
Brown, Bonnie L; Watson, Mick; Minot, Samuel S; Rivera, Maria C; Franklin, Rima B
2017-03-01
Environmental metagenomic analysis is typically accomplished by assigning taxonomy and/or function from whole genome sequencing or 16S amplicon sequences. Both of these approaches are limited, however, by read length, among other technical and biological factors. A nanopore-based sequencing platform, MinION™, produces reads that are ≥1 × 104 bp in length, potentially providing for more precise assignment, thereby alleviating some of the limitations inherent in determining metagenome composition from short reads. We tested the ability of sequence data produced by MinION (R7.3 flow cells) to correctly assign taxonomy in single bacterial species runs and in three types of low-complexity synthetic communities: a mixture of DNA using equal mass from four species, a community with one relatively rare (1%) and three abundant (33% each) components, and a mixture of genomic DNA from 20 bacterial strains of staggered representation. Taxonomic composition of the low-complexity communities was assessed by analyzing the MinION sequence data with three different bioinformatic approaches: Kraken, MG-RAST, and One Codex. Results: Long read sequences generated from libraries prepared from single strains using the version 5 kit and chemistry, run on the original MinION device, yielded as few as 224 to as many as 3497 bidirectional high-quality (2D) reads with an average overall study length of 6000 bp. For the single-strain analyses, assignment of reads to the correct genus by different methods ranged from 53.1% to 99.5%, assignment to the correct species ranged from 23.9% to 99.5%, and the majority of misassigned reads were to closely related organisms. A synthetic metagenome sequenced with the same setup yielded 714 high quality 2D reads of approximately 5500 bp that were up to 98% correctly assigned to the species level. Synthetic metagenome MinION libraries generated using version 6 kit and chemistry yielded from 899 to 3497 2D reads with lengths averaging 5700 bp with up to 98% assignment accuracy at the species level. The observed community proportions for “equal” and “rare” synthetic libraries were close to the known proportions, deviating from 0.1% to 10% across all tests. For a 20-species mock community with staggered contributions, a sequencing run detected all but 3 species (each included at <0.05% of DNA in the total mixture), 91% of reads were assigned to the correct species, 93% of reads were assigned to the correct genus, and >99% of reads were assigned to the correct family. Conclusions: At the current level of output and sequence quality (just under 4 × 103 2D reads for a synthetic metagenome), MinION sequencing followed by Kraken or One Codex analysis has the potential to provide rapid and accurate metagenomic analysis where the consortium is comprised of a limited number of taxa. Important considerations noted in this study included: high sensitivity of the MinION platform to the quality of input DNA, high variability of sequencing results across libraries and flow cells, and relatively small numbers of 2D reads per analysis limit. Together, these limited detection of very rare components of the microbial consortia, and would likely limit the utility of MinION for the sequencing of high-complexity metagenomic communities where thousands of taxa are expected. Furthermore, the limitations of the currently available data analysis tools suggest there is considerable room for improvement in the analytical approaches for the characterization of microbial communities using long reads. Nevertheless, the fact that the accurate taxonomic assignment of high-quality reads generated by MinION is approaching 99.5% and, in most cases, the inferred community structure mirrors the known proportions of a synthetic mixture warrants further exploration of practical application to environmental metagenomics as the platform continues to develop and improve. With further improvement in sequence throughput and error rate reduction, this platform shows great promise for precise real-time analysis of the composition and structure of more complex microbial communities. © The Author 2017. Published by Oxford University Press.
Lei, Yong-Liang; Wang, Xiao-Guang; Liu, Fu-Ming; Chen, Xiu-Ying; Ye, Bi-Feng; Mei, Jian-Hua; Lan, Jin-Quan; Tang, Qing
2009-08-01
Based on sequencing the full-length genomes of two Chinese Ferret-Badger, we analyzed the properties of rabies viruses genetic variation in molecular level to get information on prevalence and variation of rabies viruses in Zhejiang, and to enrich the genome database of rabies viruses street strains isolated from Chinese wildlife. Overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses of the N genes from Chinese Ferret-Badger, sika deer, vole, dog. Vaccine strains were then determined. The two full-length genomes were completely sequenced to find out that they had the same genetic structure with 11 923 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions (IGRs), 423 nts-Pseudogene-like sequence (Psi), 70 nts-Trailer. The two full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by blast and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the two full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so that the nucleotide mutations happened in these two genomes were most probably as synonymous mutations. Compared to the referenced rabies viruses, the lengths of the five protein coding regions did not show any changes or recombination, but only with a few-point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the two ferret badgers genomes were similar to the referenced vaccine or street strains. The two strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessing the distinct geographyphic characteristics of China. All the evidence suggested a cue that these two ferret badgers rabies viruses were likely to be street virus that already circulating in wildlife.
Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon
2011-01-01
Background Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. Conclusion The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns. PMID:21599934
Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann
2014-01-01
• Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625
Farris, Dominic James; Lichtwark, Glen A
2016-05-01
Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
RosettaAntibodyDesign (RAbD): A general framework for computational antibody design
Adolf-Bryfogle, Jared; Kalyuzhniy, Oleks; Kubitz, Michael; Hu, Xiaozhen; Adachi, Yumiko; Schief, William R.
2018-01-01
A structural-bioinformatics-based computational methodology and framework have been developed for the design of antibodies to targets of interest. RosettaAntibodyDesign (RAbD) samples the diverse sequence, structure, and binding space of an antibody to an antigen in highly customizable protocols for the design of antibodies in a broad range of applications. The program samples antibody sequences and structures by grafting structures from a widely accepted set of the canonical clusters of CDRs (North et al., J. Mol. Biol., 406:228–256, 2011). It then performs sequence design according to amino acid sequence profiles of each cluster, and samples CDR backbones using a flexible-backbone design protocol incorporating cluster-based CDR constraints. Starting from an existing experimental or computationally modeled antigen-antibody structure, RAbD can be used to redesign a single CDR or multiple CDRs with loops of different length, conformation, and sequence. We rigorously benchmarked RAbD on a set of 60 diverse antibody–antigen complexes, using two design strategies—optimizing total Rosetta energy and optimizing interface energy alone. We utilized two novel metrics for measuring success in computational protein design. The design risk ratio (DRR) is equal to the frequency of recovery of native CDR lengths and clusters divided by the frequency of sampling of those features during the Monte Carlo design procedure. Ratios greater than 1.0 indicate that the design process is picking out the native more frequently than expected from their sampled rate. We achieved DRRs for the non-H3 CDRs of between 2.4 and 4.0. The antigen risk ratio (ARR) is the ratio of frequencies of the native amino acid types, CDR lengths, and clusters in the output decoys for simulations performed in the presence and absence of the antigen. For CDRs, we achieved cluster ARRs as high as 2.5 for L1 and 1.5 for H2. For sequence design simulations without CDR grafting, the overall recovery for the native amino acid types for residues that contact the antigen in the native structures was 72% in simulations performed in the presence of the antigen and 48% in simulations performed without the antigen, for an ARR of 1.5. For the non-contacting residues, the ARR was 1.08. This shows that the sequence profiles are able to maintain the amino acid types of these conserved, buried sites, while recovery of the exposed, contacting residues requires the presence of the antigen-antibody interface. We tested RAbD experimentally on both a lambda and kappa antibody–antigen complex, successfully improving their affinities 10 to 50 fold by replacing individual CDRs of the native antibody with new CDR lengths and clusters. PMID:29702641
RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
Adolf-Bryfogle, Jared; Kalyuzhniy, Oleks; Kubitz, Michael; Weitzner, Brian D; Hu, Xiaozhen; Adachi, Yumiko; Schief, William R; Dunbrack, Roland L
2018-04-01
A structural-bioinformatics-based computational methodology and framework have been developed for the design of antibodies to targets of interest. RosettaAntibodyDesign (RAbD) samples the diverse sequence, structure, and binding space of an antibody to an antigen in highly customizable protocols for the design of antibodies in a broad range of applications. The program samples antibody sequences and structures by grafting structures from a widely accepted set of the canonical clusters of CDRs (North et al., J. Mol. Biol., 406:228-256, 2011). It then performs sequence design according to amino acid sequence profiles of each cluster, and samples CDR backbones using a flexible-backbone design protocol incorporating cluster-based CDR constraints. Starting from an existing experimental or computationally modeled antigen-antibody structure, RAbD can be used to redesign a single CDR or multiple CDRs with loops of different length, conformation, and sequence. We rigorously benchmarked RAbD on a set of 60 diverse antibody-antigen complexes, using two design strategies-optimizing total Rosetta energy and optimizing interface energy alone. We utilized two novel metrics for measuring success in computational protein design. The design risk ratio (DRR) is equal to the frequency of recovery of native CDR lengths and clusters divided by the frequency of sampling of those features during the Monte Carlo design procedure. Ratios greater than 1.0 indicate that the design process is picking out the native more frequently than expected from their sampled rate. We achieved DRRs for the non-H3 CDRs of between 2.4 and 4.0. The antigen risk ratio (ARR) is the ratio of frequencies of the native amino acid types, CDR lengths, and clusters in the output decoys for simulations performed in the presence and absence of the antigen. For CDRs, we achieved cluster ARRs as high as 2.5 for L1 and 1.5 for H2. For sequence design simulations without CDR grafting, the overall recovery for the native amino acid types for residues that contact the antigen in the native structures was 72% in simulations performed in the presence of the antigen and 48% in simulations performed without the antigen, for an ARR of 1.5. For the non-contacting residues, the ARR was 1.08. This shows that the sequence profiles are able to maintain the amino acid types of these conserved, buried sites, while recovery of the exposed, contacting residues requires the presence of the antigen-antibody interface. We tested RAbD experimentally on both a lambda and kappa antibody-antigen complex, successfully improving their affinities 10 to 50 fold by replacing individual CDRs of the native antibody with new CDR lengths and clusters.
Carbohydrate degrading polypeptide and uses thereof
Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter
2015-10-20
The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies
Sundquist, Andreas; Ronaghi, Mostafa; Tang, Haixu; Pevzner, Pavel; Batzoglou, Serafim
2007-01-01
While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology. PMID:17534434
Convolutional encoding of self-dual codes
NASA Technical Reports Server (NTRS)
Solomon, G.
1994-01-01
There exist almost complete convolutional encodings of self-dual codes, i.e., block codes of rate 1/2 with weights w, w = 0 mod 4. The codes are of length 8m with the convolutional portion of length 8m-2 and the nonsystematic information of length 4m-1. The last two bits are parity checks on the two (4m-1) length parity sequences. The final information bit complements one of the extended parity sequences of length 4m. Solomon and van Tilborg have developed algorithms to generate these for the Quadratic Residue (QR) Codes of lengths 48 and beyond. For these codes and reasonable constraint lengths, there are sequential decodings for both hard and soft decisions. There are also possible Viterbi-type decodings that may be simple, as in a convolutional encoding/decoding of the extended Golay Code. In addition, the previously found constraint length K = 9 for the QR (48, 24;12) Code is lowered here to K = 8.
Bondre, Vijay P; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N
2016-11-01
Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections.
Bondre, Vijay P.; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N.
2016-01-01
Background & objectives: Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Methods: Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Results: Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Interpretation & conclusions: Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections. PMID:28361829
Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng
2014-01-01
Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.
Influence of Length and Amino Acid Composition on Dimer Formation of Immunoglobulin based Chimera.
Manoj, Patidar; Naveen, Yadav; Dalai, Sarat Kumar
2017-10-18
The dimeric immunoglobulin (Ig) chimeras used for drug targeting and delivery are preferred biologics over their monomeric forms. Designing these Ig chimeras involves critical selection of a suitable Ig base that ensures dimer formation. In the present study, we systematically analyzed several factors that influence the formation of dimeric chimera. We designed and predicted 608 cytokine-Ig chimeras where we tested the contributions of (1) different domains of Ig constant heavy chain, (2) length of partner proteins, (3) amino acid (AA) composition and (4) position of cysteine in the formation of homodimer. The sequences of various Ig and cytokines were procured from Uniprot database, fused and submitted to COTH (CO-THreader) server for the prediction of dimer formation. Contributions of different domains of Ig constant heavy chain, length of chimeric proteins, AA composition and position of cysteine were tested to the homodimer formation of 608 cytokine-Ig chimeras. Various in silico approaches were adopted for validating the in silico findings. Experimentally we also validated our approach by expressing in CHO cells the chimeric design of shorter cytokine with Ig domain and analyzing the protein by SDS-PAGE. Our results advocate that while the CH1 region and the Hinge region of Ig heavy chain are critical, the length of partner proteins also crucially influences homodimer formation of the Ig-based chimera. We also report that the CH1 domain of Ig is not required for dimer formation of Ig based chimera in the presence of larger partner proteins. For shorter partner proteins fused to CH2-CH3, however, careful selection of partner sequence is critical, particularly the hydrophobic AA composition, cysteine content & their positions, disulphide bond formation property, and the linker sequences. We validated our in silico observation by various bioinformatics tools and checked the ability of chimeras to bind with the receptors of native protein by docking studies. As a proof of concept, we have expressed the chimeric proteins in CHO cells and found that our design favors the synthesis of dimeric proteins. Our structural prediction study suggests that extra amino acids in the range of 15-20 added to the CH2 domain of Ig is a critical requirement to make homodimer. This information from our study will have implication in designing efficacious homodimeric chimera. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.
Kurtzman, C P; Robnett, C J; Basehoar-Powers, E
2001-07-01
A new ascosporogenous yeast, Zygosaccharomyces kombuchaensis sp. n. (type strain NRRL YB-4811, CBS 8849), is described; it was isolated from Kombucha tea, a popular fermented tea-based beverage. The four known strains of the new species have identical nucleotide sequences in domain D1/D2 of 26S rDNA. Phylogenetic analysis of D1/D2 and 18S rDNA sequences places Z. kombuchaensis near Zygosaccharomyces lentus. The two species are indistinguishable on standard physiological tests used for yeast identification, but can be recognized from differences in restriction fragment length polymorphism patterns obtained by digestion of 18S-ITS1 amplicons with the restriction enzymes DdeI and MboI.
RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli
Zampini, Massimiliano; Stevens, Pauline Rees; Pachebat, Justin A.; Kingston-Smith, Alison; Mur, Luis A. J.; Hayes, Finbarr
2015-01-01
The ability to assemble DNA sequences de novo through efficient and powerful DNA fabrication methods is one of the foundational technologies of synthetic biology. Gene synthesis, in particular, has been considered the main driver for the emergence of this new scientific discipline. Here we describe RapGene, a rapid gene assembly technique which was successfully tested for the synthesis and cloning of both prokaryotic and eukaryotic genes through a ligation independent approach. The method developed in this study is a complete bacterial gene synthesis platform for the quick, accurate and cost effective fabrication and cloning of gene-length sequences that employ the widely used host Escherichia coli. PMID:26062748
Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain
2011-01-01
cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.
Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species
Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N.
2014-01-01
Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021
NASA Astrophysics Data System (ADS)
Zhao, Cui; Zhang, Xiaojun; Liu, Chengzhang; Huan, Pin; Li, Fuhua; Xiang, Jianhai; Huang, Chao
2012-05-01
Little is known about the genome of Pacific white shrimp ( Litopenaeus vannamei). To address this, we conducted BAC (bacterial artificial chromosome) end sequencing of L. vannamei. We selected and sequenced 7 812 BAC clones from the BAC library LvHE from the two ends of the inserts by Sanger sequencing. After trimming and quality filtering, 11 279 BAC end sequences (BESs) including 4 609 pairedends BESs were obtained. The total length of the BESs was 4 340 753 bp, representing 0.18% of the L. vannamei haploid genome. The lengths of the BESs ranged from 100 bp to 660 bp with an average length of 385 bp. Analysis of the BESs indicated that the L. vannamei genome is AT-rich and that the primary repeats patterns were simple sequence repeats (SSRs) and low complexity sequences. Dinucleotide and hexanucleotide repeats were the most common SSR types in the BESs. The most abundant transposable element was gypsy, which may contribute to the generation of the large genome size of L. vannamei. We successfully annotated 4 519 BESs by BLAST searching, including genes involved in immunity and sex determination. Our results provide an important resource for functional gene studies, map construction and integration, and complete genome assembly for this species.
Bauer, Patricia J; Lukowski, Angela F
2010-09-01
The second year of life is marked by pronounced changes in the length of time over which events are remembered. We tested whether the age-related differences are related to differences in memory for the specific features of events. In our study, 16- and 20-month-olds were tested for immediate and long-term recall of individual actions and temporal order of actions of three-step sequences in an elicited imitation paradigm as well as for forced-choice recognition of the specific feature of the props used to produce the sequences. Memory for the props was related to long-term recall of the events only for the 20-month-olds. It accounted for unique variance above and beyond the variance explained by immediate recall of the individual actions and the temporal order of actions of the sequences. The different pattern of relations in the older and younger infants seemingly reflects a developmental difference in the determinants of long-term recall over the second year of life. Copyright 2010 Elsevier Inc. All rights reserved.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik
2014-04-01
Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl
2014-01-01
Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406
Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L
2012-04-01
Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.
Task experience and children’s working memory performance: A perspective from recall timing
Towse, John N.; Cowan, Nelson; Horton, Neil J.; Whytock, Shealagh
2008-01-01
Working memory is an important theoretical construct among children, and measures of its capacity predict a range of cognitive skills and abilities. Data from 9-and 11-year-old children illustrate how a chronometric analysis of recall can complement and elaborate recall accuracy in advancing our understanding of working memory. A reading span task was completed by 130 children, 75 of whom were tested on two occasions, with sequence length either increasing or decreasing during test administration. Substantial pauses occur during participants’ recall sequences and they represent consistent performance traits over time, whilst also varying with recall circumstances and task history. Recall pauses help to predict reading and number skills, alongside as well as separate from levels of recall accuracy. The task demands of working memory change as a function of task experience, with a combination of accuracy and response timing in novel task situations being the strongest predictor of cognitive attainment. PMID:18473637
Hohm, Julian; Döllinger, Michael; Bohr, Christopher; Kniesburges, Stefan; Ziethe, Anke
2015-07-01
Within the functional assessment of voice disorders, an objective analysis of measured parameters from audio, electroglottographic (EGG), or visual signals is desired. In a typical clinical situation, reliable objective analysis is not always possible due to missing standardization and unknown stability of the clinical parameters. The aim of this study was to investigate the robustness/stability of measured clinical parameters of the audio and EGG signals in a typical clinical setting to ensure a reliable objective analysis. In particular, the influence of F0 and of the sequence length on several definitions of jitter and shimmer will be analyzed. Seventy-four young healthy women produced a sustained vowel /a/ and an upward triad with abrupt changeovers. Different sequence lengths (100, 150, 500, and 1000 ms) of sustained phonation and triads (100 and 150 ms) were extracted from the audio and EGG signals. In total, six variations of jitter and four variations of shimmer parameters were analyzed. Jitter%, Jitter11p, and JitterPPQ of the audio signal as well as Jittermean, Shimmer, and Shimmer11p of the EGG signal are unaffected by both sequence length and F0. Influence of F0 and sequence length on several perturbation measures of the audio and EGG signals was identified. For an objective clinical voice assessment, unaffected definitions of jitter and shimmer should be preferred and applied to enable comparability between different recordings, examinations, and studies. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa.
Lakshmikumaran, M; Negi, M S
1994-03-01
Restriction enzyme analysis of the rRNA genes of Eruca sativa indicated the presence of many length variants within a single plant and also between different cultivars which is unusual for most crucifers studied so far. Two length variants of the rDNA intergenic spacer (IGS) from a single individual E. sativa (cv. Itsa) plant were cloned and characterized. The complete nucleotide sequences of both the variants (3 kb and 4 kb) were determined. The intergenic spacer contains three families of tandemly repeated DNA sequences denoted as A, B and C. However, the long (4 kb) variant shows the presence of an additional repeat, denoted as D, which is a duplication of a 224 bp sequence just upstream of the putative transcription initiation site. Repeat units belonging to the three different families (A, B and C) were in the size range of 22 to 30 bp. Such short repeat elements are present in the IGS of most of the crucifers analysed so far. Sequence analysis of the variants (3 kb and 4 kb) revealed that the length heterogeneity of the spacer is located at three different regions and is due to the varying copy numbers of repeat units belonging to families A and B. Length variation of the spacer is also due to the presence of a large duplication (D repeats) in the 4 kb variant which is absent in the 3 kb variant. The putative transcription initiation site was identified by comparisons with the rDNA sequences from other plant species.
Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E
2010-06-01
A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.
Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, JE; Millar, BC
2006-01-01
Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. PMID:16398935
Simple tools for assembling and searching high-density picolitre pyrophosphate sequence data.
Parker, Nicolas J; Parker, Andrew G
2008-04-18
The advent of pyrophosphate sequencing makes large volumes of sequencing data available at a lower cost than previously possible. However, the short read lengths are difficult to assemble and the large dataset is difficult to handle. During the sequencing of a virus from the tsetse fly, Glossina pallidipes, we found the need for tools to search quickly a set of reads for near exact text matches. A set of tools is provided to search a large data set of pyrophosphate sequence reads under a "live" CD version of Linux on a standard PC that can be used by anyone without prior knowledge of Linux and without having to install a Linux setup on the computer. The tools permit short lengths of de novo assembly, checking of existing assembled sequences, selection and display of reads from the data set and gathering counts of sequences in the reads. Demonstrations are given of the use of the tools to help with checking an assembly against the fragment data set; investigating homopolymer lengths, repeat regions and polymorphisms; and resolving inserted bases caused by incomplete chain extension. The additional information contained in a pyrophosphate sequencing data set beyond a basic assembly is difficult to access due to a lack of tools. The set of simple tools presented here would allow anyone with basic computer skills and a standard PC to access this information.
cWINNOWER algorithm for finding fuzzy dna motifs
NASA Technical Reports Server (NTRS)
Liang, S.; Samanta, M. P.; Biegel, B. A.
2004-01-01
The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.
cWINNOWER Algorithm for Finding Fuzzy DNA Motifs
NASA Technical Reports Server (NTRS)
Liang, Shoudan
2003-01-01
The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).
Cardinali-Rezende, Juliana; Alexandrino, Paulo Moises Raduan; Nahat, Rafael Augusto Theodoro Pereira de Souza; Sant’Ana, Débora Parrine Vieira; Silva, Luiziana Ferreira; Gomez, José Gregório Cabrera
2015-01-01
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%. PMID:26294616
Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu
2015-01-01
In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L.) and ‘Shuangyou’ (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape. PMID:26089826
End-to-end distance and contour length distribution functions of DNA helices
NASA Astrophysics Data System (ADS)
Zoli, Marco
2018-06-01
I present a computational method to evaluate the end-to-end and the contour length distribution functions of short DNA molecules described by a mesoscopic Hamiltonian. The method generates a large statistical ensemble of possible configurations for each dimer in the sequence, selects the global equilibrium twist conformation for the molecule, and determines the average base pair distances along the molecule backbone. Integrating over the base pair radial and angular fluctuations, I derive the room temperature distribution functions as a function of the sequence length. The obtained values for the most probable end-to-end distance and contour length distance, providing a measure of the global molecule size, are used to examine the DNA flexibility at short length scales. It is found that, also in molecules with less than ˜60 base pairs, coiled configurations maintain a large statistical weight and, consistently, the persistence lengths may be much smaller than in kilo-base DNA.
Saunders, Keith; Lomonossoff, George P
2017-01-01
We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes.
Saunders, Keith; Lomonossoff, George P.
2017-01-01
We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes. PMID:28878782
Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae)
Liu, Gui-Chun; Dong, Zhi-Wei; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan
2017-01-01
Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0. 42 to 1. 31 pg, a 3. 1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution. PMID:29280364
Reducing elective general surgery cancellations at a Canadian hospital
Azari-Rad, Solmaz; Yontef, Alanna L.; Aleman, Dionne M.; Urbach, David R.
2013-01-01
Background In Canadian hospitals, which are typically financed by global annual budgets, overuse of operating rooms is a financial risk that is frequently managed by cancelling elective surgical procedures. It is uncertain how different scheduling rules affect the rate of elective surgery cancellations. Methods We used discrete event simulation modelling to represent perioperative processes at a hospital in Toronto, Canada. We tested the effects of the following 3 scenarios on the number of surgical cancellations: scheduling surgeons’ operating days based on their patients’ average length of stay in hospital, sequencing surgical procedures by average duration and variance, and increasing the number of post-surgical ward beds. Results The number of elective cancellations was reduced by scheduling surgeons whose patients had shorter average lengths of stay in hospital earlier in the week, sequencing shorter surgeries and those with less variance in duration earlier in the day, and by adding up to 2 additional beds to the postsurgical ward. Conclusion Discrete event simulation modelling can be used to develop strategies for improving efficiency in operating rooms. PMID:23351498
Towards predicting the encoding capability of MR fingerprinting sequences.
Sommer, K; Amthor, T; Doneva, M; Koken, P; Meineke, J; Börnert, P
2017-09-01
Sequence optimization and appropriate sequence selection is still an unmet need in magnetic resonance fingerprinting (MRF). The main challenge in MRF sequence design is the lack of an appropriate measure of the sequence's encoding capability. To find such a measure, three different candidates for judging the encoding capability have been investigated: local and global dot-product-based measures judging dictionary entry similarity as well as a Monte Carlo method that evaluates the noise propagation properties of an MRF sequence. Consistency of these measures for different sequence lengths as well as the capability to predict actual sequence performance in both phantom and in vivo measurements was analyzed. While the dot-product-based measures yielded inconsistent results for different sequence lengths, the Monte Carlo method was in a good agreement with phantom experiments. In particular, the Monte Carlo method could accurately predict the performance of different flip angle patterns in actual measurements. The proposed Monte Carlo method provides an appropriate measure of MRF sequence encoding capability and may be used for sequence optimization. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamid, Nur Athirah Abd; Ismail, Ismanizan
2013-11-01
Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi
2017-07-01
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José
2016-02-01
During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular identification of Mango, Mangifera indica L.var. totupura
Jagarlamudi, Sankar; G, Rosaiah; Kurapati, Ravi Kumar; Pinnamaneni, Rajasekhar
2011-01-01
Mango (>Mangifera indica) belonging to Anacardiaceae family is a fruit that grows in tropical regions. It is considered as the King of fruits. The present work was taken up to identify a tool in identifying the mango species at the molecular level. The chloroplast trnL-F region was amplified from extracted total genomic DNA using the polymerase chain reaction (PCR) and sequenced. Sequence of the dominant DGGE band revealed that Mangifera indica in tested leaves was Mangifera indica (100% similarity to the ITS sequences of Mangifera indica). This sequence was deposited in NCBI with the accession no. GQ927757. Abbreviations AFLP - Amplified fragment length polymorphism , cpDNA - Chloroplast DNA, DDGE - Denaturing gradient gel electrophoresis, DNA - Deoxyribo nucleic acid, EDTA - Ethylenediamine tetraacetic acid, HCl - Hydrochloric acid, ISSR - Inter simple sequence repeats, ITS - Internal transcribed spacer, MATAB - Methyl Ammonium Bromide, Na2SO3 - Sodium sulphite, NaCl - Sodium chloride, NCBI - National Centre for Biotechnology Information, PCR - Polymerase chain reaction, PEG - Polyethylene glycol, RAPD - Randomly amplified polymorphic DNA, trnL-F - Transfer RNA genes start codon- termination codon. PMID:21423885
Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans.
Rogers, Matthew B; Archibald, John M; Field, Matthew A; Li, Catherine; Striepen, Boris; Keeling, Patrick J
2004-01-01
Chlorarachniophytes are marine amoeboflagellate protists that have acquired their plastid (chloroplast) through secondary endosymbiosis with a green alga. Like other algae, most of the proteins necessary for plastid function are encoded in the nuclear genome of the secondary host. These proteins are targeted to the organelle using a bipartite leader sequence consisting of a signal peptide (allowing entry in to the endomembrane system) and a chloroplast transit peptide (for transport across the chloroplast envelope membranes). We have examined the leader sequences from 45 full-length predicted plastid-targeted proteins from the chlorarachniophyte Bigelowiella natans with the goal of understanding important features of these sequences and possible conserved motifs. The chemical characteristics of these sequences were compared with a set of 10 B. natans endomembrane-targeted proteins and 38 cytosolic or nuclear proteins, which show that the signal peptides are similar to those of most other eukaryotes, while the transit peptides differ from those of other algae in some characteristics. Consistent with this, the leader sequence from one B. natans protein was tested for function in the apicomplexan parasite, Toxoplasma gondii, and shown to direct the secretion of the protein.
Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng
2017-01-01
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215
Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng
2017-01-01
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.
Sookrung, Nitat; Indrawattana, Nitaya; Tungtrongchitr, Anchalee; Bunnag, Chaweewan; Tantilipikorn, Pongsakorn; Kwangsri, Sukanya; Chaicump, Wanpen
2009-03-01
In this study, native tropomyosin (Per a 7) of American cockroach (CR), Periplaneta americana, caught in Thailand was purified. Also, gene sequence encoding full length tropomyosin of the CR was PCR amplified by using degenerate primers designed from gene sequences coding for P. americana tropomyosin of the database (Per a 7.0101 and Per a 7.0102; accession no.Y14854 and AF106961, respectively). Amino acid sequence deduced from the nucleotide sequence encoding P. americana tropomyosin of this study (GenBank accession no. FJ976895) had 98.59% identity with the sequences of Per a 7.0101 and Per a 7.0102 and was 97.18% identical to the Bla g 7 sequence of German cockroach, Blatella germanica (accession no. AF260897). The native and recombinant tropomyosins (approximately 34 kDa) were used as antigens in sandwich ELISA for detecting specific IgE in serum samples of 14 consented allergic patients who were positive by skin test to crude CR extract in comparison to 5 individuals who were skin test negative. It was found that 8 (57%) and 6 (43%) of the CR allergic patients gave positive IgE binding results to the native and the recombinant proteins, respectively, while none of the non-allergic counterparts was positive. Results of immunoblotting conformed to the ELISA results. Tropomyosin extracted from the P. americana caught in Thailand has potential as standard P. americana allergen in clinical monitoring of the allergic Thai patients.
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
Wright, Imogen A.; Travers, Simon A.
2014-01-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618
Gelada vocal sequences follow Menzerath’s linguistic law
Gustison, Morgan L.; Semple, Stuart; Ferrer-i-Cancho, Ramon; Bergman, Thore J.
2016-01-01
Identifying universal principles underpinning diverse natural systems is a key goal of the life sciences. A powerful approach in addressing this goal has been to test whether patterns consistent with linguistic laws are found in nonhuman animals. Menzerath’s law is a linguistic law that states that, the larger the construct, the smaller the size of its constituents. Here, to our knowledge, we present the first evidence that Menzerath’s law holds in the vocal communication of a nonhuman species. We show that, in vocal sequences of wild male geladas (Theropithecus gelada), construct size (sequence size in number of calls) is negatively correlated with constituent size (duration of calls). Call duration does not vary significantly with position in the sequence, but call sequence composition does change with sequence size and most call types are abbreviated in larger sequences. We also find that intercall intervals follow the same relationship with sequence size as do calls. Finally, we provide formal mathematical support for the idea that Menzerath’s law reflects compression—the principle of minimizing the expected length of a code. Our findings suggest that a common principle underpins human and gelada vocal communication, highlighting the value of exploring the applicability of linguistic laws in vocal systems outside the realm of language. PMID:27091968
Zhang, Bochao; Meng, Wenzhao; Prak, Eline T Luning; Hershberg, Uri
2015-12-01
Immune repertoires are collections of lymphocytes that express diverse antigen receptor gene rearrangements consisting of Variable (V), (Diversity (D) in the case of heavy chains) and Joining (J) gene segments. Clonally related cells typically share the same germline gene segments and have highly similar junctional sequences within their third complementarity determining regions. Identifying clonal relatedness of sequences is a key step in the analysis of immune repertoires. The V gene is the most important for clone identification because it has the longest sequence and the greatest number of sequence variants. However, accurate identification of a clone's germline V gene source is challenging because there is a high degree of similarity between different germline V genes. This difficulty is compounded in antibodies, which can undergo somatic hypermutation. Furthermore, high-throughput sequencing experiments often generate partial sequences and have significant error rates. To address these issues, we describe a novel method to estimate which germline V genes (or alleles) cannot be discriminated under different conditions (read lengths, sequencing errors or somatic hypermutation frequencies). Starting with any set of germline V genes, this method measures their similarity using different sequencing lengths and calculates their likelihood of unambiguous assignment under different levels of mutation. Hence, one can identify, under different experimental and biological conditions, the germline V genes (or alleles) that cannot be uniquely identified and bundle them together into groups of specific V genes with highly similar sequences. Copyright © 2015 Elsevier B.V. All rights reserved.
A generalized global alignment algorithm.
Huang, Xiaoqiu; Chao, Kun-Mao
2003-01-22
Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.
ITS1: a DNA barcode better than ITS2 in eukaryotes?
Wang, Xin-Cun; Liu, Chang; Huang, Liang; Bengtsson-Palme, Johan; Chen, Haimei; Zhang, Jian-Hui; Cai, Dayong; Li, Jian-Qin
2015-05-01
A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large-scale meta-analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity-based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample-rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species. © 2014 John Wiley & Sons Ltd.
Krishnan, Neeraja M.; Gaur, Prakhar; Chaudhary, Rakshit; Rao, Arjun A.; Panda, Binay
2012-01-01
Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives) and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username “cops” and password “cops”. PMID:23110103
A survey of the sorghum transcriptome using single-molecule long reads
Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...
2016-06-24
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less
A survey of the sorghum transcriptome using single-molecule long reads
Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.
2016-01-01
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290
Stevens, Mark; Viganó, Felicita
2007-04-01
The full-length cDNA of Beet mild yellowing virus (Broom's Barn isolate) was sequenced and cloned into the vector pLitmus 29 (pBMYV-BBfl). The sequence of BMYV-BBfl (5721 bases) shared 96% and 98% nucleotide identity with the other complete sequences of BMYV (BMYV-2ITB, France and BMYV-IPP, Germany respectively). Full-length capped RNA transcripts of pBMYV-BBfl were synthesised and found to be biologically active in Arabidopsis thaliana protoplasts following electroporation or PEG inoculation when the protoplasts were subsequently analysed using serological and molecular methods. The BMYV sequence was modified by inserting DNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene close to its 3' end. A. thaliana protoplasts electroporated with these RNA transcripts were biologically active and up to 2% of transfected protoplasts showed GFP-specific fluorescence. The exploitation of these cDNA clones for the study of the biology of beet poleroviruses is discussed.
Characterization of Toll-like receptor 3 gene in large yellow croaker, Pseudosciaena crocea.
Huang, Xue-Na; Wang, Zhi-Yong; Yao, Cui-Luan
2011-07-01
Toll-like receptor 3 (TLR3) plays an important role in innate immune responses. In this report, the full-length cDNA sequence and genomic structure of Pseudosciaena crocea TLR3 (PcTLR3) were identified and characterized. The full-length cDNA of PcTLR3 was of 3384 bp, including a 5'-terminal untranslated region (UTR) of 65 bp, a 3'-terminal UTR of 589 bp and an open reading frame (ORF) of 2730 bp encoding a polypeptide of 909 amino acid residues. The full-length genome sequence of PcTLR3 was composed of 5721 nucleotides, including five exons and four introns. The putative PcTLR3 protein contained a signal peptide sequence, 16 leucine-rich repeat (LRR) motifs, a transmembrane region and a Toll/interleukin-1 receptor (TIR) domain. Quantitative real-time reverse transcription PCR analysis revealed a broad expression of PcTLR3 in most tissues, with the predominant expression in liver, then intestine, and the weakest expression in blood cells. The expression of PcTLR3 after injection with poly inosinic:cytidylic (I:C) and Vibrio parahemolyticus was tested in spleen, blood cells and liver. The results indicated that PcTLR3 transcripts could be induced in the three tissues by injection with poly I:C. The highest expression was in the blood cells with 43.5 times (at 6h) greater expression than in the control (p<0.05). In addition, after V. parahemolyticus challenge, a moderate up-regulation and down-regulation of PcTLR3 was found in blood cells and liver, respectively. Our results suggested that PcTLR3 might play an important role in fish's defense against both viral and bacterial infection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Khrustalev, Vladislav Victorovich
2009-01-01
Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).
Eid, Neveen H; Al Doghaither, Huda A; Kumosani, Taha A; Gull, Munazza
2017-01-01
To evaluate the indigenous bacterial strains of drinking water from the most commercial water types including bottled and filtered water that are currently used in Saudi Arabia. Thirty randomly selected commercial brands of bottled water were purchased from Saudi local markets. Moreover, samples from tap water and filtered water were collected in sterilized glass bottles and stored at 4°C. Biochemical analyses including pH, temperature, lactose fermentation test (LAC), indole test (IND), methyl red test (MR), Voges-Proskauer test (VP), urease test (URE), catalase test (CAT), aerobic and anaerobic test (Ae/An) were measured. Molecular identification and comparative sequence analyses were done by full length 16S rRNA gene sequences using gene bank databases and phylogenetic trees were constructed to see the closely related similarity index between bacterial strains. Among 30 water samples tested, 18 were found positive for bacterial growth. Molecular identification of four selected bacterial strains indicated the alarming presence of pathogenic bacteria Bacillus spp . in most common commercial types of drinking water used in Saudi Arabia. The lack of awareness about good sanitation, poor personal hygienic practices and failure of safe water management and supply are the important factors for poor drinking water quality in these sources, need to be addressed.
NASA Astrophysics Data System (ADS)
Zwolak, Michael
2013-03-01
A rapid and low-cost method to sequence DNA would revolutionize personalized medicine, where genetic information is used to diagnose, treat, and prevent diseases. There is a longstanding interest in nanopores as a platform for rapid interrogation of single DNA molecules. I will discuss a sequencing protocol based on the measurement of transverse electronic currents during the translocation of single-stranded DNA through nanopores. Using molecular dynamics simulations coupled to quantum mechanical calculations of the tunneling current, I will show that the DNA nucleotides are predicted to have distinguishable electronic signatures in experimentally realizable systems. Several recent experiments support our theoretical predictions. In addition to their possible impact in medicine and biology, the above methods offer ideal test beds to study open scientific issues in the relatively unexplored area at the interface between solids, liquids, and biomolecules at the nanometer length scale. http://mike.zwolak.org
Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen
2009-07-21
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.
Aires-de-Sousa, João; Aires-de-Sousa, Luisa
2003-01-01
We propose representing individual positions in DNA sequences by virtual potentials generated by other bases of the same sequence. This is a compact representation of the neighbourhood of a base. The distribution of the virtual potentials over the whole sequence can be used as a representation of the entire sequence (SEQREP code). It is a flexible code, with a length independent of the sequence size, does not require previous alignment, and is convenient for processing by neural networks or statistical techniques. To evaluate its biological significance, the SEQREP code was used for training Kohonen self-organizing maps (SOMs) in two applications: (a) detection of Alu sequences, and (b) classification of sequences encoding for HIV-1 envelope glycoprotein (env) into subtypes A-G. It was demonstrated that SOMs clustered sequences belonging to different classes into distinct regions. For independent test sets, very high rates of correct predictions were obtained (97% in the first application, 91% in the second). Possible areas of application of SEQREP codes include functional genomics, phylogenetic analysis, detection of repetitions, database retrieval, and automatic alignment. Software for representing sequences by SEQREP code, and for training Kohonen SOMs is made freely available from http://www.dq.fct.unl.pt/qoa/jas/seqrep. Supplementary material is available at http://www.dq.fct.unl.pt/qoa/jas/seqrep/bioinf2002
A candidate gene for choanal atresia in alpaca.
Reed, Kent M; Bauer, Miranda M; Mendoza, Kristelle M; Armién, Aníbal G
2010-03-01
Choanal atresia (CA) is a common nasal craniofacial malformation in New World domestic camelids (alpaca and llama). CA results from abnormal development of the nasal passages and is especially debilitating to newborn crias. CA in camelids shares many of the clinical manifestations of a similar condition in humans (CHARGE syndrome). Herein we report on the regulatory gene CHD7 of alpaca, whose homologue in humans is most frequently associated with CHARGE. Sequence of the CHD7 coding region was obtained from a non-affected cria. The complete coding region was 9003 bp, corresponding to a translated amino acid sequence of 3000 aa. Additional genomic sequences corresponding to a significant portion of the CHD7 gene were identified and assembled from the 2x alpaca whole genome sequence, providing confirmatory sequence for much of the CHD7 coding region. The alpaca CHD7 mRNA sequence was 97.9% similar to the human sequence, with the greatest sequence difference being an insertion in exon 38 that results in a polyalanine repeat (A12). Polymorphism in this repeat was tested for association with CA in alpaca by cloning and sequencing the repeat from both affected and non-affected individuals. Variation in length of the poly-A repeat was not associated with CA. Complete sequencing of the CHD7 gene will be necessary to determine whether other mutations in CHD7 are the cause of CA in camelids.
NASA Astrophysics Data System (ADS)
Arbelaez Jaramillo, Cesar Augusto
Prestressed concrete technique through the use of prestressed reinforcement is extended in the precast concrete industry. This technique consists on casting a concrete element over a previously prestressed reinforcement, proceeding to release once the concrete has reached a determined strength so the prestressed stress introduced to the reinforcement be transmitted, by bond, to concrete. The bond behaviour of prestressed reinforcement includes two phenomena: prestress transmission from the reinforcement to concrete and anchorage of the reinforcement. This bond behaviour is characterized by mean of two lengths: transmission length and anchorage length. The good design of these lengths is a basic and fundamental aspect in the project of precast prestressed concrete elements to guaranty the appropriate transmission of prestress and to allow the anchorage of the reinforcement along the structural element service life. The influence of the parameters related to the concrete dosage on the transmission and anchorage lengths of prestressing strands have been analyzed. The ECADA test method has been applied. With this method the operations of transmission of prestress and anchorage of the reinforcement are sequentially done. The transmission and anchorage lengths are determined from the force control supported by the reinforcement testing series of specimens with different embedment lengths. The differentiation of the concepts of anchorage length without slips and with slips has been proposed. The relationship of the parameters of dosage with the bond stress and the registered slips during the processes of transmission and anchorage has been studied. Expressions to value the slips distribution of the reinforcement in the transmission zone and in the anchorage zone have been proposed. A study on the determination of the transmission length from the free reinforcement slip end has been done and the viability to experimentally determine the transmission length from the slips sequence in the pull-out end as a function of the embedment length has been verified. The experimental results have been compared with results and predictions from other authors and standards, and an expression to calculate the transmission length have been proposed. Finally, the bond behaviour of self-compacting concretes has been compared with the bond behaviour of traditional concretes.
Zhang, Peng; Zhu, Yuqiang; Wang, Lili; Chen, Liping; Zhou, Shengjun
2015-12-14
Powdery mildew (PM) is the most common fungal disease of cucumber and other cucurbit crops, while breeding the PM-resistant materials is the effective way to defense this disease, and the recent development of modern genetics and genomics make us aware of that studying the resistance genes is the essential way to breed the PM high-resistance plant. With the ever increasing throughput of next-generation sequencing (NGS), the development of specific length amplified fragment sequencing (SLAF-seq) as a high-resolution strategy for large-scale de novo SNP discovery is gradually applied for functional gene mining. Here we combined the bulked segregant analysis (BSA) with SLAF-seq to identify candidate genes associated with PM resistance in cucumber. A segregating population comprising 251 F2 individuals was developed using H136 (female parent) as susceptible parent and BK2 (male parent) as resistance donor. After PMR test, total genomic DNA was prepared from each plant. Systemic genomic analysis of the GC content, repeat sequence, etc. was carried out by prediction software SLAF_Predict to establish condition to ensure the uniformity and density of the molecular markers. After samples were gel purified, SLAFs were generated at Biomarker Technologies Corporation in Beijing. Based on SLAF tags and the PMR test result, the hot region were annotated. A total of 73,100 high-quality SLAF tags with an average depth of 99.11× were sequenced. Among these, 5,355 polymorphic tags were identified with a polymorphism rate of 7.34 %, including 7.09 % SNPs and other polymorphism types. Finally, 140 associated SLAFs were identified, and two main Hot Regions were detected on chromosome 1 and 6, which contained five genes invovled in defense response, toxin metabolism, cell stress response, and injury response in cucumber. Associated markers identified by super-BSA in this study, could not only speed up the study of the PMR genes, but also provide a feasible solution for breeding the marker-assisted PMR cucumber. Moreover, this study could also be extended to any other species with reference genome.
Manalo, Marlon N; Kong, Xiangming; LiWang, Andy
2007-04-01
Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1J(NH) measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1J(NH) values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1J(NH) of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA.
Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.
2016-01-01
ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536
Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke
2010-03-30
The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.
Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)
Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn
2009-01-01
Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547
Gog, Julia R; Lever, Andrew M L; Skittrall, Jordan P
2018-01-01
We present a fast, robust and parsimonious approach to detecting signals in an ordered sequence of numbers. Our motivation is in seeking a suitable method to take a sequence of scores corresponding to properties of positions in virus genomes, and find outlying regions of low scores. Suitable statistical methods without using complex models or making many assumptions are surprisingly lacking. We resolve this by developing a method that detects regions of low score within sequences of real numbers. The method makes no assumptions a priori about the length of such a region; it gives the explicit location of the region and scores it statistically. It does not use detailed mechanistic models so the method is fast and will be useful in a wide range of applications. We present our approach in detail, and test it on simulated sequences. We show that it is robust to a wide range of signal morphologies, and that it is able to capture multiple signals in the same sequence. Finally we apply it to viral genomic data to identify regions of evolutionary conservation within influenza and rotavirus.
A Method for Preparing DNA Sequencing Templates Using a DNA-Binding Microplate
Yang, Yu; Hebron, Haroun R.; Hang, Jun
2009-01-01
A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost. PMID:19568455
A Pooled Sequencing Approach Identifies a Candidate Meiotic Driver in Drosophila
Wei, Kevin H.-C.; Reddy, Hemakumar M.; Rathnam, Chandramouli; Lee, Jimin; Lin, Deanna; Ji, Shuqing; Mason, James M.; Clark, Andrew G.; Barbash, Daniel A.
2017-01-01
Meiotic drive occurs when a selfish element increases its transmission frequency above the Mendelian ratio by hijacking the asymmetric divisions of female meiosis. Meiotic drive causes genomic conflict and potentially has a major impact on genome evolution, but only a few drive loci of large effect have been described. New methods to reliably detect meiotic drive are therefore needed, particularly for discovering moderate-strength drivers that are likely to be more prevalent in natural populations than strong drivers. Here, we report an efficient method that uses sequencing of large pools of backcross (BC1) progeny to test for deviations from Mendelian segregation genome-wide with single-nucleotide polymorphisms (SNPs) that distinguish the parental strains. We show that meiotic drive can be detected by a characteristic pattern of decay in distortion of SNP frequencies, caused by recombination unlinking the driver from distal loci. We further show that control crosses allow allele-frequency distortion caused by meiotic drive to be distinguished from distortion resulting from developmental effects. We used this approach to test whether chromosomes with extreme telomere-length differences segregate at Mendelian ratios, as telomeric regions are a potential hotspot for meiotic drive due to their roles in meiotic segregation and multiple observations of high rates of telomere sequence evolution. Using four different pairings of long and short telomere strains, we find no evidence that extreme telomere-length variation causes meiotic drive in Drosophila. However, we identify one candidate meiotic driver in a centromere-linked region that shows an ∼8% increase in transmission frequency, corresponding to a ∼54:46 segregation ratio. Our results show that candidate meiotic drivers of moderate strength can be readily detected and localized in pools of BC1 progeny. PMID:28258181
Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins
DeBartolo, Joe; Taipale, Mikko; Keating, Amy E.
2014-01-01
Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. PMID:24967846
Xiao, Meng; Kong, Fanrong; Jin, Ping; Wang, Qinning; Xiao, Kelin; Jeoffreys, Neisha; James, Gregory
2012-01-01
PCR ribotyping is the most commonly used Clostridium difficile genotyping method, but its utility is limited by lack of standardization. In this study, we analyzed four published whole genomes and tested an international collection of 21 well-characterized C. difficile ribotype 027 isolates as the basis for comparison of two capillary gel electrophoresis (CGE)-based ribotyping methods. There were unexpected differences between the 16S-23S rRNA intergenic spacer region (ISR) allelic profiles of the four ribotype 027 genomes, but six bands were identified in all four and a seventh in three genomes. All seven bands and another, not identified in any of the whole genomes, were found in all 21 isolates. We compared sequencer-based CGE (SCGE) with three different primer pairs to the Qiagen QIAxcel CGE (QCGE) platform. Deviations from individual reference/consensus band sizes were smaller for SCGE (0 to 0.2 bp) than for QCGE (4.2 to 9.5 bp). Compared with QCGE, SCGE more readily distinguished bands of similar length (more discriminatory), detected bands of larger size and lower intensity (more sensitive), and assigned band sizes more accurately and reproducibly, making it more suitable for standardization. Specifically, QCGE failed to identify the largest ISR amplicon. Based on several criteria, we recommend the primer set 16S-USA/23S-USA for use in a proposed standard SCGE method. Similar differences between SCGE and QCGE were found on testing of 14 isolates of four other C. difficile ribotypes. Based on our results, ISR profiles based on accurate sequencer-based band lengths would be preferable to agarose gel-based banding patterns for the assignment of ribotypes. PMID:22692737
A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.
Luczak, Brian B; James, Benjamin T; Girgis, Hani Z
2017-12-06
Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford University Press.
Minimap2: pairwise alignment for nucleotide sequences.
Li, Heng
2018-05-10
Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.
The complete chloroplast genome sequence of Hibiscus syriacus.
Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin
2016-09-01
The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes.
The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome
Camargo, Anamaria A.; Samaia, Helena P. B.; Dias-Neto, Emmanuel; Simão, Daniel F.; Migotto, Italo A.; Briones, Marcelo R. S.; Costa, Fernando F.; Aparecida Nagai, Maria; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; Sonati, Maria de Fátima; Tajara, Eloiza H.; Valentini, Sandro R.; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Arnaldi, Liliane A. T.; de Assis, Angela M.; Bengtson, Mário Henrique; Bergamo, Nadia Aparecida; Bombonato, Vanessa; de Camargo, Maria E. R.; Canevari, Renata A.; Carraro, Dirce M.; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Corrêa, Rosana F. R.; Costa, Maria Cristina R.; Curcio, Cyntia; Hokama, Paula O. M.; Ferreira, Ari J. S.; Furuzawa, Gilberto K.; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Krieger, José E.; Leite, Luciana C. C.; Majumder, Paromita; Marins, Mozart; Marques, Everaldo R.; Melo, Analy S. A.; Melo, Monica; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana G.; Prevedel, Aline C.; Rahal, Paula; Rainho, Claudia A.; Reis, Eduardo M. R.; Ribeiro, Marcelo L.; da Rós, Nancy; de Sá, Renata G.; Sales, Magaly M.; Sant'anna, Simone Cristina; dos Santos, Mariana L.; da Silva, Aline M.; da Silva, Neusa P.; Silva, Wilson A.; da Silveira, Rosana A.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Soares, Fernando; Moreira, Eloisa S.; Nunes, Diana N.; Correa, Ricardo G.; Zalcberg, Heloisa; Carvalho, Alex F.; Reis, Luis F. L.; Brentani, Ricardo R.; Simpson, Andrew J. G.; de Souza, Sandro J.
2001-01-01
Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription–PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning. PMID:11593022
The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome.
Camargo, A A; Samaia, H P; Dias-Neto, E; Simão, D F; Migotto, I A; Briones, M R; Costa, F F; Nagai, M A; Verjovski-Almeida, S; Zago, M A; Andrade, L E; Carrer, H; El-Dorry, H F; Espreafico, E M; Habr-Gama, A; Giannella-Neto, D; Goldman, G H; Gruber, A; Hackel, C; Kimura, E T; Maciel, R M; Marie, S K; Martins, E A; Nobrega, M P; Paco-Larson, M L; Pardini, M I; Pereira, G G; Pesquero, J B; Rodrigues, V; Rogatto, S R; da Silva, I D; Sogayar, M C; Sonati, M F; Tajara, E H; Valentini, S R; Alberto, F L; Amaral, M E; Aneas, I; Arnaldi, L A; de Assis, A M; Bengtson, M H; Bergamo, N A; Bombonato, V; de Camargo, M E; Canevari, R A; Carraro, D M; Cerutti, J M; Correa, M L; Correa, R F; Costa, M C; Curcio, C; Hokama, P O; Ferreira, A J; Furuzawa, G K; Gushiken, T; Ho, P L; Kimura, E; Krieger, J E; Leite, L C; Majumder, P; Marins, M; Marques, E R; Melo, A S; Melo, M B; Mestriner, C A; Miracca, E C; Miranda, D C; Nascimento, A L; Nobrega, F G; Ojopi, E P; Pandolfi, J R; Pessoa, L G; Prevedel, A C; Rahal, P; Rainho, C A; Reis, E M; Ribeiro, M L; da Ros, N; de Sa, R G; Sales, M M; Sant'anna, S C; dos Santos, M L; da Silva, A M; da Silva, N P; Silva, W A; da Silveira, R A; Sousa, J F; Stecconi, D; Tsukumo, F; Valente, V; Soares, F; Moreira, E S; Nunes, D N; Correa, R G; Zalcberg, H; Carvalho, A F; Reis, L F; Brentani, R R; Simpson, A J; de Souza, S J; Melo, M
2001-10-09
Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription-PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning.
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
Genome analysis and identification of gelatinase encoded gene in Enterobacter aerogenes
NASA Astrophysics Data System (ADS)
Shahimi, Safiyyah; Mutalib, Sahilah Abdul; Khalid, Rozida Abdul; Repin, Rul Aisyah Mat; Lamri, Mohd Fadly; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat
2016-11-01
In this study, bioinformatic analysis towards genome sequence of E. aerogenes was done to determine gene encoded for gelatinase. Enterobacter aerogenes was isolated from hot spring water and gelatinase species-specific bacterium to porcine and fish gelatin. This bacterium offers the possibility of enzymes production which is specific to both species gelatine, respectively. Enterobacter aerogenes was partially genome sequenced resulting in 5.0 mega basepair (Mbp) total size of sequence. From pre-process pipeline, 87.6 Mbp of total reads, 68.8 Mbp of total high quality reads and 78.58 percent of high quality percentage was determined. Genome assembly produced 120 contigs with 67.5% of contigs over 1 kilo base pair (kbp), 124856 bp of N50 contig length and 55.17 % of GC base content percentage. About 4705 protein gene was identified from protein prediction analysis. Two candidate genes selected have highest similarity identity percentage against gelatinase enzyme available in Swiss-Prot and NCBI online database. They were NODE_9_length_26866_cov_148.013245_12 containing 1029 base pair (bp) sequence with 342 amino acid sequence and NODE_24_length_155103_cov_177.082458_62 which containing 717 bp sequence with 238 amino acid sequence, respectively. Thus, two paired of primers (forward and reverse) were designed, based on the open reading frame (ORF) of selected genes. Genome analysis of E. aerogenes resulting genes encoded gelatinase were identified.
Systematic Evaluation of the Dependence of Deoxyribozyme Catalysis on Random Region Length
Velez, Tania E.; Singh, Jaydeep; Xiao, Ying; Allen, Emily C.; Wong, On Yi; Chandra, Madhavaiah; Kwon, Sarah C.; Silverman, Scott K.
2012-01-01
Functional nucleic acids are DNA and RNA aptamers that bind targets, or they are deoxyribozymes and ribozymes that have catalytic activity. These functional DNA and RNA sequences can be identified from random-sequence pools by in vitro selection, which requires choosing the length of the random region. Shorter random regions allow more complete coverage of sequence space but may not permit the structural complexity necessary for binding or catalysis. In contrast, longer random regions are sampled incompletely but may allow adoption of more complicated structures that enable function. In this study, we systematically examined random region length (N20 through N60) for two particular deoxyribozyme catalytic activities, DNA cleavage and tyrosine-RNA nucleopeptide linkage formation. For both activities, we previously identified deoxyribozymes using only N40 regions. In the case of DNA cleavage, here we found that shorter N20 and N30 regions allowed robust catalytic function, either by DNA hydrolysis or by DNA deglycosylation and strand scission via β-elimination, whereas longer N50 and N60 regions did not lead to catalytically active DNA sequences. Follow-up selections with N20, N30, and N40 regions revealed an interesting interplay of metal ion cofactors and random region length. Separately, for Tyr-RNA linkage formation, N30 and N60 regions provided catalytically active sequences, whereas N20 was unsuccessful, and the N40 deoxyribozymes were functionally superior (in terms of rate and yield) to N30 and N60. Collectively, the results indicate that with future in vitro selection experiments for DNA and RNA catalysts, and by extension for aptamers, random region length should be an important experimental variable. PMID:23088677
Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H
2018-06-01
Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.
Is scanning in probed order recall articulatory?
Farrell, Simon; Lelièvre, Anna
2009-09-01
We consider how theories of serial recall might apply to other short-term memory tasks involving recall of order. In particular, we consider the possibility that when participants are cued to recall an item at an arbitrary position in a sequence, they covertly serially recall the list up to the cued position. One question is whether such "scanning" is articulatory in nature. Two experiments are presented in which the syllabic length of words preceding and following target positions were manipulated, to test the prediction of an articulatory-based mechanism that time to recall an item at a particular position will depend on the number of preceding long words. Although latency was dependent on target position, no word length effects on latency were observed. Additionally, the effects of word length on accuracy replicate recent demonstrations in serial recall that recall accuracy is dependent on the word length of all list items, not just that of target items, in line with distinctiveness assumptions. It is concluded that if scanning does occur, it is not carried out by covert or overt articulation.
Porter, Teresita M; Gibson, Joel F; Shokralla, Shadi; Baird, Donald J; Golding, G Brian; Hajibabaei, Mehrdad
2014-01-01
Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast-based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.
Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.
Hua, Wei; Wang, Jiasong; Zhao, Jian
2014-01-01
Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Designing robust watermark barcodes for multiplex long-read sequencing.
Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth
2017-03-15
To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Prediction of enhancer-promoter interactions via natural language processing.
Zeng, Wanwen; Wu, Mengmeng; Jiang, Rui
2018-05-09
Precise identification of three-dimensional genome organization, especially enhancer-promoter interactions (EPIs), is important to deciphering gene regulation, cell differentiation and disease mechanisms. Currently, it is a challenging task to distinguish true interactions from other nearby non-interacting ones since the power of traditional experimental methods is limited due to low resolution or low throughput. We propose a novel computational framework EP2vec to assay three-dimensional genomic interactions. We first extract sequence embedding features, defined as fixed-length vector representations learned from variable-length sequences using an unsupervised deep learning method in natural language processing. Then, we train a classifier to predict EPIs using the learned representations in supervised way. Experimental results demonstrate that EP2vec obtains F1 scores ranging from 0.841~ 0.933 on different datasets, which outperforms existing methods. We prove the robustness of sequence embedding features by carrying out sensitivity analysis. Besides, we identify motifs that represent cell line-specific information through analysis of the learned sequence embedding features by adopting attention mechanism. Last, we show that even superior performance with F1 scores 0.889~ 0.940 can be achieved by combining sequence embedding features and experimental features. EP2vec sheds light on feature extraction for DNA sequences of arbitrary lengths and provides a powerful approach for EPIs identification.
UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.
Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun
2017-11-14
With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.
Verstappen, Koen M; Huijbregts, Loes; Spaninks, Mirlin; Wagenaar, Jaap A; Fluit, Ad C; Duim, Birgitta
2017-01-01
Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and cats and occasionally causes infections in humans. S. pseudintermedius is often resistant to multiple classes of antimicrobials. It requires a reliable detection so that it is not misidentified as S. aureus. Phenotypic and currently-used molecular-based diagnostic assays lack specificity or are labour-intensive using multiplex PCR or nucleic acid sequencing. The aim of this study was to identify a specific target for real-time PCR by comparing whole genome sequences of S. pseudintermedius and non-pseudintermedius.Genome sequences were downloaded from public repositories and supplemented by isolates that were sequenced in this study. A Perl-script was written that analysed 300-nt fragments from a reference genome sequence of S. pseudintermedius and checked if this sequence was present in other S. pseudintermedius genomes (n = 74) and non-pseudintermedius genomes (n = 138). Six sequences specific for S. pseudintermedius were identified (sequence length between 300-500 nt). One sequence, which was located in the spsJ gene, was used to develop primers and a probe. The real-time PCR showed 100% specificity when testing for S. pseudintermedius isolates (n = 54), and eight other staphylococcal species (n = 43). In conclusion, a novel approach by comparing whole genome sequences identified a sequence that is specific for S. pseudintermedius and provided a real-time PCR target for rapid and reliable detection of S. pseudintermedius.
Perceptions of randomness in binary sequences: Normative, heuristic, or both?
Reimers, Stian; Donkin, Chris; Le Pelley, Mike E
2018-03-01
When people consider a series of random binary events, such as tossing an unbiased coin and recording the sequence of heads (H) and tails (T), they tend to erroneously rate sequences with less internal structure or order (such as HTTHT) as more probable than sequences containing more structure or order (such as HHHHH). This is traditionally explained as a local representativeness effect: Participants assume that the properties of long sequences of random outcomes-such as an equal proportion of heads and tails, and little internal structure-should also apply to short sequences. However, recent theoretical work has noted that the probability of a particular sequence of say, heads and tails of length n, occurring within a larger (>n) sequence of coin flips actually differs by sequence, so P(HHHHH)
Life Test Approach for Refractory Metal/Sodium Heat Pipes
NASA Technical Reports Server (NTRS)
Martin, James J.; Reid, Robert S.
2006-01-01
Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. This paper describes an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Two specific test series have been identified and include: investigation of long term corrosion rates based on the guidelines contained in ASTM G-68-80 (using 7 heat pipes); and investigation of corrosion trends in a cross correlation sequence at various temperatures and mass fluences based on a central composite test design (using 9 heat pipes). The heat pipes selected for demonstration purposes are fabricated from a Mo-44.5%Re alloy with a length of 0.3 meters and a diameter of 1.59 cm(to conserve material) with a condenser to evaporator length ratio of approximately 3. The wick is a crescent annular design formed from 400-mesh Mo-Re alloy material hot isostatically pressed to produce a final wick core of 20 microns or less.
Repeated bonding of fixed retainer increases the risk of enamel fracture.
Chinvipas, Netrporn; Hasegawa, Yuh; Terada, Kazuto
2014-01-01
The aim of this study was to investigate the influences of repeated bonding, using 2 different orthodontic adhesive systems, on the shear bond strength (SBS) and the enamel surface morphology. Sixty premolars were divided into 2 groups (n = 30), and either Transbond XT (T group) or Fuji Ortho LC (F group) adhesives were used. SBS was measured 24 h after bonding, using a universal testing machine. Then, the enamel surfaces were investigated and the mode of failure was described using adhesive remnant index (ARI) scores. After each debonding, 10 teeth from each group were examined by scanning electron microscopy to determine the penetration of adhesives, the length of resin tags, and the state of the enamel surface. The other teeth were subjected to two more bonding/debonding procedures. In T group, the second debonding sequences had significantly higher bond strengths than the other sequences. The length of resin tags was greatest in the second debonding sequence, although there was no significant difference. In F group, the SBS increased with further rebonding and the failure mode tended towards cohesive failure. In both groups, the ARI scores increased with rebonding. Enamel loss could have occurred with both adhesives, although the surfaces appeared unchanged to the naked eye. From this study, we suggest that enamel damage caused by repeated bonding is of concern. To prevent bond failure, we should pay attention to the adhesion method used for bondable retainers.
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cardinali-Rezende, Juliana; Alexandrino, Paulo Moises Raduan; Nahat, Rafael Augusto Theodoro Pereira de Souza; Sant'Ana, Débora Parrine Vieira; Silva, Luiziana Ferreira; Gomez, José Gregório Cabrera; Taciro, Marilda Keico
2015-08-20
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%. Copyright © 2015 Cardinali-Rezende et al.
USDA-ARS?s Scientific Manuscript database
Sequence comparison between the full-length 2412 bp DNA gyrase subunit B (gyrB) gene of a novobiocin resistant Aeromonas hydrophila AH11NOVO vaccine strain and that of its virulent parent strain AH11P revealed 10 missense mutations. Similarly, sequence comparison between the full-length 4092 bp RNA ...
The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes
Li, Jia; Su, Yingjuan; Wang, Ting
2018-01-01
The plastid accD gene encodes a subunit of the acetyl-CoA carboxylase (ACCase) enzyme. The length of accD gene has been supposed to expand in Cryptomeria japonica, Taiwania cryptomerioides, Cephalotaxus, Taxus chinensis, and Podocarpus lambertii, and the main reason for this phenomenon was the existence of tandemly repeated sequences. However, it is still unknown whether the accD gene length in other cupressophytes has expanded. Here, in order to investigate how widespread this phenomenon was, 18 accD sequences and its surrounding regions of cupressophyte were sequenced and analyzed. Together with 39 GenBank sequence data, our taxon sampling covered all the extant gymnosperm orders. The repetitive elements and substitution rates of accD among 57 gymnosperm species were analyzed, the results show: (1) Reading frame length of accD gene in 18 cupressophytes species has also expanded. (2) Many repetitive elements were identified in accD gene of cupressophyte lineages. (3) The synonymous and non-synonymous substitution rates of accD were accelerated in cupressophytes. (4) accD was located in rearrangement endpoints. These results suggested that repetitive elements may mediate the chloroplast genome rearrangement and accelerated the substitution rates. PMID:29731764
Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi
2006-01-01
We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452
Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y
2014-12-23
Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.
Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D
2015-05-01
Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.
Henderson, James B.; Sellas, Anna B.; Fuchs, Jérôme; Bowie, Rauri C.K.; Dumbacher, John P.
2017-01-01
We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina) and the barred owl (S. varia). We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt) to 9,600 nt and read lengths from 100–375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes) possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts). The Numts ranged from 226–19,522 nt in length and included copies of all mitochondrial genes except tRNAPro, ND6, and tRNAGlu. Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance) divergence across the non-tRNA mitochondrial genes. PMID:29038757
NASA Technical Reports Server (NTRS)
Gatlin, L. L.
1974-01-01
Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.
One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.
Koren, Sergey; Phillippy, Adam M
2015-02-01
Like a jigsaw puzzle with large pieces, a genome sequenced with long reads is easier to assemble. However, recent sequencing technologies have favored lowering per-base cost at the expense of read length. This has dramatically reduced sequencing cost, but resulted in fragmented assemblies, which negatively affect downstream analyses and hinder the creation of finished (gapless, high-quality) genomes. In contrast, emerging long-read sequencing technologies can now produce reads tens of kilobases in length, enabling the automated finishing of microbial genomes for under $1000. This promises to improve the quality of reference databases and facilitate new studies of chromosomal structure and variation. We present an overview of these new technologies and the methods used to assemble long reads into complete genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genomes: At the edge of chaos with maximum information capacity
NASA Astrophysics Data System (ADS)
Kong, Sing-Guan; Chen, Hong-Da; Torda, Andrew; Lee, H. C.
2016-12-01
We propose an order index, ϕ, which quantifies the notion of “life at the edge of chaos” when applied to genome sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length and base composition. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, 0.037 ± 0.027. We show this implies that genomes are halfway towards being completely random, namely, at the edge of chaos. We argue that this narrow range represents the neighborhood of a fixed-point in the space of sequences, and genomes are driven there by the dynamics of a robust, predominantly neutral evolution process.
Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Tedrow, T. L.; Mullen, S. J.
1976-01-01
X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence.
The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.
Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R
1982-01-01
The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791
Lu, Ling; Li, Chunhua; Yuan, Jie; Lu, Teng; Okamoto, Hiroaki; Murphy, Donald G
2013-03-01
We characterized the full-length genomes of five distinct hepatitis C virus (HCV)-3 isolates. These represent the first complete genomes for subtypes 3g and 3h, the second such genomes for 3k and 3i, and of one novel variant presently not assigned to a subtype. Each genome was determined from 18-25 overlapping fragments. They had lengths of 9579-9660 nt and each contained a single ORF encoding 3020-3025 aa. They were isolated from five patients residing in Canada; four were of Asian origin and one was of Somali origin. Phylogenetic analysis using 64 partial NS5B sequences differentiated 10 assigned subtypes, 3a-3i and 3k, and two additional lineages within genotype 3. From the data of this study, HCV-3 full-length sequences are now available for six of the assigned subtypes and one unassigned. Our findings should add insights to HCV evolutionary studies and clinical applications.
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...
Optimization of cDNA-AFLP experiments using genomic sequence data.
Kivioja, Teemu; Arvas, Mikko; Saloheimo, Markku; Penttilä, Merja; Ukkonen, Esko
2005-06-01
cDNA amplified fragment length polymorphism (cDNA-AFLP) is one of the few genome-wide level expression profiling methods capable of finding genes that have not yet been cloned or even predicted from sequence but have interesting expression patterns under the studied conditions. In cDNA-AFLP, a complex cDNA mixture is divided into small subsets using restriction enzymes and selective PCR. A large cDNA-AFLP experiment can require a substantial amount of resources, such as hundreds of PCR amplifications and gel electrophoresis runs, followed by manual cutting of a large number of bands from the gels. Our aim was to test whether this workload can be reduced by rational design of the experiment. We used the available genomic sequence information to optimize cDNA-AFLP experiments beforehand so that as many transcripts as possible could be profiled with a given amount of resources. Optimization of the selection of both restriction enzymes and selective primers for cDNA-AFLP experiments has not been performed previously. The in silico tests performed suggest that substantial amounts of resources can be saved by the optimization of cDNA-AFLP experiments.
Multifractal analysis of 2001 Mw 7 . 7 Bhuj earthquake sequence in Gujarat, Western India
NASA Astrophysics Data System (ADS)
Aggarwal, Sandeep Kumar; Pastén, Denisse; Khan, Prosanta Kumar
2017-12-01
The 2001 Mw 7 . 7 Bhuj mainshock seismic sequence in the Kachchh area, occurring during 2001 to 2012, has been analyzed using mono-fractal and multi-fractal dimension spectrum analysis technique. This region was characterized by frequent moderate shocks of Mw ≥ 5 . 0 for more than a decade since the occurrence of 2001 Bhuj earthquake. The present study is therefore important for precursory analysis using this sequence. The selected long-sequence has been investigated first time for completeness magnitude Mc 3.0 using the maximum curvature method. Multi-fractal Dq spectrum (Dq ∼ q) analysis was carried out using effective window-length of 200 earthquakes with a moving window of 20 events overlapped by 180 events. The robustness of the analysis has been tested by considering the magnitude completeness correction term of 0.2 to Mc 3.0 as Mc 3.2 and we have tested the error in the calculus of Dq for each magnitude threshold. On the other hand, the stability of the analysis has been investigated down to the minimum magnitude of Mw ≥ 2 . 6 in the sequence. The analysis shows the multi-fractal dimension spectrum Dq decreases with increasing of clustering of events with time before a moderate magnitude earthquake in the sequence, which alternatively accounts for non-randomness in the spatial distribution of epicenters and its self-organized criticality. Similar behavior is ubiquitous elsewhere around the globe, and warns for proximity of a damaging seismic event in an area. OS: Please confirm math roman or italics in abs.
Hu, Lanying; Lim, Kah Wai; Bouaziz, Serge; Phan, Anh Tuân
2009-11-25
Recently, it has been shown that in K(+) solution the human telomeric sequence d[TAGGG(TTAGGG)(3)] forms a (3 + 1) intramolecular G-quadruplex, while the Bombyx mori telomeric sequence d[TAGG(TTAGG)(3)], which differs from the human counterpart only by one G deletion in each repeat, forms a chair-type intramolecular G-quadruplex, indicating an effect of G-tract length on the folding topology of G-quadruplexes. To explore the effect of loop length and sequence on the folding topology of G-quadruplexes, here we examine the structure of the four-repeat Giardia telomeric sequence d[TAGGG(TAGGG)(3)], which differs from the human counterpart only by one T deletion within the non-G linker in each repeat. We show by NMR that this sequence forms two different intramolecular G-quadruplexes in K(+) solution. The first one is a novel basket-type antiparallel-stranded G-quadruplex containing two G-tetrads, a G x (A-G) triad, and two A x T base pairs; the three loops are consecutively edgewise-diagonal-edgewise. The second one is a propeller-type parallel-stranded G-quadruplex involving three G-tetrads; the three loops are all double-chain-reversal. Recurrence of several structural elements in the observed structures suggests a "cut and paste" principle for the design and prediction of G-quadruplex topologies, for which different elements could be extracted from one G-quadruplex and inserted into another.
Method and apparatus for biological sequence comparison
Marr, T.G.; Chang, W.I.
1997-12-23
A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.
Method and apparatus for biological sequence comparison
Marr, Thomas G.; Chang, William I-Wei
1997-01-01
A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.
Cheng, Bing; Furtado, Agnelo
2017-01-01
Abstract Polyploidization contributes to the complexity of gene expression, resulting in numerous related but different transcripts. This study explored the transcriptome diversity and complexity of the tetraploid Arabica coffee (Coffea arabica) bean. Long-read sequencing (LRS) by Pacbio Isoform sequencing (Iso-seq) was used to obtain full-length transcripts without the difficulty and uncertainty of assembly required for reads from short-read technologies. The tetraploid transcriptome was annotated and compared with data from the sub-genome progenitors. Caffeine and sucrose genes were targeted for case analysis. An isoform-level tetraploid coffee bean reference transcriptome with 95 995 distinct transcripts (average 3236 bp) was obtained. A total of 88 715 sequences (92.42%) were annotated with BLASTx against NCBI non-redundant plant proteins, including 34 719 high-quality annotations. Further BLASTn analysis against NCBI non-redundant nucleotide sequences, Coffea canephora coding sequences with UTR, C. arabica ESTs, and Rfam resulted in 1213 sequences without hits, were potential novel genes in coffee. Longer UTRs were captured, especially in the 5΄UTRs, facilitating the identification of upstream open reading frames. The LRS also revealed more and longer transcript variants in key caffeine and sucrose metabolism genes from this polyploid genome. Long sequences (>10 kilo base) were poorly annotated. LRS technology shows the limitation of previous studies. It provides an important tool to produce a reference transcriptome including more of the diversity of full-length transcripts to help understand the biology and support the genetic improvement of polyploid species such as coffee. PMID:29048540
Read clouds uncover variation in complex regions of the human genome
Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E.; West, Robert; Sidow, Arend; Batzoglou, Serafim
2015-01-01
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. PMID:26286554
Wright, Imogen A; Travers, Simon A
2014-07-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hecht, Jochen; Kuhl, Heiner; Haas, Stefan A; Bauer, Sebastian; Poustka, Albert J; Lienau, Jasmin; Schell, Hanna; Stiege, Asita C; Seitz, Volkhard; Reinhardt, Richard; Duda, Georg N; Mundlos, Stefan; Robinson, Peter N
2006-07-05
The sheep is an important model animal for testing novel fracture treatments and other medical applications. Despite these medical uses and the well known economic and cultural importance of the sheep, relatively little research has been performed into sheep genetics, and DNA sequences are available for only a small number of sheep genes. In this work we have sequenced over 47 thousand expressed sequence tags (ESTs) from libraries developed from healing bone in a sheep model of fracture healing. These ESTs were clustered with the previously available 10 thousand sheep ESTs to a total of 19087 contigs with an average length of 603 nucleotides. We used the newly identified sequences to develop RT-PCR assays for 78 sheep genes and measured differential expression during the course of fracture healing between days 7 and 42 postfracture. All genes showed significant shifts at one or more time points. 23 of the genes were differentially expressed between postfracture days 7 and 10, which could reflect an important role for these genes for the initiation of osteogenesis. The sequences we have identified in this work are a valuable resource for future studies on musculoskeletal healing and regeneration using sheep and represent an important head-start for genomic sequencing projects for Ovis aries, with partial or complete sequences being made available for over 5,800 previously unsequenced sheep genes.
Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin
2015-01-01
Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020
Capturing the fragile X premutation phenotypes: a collaborative effort across multiple cohorts.
Hunter, Jessica Ezzell; Sherman, Stephanie; Grigsby, Jim; Kogan, Cary; Cornish, Kim
2012-03-01
To capture the neuropsychological profile among male carriers of the FMR1 premutation allele (55-200 CGG repeats) who do not meet diagnostic criteria for the late-onset fragile X-associated tremor/ataxia syndrome, FXTAS. We have initiated a multicenter collaboration that includes 3 independent cohorts, totaling 100 carriers of the premutation and 216 noncarriers. The initial focus of this collaboration has been on executive function. Four executive function scores are shared among the 3 cohorts (Controlled Oral Word Association Test, Stroop Color-Word Test, and Wechsler backward digit span and letter-number sequencing) whereas additional executive function scores are available for specific cohorts (Behavior Dyscontrol Scale, Hayling Sentence Completion Test Part B, and Wisconsin Card Sorting Test). Raw scores were analyzed by using statistical models that adjust for cohort-specific effects as well as age and education. Carriers scored significantly lower compared to noncarriers on the Stroop Color-Word Test (p = .01), Hayling Sentence Completion Test Part B (p < .01), and Behavioral Dyscontrol Scale (p = .03), with the Hayling displaying a significant age-related decline (p = .01), as assessed by an age and repeat length-group interaction. Follow-up analysis of the collective data did not identify any specific age groups or repeat length ranges (i.e., low premutation = 55-70 repeats, midpremutation = 71-100 repeats, high premutation = 101-199 repeats) that were associated with an increased risk of executive function deficits. Preliminary analyses do not indicate global executive function impairment among male carriers without FXTAS compared to noncarriers. However, impairment in inhibitory capacity may be present among a subset of carriers, though the risk factors for this group do not appear to be related to age or repeat length.
Characterization of genetic sequence variation of 58 STR loci in four major population groups.
Novroski, Nicole M M; King, Jonathan L; Churchill, Jennifer D; Seah, Lay Hong; Budowle, Bruce
2016-11-01
Massively parallel sequencing (MPS) can identify sequence variation within short tandem repeat (STR) alleles as well as their nominal allele lengths that traditionally have been obtained by capillary electrophoresis. Using the MiSeq FGx Forensic Genomics System (Illumina), STRait Razor, and in-house excel workbooks, genetic variation was characterized within STR repeat and flanking regions of 27 autosomal, 7 X-chromosome and 24 Y-chromosome STR markers in 777 unrelated individuals from four population groups. Seven hundred and forty six autosomal, 227 X-chromosome, and 324 Y-chromosome STR alleles were identified by sequence compared with 357 autosomal, 107 X-chromosome, and 189 Y-chromosome STR alleles that were identified by length. Within the observed sequence variation, 227 autosomal, 156 X-chromosome, and 112 Y-chromosome novel alleles were identified and described. One hundred and seventy six autosomal, 123 X-chromosome, and 93 Y-chromosome sequence variants resided within STR repeat regions, and 86 autosomal, 39 X-chromosome, and 20 Y-chromosome variants were located in STR flanking regions. Three markers, D18S51, DXS10135, and DYS385a-b had 1, 4, and 1 alleles, respectively, which contained both a novel repeat region variant and a flanking sequence variant in the same nucleotide sequence. There were 50 markers that demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. These population data illustrate the genetic variation that exists in the commonly used STR markers in the selected population samples and provide allele frequencies for statistical calculations related to STR profiling with MPS data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A better sequence-read simulator program for metagenomics.
Johnson, Stephen; Trost, Brett; Long, Jeffrey R; Pittet, Vanessa; Kusalik, Anthony
2014-01-01
There are many programs available for generating simulated whole-genome shotgun sequence reads. The data generated by many of these programs follow predefined models, which limits their use to the authors' original intentions. For example, many models assume that read lengths follow a uniform or normal distribution. Other programs generate models from actual sequencing data, but are limited to reads from single-genome studies. To our knowledge, there are no programs that allow a user to generate simulated data following non-parametric read-length distributions and quality profiles based on empirically-derived information from metagenomics sequencing data. We present BEAR (Better Emulation for Artificial Reads), a program that uses a machine-learning approach to generate reads with lengths and quality values that closely match empirically-derived distributions. BEAR can emulate reads from various sequencing platforms, including Illumina, 454, and Ion Torrent. BEAR requires minimal user input, as it automatically determines appropriate parameter settings from user-supplied data. BEAR also uses a unique method for deriving run-specific error rates, and extracts useful statistics from the metagenomic data itself, such as quality-error models. Many existing simulators are specific to a particular sequencing technology; however, BEAR is not restricted in this way. Because of its flexibility, BEAR is particularly useful for emulating the behaviour of technologies like Ion Torrent, for which no dedicated sequencing simulators are currently available. BEAR is also the first metagenomic sequencing simulator program that automates the process of generating abundances, which can be an arduous task. BEAR is useful for evaluating data processing tools in genomics. It has many advantages over existing comparable software, such as generating more realistic reads and being independent of sequencing technology, and has features particularly useful for metagenomics work.
Harmonic Series Meets Fibonacci Sequence
ERIC Educational Resources Information Center
Chen, Hongwei; Kennedy, Chris
2012-01-01
The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?
Ivancic-Jelecki, Jelena; Slovic, Anamarija; Šantak, Maja; Tešović, Goran; Forcic, Dubravko
2016-07-29
The canonical genome organization of measles virus (MV) is characterized by total size of 15 894 nucleotides (nts) and defined length of every genomic region, both coding and non-coding. Only rarely have reports of strains possessing non-canonical genomic properties (possessing indels, with or without the change of total genome length) been published. The observed mutations are mutually compensatory in a sense that the total genome length remains polyhexameric. Although programmed and highly precise pseudo-templated nucleotide additions during transcription are inherent to polymerases of all viruses belonging to family Paramyxoviridae, a similar mechanism that would serve to non-randomly correct genome length, if an indel has occurred during replication, has so far not been described in the context of a complete virus genome. We compiled all complete MV genomic sequences (64 in total) available in open access sequence databases. Multiple sequence comparisons and phylogenetic analyses were performed with the aim of exploring whether non-recombinant and non-evolutionary linked measles strains that show deviations from canonical genome organization possess a common genetic characteristic. In 11 MV sequences we detected deviations from canonical genome organization due to short indels located within homopolymeric stretches or next to them. In nine out of 11 identified non-canonical MV sequences, a common feature was observed: one mutation, either an insertion or a deletion, was located in a 28 nts long region in F gene 5' untranslated region (positions 5051-5078 in genomic cDNA of canonical strains). This segment is composed of five tandemly linked homopolymeric stretches, its consensus sequence is G6-7C7-8A6-7G1-3C5-6. Although none of the mononucleotide repeats within this segment has fixed length, the total number of nts in canonical strains is always 28. These nine non-canonical strains, as well as the tenth (not mutated in 5051-5078 segment), can be grouped in three clusters, based on their passage histories/epidemiological data/genetic similarities. There are no indications that the 3 clusters are evolutionary linked, other than the fact that they all belong to clade D. A common narrow genomic region was found to be mutated in different, non-related, wild type strains suggesting that this region might have a function in non-random genome length corrections occurring during MV replication.
Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru
2018-04-03
Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.
Ikuta, Kazufumi; Kanda, Teru
2018-01-01
Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically. PMID:29614006
Molecular Characterization of Watermelon Chlorotic Stunt Virus (WmCSV) from Palestine
Ali-Shtayeh, Mohammed S.; Jamous, Rana M.; Mallah, Omar B.; Abu-Zeitoun, Salam Y.
2014-01-01
The incidence of watermelon chlorotic stunt disease and molecular characterization of the Palestinian isolate of Watermelon chlorotic stunt virus (WmCSV-[PAL]) are described in this study. Symptomatic leaf samples obtained from watermelon Citrullus lanatus (Thunb.), and cucumber (Cucumis sativus L.) plants were tested for WmCSV-[PAL] infection by polymerase chain reaction (PCR) and Rolling Circle Amplification (RCA). Disease incidence ranged between 25%–98% in watermelon fields in the studied area, 77% of leaf samples collected from Jenin were found to be mixed infected with WmCSV-[PAL] and SLCV. The full-length DNA-A and DNA-B genomes of WmCSV-[PAL] were amplified and sequenced, and the sequences were deposited in the GenBank. Sequence analysis of virus genomes showed that DNA-A and DNA-B had 97.6%–99.42% and 93.16%–98.26% nucleotide identity with other virus isolates in the region, respectively. Sequence analysis also revealed that the Palestinian isolate of WmCSV shared the highest nucleotide identity with an isolate from Israel suggesting that the virus was introduced to Palestine from Israel. PMID:24956181
Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.
Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin
2015-01-01
Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.
K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue
2018-05-15
Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.
Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart
2010-07-01
High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.
Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart
2010-01-01
High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users. PMID:20501601
The Complete Sequence of a Human Parainfluenzavirus 4 Genome
Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond
2009-01-01
Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536
Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies
Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; ...
2015-04-14
During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequencemore » datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.« less
Power law tails in phylogenetic systems.
Qin, Chongli; Colwell, Lucy J
2018-01-23
Covariance analysis of protein sequence alignments uses coevolving pairs of sequence positions to predict features of protein structure and function. However, current methods ignore the phylogenetic relationships between sequences, potentially corrupting the identification of covarying positions. Here, we use random matrix theory to demonstrate the existence of a power law tail that distinguishes the spectrum of covariance caused by phylogeny from that caused by structural interactions. The power law is essentially independent of the phylogenetic tree topology, depending on just two parameters-the sequence length and the average branch length. We demonstrate that these power law tails are ubiquitous in the large protein sequence alignments used to predict contacts in 3D structure, as predicted by our theory. This suggests that to decouple phylogenetic effects from the interactions between sequence distal sites that control biological function, it is necessary to remove or down-weight the eigenvectors of the covariance matrix with largest eigenvalues. We confirm that truncating these eigenvectors improves contact prediction.
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Aokic, Jun-ya; Kawase, Junya; Hamada, Kazuhisa; Fujimoto, Hiroshi; Yamamoto, Ikki; Usuki, Hironori
2018-01-01
Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8 Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence. PMID:29785397
USDA-ARS?s Scientific Manuscript database
Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole...
Mariella, Jr., Raymond P.
2008-11-18
A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.
Chow, S; Ueno, Y; Toyokawa, M; Oohara, I; Takeyama, H
2009-01-01
Length and guanine-cytosine (GC) content of the ribosomal first internal transcribed spacer (ITS1) were compared across a wide variety of marine animal species, and its phylogenetic utility was investigated. From a total of 773 individuals representing 599 species, we only failed to amplify the ITS1 sequence from 87 individuals by polymerase chain reaction with universal ITS1 primers. No species was found to have an ITS1 region shorter than 100 bp. In general, the ITS1 sequences of vertebrates were longer (318 to 2,318 bp) and richer in GC content (56.8% to 78%) than those of invertebrates (117 to 1,613 bp and 35.8% to 71.3%, respectively). Specifically, gelatinous animals (Cnidaria and Ctenophora) were observed to have short ITS1 sequences (118 to 422 bp) with lower GC content (35.8% to 61.7%) than the other animal taxa. Mollusca and Crustacea were diverse groups with respect to ITS1 length, ranging from 108 to 1,118 and 182 to 1,613 bp, respectively. No universal relationship between length and GC content was observed. Our data indicated that ITS1 has a limited utility for phylogenetic analysis as obtaining confident sequence alignment was often impossible between different genera of the same family and even between congeneric species.
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
Kutyavin, Igor V.
2013-01-01
Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564
Replication of a chronic hepatitis B virus genotype F1b construct.
Hernández, Sergio; Jiménez, Gustavo; Alarcón, Valentina; Prieto, Cristian; Muñoz, Francisca; Riquelme, Constanza; Venegas, Mauricio; Brahm, Javier; Loyola, Alejandra; Villanueva, Rodrigo A
2016-03-01
Genotype F is one of the less-studied genotypes of human hepatitis B virus, although it is widely distributed in regions of Central and South American. Our previous studies have shown that HBV genotype F is prevalent in Chile, and phylogenetic analysis of its full-length sequence amplified from the sera of chronically infected patients identified it as HBV subgenotype F1b. We have previously reported the full-length sequence of a HBV molecular clone obtained from a patient chronically infected with genotype F1b. In this report, we established a system to study HBV replication based on hepatoma cell lines transfected with full-length monomers of the HBV genome. Culture supernatants were analyzed after transfection and found to contain both HBsAg and HBeAg viral antigens. Consistently, fractionated cell extracts revealed the presence of viral replication, with both cytoplasmic and nuclear DNA intermediates. Analysis of HBV-transfected cells by indirect immunofluorescence or immunoelectron microscopy revealed the expression of viral antigens and cytoplasmic viral particles, respectively. To test the functionality of the ongoing viral replication further at the level of chromatinized cccDNA, transfected cells were treated with a histone deacetylase inhibitor, and this resulted in increased viral replication. This correlated with changes posttranslational modifications of histones at viral promoters. Thus, the development of this viral replication system for HBV genotype F will facilitate studies on the regulation of viral replication and the identification of new antiviral drugs.
MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo
Williams, Gregory M.; Surtees, Jennifer A.
2015-01-01
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion. PMID:25969461
Measuring fit of sequence data to phylogenetic model: gain of power using marginal tests.
Waddell, Peter J; Ota, Rissa; Penny, David
2009-10-01
Testing fit of data to model is fundamentally important to any science, but publications in the field of phylogenetics rarely do this. Such analyses discard fundamental aspects of science as prescribed by Karl Popper. Indeed, not without cause, Popper (Unended quest: an intellectual autobiography. Fontana, London, 1976) once argued that evolutionary biology was unscientific as its hypotheses were untestable. Here we trace developments in assessing fit from Penny et al. (Nature 297:197-200, 1982) to the present. We compare the general log-likelihood ratio (the G or G (2) statistic) statistic between the evolutionary tree model and the multinomial model with that of marginalized tests applied to an alignment (using placental mammal coding sequence data). It is seen that the most general test does not reject the fit of data to model (P approximately 0.5), but the marginalized tests do. Tests on pairwise frequency (F) matrices, strongly (P < 0.001) reject the most general phylogenetic (GTR) models commonly in use. It is also clear (P < 0.01) that the sequences are not stationary in their nucleotide composition. Deviations from stationarity and homogeneity seem to be unevenly distributed amongst taxa; not necessarily those expected from examining other regions of the genome. By marginalizing the 4( t ) patterns of the i.i.d. model to observed and expected parsimony counts, that is, from constant sites, to singletons, to parsimony informative characters of a minimum possible length, then the likelihood ratio test regains power, and it too rejects the evolutionary model with P < 0.001. Given such behavior over relatively recent evolutionary time, readers in general should maintain a healthy skepticism of results, as the scale of the systematic errors in published trees may really be far larger than the analytical methods (e.g., bootstrap) report.
Alam, Nuhu; Shim, Mi Ja; Lee, Min Woong; Shin, Pyeong Gyun; Yoo, Young Bok; Lee, Tae Soo
2009-09-01
The molecular phylogeny in nine different commercial cultivated strains of Pleurotus nebrodensis was studied based on their internal transcribed spacer (ITS) region and RAPD. In the sequence of ITS region of selected strains, it was revealed that the total length ranged from 592 to 614 bp. The size of ITS1 and ITS2 regions varied among the strains from 219 to 228 bp and 211 to 229 bp, respectively. The sequence of ITS2 was more variable than ITS1 and the region of 5.8S sequences were identical. Phylogenetic tree of the ITS region sequences indicated that selected strains were classified into five clusters. The reciprocal homologies of the ITS region sequences ranged from 99 to 100%. The strains were also analyzed by RAPD with 20 arbitrary primers. Twelve primers were efficient to applying amplification of the genomic DNA. The sizes of the polymorphic fragments obtained were in the range of 200 to 2000 bp. RAPD and ITS analysis techniques were able to detect genetic variation among the tested strains. Experimental results suggested that IUM-1381, IUM-3914, IUM-1495 and AY-581431 strains were genetically very similar. Therefore, all IUM and NCBI gene bank strains of P. nebrodensis were genetically same with some variations.
Santoro, Mario; Cipriani, Paolo; Pankov, Plamen; Lawton, Scott P
2015-10-01
Aporocotyle michaudi n. sp. is described from the gill blood vessels of the emerald rock cod Trematomus bernacchii in the Ross Sea, Antarctica. It is distinguished from all other species of Aporocotyle by its body tegument showing single conical spines, spinous buccal capsule, and genital atrium positioned medially; all congeners described to date are characterized by clusters of tegumental spines, unspined buccal capsule and genital atrium located in the lateral part of the body. Aporocotyle michaudi n. sp. clearly differs from A. notothenia (the only other species of Aporocotyle found in a perciform fish) in its shape and arrangement of tegumental spines, buccal capsule features, location of genital atrium, body size, ratio of esophagus/body length, anterior caeca/posterior caeca ratio, number of testes, cirrus sac and ovary size and shape, and host. The new species is easily distinguished from A. argentinensis (the species that most closely resembles A. michaudi) by the shape and arrangement of tegumental spines, buccal capsule features, genital atrium location, left anterior caecum longer than right, esophagus/body length ratio, number of testes, cirrus sac size and shape, host and molecular analyses. Phylogenetic analyses of partial 28S rDNA genetic data showed that sequences representing the new species form a distinct clade with all other sequences for species of Aporocotyle and appear basal within the genus. Aporocotyle michaudi n. sp. represents the only species of genus described in Antarctica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Conservation and variability of West Nile virus proteins.
Koo, Qi Ying; Khan, Asif M; Jung, Keun-Ok; Ramdas, Shweta; Miotto, Olivo; Tan, Tin Wee; Brusic, Vladimir; Salmon, Jerome; August, J Thomas
2009-01-01
West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of < or = 1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (< or = 10% of the WNV sequences analyzed). Eighty-eight fragments of length 9-29 amino acids, representing approximately 34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivirus infections, and for studies of homologous sequences among other flaviviruses.
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius
Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.
2010-01-01
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665
Ribeiro, Antonio; Golicz, Agnieszka; Hackett, Christine Anne; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J; Bayer, Micha
2015-11-11
Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in mapping-based variant calling - quality of the reference sequence, read length, choice of mapper and variant caller, mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false positive. The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs (Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs generated and there was a considerable amount of interaction between the different factors. Using a fragmented reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the outcome. The effect of read length was more complex and suggests a possible interaction between mapping specificity and the potential for contributing more false positives as read length increases. The choice of tools and parameters involved in variant calling can have a dramatic effect on the number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model organism in its early stages of genomic exploration.
Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report
NASA Technical Reports Server (NTRS)
Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.
1982-01-01
Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.
Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA
NASA Astrophysics Data System (ADS)
Fye, Richard M.; Benham, Craig J.
1999-03-01
Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N2) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements. Calculations performed on the fructose-1,6-bisphosphatase gene sequence from yeast show that this approach can also accurately treat in vivo denaturation.
Young Children's Understandings of Length Measurement: Evaluating a Learning Trajectory
ERIC Educational Resources Information Center
Szilagyi, Janka; Clements, Douglas H.; Sarama, Julie
2013-01-01
This study investigated the development of length measurement ideas in students from prekindergarten through 2nd grade. The main purpose was to evaluate and elaborate the developmental progression, or levels of thinking, of a hypothesized learning trajectory for length measurement to ensure that the sequence of levels of thinking is consistent…
Qiao, Wenjie; Zarzyńska-Nowak, Aleksandra; Nerva, Luca; Kuo, Yen-Wen; Falk, Bryce W
2018-04-28
RNA silencing is a conserved antiviral defense mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harboring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RdRp sequence exhibited immunity to systemic LIYV infection. Deep-sequencing analysis was performed to characterize virus-derived siRNAs (vsiRNAs) generated upon systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants except a significant increase of t-siRNAs of 24 nt in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21-, 22-, and 24- nt in length. The accumulated 24-nt sequences haven't yet been reported in transgenic plants partially resistant to criniviruses, thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nt t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24 nt t-siRNAs is associated with crinivirus immunity in transgenic plants. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
Li, Xiaoyu; Ma, Junguo; Lei, Wenlong; Li, Jie; Zhang, Yaning; Li, Yuanlong
2013-08-01
Cytochrome P450 (CYP) enzymes, especially CYP 3A, are responsible for metabolizing of various kinds of endogenous and exogenous compounds in animals. In the present study, a full-length sequence of CYP 3A137 cDNA in silver carp was cloned and sequenced, and then a phylogenetic tree of CYP 3A was structured. Additionally, the acute toxicity of the ionic liquid 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on silver carp and transcription and microsome enzyme activity of CYP 3A137 in the liver of silver fish after rifampicin or [C8mim]Br exposure were also determined in this study. The results show that the full length of CYP 3A137 cDNA is 1810 base pair (bp) long and contains an open reading frame of 1539bp encoding a protein of 513 amino acids. Sequence analysis reveals that CYP 3A137 is highly conserved in fish. Moreover, the results of quantitative real-time polymerase chain reaction reveal that CYP 3A137 in silver carp is constitutively expressed in all tissues examined and the sequence of expression rate is liver>intestine>kidney>spleen>brain>heart>muscle. Finally, the results of acute toxicity tests indicate that both rifampicin and [C8mim]Br significantly up-regulate the expression of CYP 3A137 at mRNA level and increase CYP 3A137 enzyme activity in fish liver, suggesting that CYP 3A137 be involved in metabolism of [C8mim]Br in silver carp. Copyright © 2013 Elsevier Ltd. All rights reserved.
Not all (possibly) “random” sequences are created equal
Pincus, Steve; Kalman, Rudolf E.
1997-01-01
The need to assess the randomness of a single sequence, especially a finite sequence, is ubiquitous, yet is unaddressed by axiomatic probability theory. Here, we assess randomness via approximate entropy (ApEn), a computable measure of sequential irregularity, applicable to single sequences of both (even very short) finite and infinite length. We indicate the novelty and facility of the multidimensional viewpoint taken by ApEn, in contrast to classical measures. Furthermore and notably, for finite length, finite state sequences, one can identify maximally irregular sequences, and then apply ApEn to quantify the extent to which given sequences differ from maximal irregularity, via a set of deficit (defm) functions. The utility of these defm functions which we show allows one to considerably refine the notions of probabilistic independence and normality, is featured in several studies, including (i) digits of e, π, √2, and √3, both in base 2 and in base 10, and (ii) sequences given by fractional parts of multiples of irrationals. We prove companion analytic results, which also feature in a discussion of the role and validity of the almost sure properties from axiomatic probability theory insofar as they apply to specified sequences and sets of sequences (in the physical world). We conclude by relating the present results and perspective to both previous and subsequent studies. PMID:11038612
Unified Deep Learning Architecture for Modeling Biology Sequence.
Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang
2017-10-09
Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.
Bittencourt-Oliveira, Fernanda; Teixeira, Paulo; Alencar, Alba; Menezes, Rodrigo; Corrêa, Christiane; Neves, Leandro; Almeida, Fernanda; Daipert-Garcia, Daniel; Machado-Silva, José Roberto; Rodrigues-Silva, Rosângela
2018-01-30
Polycystic echinococcosis (PE) is caused by Echinococcus vogeli metacestodes (larval stage) in Neotropical countries. E. vogeli is trophically-transmitted between predators bush dogs (Speothos venaticus) and prey pacas (Cuniculus paca). In Brazil, reported PE cases are restricted to the Amazon biome. In this study, metacestodes from a paca hunted in Mato Grosso do Sul state (Cerrado biome) were identified morphological and histopathological techniques and further confirmed by molecular testing (sequencing of cytochrome C oxidase subunit I (cox1) gene) for the first time. Images of the whole liver showed superficial bubble-like hepatic masses. The parasitological analysis revealed large hooks (41.3 ± 1.2 μm length/12.8 ± 0.8 μm width) and small hooks (33.0 ± 1.5 μm length/11.1 ± 1.2 μm width), consistent with E. vogeli. Microscopically, the liver showed protoscoleces, a thick laminated layer, fibrosis, and inflammatory infiltrate in the adventitial layer. The DNA sequencing confirmed E. vogeli with 99% homology with sequences deposited in the GenBank. In addition, this finding greatly extends the geographic range of animal polycystic echinococcosis into the Cerrado. It is likely to occur in new biomes, where bush dogs and pacas share a given area in a trophic relationship. Copyright © 2017 Elsevier B.V. All rights reserved.
Shotgun Protein Sequencing with Meta-contig Assembly*
Guthals, Adrian; Clauser, Karl R.; Bandeira, Nuno
2012-01-01
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings. PMID:22798278
Shotgun protein sequencing with meta-contig assembly.
Guthals, Adrian; Clauser, Karl R; Bandeira, Nuno
2012-10-01
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings.
An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq.
Yuan, Yongxian; Xu, Huaiqian; Leung, Ross Ka-Kit
2016-05-26
Previous studies compared running cost, time and other performance measures of popular sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton sequencing platform remains unexplored. Unlike Illumina sequencing platforms, Proton reads are heterogeneous in length and quality. When sequencing data from different platforms are combined, this can result in reads with various read length. Whether the performance of the commonly used software for handling such kind of data is satisfactory is unknown. By using universal human reference RNA as the initial material, RNaseIII and chemical fragmentation methods in library construction showed similar result in gene and junction discovery number and expression level estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 % to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly consistent results with that of TaqMan array and highest sensitivity. We provided for the first time, the reference statistics of library preparation methods, gene detection and quantification and junction discovery for RNA-Seq by the Ion Proton platform. Chemical fragmentation performed equally well with the enzyme-based one. The optimal Ion Proton sequencing options and analysis software have been evaluated.
Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies
2014-01-01
Background The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. Results We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. Conclusions In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied. PMID:24647006
Biological sequence compression algorithms.
Matsumoto, T; Sadakane, K; Imai, H
2000-01-01
Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.
Genomic sequencing of deer tick virus and phylogeny of powassan-related viruses of North America.
Kuno, G; Artsob, H; Karabatsos, N; Tsuchiya, K R; Chang, G J
2001-11-01
Powassan (POW) virus is responsible for central nervous system infection in humans in North America and the eastern parts of Russia. Recently, a new flavivirus, deer tick (DT) virus, related to POW virus was isolated in the United States, but neither its pathogenic potential in human nor the taxonomic relationship with POW virus has been elucidated. In this study, we obtained the near-full-length genomic sequence of the DT virus and complete sequences of 3 genomic regions of 15 strains of POW-related virus strains. The phylogeny revealed 2 lineages, one of which had the prototype POW virus and the other DT virus. Both lineages can cause central nervous system infection in humans. By use of the combination of molecular definition of virus species within the genus Flavivirus and serological distinction in a 2-way cross-neutralization test, the lineage of DT virus is classified as a distinct genotype of POW virus.
Waite, David W; Dsouza, Melissa; Biswas, Kristi; Ward, Darren F; Deines, Peter; Taylor, Michael W
2015-05-01
The endemic New Zealand weta is an enigmatic insect. Although the insect is well known by its distinctive name, considerable size, and morphology, many basic aspects of weta biology remain unknown. Here, we employed cultivation-independent enumeration techniques and rRNA gene sequencing to investigate the gut microbiota of the Auckland tree weta (Hemideina thoracica). Fluorescence in situ hybridisation performed on different sections of the gut revealed a bacterial community of fluctuating density, while rRNA gene-targeted amplicon pyrosequencing revealed the presence of a microbial community containing high bacterial diversity, but an apparent absence of archaea. Bacteria were further studied using full-length 16S rRNA gene sequences, with statistical testing of bacterial community membership against publicly available termite- and cockroach-derived sequences, revealing that the weta gut microbiota is similar to that of cockroaches. These data represent the first analysis of the weta microbiota and provide initial insights into the potential function of these microorganisms.
Han, Yuepeng; Chagné, David; Gasic, Ksenija; Rikkerink, Erik H A; Beever, Jonathan E; Gardiner, Susan E; Korban, Schuyler S
2009-03-01
A genome-wide BAC physical map of the apple, Malus x domestica Borkh., has been recently developed. Here, we report on integrating the physical and genetic maps of the apple using a SNP-based approach in conjunction with bin mapping. Briefly, BAC clones located at ends of BAC contigs were selected, and sequenced at both ends. The BAC end sequences (BESs) were used to identify candidate SNPs. Subsequently, these candidate SNPs were genetically mapped using a bin mapping strategy for the purpose of mapping the physical onto the genetic map. Using this approach, 52 (23%) out of 228 BESs tested were successfully exploited to develop SNPs. These SNPs anchored 51 contigs, spanning approximately 37 Mb in cumulative physical length, onto 14 linkage groups. The reliability of the integration of the physical and genetic maps using this SNP-based strategy is described, and the results confirm the feasibility of this approach to construct an integrated physical and genetic maps for apple.
Chloroplast microsatellite markers for Artocarpus (Moraceae) developed from transcriptome sequences1
Gardner, Elliot M.; Laricchia, Kristen M.; Murphy, Matthew; Ragone, Diane; Scheffler, Brian E.; Simpson, Sheron; Williams, Evelyn W.; Zerega, Nyree J. C.
2015-01-01
Premise of the study: Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. Methods and Results: Fifteen simple sequence repeats (SSRs) were identified in chloroplast sequences from four Artocarpus transcriptome assemblies. The markers were evaluated using capillary electrophoresis in A. odoratissimus (105 accessions) and A. altilis (73). They were also evaluated in silico in A. altilis (10), A. camansi (6), and A. altilis × A. mariannensis (7) transcriptomes. All loci were polymorphic in at least one species, with all 15 polymorphic in A. camansi. Per species, average alleles per locus ranged between 2.2 and 2.5. Three loci had evidence of fragment-length homoplasy. Conclusions: These markers will complement existing nuclear markers by enabling confident identification of maternal and clone lines, which are often important in vegetatively propagated crops such as breadfruit. PMID:26421253
Richert, Kathrin; Brambilla, Evelyne; Stackebrandt, Erko
2005-01-01
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.
Near Full-Length Identification of a Novel HIV-1 CRF01_AE/B/C Recombinant in Northern Myanmar.
Zhou, Yan-Heng; Chen, Xin; Liang, Yue-Bo; Pang, Wei; Qin, Wei-Hong; Zhang, Chiyu; Zheng, Yong-Tang
2015-08-01
The Myanmar-China border appears to be the "hot spot" region for the occurrence of HIV-1 recombination. The majority of the previous analyses of HIV-1 recombination were based on partial genomic sequences, which obviously cannot reflect the reality of the genetic diversity of HIV-1 in this area well. Here, we present a near full-length characterization of a novel HIV-1 CRF01_AE/B/C recombinant isolated from a long-distance truck driver in Northern Myanmar. It is the first description of a near full-length genomic sequence in Myanmar since 2003, and might be one of the most complicated HIV-1 chimeras ever detected in Myanmar, containing four CRF01_AE, six B segments, and five C segments separated by 14 breakpoints throughout its genome. The discovery and characterization of this new CRF01_AE/B/C recombinant indicate that intersubtype recombination is ongoing in Myanmar, continuously generating new forms of HIV-1. More work based on near full-length sequence analyses is urgently needed to better understand the genetic diversity of HIV-1 in these regions.
Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark
2009-06-01
The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.
Fracture behavior of hybrid composite laminates
NASA Technical Reports Server (NTRS)
Kennedy, J. M.
1983-01-01
The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.
libFLASM: a software library for fixed-length approximate string matching.
Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad
2016-11-10
Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.
Immunoglobulin from Antarctic fish species of Rajidae family.
Coscia, Maria Rosaria; Cocca, Ennio; Giacomelli, Stefano; Cuccaro, Fausta; Oreste, Umberto
2012-03-01
Immunoglobulins (Ig) of Chondroichthyes have been extensively studied in sharks; in contrast, in skates investigations on Ig remain scarce and fragmentary despite the high occurrence of skates in all of the major oceans of the world. To focus on Rajidae Igμ, the most abundant heavy chain isotype, we have chosen the Antarctic species Bathyraja eatonii, Bathyraja albomaculata, Bathyraja brachyurops, and Amblyraja georgiana which live at high latitudes in the Southern Ocean, and at very low temperatures. We prepared mRNA from the spleen of individuals of each species and performed RT-PCR experiments using two oligonucleotides designed on the alignment of various elasmobranch Igμ heavy chain sequences available in GenBank. The PCR products, about 1400-nt long, were cloned and sequenced. Nucleotide sequence identities calculated for the constant region domains ranged from 88.5% to 97.5% between species, and from 91.1% to 99.7% within species. In a distance tree, including also Raja erinacea sequences, two major branches were obtained, one containing Arhynchobatinae sequences, the other one Rajinae sequences. Four presumptive D gene segments were identified in the region of the VH/D/JH recombination; two different D segments were often found in the same sequence. Moreover, 5-15 genomic fragments of different lengths, carrying the gene locus encoding Igμ chain were revealed by Southern blotting analysis. B. eatonii amino acid sequences were analyzed for the positional diversity by Shannon entropy analysis, showing CH4 as the most conserved domain, and CH3 as the most variable one. B. eatonii CDR3 region length varied between 11 and 15 amino acid residues; the mean length (13.4 aa) was greater than that of Leucoraja eglanteria sequences (7.7 aa). An alignment of representative sequences of Antarctic species and R. erinacea showed that more cysteine residues not involved in the intradomain disulfide bridges were present in Antarctic species. Copyright © 2011 Elsevier B.V. All rights reserved.
Anthony Johnson, A M; Borah, B K; Sai Gopal, D V R; Dasgupta, I
2012-12-01
Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus is the causative agent of mosaic disease among Citrus species in southern India. Despite its reported prevalence in several citrus species, complete information on clear functional genomics or functional information of full-length genomes from all the CMBV isolates infecting citrus species are not available in publicly accessible databases. CMBV isolates from Rough Lemon and Sweet Orange collected from a nursery were cloned and sequenced. The analysis revealed high sequence homology of the two CMBV isolates with previously reported CMBV sequences implying that they represent new variants. Based on computational analysis of the predicted secondary structures, the possible functions of some CMBV proteins have been analyzed.
Amexis, Georgios; Rubin, Steven; Chatterjee, Nando; Carbone, Kathryn; Chumakov, Kostantin
2003-06-01
A single clinical isolate of mumps virus designated 88-1961 was obtained from a patient hospitalized with a clinical history of upper respiratory tract infection, parotitis, severe headache, fever and lymphadenopathy. We have sequenced the full-length genome of 88-1961 and compared it against all available full-length sequences of mumps virus. Based upon its nucleotide sequence of the SH gene 88-1961 was identified as a genotype H mumps strain. The overall extent of nucleotide and amino acid differences between each individual gene and protein of 88-1961 and the full-length mumps samples showed that the missense to silent ratios were unevenly distributed. Upon evaluation of the consensus sequence of 88-1961, four positions were found to be clearly heterogeneous at the nucleotide level (NP 315C/T, NP 318C/T, F 271A/C, and HN 855C/T). Sequence analysis revealed that the amino acid sequences for the NP, M, and the L protein were the most conserved, whereas the SH protein exhibited the highest variability among the compared mumps genotypes A, B, and G. No identifying molecular patterns in the non-coding (intergenic) or coding regions of 88-1961 were found when we compared it against relatively virulent (Urabe AM9 B, Glouc1/UK96, 87-1004 and 87-1005) and non-virulent mumps strains (Jeryl Lynn and all Urabe Am9 A substrains). Copyright 2003 Wiley-Liss, Inc.
Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus
NASA Astrophysics Data System (ADS)
Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat
2016-11-01
In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.
Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
Derbigny, Wilbert A; Kim, Seong K; Jang, Hyung K; O'Callaghan, Dennis J
2002-03-20
The early 293 amino acid EICP22 protein (EICP22P) of equine herpesvirus 1 localizes within the nucleus and functions as an accessory regulatory protein (J. Virol. 68 (1994) 4329). Transient transfection assays indicated that although the EICP22P by itself only minimally trans-activates EHV-1 promoters, the EICP22P functions synergistically with the immediate-early protein (IEP) to enhance expression of EHV-1 early genes (J. Virol. 71 (1997) 1004). We previously showed that the EICP22 protein enhances the DNA-binding activity of the EHV-1 IEP and that it also physically interacts with the IEP (J. Virol. 74 (2000) 1425). In this communication, we employed transient trans-activation assays utilizing EICP22P deletion mutants to address whether the sequences required for EICP22P-IEP physical interactions are essential for EICP22P's ability to interact synergistically with the IEP. Assays employing various classes of the EHV-1 promoters fused to the chloramphenicol acetyl-transferase (CAT) reporter gene indicated that: (1) neither full length nor any of the EICP22P mutants tested was able to overcome repression of the IE promoter elicited by the IEP, (2) the full-length EICP22P interacted synergistically with the IEP to trans-activate the early and late promoters tested, and (3) all of the EICP22P mutants, including those that were able to physically interact with IEP and itself, failed to function synergistically with the IEP to trans-activate representative EHV-1 early and late promoters. The results suggest that EICP22P sequences required for its interaction with the IE protein are not sufficient to mediate its synergistic effect on the trans-activation function of the IEP. The possible explanations as to why sequences in addition to those that mediate EICP22P-IEP interaction and EICP22P self-interactions are essential for the synergistic function of EICP22P are discussed.
2010-01-01
Background Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic α-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic α-helical domains, and tested these for antiviral and antibacterial activity. Results Of the nineteen new peptides tested, seven showed some anti-infective activity, with two of these being derived from two apolipoproteins not previously used to derive anti-infective sequences. Apolipoprotein J (151-170) - based on a predicted amphipathic alpha-helical domain from apolipoprotein J - had measurable anti-HSV1 activity, as did apolipoprotein B (3359-3367) dp (apoBdp), the latter being derived from the LDL receptor binding domain B of apolipoprotein B. The more active peptide - apoBdp - showed similarity to the previously reported apoE derived anti-infective peptide, and further modification of the apoBdp sequence to align the charge distribution more closely to that of apoEdp or to introduce aromatic residues resulted in increased breadth and potency of activity. The most active peptide of this type showed similar potent anti-HIV activity, comparable to that we previously reported for the apoE derived peptide apoEdpL-W. Conclusions These data suggest that further antimicrobial peptides may be obtained using human apolipoprotein sequences, selecting regions with either amphipathic α-helical structure, or those linked to receptor-binding regions. The finding that an amphipathic α-helical region of apolipoprotein J has antiviral activity comparable with that for the previously reported apolipoprotein AI derived peptide 18A, suggests that full-length apolipoprotein J may also have such activity, as has been reported for full-length apolipoprotein AI. Although the strength of the anti-infective activity of the sequences identified was limited, this could be increased substantially by developing related mutant peptides. Indeed the apolipoprotein B-derived peptide mutants uncovered by the present study may have utility as HIV therapeutics or microbicides. PMID:20298574
NASA Astrophysics Data System (ADS)
Kikuchi, Shoshi
2009-02-01
Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.
Length and sequence heterogeneity in 5S rDNA of Populus deltoides.
Negi, Madan S; Rajagopal, Jyothi; Chauhan, Neeti; Cronn, Richard; Lakshmikumaran, Malathi
2002-12-01
The 5S rRNA genes and their associated non-transcribed spacer (NTS) regions are present as repeat units arranged in tandem arrays in plant genomes. Length heterogeneity in 5S rDNA repeats was previously identified in Populus deltoides and was also observed in the present study. Primers were designed to amplify the 5S rDNA NTS variants from the P. deltoides genome. The PCR-amplified products from the two accessions of P. deltoides (G3 and G48) suggested the presence of length heterogeneity of 5S rDNA units within and among accessions, and the size of the spacers ranged from 385 to 434 bp. Sequence analysis of the non-transcribed spacer (NTS) revealed two distinct classes of 5S rDNA within both accessions: class 1, which contained GAA trinucleotide microsatellite repeats, and class 2, which lacked the repeats. The class 1 spacer shows length variation owing to the microsatellite, with two clones exhibiting 10 GAA repeat units and one clone exhibiting 16 such repeat units. However, distance analysis shows that class 1 spacer sequences are highly similar inter se, yielding nucleotide diversity (pi) estimates that are less than 0.15% of those obtained for class 2 spacers (pi = 0.0183 vs. 0.1433, respectively). The presence of microsatellite in the NTS region leading to variation in spacer length is reported and discussed for the first time in P. deltoides.
Kikhno, Irina
2014-01-01
Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153
Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.
Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng
2009-10-01
The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, P<0.01) between the expansion of the cytosine sequence length in the C-stretch of HVS-I and a reduction in the number of upstream adenines. These results indicate that the C-stretch could be a useful genetic maker in forensic identification of Chinese populations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.
Hirayama, Junichi; Tazumi, Akihiro; Hayashi, Kyohei; Tasaki, Erina; Kuribayashi, Takashi; Moore, John E; Millar, Beverley C; Matsuda, Motoo
2011-06-01
In the present study, the reliability of full-length gene sequence information for several genes including 16S rRNA was examined, for the discrimination of the two representative Campylobacter lari taxa, namely urease-negative (UN) C. lari and urease-positive thermophilic Campylobacter (UPTC). As previously described, 16S rRNA gene sequence are not reliable for the molecular discrimination of UN C. lari from UPTC organisms employing both the unweighted pair group method using arithmetic means analysis (UPGMA) and neighbor joining (NJ) methods. In addition, three composite full-length gene sequences (ciaB, flaC and vacJ) out of seven gene loci examined were reliable for discrimination employing dendrograms constructed by the UPGMA method. In addition, all the dendrograms of the NJ phylogenetic trees constructed based on the nine gene information were not reliable for the discrimination. Three composite full-length gene sequences (ciaB, flaC and vacJ) were reliable for the molecular discrimination between UN C. lari and UPTC organisms employing the UPGMA method, as well as among four thermophilic Campylobacter species. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Escaping introns in COI through cDNA barcoding of mushrooms: Pleurotus as a test case.
Avin, Farhat A; Subha, Bhassu; Tan, Yee-Shin; Braukmann, Thomas W A; Vikineswary, Sabaratnam; Hebert, Paul D N
2017-09-01
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus , the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus . Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.
2013-01-01
Background Significant efforts have been made to address the problem of identifying short genes in prokaryotic genomes. However, most known methods are not effective in detecting short genes. Because of the limited information contained in short DNA sequences, it is very difficult to accurately distinguish between protein coding and non-coding sequences in prokaryotic genomes. We have developed a new Iteratively Adaptive Sparse Partial Least Squares (IASPLS) algorithm as the classifier to improve the accuracy of the identification process. Results For testing, we chose the short coding and non-coding sequences from seven prokaryotic organisms. We used seven feature sets (including GC content, Z-curve, etc.) of short genes. In comparison with GeneMarkS, Metagene, Orphelia, and Heuristic Approachs methods, our model achieved the best prediction performance in identification of short prokaryotic genes. Even when we focused on the very short length group ([60–100 nt)), our model provided sensitivity as high as 83.44% and specificity as high as 92.8%. These values are two or three times higher than three of the other methods while Metagene fails to recognize genes in this length range. The experiments also proved that the IASPLS can improve the identification accuracy in comparison with other widely used classifiers, i.e. Logistic, Random Forest (RF) and K nearest neighbors (KNN). The accuracy in using IASPLS was improved 5.90% or more in comparison with the other methods. In addition to the improvements in accuracy, IASPLS required ten times less computer time than using KNN or RF. Conclusions It is conclusive that our method is preferable for application as an automated method of short gene classification. Its linearity and easily optimized parameters make it practicable for predicting short genes of newly-sequenced or under-studied species. Reviewers This article was reviewed by Alexey Kondrashov, Rajeev Azad (nominated by Dr J.Peter Gogarten) and Yuriy Fofanov (nominated by Dr Janet Siefert). PMID:24067167
Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire
Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George
2014-01-01
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027
Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian
2014-03-18
The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.
Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers
Rahman, Khondaker M.; James, Colin H.; Thurston, David E.
2011-01-01
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences. PMID:21427082
Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi
2015-11-20
The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.
Haplotype estimation using sequencing reads.
Delaneau, Olivier; Howie, Bryan; Cox, Anthony J; Zagury, Jean-François; Marchini, Jonathan
2013-10-03
High-throughput sequencing technologies produce short sequence reads that can contain phase information if they span two or more heterozygote genotypes. This information is not routinely used by current methods that infer haplotypes from genotype data. We have extended the SHAPEIT2 method to use phase-informative sequencing reads to improve phasing accuracy. Our model incorporates the read information in a probabilistic model through base quality scores within each read. The method is primarily designed for high-coverage sequence data or data sets that already have genotypes called. One important application is phasing of single samples sequenced at high coverage for use in medical sequencing and studies of rare diseases. Our method can also use existing panels of reference haplotypes. We tested the method by using a mother-father-child trio sequenced at high-coverage by Illumina together with the low-coverage sequence data from the 1000 Genomes Project (1000GP). We found that use of phase-informative reads increases the mean distance between switch errors by 22% from 274.4 kb to 328.6 kb. We also used male chromosome X haplotypes from the 1000GP samples to simulate sequencing reads with varying insert size, read length, and base error rate. When using short 100 bp paired-end reads, we found that using mixtures of insert sizes produced the best results. When using longer reads with high error rates (5-20 kb read with 4%-15% error per base), phasing performance was substantially improved. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
An investigation of error correcting techniques for OMV and AXAF
NASA Technical Reports Server (NTRS)
Ingels, Frank; Fryer, John
1991-01-01
The original objectives of this project were to build a test system for the NASA 255/223 Reed/Solomon encoding/decoding chip set and circuit board. This test system was then to be interfaced with a convolutional system at MSFC to examine the performance of the concantinated codes. After considerable work, it was discovered that the convolutional system could not function as needed. This report documents the design, construction, and testing of the test apparatus for the R/S chip set. The approach taken was to verify the error correcting behavior of the chip set by injecting known error patterns onto data and observing the results. Error sequences were generated using pseudo-random number generator programs, with Poisson time distribution between errors and Gaussian burst lengths. Sample means, variances, and number of un-correctable errors were calculated for each data set before testing.
Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei
2018-01-01
DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.
Read clouds uncover variation in complex regions of the human genome.
Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E; West, Robert; Sidow, Arend; Batzoglou, Serafim
2015-10-01
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. © 2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.
Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng
2013-11-01
Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.
Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat.
D'Ambrosio, E; Waitzkin, S D; Witney, F R; Salemme, A; Furano, A V
1986-01-01
We present the DNA sequence of a 6.7-kilobase member of the rat long interspersed repeated DNA family (LINE or L1Rn). This member (LINE 3) is flanked by a perfect 14-base-pair (bp) direct repeat and is a full-length, or close-to-full-length, member of this family. LINE 3 contains an approximately 100-bp A-rich right end, a number of long (greater than 400-bp) open reading frames, and a ca. 200-bp G + C-rich (ca. 60%) cluster near each terminus. Comparison of the LINE 3 sequence with the sequence of about one-half of another member, which we also present, as well as restriction enzyme analysis of the genomic copies of this family, indicates that in length and overall structure LINE 3 is quite typical of the 40,000 or so other genomic members of this family which would account for as much as 10% of the rat genome. Therefore, the rat LINE family is relatively homogeneous, which contrasts with the heterogeneous LINE families in primates and mice. Transcripts corresponding to the entire LINE sequence are abundant in the nuclear RNA of rat liver. The characteristics of the rat LINE family are discussed with respect to the possible function and evolution of this family of DNA sequences. Images PMID:3023845
Kuroda, Tsuyoshi; Tomimatsu, Erika; Grondin, Simon; Miyazaki, Makoto
2016-11-01
We investigated how perceived duration of empty time intervals would be modulated by the length of sounds marking those intervals. Three sounds were successively presented in Experiment 1. Each sound was short (S) or long (L), and the temporal position of the middle sound's onset was varied. The lengthening of each sound resulted in delayed perception of the onset; thus, the middle sound's onset had to be presented earlier in the SLS than in the LSL sequence so that participants perceived the three sounds as presented at equal interonset intervals. In Experiment 2, a short sound and a long sound were alternated repeatedly, and the relative duration of the SL interval to the LS interval was varied. This repeated sequence was perceived as consisting of equal interonset intervals when the onsets of all sounds were aligned at physically equal intervals. If the same onset delay as in the preceding experiment had occurred, participants should have perceived equality between the interonset intervals in the repeated sequence when the SL interval was physically shortened relative to the LS interval. The effects of sound length seemed to be canceled out when the presentation of intervals was repeated. Finally, the perceived duration of the interonset intervals in the repeated sequence was not influenced by whether the participant's native language was French or Japanese, or by how the repeated sequence was perceptually segmented into rhythmic groups.
Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function
Quarta, Giulio; Sin, Ken; Schlick, Tamar
2012-01-01
Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design. PMID:22359488
Modeling participation duration, with application to the North American Breeding Bird Survey
Link, William; Sauer, John
2014-01-01
We consider “participation histories,” binary sequences consisting of alternating finite sequences of 1s and 0s, ending with an infinite sequence of 0s. Our work is motivated by a study of observer tenure in the North American Breeding Bird Survey (BBS). In our analysis, j indexes an observer’s years of service and Xj is an indicator of participation in the survey; 0s interspersed among 1s correspond to years when observers did not participate, but subsequently returned to service. Of interest is the observer’s duration D = max {j: Xj = 1}. Because observed records X = (X1, X2,..., Xn)1 are of finite length, all that we can directly infer about duration is that D ⩾ max {j ⩽n: Xj = 1}; model-based analysis is required for inference about D. We propose models in which lengths of 0s and 1s sequences have distributions determined by the index j at which they begin; 0s sequences are infinite with positive probability, an estimable parameter. We found that BBS observers’ lengths of service vary greatly, with 25.3% participating for only a single year, 49.5% serving for 4 or fewer years, and an average duration of 8.7 years, producing an average of 7.7 counts.
Benchmarking short sequence mapping tools
2013-01-01
Background The development of next-generation sequencing instruments has led to the generation of millions of short sequences in a single run. The process of aligning these reads to a reference genome is time consuming and demands the development of fast and accurate alignment tools. However, the current proposed tools make different compromises between the accuracy and the speed of mapping. Moreover, many important aspects are overlooked while comparing the performance of a newly developed tool to the state of the art. Therefore, there is a need for an objective evaluation method that covers all the aspects. In this work, we introduce a benchmarking suite to extensively analyze sequencing tools with respect to various aspects and provide an objective comparison. Results We applied our benchmarking tests on 9 well known mapping tools, namely, Bowtie, Bowtie2, BWA, SOAP2, MAQ, RMAP, GSNAP, Novoalign, and mrsFAST (mrFAST) using synthetic data and real RNA-Seq data. MAQ and RMAP are based on building hash tables for the reads, whereas the remaining tools are based on indexing the reference genome. The benchmarking tests reveal the strengths and weaknesses of each tool. The results show that no single tool outperforms all others in all metrics. However, Bowtie maintained the best throughput for most of the tests while BWA performed better for longer read lengths. The benchmarking tests are not restricted to the mentioned tools and can be further applied to others. Conclusion The mapping process is still a hard problem that is affected by many factors. In this work, we provided a benchmarking suite that reveals and evaluates the different factors affecting the mapping process. Still, there is no tool that outperforms all of the others in all the tests. Therefore, the end user should clearly specify his needs in order to choose the tool that provides the best results. PMID:23758764
Differences in a ribosomal DNA sequence of Strongylus species allows identification of single eggs.
Campbell, A J; Gasser, R B; Chilton, N B
1995-03-01
In the current study, molecular techniques were evaluated for the species identification of individual strongyle eggs. Adult worms of Strongylus edentatus, S. equinus and S. vulgaris were collected at necropsy from horses from Australia and the U.S.A. Genomic DNA was isolated and a ribosomal transcribed spacer (ITS-2) amplified and sequenced using polymerase chain reaction (PCR) techniques. The length of the ITS-2 sequence of S. edentatus, S. equinus and S. vulgaris ranged between 217 and 235 nucleotides. Extensive sequence analysis demonstrated a low degree (0-0.9%) of intraspecific variation in the ITS-2 for the Strongylus species examined, whereas the levels of interspecific differences (13-29%) were significantly greater. Interspecific differences in the ITS-2 sequences allowed unequivocal species identification of single worms and eggs using PCR-linked restriction fragment length polymorphism. These results demonstrate the potential of the ribosomal spacers as genetic markers for species identification of single strongyle eggs from horse faeces.
Toward a Better Compression for DNA Sequences Using Huffman Encoding
Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi
2017-01-01
Abstract Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016). PMID:27960065
Toward a Better Compression for DNA Sequences Using Huffman Encoding.
Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi
2017-04-01
Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).
Choice-specific sequences in parietal cortex during a virtual-navigation decision task
Harvey, Christopher D.; Coen, Philip; Tank, David W.
2012-01-01
The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits. PMID:22419153
An evolution based biosensor receptor DNA sequence generation algorithm.
Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng
2010-01-01
A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.
Dr. Sanger's Apprentice: A Computer-Aided Instruction to Protein Sequencing.
ERIC Educational Resources Information Center
Schmidt, Thomas G.; Place, Allen R.
1985-01-01
Modeled after the program "Mastermind," this program teaches students the art of protein sequencing. The program (written in Turbo Pascal for the IBM PC, requiring 128K, a graphics adapter, and an 8070 mathematics coprocessor) generates a polypeptide whose sequence and length can be user-defined (for practice) or computer-generated (for…
Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA
Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua
2016-01-01
Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201
Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata.
Schnare, M N; Gray, M W
1982-01-01
In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista. Images PMID:7079176
Darrasse, A; Priou, S; Kotoujansky, A; Bertheau, Y
1994-01-01
Using a sequenced pectate lyase-encoding gene (pel gene), we developed a PCR test for Erwinia carotovora. A set of primers allowed the amplification of a 434-bp fragment in E. carotovora strains. Among the 89 E. carotovora strains tested, only the Erwinia carotovora subsp. betavasculorum strains were not detected. A restriction fragment length polymorphism (RFLP) study was undertaken on the amplified fragment with seven endonucleases. The Sau3AI digestion pattern specifically identified the Erwinia carotovora subsp. atroseptica strains, and the whole set of data identified the Erwinia carotovora subsp. wasabiae strains. However, Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. odorifera could not be separated. Phenetic and phylogenic analyses of RFLP results showed E. carotovora subsp. atroseptica as a homogeneous group while E. carotovora subsp. carotovora and E. carotovora subsp. odorifera strains exhibited a genetic diversity that may result from a nonmonophyletic origin. The use of RFLP on amplified fragments in epidemiology and for diagnosis is discussed. Images PMID:7912502
Yanik, Mert; Ponnam, Surya Prakash Goud; Wimmer, Tobias; Trimborn, Lennart; Müller, Carina; Gambert, Isabel; Ginsberg, Johanna; Janise, Annabella; Domicke, Janina; Wende, Wolfgang; Lorenz, Birgit; Stieger, Knut
2018-06-01
Common genome-editing strategies are either based on non-homologous end joining (NHEJ) or, in the presence of a template DNA, based on homologous recombination with long (homology-directed repair [HDR]) or short (microhomology-mediated end joining [MMEJ]) homologous sequences. In the current study, we aim to develop a model system to test the activity of MMEJ after CRISPR/Cas9-mediated cleavage in cell culture. Following successful proof of concept in an episomally based reporter system, we tested template plasmids containing a promoter-less luciferase gene flanked by microhomologous sequences (mhs) of different length (5, 10, 15, 20, 30, and 50 bp) that are complementary to the mouse retinitis pigmentosa GTPase regulator (RPGR)-ORF15, which is under the control of a CMV promoter stably integrated into a HEK293 cell line. Luciferase signal appearance represented successful recombination events and was highest when the mhs were 5 bp long, while longer mhs revealed lower luciferase signal. In addition, presence of Csy4 RNase was shown to increase luciferase signaling. The luciferase reporter system is a valuable tool to study the input of the different DNA repair mechanisms in the replacement of large DNA sequences by mhs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferreira, M.; Creveling, J.; Hilburn, I.; Karlsson, E.; Pepe-Ranney, C.; Spear, J.; Dawson, S.; Geobio2008, I.
2008-12-01
Silicified structures that exhibit a putative biologic component in their formation permeate the rock record as stromatolites. We have studied a silicified microbial structure from a hot spring in Yellowstone National Park using phenotypic, phylogenetic, and metagenomic analyses to determine microbial carbon metabolic pathways and the phylogenetic affiliations of microbes present in this unique structure. In this multi-faceted approach, dominant physiologies, specifically with regards to anaerobic and aerobic metabolisms, were inferred from 16S rRNA gene sequences and 454 sequencing data from bulk DNA samples of the structure. Carbon utilization as indicated by ECO Biolog plates showed abundant heterotrophy and heterotrophic diversity throughout the microbial structure. Microbes within the structure are able to utilize all tested sources of carbohydrates, lipids/fatty acids, and protein/amino acids as carbon sources. ECO plate testing of the hot spring water yielded considerable less carbohydrate consumption (only 4 out of 13 tested carbohydrates) and similar lipids/fatty acids and protein/amino acids consumption (2 out of 3 and 5 out of 5 tested sources respectively). Full length 16S rRNA gene sequences and metagenomic 454 pyrosequencing of community DNA showed limited diversity among primary producers. From the 16S data, the majority of the autotrophs are inferred to utilize the Calvin cycle for CO2 fixation, followed by 3-hydroxypropionate/4- hydroxybutyrate CO2 fixation. However, an analysis of the metagenomic data compared to the KEGG database does not show genes directly involved with Calvin cycle carbon fixation. Further BLAST searches of our data failed to find significant matches within our 6514 metagenomic sequences to known RuBisCo sequences taken from the NCBI database. This is likely due to a far under-sampled dataset of metagenomic sequences, and the low number (958) that had matches to the KEGG pathways database. Anaerobic versus aerobic physiology also can be estimated from the 16S clone libraries. Phylogenetic analysis of recovered 16S sequences suggests that 15% of the 16S sequences can be attributed to anaerobic microbes while 42% likely come from aerobes. The remaining 43% of 16S rRNA gene sequences belong to metabolically unassigned phyla both known and novel. This preliminary study demonstrates that the small spatially stratified silicified microbial structure present on the margins of a hot spring contains a rich and complex microbial community with different trophic levels and enzymatic pathways.
Sequence comparison alignment-free approach based on suffix tree and L-words frequency.
Soares, Inês; Goios, Ana; Amorim, António
2012-01-01
The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.
Li, Fan; Ma, Liying; Feng, Yi; Hu, Jing; Ni, Na; Ruan, Yuhua; Shao, Yiming
2017-06-01
HIV-1 transmission in intravenous drug users (IDUs) has been characterized by high genetic multiplicity and suggests a greater challenge for HIV-1 infection blocking. We investigated a total of 749 sequences of full-length gp160 gene obtained by single genome sequencing (SGS) from 22 HIV-1 early infected IDUs in Xinjiang province, northwest China, and generated a transmitted and founder virus (T/F virus) consensus sequence (IDU.CON). The T/F virus was classified as subtype CRF07_BC and predicted to be CCR5-tropic virus. The variable region (V1, V2, and V4 loop) of IDU.CON showed length variation compared with the heterosexual T/F virus consensus sequence (HSX.CON) and homosexual T/F virus consensus sequence (MSM.CON). A total of 26 N-linked glycosylation sites were discovered in the IDU.CON sequence, which is less than that of MSM.CON and HSX.CON. Characterization of T/F virus from IDUs highlights the genetic make-up and complexity of virus near the moment of transmission or in early infection preceding systemic dissemination and is important toward the development of an effective HIV-1 preventive methods, including vaccines.
Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun
2013-01-01
Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species. PMID:24146870
Li, Runsheng; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Ren, Xiaoliang; Zhao, Zhongying
2015-01-01
Most next-generation sequencing platforms permit acquisition of high-throughput DNA sequences, but the relatively short read length limits their use in genome assembly or finishing. Illumina has recently released a technology called Synthetic Long-Read Sequencing that can produce reads of unusual length, i.e., predominately around 10 Kb. However, a systematic assessment of their use in genome finishing and assembly is still lacking. We evaluate the promise and deficiency of the long reads in these aspects using isogenic C. elegans genome with no gap. First, the reads are highly accurate and capable of recovering most types of repetitive sequences. However, the presence of tandem repetitive sequences prevents pre-assembly of long reads in the relevant genomic region. Second, the reads are able to reliably detect missing but not extra sequences in the C. elegans genome. Third, the reads of smaller size are more capable of recovering repetitive sequences than those of bigger size. Fourth, at least 40 Kbp missing genomic sequences are recovered in the C. elegans genome using the long reads. Finally, an N50 contig size of at least 86 Kbp can be achieved with 24×reads but with substantial mis-assembly errors, highlighting a need for novel assembly algorithm for the long reads. PMID:26039588
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.
Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko
2017-10-01
We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Hara, Yuichiro; Tatsumi, Kaori; Yoshida, Michio; Kajikawa, Eriko; Kiyonari, Hiroshi; Kuraku, Shigehiro
2015-11-18
RNA-seq enables gene expression profiling in selected spatiotemporal windows and yields massive sequence information with relatively low cost and time investment, even for non-model species. However, there remains a large room for optimizing its workflow, in order to take full advantage of continuously developing sequencing capacity. Transcriptome sequencing for three embryonic stages of Madagascar ground gecko (Paroedura picta) was performed with the Illumina platform. The output reads were assembled de novo for reconstructing transcript sequences. In order to evaluate the completeness of transcriptome assemblies, we prepared a reference gene set consisting of vertebrate one-to-one orthologs. To take advantage of increased read length of >150 nt, we demonstrated shortened RNA fragmentation time, which resulted in a dramatic shift of insert size distribution. To evaluate products of multiple de novo assembly runs incorporating reads with different RNA sources, read lengths, and insert sizes, we introduce a new reference gene set, core vertebrate genes (CVG), consisting of 233 genes that are shared as one-to-one orthologs by all vertebrate genomes examined (29 species)., The completeness assessment performed by the computational pipelines CEGMA and BUSCO referring to CVG, demonstrated higher accuracy and resolution than with the gene set previously established for this purpose. As a result of the assessment with CVG, we have derived the most comprehensive transcript sequence set of the Madagascar ground gecko by means of assembling individual libraries followed by clustering the assembled sequences based on their overall similarities. Our results provide several insights into optimizing de novo RNA-seq workflow, including the coordination between library insert size and read length, which manifested in improved connectivity of assemblies. The approach and assembly assessment with CVG demonstrated here would be applicable to transcriptome analysis of other species as well as whole genome analyses.
Design of nucleic acid strands with long low-barrier folding pathways.
Condon, Anne; Kirkpatrick, Bonnie; Maňuch, Ján
2017-01-01
A major goal of natural computing is to design biomolecules, such as nucleic acid sequences, that can be used to perform computations. We design sequences of nucleic acids that are "guaranteed" to have long folding pathways relative to their length. This particular sequences with high probability follow low-barrier folding pathways that visit a large number of distinct structures. Long folding pathways are interesting, because they demonstrate that natural computing can potentially support long and complex computations. Formally, we provide the first scalable designs of molecules whose low-barrier folding pathways, with respect to a simple, stacked pair energy model, grow superlinearly with the molecule length, but for which all significantly shorter alternative folding pathways have an energy barrier that is [Formula: see text] times that of the low-barrier pathway for any [Formula: see text] and a sufficiently long sequence.
RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus.
Widmer, G
1993-03-01
Double-stranded RNA viruses (dsRNA), termed LRV1, have been found in several strains of the protozoan parasite Leishmania. With the aim of constructing a full-length cDNA copy of the viral genome, including its terminal sequences, a protocol based on PCR amplification across the 3'-5' junction of circularized RNA was developed. This method proved to be applicable to dsRNA. It provided a relatively simple alternative to one-sided PCR, without loss of specificity inherent in the use of generic primers. LRV1 terminal nucleotide sequences obtained by this method showed a considerable variation in length, particularly at the 5' end of the positive strand, as well as the potential for forming 3' overhangs. The opposite genomic end terminates in 0, 1, or 2 TCA trinucleotide repeats. These results are compared with terminal sequences derived from one-sided PCR experiments.
Qiu, Xianjin; Gong, Rong; Tan, Youbin; Yu, Sibin
2012-12-01
Seed shape in rice (Oryza sativa) is an important factor that determines grain appearance, cooking quality and grain yield. Here, we report a major quantitative trait locus qSS7 on the long arm of chromosome 7 for seed length, seed width and the ratio of seed length to width, identified using a segregating population derived from a cross between an indica variety Zhenshan97 and a chromosomal segment substitution line of a japonica variety Cypress within the genetic background of Zhenshan97. The Cypress allele at qSS7 contributes to an increase in seed length and the ratio of length to width, but a decrease in seed width, without significantly changing seed weight, plant height, heading date or number of spikelets per panicle. Using a large F(2) population generated from a substitution line that carries only a heterozygous single segment surrounding qSS7, we delimited the QTL to a 23-kb region containing two annotated genes. Progeny testing of the informative recombinants suggested that this qSS7 region is a composite QTL in which at least two genes contribute to seed length and width. Sequence comparison and expression analysis of two probable candidate genes revealed differences between the parental lines. These results will facilitate cloning of the gene(s) underlying qSS7 as well as marker-assisted transfer of desirable genes for seed shape in rice improvement.
Exploring Connectivity in Sequence Space of Functional RNA
NASA Technical Reports Server (NTRS)
Wei, Chenyu; Pohorille, Andrzej; Popovic, Milena; Ditzler, Mark
2017-01-01
Emergence of replicable genetic molecules was one of the marking points in the origin of life, evolution of which can be conceptualized as a walk through the space of all possible sequences. A theoretical concept of fitness landscape helps to understand evolutionary processes through assigning a value of fitness to each genotype. Then, evolution of a phenotype is viewed as a series of consecutive, single-point mutations. Natural selection biases evolution toward peaks of high fitness and away from valleys of low fitness. whereas neutral drift occurs in the sequence space without direction as mutations are introduced at random. Large networks of neutral or near-neutral mutations on a fitness landscape, especially for sufficiently long genomes, are possible or even inevitable. Their detection in experiments, however, has been elusive. Although a few near-neutral evolutionary pathways have been found, recent experimental evidence indicates landscapes consist of largely isolated islands. The generality of these results, however, is not clear, as the genome length or the fraction of functional molecules in the genotypic space might have been insufficient for the emergence of large, neutral networks. Thorough investigation on the structure of the fitness landscape is essential to understand the mechanisms of evolution of early genomes. RNA molecules are commonly assumed to play the pivotal role in the origin of genetic systems. They are widely believed to be early, if not the earliest, genetic and catalytic molecules, with abundant biochemical activities as aptamers and ribozymes, i.e. RNA molecules capable, respectively, to bind small molecules or catalyze chemical reactions. Here, we present results of our recent studies on the structure of the sequence space of RNA ligase ribozymes selected through in vitro evolution. Several hundred thousands of sequences active to a different degree were obtained by way of deep sequencing. Analysis of these sequences revealed several large clusters defined such that every sequence in a cluster can be reached from any other sequence in the same cluster through a series of single point mutations. Sequences in a single cluster appear to adopt more than one secondary structure. The mechanism of refolding within a single cluster was examined. To shed light on possible evolutionary paths in the space of ribozymes, the connectivity between clusters was investigated. The effect of length of RNA molecules on the structure of the fitness landscape and possible evolutionary paths was examined by way of comparing functional sequences of 20 and 80 nucleobases in length. It was found that sequences of different lengths shared secondary structure motifs that were presumed responsible for catalytic activity, with increasing complexity and global structural rearrangements emerging in longer molecules.
Molecular cloning and nucleotide sequence of CYP6BF1 from the diamondback moth, Plutella xylostella
Li, Hongshan; Dai, Huaguo; Wei, Hui
2005-01-01
A novel cDNA clong encoding a cytochrome P450 was screened from the insecticide-susceptible strain of Plutella xylostella (L.) (Lepidoptera:Yponomeutidae). The nucleotide sequence of the clone, designated CYP6BF1, was determined. This is the first full-length sequence of the CYP6 family from Plutella xylostella (L.). The cDNA is 1661bp in length and contains an open reading frame from base pairs 26 to 1570, encoding a protein of 514 amino acid residues. It is similar to the other insect P450s in gene family 6, including CYP6AE1 from Depressaria pastinacella, (46%). The GenBank accession number is AY971374. PMID:17119627
Human Splice-Site Prediction with Deep Neural Networks.
Naito, Tatsuhiko
2018-04-18
Accurate splice-site prediction is essential to delineate gene structures from sequence data. Several computational techniques have been applied to create a system to predict canonical splice sites. For classification tasks, deep neural networks (DNNs) have achieved record-breaking results and often outperformed other supervised learning techniques. In this study, a new method of splice-site prediction using DNNs was proposed. The proposed system receives an input sequence data and returns an answer as to whether it is splice site. The length of input is 140 nucleotides, with the consensus sequence (i.e., "GT" and "AG" for the donor and acceptor sites, respectively) in the middle. Each input sequence model is applied to the pretrained DNN model that determines the probability that an input is a splice site. The model consists of convolutional layers and bidirectional long short-term memory network layers. The pretraining and validation were conducted using the data set tested in previously reported methods. The performance evaluation results showed that the proposed method can outperform the previous methods. In addition, the pattern learned by the DNNs was visualized as position frequency matrices (PFMs). Some of PFMs were very similar to the consensus sequence. The trained DNN model and the brief source code for the prediction system are uploaded. Further improvement will be achieved following the further development of DNNs.
Jang, Kuem Hee; Hwang, Ui Wook
2016-05-01
The complete mitogenome sequence of Martes flavigula, which is an endangered and endemic species in South Korea, was determined. The genome is 16,533 bp in length and its gene arrangement pattern, gene content, and gene organization is identical to those of martens. The control region was located between the tRNAPro and tRNAPhe genes and is 1087 bp in length. This mitogenome sequence data might be an important role in the preservation of genetic resources by allowing researchers to conduct phylogenetic and systematic analyses of Mustelidae.
MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
Williams, Gregory M; Surtees, Jennifer A
2015-07-01
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion. Copyright © 2015 by the Genetics Society of America.
Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes
Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.
2012-01-01
Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300
Ahmed, Md Atique; Fauzi, Muh; Han, Eun-Taek
2018-03-14
Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia. A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software. Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes. This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deymier, Martin J., E-mail: mdeymie@emory.edu; Claiborne, Daniel T., E-mail: dclaibo@emory.edu; Ende, Zachary, E-mail: zende@emory.edu
The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmittedmore » genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T; Diak, A; Surucu, M
Purpose: The use of MR to plan and evaluate brachytherapy treatment for cervical cancer is increasing given the availability of MR conditional or safe applicators and MRI’s proven superiority to CT for characterizing soft tissue lesions. The titanium applicators, however, cause geometric distortions or imaging artifacts, which reduce the utility of MRI for dosimetry. We sought to quantify the observed volume of the same applicator on a previously optimized T2 sequence in comparison to the conventional T2 sequence and CT obtained for brachytherapy planning. Methods: Prior work with testing in phantoms showed that increases in readout bandwidth yielded reductions inmore » artifact area and distortion measurements even with voxel increases. Following IRB approval, nine patients with titanium tandem & ovoid applicator (Varian Medical Systems) in place were scanned with a standard periprocedural protocol which included sagittal T2 fast spin echo (FSE) acquisition (res 0.98×0.78×4.0 mm{sup 3}; BW 200Hz). An additional T2-weighted FSE sequence (res 0.98×0.98×3–4 mm{sup 3}; BW500Hz) with increased readout bandwidth, readout voxel size, and echo train length was added to the protocol. Volume measurements of the applicator (from tip to cervical stop) were hand-segmented in Velocity AI 3.1 (Velocity Medical Solutions) for the two T2 FSE sequences and a planning CT obtained shortly after MRI. Differences were analyzed using a paired t-test. Results: Average apparent volumes of the applicator on standard T2 sequence, decreased bandwidth T2 sequence and CT were 5.922±1.283 cm{sup 3}, 4.544±1.524 cm3, and 2.304±0.509 cm{sup 3} respectively. Conclusion: Apparent volumes of a brachytherapy applicator can be compared in vivo. The modified sequence results in decreased apparent size of the cervical applicator. Both MR sequence volumes were larger than the planning CT, which was expected. Future work will focus on the diagnostic quality of the new sequence and quantifying any geometric shifts after CT to MRI registration based on anatomical landmarks.« less
Ramirez, Agnese; Crisafulli, Sebastiano G.; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P.; Corti, Stefania
2018-01-01
Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2. Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials. PMID:29316633
Ramirez, Agnese; Crisafulli, Sebastiano G; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania; Nizzardo, Monica
2018-01-06
Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 ( SMN1 ) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2 . Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials.
Virtual Northern analysis of the human genome.
Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O
2007-05-23
We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.
Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis
Le Balc’h, Eric; Grandin, Nathalie; Demattei, Marie-Véronique; Guyétant, Serge; Tallet, Anne; Ouaissi, Mehdi; Lecomte, Thierry
2017-01-01
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor. PMID:28850092
Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis.
Balc'h, Eric Le; Grandin, Nathalie; Demattei, Marie-Véronique; Guyétant, Serge; Tallet, Anne; Pagès, Jean-Christophe; Ouaissi, Mehdi; Lecomte, Thierry; Charbonneau, Michel
2017-08-29
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.
Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik
2011-10-01
The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C
2015-11-26
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
Pervasive sequence patents cover the entire human genome.
Rosenfeld, Jeffrey A; Mason, Christopher E
2013-01-01
The scope and eligibility of patents for genetic sequences have been debated for decades, but a critical case regarding gene patents (Association of Molecular Pathologists v. Myriad Genetics) is now reaching the US Supreme Court. Recent court rulings have supported the assertion that such patents can provide intellectual property rights on sequences as small as 15 nucleotides (15mers), but an analysis of all current US patent claims and the human genome presented here shows that 15mer sequences from all human genes match at least one other gene. The average gene matches 364 other genes as 15mers; the breast-cancer-associated gene BRCA1 has 15mers matching at least 689 other genes. Longer sequences (1,000 bp) still showed extensive cross-gene matches. Furthermore, 15mer-length claims from bovine and other animal patents could also claim as much as 84% of the genes in the human genome. In addition, when we expanded our analysis to full-length patent claims on DNA from all US patents to date, we found that 41% of the genes in the human genome have been claimed. Thus, current patents for both short and long nucleotide sequences are extraordinarily non-specific and create an uncertain, problematic liability for genomic medicine, especially in regard to targeted re-sequencing and other sequence diagnostic assays.
2012-01-01
Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920
HIPdb: a database of experimentally validated HIV inhibiting peptides.
Qureshi, Abid; Thakur, Nishant; Kumar, Manoj
2013-01-01
Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.
Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Venermo, Maria S Söderlund; Young, Neal S.; Brown, Kevin E.
2008-01-01
Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus. PMID:18252260
Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E
2008-05-10
Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.
Douville, Christopher; Masica, David L.; Stenson, Peter D.; Cooper, David N.; Gygax, Derek M.; Kim, Rick; Ryan, Michael
2015-01-01
ABSTRACT Insertion/deletion variants (indels) alter protein sequence and length, yet are highly prevalent in healthy populations, presenting a challenge to bioinformatics classifiers. Commonly used features—DNA and protein sequence conservation, indel length, and occurrence in repeat regions—are useful for inference of protein damage. However, these features can cause false positives when predicting the impact of indels on disease. Existing methods for indel classification suffer from low specificities, severely limiting clinical utility. Here, we further develop our variant effect scoring tool (VEST) to include the classification of in‐frame and frameshift indels (VEST‐indel) as pathogenic or benign. We apply 24 features, including a new “PubMed” feature, to estimate a gene's importance in human disease. When compared with four existing indel classifiers, our method achieves a drastically reduced false‐positive rate, improving specificity by as much as 90%. This approach of estimating gene importance might be generally applicable to missense and other bioinformatics pathogenicity predictors, which often fail to achieve high specificity. Finally, we tested all possible meta‐predictors that can be obtained from combining the four different indel classifiers using Boolean conjunctions and disjunctions, and derived a meta‐predictor with improved performance over any individual method. PMID:26442818
Douville, Christopher; Masica, David L; Stenson, Peter D; Cooper, David N; Gygax, Derek M; Kim, Rick; Ryan, Michael; Karchin, Rachel
2016-01-01
Insertion/deletion variants (indels) alter protein sequence and length, yet are highly prevalent in healthy populations, presenting a challenge to bioinformatics classifiers. Commonly used features--DNA and protein sequence conservation, indel length, and occurrence in repeat regions--are useful for inference of protein damage. However, these features can cause false positives when predicting the impact of indels on disease. Existing methods for indel classification suffer from low specificities, severely limiting clinical utility. Here, we further develop our variant effect scoring tool (VEST) to include the classification of in-frame and frameshift indels (VEST-indel) as pathogenic or benign. We apply 24 features, including a new "PubMed" feature, to estimate a gene's importance in human disease. When compared with four existing indel classifiers, our method achieves a drastically reduced false-positive rate, improving specificity by as much as 90%. This approach of estimating gene importance might be generally applicable to missense and other bioinformatics pathogenicity predictors, which often fail to achieve high specificity. Finally, we tested all possible meta-predictors that can be obtained from combining the four different indel classifiers using Boolean conjunctions and disjunctions, and derived a meta-predictor with improved performance over any individual method. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu
2007-01-01
Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061
Discriminative motif optimization based on perceptron training
Patel, Ronak Y.; Stormo, Gary D.
2014-01-01
Motivation: Generating accurate transcription factor (TF) binding site motifs from data generated using the next-generation sequencing, especially ChIP-seq, is challenging. The challenge arises because a typical experiment reports a large number of sequences bound by a TF, and the length of each sequence is relatively long. Most traditional motif finders are slow in handling such enormous amount of data. To overcome this limitation, tools have been developed that compromise accuracy with speed by using heuristic discrete search strategies or limited optimization of identified seed motifs. However, such strategies may not fully use the information in input sequences to generate motifs. Such motifs often form good seeds and can be further improved with appropriate scoring functions and rapid optimization. Results: We report a tool named discriminative motif optimizer (DiMO). DiMO takes a seed motif along with a positive and a negative database and improves the motif based on a discriminative strategy. We use area under receiver-operating characteristic curve (AUC) as a measure of discriminating power of motifs and a strategy based on perceptron training that maximizes AUC rapidly in a discriminative manner. Using DiMO, on a large test set of 87 TFs from human, drosophila and yeast, we show that it is possible to significantly improve motifs identified by nine motif finders. The motifs are generated/optimized using training sets and evaluated on test sets. The AUC is improved for almost 90% of the TFs on test sets and the magnitude of increase is up to 39%. Availability and implementation: DiMO is available at http://stormo.wustl.edu/DiMO Contact: rpatel@genetics.wustl.edu, ronakypatel@gmail.com PMID:24369152
USDA-ARS?s Scientific Manuscript database
Single Molecule Real-Time (SMRT) sequencing provides advantages to the sequencing of complex genomes. The long reads generated are superior for resolving complex genomic regions and provide highly contiguous de novo assemblies. Current SMRTbell libraries generate average read lengths of 10-15kb. How...
Duquesne, Véronique; Delcont, Aurélie; Huleux, Anthéa; Beven, Véronique; Touzain, Fabrice; Ribière-Chabert, Magali
2017-11-02
We report here the full mitochondrial genome sequence of Aethina tumida , a Nitidulidae species beetle, that is a pest of bee hives. The obtained sequence is 16,576 bp in length and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNAs. Copyright © 2017 Duquesne et al.
Singh, Jaya; Mishra, Avshesh; Pandian, Arunachalam Jayamuruga; Mallipatna, Ashwin C.; Khetan, Vikas; Sripriya, S.; Kapoor, Suman; Agarwal, Smita; Sankaran, Satish; Katragadda, Shanmukh; Veeramachaneni, Vamsi; Hariharan, Ramesh; Subramanian, Kalyanasundaram
2016-01-01
Purpose Retinoblastoma (Rb) is the most common primary intraocular cancer of childhood and one of the major causes of blindness in children. India has the highest number of patients with Rb in the world. Mutations in the RB1 gene are the primary cause of Rb, and heterogeneous mutations are distributed throughout the entire length of the gene. Therefore, genetic testing requires screening of the entire gene, which by conventional sequencing is time consuming and expensive. Methods In this study, we screened the RB1 gene in the DNA isolated from blood or saliva samples of 50 unrelated patients with Rb using the TruSight Cancer panel. Next-generation sequencing (NGS) was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. Results We were able to detect germline pathogenic mutations in 66% (33/50) of the cases, 12 of which were novel. We were able to detect all types of mutations, including missense, nonsense, splice site, indel, and structural variants. When we considered bilateral Rb cases only, the mutation detection rate increased to 100% (22/22). In unilateral Rb cases, the mutation detection rate was 30% (6/20). Conclusions Our study suggests that NGS-based approaches increase the sensitivity of mutation detection in the RB1 gene, making it fast and cost-effective compared to the conventional tests performed in a reflex-testing mode. PMID:27582626
Thermal Changes During Guided Flapless Implant Site Preparation: A Comparative Study.
Sannino, Gianpaolo; Gherlone, Enrico F
To compare intrabony thermal changes induced by two different protocols for guided implant surgery during the whole drilling procedure. Two protocols for guided implant placement were evaluated in vitro using artificial bone cylinders. The control protocol provided traditional metal sleeves and a standard drilling sequence composed of four cylindrical triflute drills (cutting surface length = 16 mm). The test protocol provided a three-slot polyurethane sleeve and two cylindrical drills (second drill cutting surface length = 4 mm). Forty automated intermittent and graduated osteotomies (depth = 14 mm) were performed under external irrigation. Temperatures were measured in real time by three sensors at different depths (2, 8, and 13 mm). The temperature changes generated by the final drill of each protocol during the shearing and withdrawing processes were recorded as experimental results and subjected to the Student t test. Maximum temperature increases were recorded during the process of withdrawing in both protocols. In the control group, the mean thermal changes were 10.18°C, 8.61°C, and 5.78°C at depths of 2, 8, and 13 mm, respectively. In the test group, the mean thermal changes were 1.44°C, 4.46°C, and 3.58°C at depths of 2, 8, and 13 mm, respectively. The control group revealed statistically significantly (P < .0001) higher thermal changes than the test group, both in the superficial and deeper bone areas. An appropriate irrigation system could be crucial for thermal lowering during a guided implant osteotomy mainly in the coronal and middle third of the implant site. Copious irrigation should be provided during the withdrawing process since greater thermal increases could be expected. Lower temperature increases could be achieved, reducing drill-to-bone contact, ie, cutting surface length, due to short frictional force exposure.
Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L
1994-01-01
A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933
Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L
2003-10-01
The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.
Hermes Transposon Distribution and Structure in Musca domestica
Subramanian, Ramanand A.; Cathcart, Laura A.; Krafsur, Elliot S.; Atkinson, Peter W.
2009-01-01
Hermes are hAT transposons from Musca domestica that are very closely related to the hobo transposons from Drosophila melanogaster and are useful as gene vectors in a wide variety of organisms including insects, planaria, and yeast. hobo elements show distinct length variations in a rapidly evolving region of the transposase-coding region as a result of expansions and contractions of a simple repeat sequence encoding 3 amino acids threonine, proline, and glutamic acid (TPE). These variations in length may influence the function of the protein and the movement of hobo transposons in natural populations. Here, we determine the distribution of Hermes in populations of M. domestica as well as whether Hermes transposase has undergone similar sequence expansions and contractions during its evolution in this species. Hermes transposons were found in all M. domestica individuals sampled from 14 populations collected from 4 continents. All individuals with Hermes transposons had evidence for the presence of intact transposase open reading frames, and little sequence variation was observed among Hermes elements. A systematic analysis of the TPE-homologous region of the Hermes transposase-coding region revealed no evidence for length variation. The simple sequence repeat found in hobo elements is a feature of this transposon that evolved since the divergence of hobo and Hermes. PMID:19366812
Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G
1995-01-01
Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723
Transcriptome analysis of sika deer in China.
Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He
2016-10-01
Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development.
NASA Technical Reports Server (NTRS)
Ho, P. S.; Ellison, M. J.; Quigley, G. J.; Rich, A.
1986-01-01
The ease with which a particular DNA segment adopts the left-handed Z-conformation depends largely on the sequence and on the degree of negative supercoiling to which it is subjected. We describe a computer program (Z-hunt) that is designed to search long sequences of naturally occurring DNA and retrieve those nucleotide combinations of up to 24 bp in length which show a strong propensity for Z-DNA formation. Incorporated into Z-hunt is a statistical mechanical model based on empirically determined energetic parameters for the B to Z transition accumulated to date. The Z-forming potential of a sequence is assessed by ranking its behavior as a function of negative superhelicity relative to the behavior of similar sized randomly generated nucleotide sequences assembled from over 80,000 combinations. The program makes it possible to compare directly the Z-forming potential of sequences with different base compositions and different sequence lengths. Using Z-hunt, we have analyzed the DNA sequences of the bacteriophage phi X174, plasmid pBR322, the animal virus SV40 and the replicative form of the eukaryotic adenovirus-2. The results are compared with those previously obtained by others from experiments designed to locate Z-DNA forming regions in these sequences using probes which show specificity for the left-handed DNA conformation.
Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.
Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T
1996-10-31
Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.
Hou, Weiguo; Wang, Shang; Briggs, Brandon R; Li, Gaoyuan; Xie, Wei; Dong, Hailiang
2018-01-01
Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.
Hou, Weiguo; Wang, Shang; Briggs, Brandon R.; Li, Gaoyuan; Xie, Wei; Dong, Hailiang
2018-01-01
Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.
De Franceschi, Paolo; Bianco, Luca; Cestaro, Alessandro; Dondini, Luca; Velasco, Riccardo
2018-06-01
Data obtained from Illumina resequencing of 63 apple cultivars were used to obtain full-length S-RNase sequences using a strategy based on both alignment and de novo assembly of reads. The reproductive biology of apple is regulated by the S-RNase-based gametophytic self-incompatibility system, that is genetically controlled by the single, multi-genic and multi-allelic S locus. Resequencing of apple cultivars provided a huge amount of genetic data, that can be aligned to the reference genome in order to characterize variation to a genome-wide level. However, this approach is not immediately adaptable to the S-locus, due to some peculiar features such as the high degree of polymorphism, lack of colinearity between haplotypes and extensive presence of repetitive elements. In this study we describe a dedicated procedure aimed at characterizing S-RNase alleles from resequenced cultivars. The S-genotype of 63 apple accessions is reported; the full length coding sequence was determined for the 25 S-RNase alleles present in the 63 resequenced cultivars; these included 10 previously incomplete sequences (S 5 , S 6a , S 6b , S 8 , S 11 , S 23 , S 39 , S 46 , S 50 and S 58 ). Moreover, sequence divergence clearly suggests that alleles S 6a and S 6b , proposed to be neutral variants of the same alleles, should be instead considered different specificities. The promoter sequences have also been analyzed, highlighting regions of homology conserved among all the alleles.
NASA Astrophysics Data System (ADS)
Esteban, Pere; Beck, Christoph; Philipp, Andreas
2010-05-01
Using data associated with accidents or damages caused by snow avalanches over the eastern Pyrenees (Andorra and Catalonia) several atmospheric circulation type catalogues have been obtained. For this purpose, different circulation type classification methods based on Principal Component Analysis (T-mode and S-mode using the extreme scores) and on optimization procedures (Improved K-means and SANDRA) were applied . Considering the characteristics of the phenomena studied, not only single day circulation patterns were taken into account but also sequences of circulation types of varying length. Thus different classifications with different numbers of types and for different sequence lengths were obtained using the different classification methods. Simple between type variability, within type variability, and outlier detection procedures have been applied for selecting the best result concerning snow avalanches type classifications. Furthermore, days without occurrence of the hazards were also related to the avalanche centroids using pattern-correlations, facilitating the calculation of the anomalies between hazardous and no hazardous days, and also frequencies of occurrence of hazardous events for each circulation type. Finally, the catalogues statistically considered the best results are evaluated using the avalanche forecaster expert knowledge. Consistent explanation of snow avalanches occurrence by means of circulation sequences is obtained, but always considering results from classifications with different sequence length. This work has been developed in the framework of the COST Action 733 (Harmonisation and Applications of Weather Type Classifications for European regions).
Alignment-free sequence comparison (II): theoretical power of comparison statistics.
Wan, Lin; Reinert, Gesine; Sun, Fengzhu; Waterman, Michael S
2010-11-01
Rapid methods for alignment-free sequence comparison make large-scale comparisons between sequences increasingly feasible. Here we study the power of the statistic D2, which counts the number of matching k-tuples between two sequences, as well as D2*, which uses centralized counts, and D2S, which is a self-standardized version, both from a theoretical viewpoint and numerically, providing an easy to use program. The power is assessed under two alternative hidden Markov models; the first one assumes that the two sequences share a common motif, whereas the second model is a pattern transfer model; the null model is that the two sequences are composed of independent and identically distributed letters and they are independent. Under the first alternative model, the means of the tuple counts in the individual sequences change, whereas under the second alternative model, the marginal means are the same as under the null model. Using the limit distributions of the count statistics under the null and the alternative models, we find that generally, asymptotically D2S has the largest power, followed by D2*, whereas the power of D2 can even be zero in some cases. In contrast, even for sequences of length 140,000 bp, in simulations D2* generally has the largest power. Under the first alternative model of a shared motif, the power of D2*approaches 100% when sufficiently many motifs are shared, and we recommend the use of D2* for such practical applications. Under the second alternative model of pattern transfer,the power for all three count statistics does not increase with sequence length when the sequence is sufficiently long, and hence none of the three statistics under consideration canbe recommended in such a situation. We illustrate the approach on 323 transcription factor binding motifs with length at most 10 from JASPAR CORE (October 12, 2009 version),verifying that D2* is generally more powerful than D2. The program to calculate the power of D2, D2* and D2S can be downloaded from http://meta.cmb.usc.edu/d2. Supplementary Material is available at www.liebertonline.com/cmb.
Wendt, Frank R; Churchill, Jennifer D; Novroski, Nicole M M; King, Jonathan L; Ng, Jillian; Oldt, Robert F; McCulloh, Kelly L; Weise, Jessica A; Smith, David Glenn; Kanthaswamy, Sreetharan; Budowle, Bruce
2016-09-01
Forensically-relevant genetic markers were typed for sixty-two Yavapai Native Americans using the ForenSeq™ DNA Signature Prep Kit.These data are invaluable to the human identity community due to the greater genetic differentiation among Native American tribes than among other subdivisions within major populations of the United States. Autosomal, X-chromosomal, and Y-chromosomal short tandem repeat (STR) and identity-informative (iSNPs), ancestry-informative (aSNPs), and phenotype-informative (pSNPs) single nucleotide polymorphism (SNP) allele frequencies are reported. Sequence-based allelic variants were observed in 13 autosomal, 3 X, and 3 Y STRs. These observations increased observed and expected heterozygosities for autosomal STRs by 0.081±0.068 and 0.073±0.063, respectively, and decreased single-locus random match probabilities by 0.051±0.043 for 13 autosomal STRs. The autosomal random match probabilities (RMPs) were 2.37×10-26 and 2.81×10-29 for length-based and sequence-based alleles, respectively. There were 22 and 25 unique Y-STR haplotypes among 26 males, generating haplotype diversities of 0.95 and 0.96, for length-based and sequencebased alleles, respectively. Of the 26 haplotypes generated, 17 were assigned to haplogroup Q, three to haplogroup R1b, two each to haplogroups E1b1b and L, and one each to haplogroups R1a and I1. Male and female sequence-based X-STR random match probabilities were 3.28×10-7 and 1.22×10-6, respectively. The average observed and expected heterozygosities for 94 iSNPs were 0.39±0.12 and 0.39±0.13, respectively, and the combined iSNP RMP was 1.08×10-32. The combined STR and iSNP RMPs were 2.55×10-58 and 3.02×10-61 for length-based and sequence-based STR alleles, respectively. Ancestry and phenotypic SNP information, performed using the ForenSeq™ Universal Analysis Software, predicted black hair, brown eyes, and some probability of East Asian ancestry for all but one sample that clustered between European and Admixed American ancestry on a principal components analysis. These data serve as the first population assessment using the ForenSeq™ panel and highlight the value of employing sequence-based alleles for forensic DNA typing to increase heterozygosity, which is beneficial for identity testing in populations with reduced genetic diversity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Weiss, Eric R; Lamers, Susanna L; Henderson, Jennifer L; Melnikov, Alexandre; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Nusbaum, Chad; Luzuriaga, Katherine
2018-01-15
Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time ( P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence ( P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection. IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection. Copyright © 2018 American Society for Microbiology.
Compressing DNA sequence databases with coil.
White, W Timothy J; Hendy, Michael D
2008-05-20
Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression - an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression - the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.
Compressing DNA sequence databases with coil
White, W Timothy J; Hendy, Michael D
2008-01-01
Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794
ParticleCall: A particle filter for base calling in next-generation sequencing systems
2012-01-01
Background Next-generation sequencing systems are capable of rapid and cost-effective DNA sequencing, thus enabling routine sequencing tasks and taking us one step closer to personalized medicine. Accuracy and lengths of their reads, however, are yet to surpass those provided by the conventional Sanger sequencing method. This motivates the search for computationally efficient algorithms capable of reliable and accurate detection of the order of nucleotides in short DNA fragments from the acquired data. Results In this paper, we consider Illumina’s sequencing-by-synthesis platform which relies on reversible terminator chemistry and describe the acquired signal by reformulating its mathematical model as a Hidden Markov Model. Relying on this model and sequential Monte Carlo methods, we develop a parameter estimation and base calling scheme called ParticleCall. ParticleCall is tested on a data set obtained by sequencing phiX174 bacteriophage using Illumina’s Genome Analyzer II. The results show that the developed base calling scheme is significantly more computationally efficient than the best performing unsupervised method currently available, while achieving the same accuracy. Conclusions The proposed ParticleCall provides more accurate calls than the Illumina’s base calling algorithm, Bustard. At the same time, ParticleCall is significantly more computationally efficient than other recent schemes with similar performance, rendering it more feasible for high-throughput sequencing data analysis. Improvement of base calling accuracy will have immediate beneficial effects on the performance of downstream applications such as SNP and genotype calling. ParticleCall is freely available at https://sourceforge.net/projects/particlecall. PMID:22776067
Information Entropy of Influenza A Segment 7
NASA Astrophysics Data System (ADS)
Thompson, William A.; Fan, Shaohua; Weltman, Joel K.
2008-12-01
Information entropy (H) is a measure of uncertainty at each position within in a sequence of nucleotides.H was used to characterize a set of influenza A segment 7 nucleotide sequences. Nucleotide locations of high entropy were identified near the 5’ start of all of the sequences and the sequences were assigned to subsets according to synonymous nucleotide variants at those positions: either uracil at position six (U6), cytosine at position six (C6), adenine (A12) at position 12, guanine at position 12 (G12), adenine at position 15 (A15) or cytosine (C15) at position 15. H values were found to be correlated/corresponding (Kendall tau) along the lengths of the nucleotide segments of the subset pairs at each position. However, the H values of each subset of sequences were statistically distinguishable from those of the other member of the pair (Kolmogorov-Smirnov test). The joint probability of uncorrelated distributions of U6 and C6 sequences to viral subtypes and to viral host species was 34 times greater than for the A12:G12 subset pair and 214 times greater than for the A15:C15 pair. This result indicates that the high entropy position six of segment 7 is either a reporter or a sentinel location. The fact that not one of the H5N1 sequences in the dataset was a member of the C6 subset, but all 125 H5N1 sequences are members of the U6 subset suggests a non-random sentinel function.
Hu, Bo; Liu, Dong-Xing; Zhang, Yu-Qing; Song, Jian-Tao; Ji, Xian-Fei; Hou, Zhi-Qiang; Zhang, Zhen-Hai
2016-05-01
In this study we sequenced the complete mitochondrial genome sequencing of a heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus) for the first time. The total length of the mitogenome was 16,267 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region.
Analysis for complete genomic sequence of HLA-B and HLA-C alleles in the Chinese Han population.
Zhu, F; He, Y; Zhang, W; He, J; He, J; Xu, X; Lv, H; Yan, L
2011-08-01
In the present study, we have determined the complete genomic sequence and analysed the intron polymorphism of partial HLA-B and HLA-C alleles in the Chinese Han population. Over 3.0 kb DNA fragments of HLA-B and HLA-C loci were amplified by polymerase chain reaction from partial 5' untranslated region to 3' noncoding region respectively, and then the amplified products were sequenced. Full-length nucleotide sequences of 14 HLA-B alleles and 10 HLA-C alleles were obtained and have been submitted to GenBank and IMGT/HLA database. Two novel alleles of HLA-B*52:01:01:02 and HLA-B*59:01:01:02 were identified, and the complete genomic sequence of HLA-B*52:01:01:01 was firstly reported. Totally 157 and 167 polymorphism positions were found in the full-length genomic sequence of HLA-B and HLA-C loci respectively. Our results suggested that many single nucleotide polymorphisms existed in the exon and intron regions, and the data can provide useful information for understanding the evolution of HLA-B and HLA-C alleles. © 2011 Blackwell Publishing Ltd.
Organizational heterogeneity of vertebrate genomes.
Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham
2012-01-01
Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.
The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.
Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook
2015-07-20
Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.
Bergman, C M; Kreitman, M
2001-08-01
Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.
Hayat, Maqsood; Khan, Asifullah
2011-02-21
Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.
Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates
NASA Astrophysics Data System (ADS)
Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi
2017-06-01
Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.
Probabilistic topic modeling for the analysis and classification of genomic sequences
2015-01-01
Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734
Randomizer for High Data Rates
NASA Technical Reports Server (NTRS)
Garon, Howard; Sank, Victor J.
2018-01-01
NASA as well as a number of other space agencies now recognize that the current recommended CCSDS randomizer used for telemetry (TM) is too short. When multiple applications of the PN8 Maximal Length Sequence (MLS) are required in order to fully cover a channel access data unit (CADU), spectral problems in the form of elevated spurious discretes (spurs) appear. Originally the randomizer was called a bit transition generator (BTG) precisely because it was thought that its primary value was to insure sufficient bit transitions to allow the bit/symbol synchronizer to lock and remain locked. We, NASA, have shown that the old BTG concept is a limited view of the real value of the randomizer sequence and that the randomizer also aids in signal acquisition as well as minimizing the potential for false decoder lock. Under the guidelines we considered here there are multiple maximal length sequences under GF(2) which appear attractive in this application. Although there may be mitigating reasons why another MLS sequence could be selected, one sequence in particular possesses a combination of desired properties which offsets it from the others.
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Universality of long-range correlations in expansion randomization systems
NASA Astrophysics Data System (ADS)
Messer, P. W.; Lässig, M.; Arndt, P. F.
2005-10-01
We study the stochastic dynamics of sequences evolving by single-site mutations, segmental duplications, deletions, and random insertions. These processes are relevant for the evolution of genomic DNA. They define a universality class of non-equilibrium 1D expansion-randomization systems with generic stationary long-range correlations in a regime of growing sequence length. We obtain explicitly the two-point correlation function of the sequence composition and the distribution function of the composition bias in sequences of finite length. The characteristic exponent χ of these quantities is determined by the ratio of two effective rates, which are explicitly calculated for several specific sequence evolution dynamics of the universality class. Depending on the value of χ, we find two different scaling regimes, which are distinguished by the detectability of the initial composition bias. All analytic results are accurately verified by numerical simulations. We also discuss the non-stationary build-up and decay of correlations, as well as more complex evolutionary scenarios, where the rates of the processes vary in time. Our findings provide a possible example for the emergence of universality in molecular biology.
NMR studies on the structure and dynamics of lac operator DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.C.
Nuclear Magnetic Resonance spectroscopy was used to elucidate the relationships between structure, dynamics and function of the gene regulatory sequence corresponding to the lactose operon operator of Escherichia coli. The length of the DNA fragments examined varied from 13 to 36 base pair, containing all or part of the operator sequence. These DNA fragments are either derived genetically or synthesized chemically. Resonances of the imino protons were assigned by one dimensional inter-base pair nuclear Overhauser enhancement (NOE) measurements. Imino proton exchange rates were measured by saturation recovery methods. Results from the kinetic measurements show an interesting dynamic heterogeneity with amore » maximum opening rate centered about a GTG/CAC sequence which correlates with the biological function of the operator DNA. This particular three base pair sequence occurs frequently and often symmetrically in prokaryotic nd eukaryotic DNA sites where one anticipates specific protein interaction for gene regulation. The observed sequence dependent imino proton exchange rate may be a reflection of variation of the local structure of regulatory DNA. The results also indicate that the observed imino proton exchange rates are length dependent.« less
Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mencinger, M.; Panagopoulos, I.; Andreasson, P.
1997-05-01
Homology searches in the Expressed Sequence Tag Database were performed using SPYGQ-rich regions as query sequences to find genes encoding protein regions similar to the N-terminal parts of the sarcoma-associated EWS and FUS proteins. Clone 22911 (T74973), encoding a SPYGQ-rich region in its 5{prime} end, and several other clones that overlapped 22911 were selected. The combined data made it possible to assemble a full-length cDNA sequence. This cDNA sequence is 1677 bp, containing an initiation codon ATG, an open reading frame of 400 amino acids, a poly(A) signal, and a poly(A) tail. We found 100% identity between the 5{prime} partmore » of the consensus sequence and the 598-bp-long sequence named TFG. The TFG sequence is fused to the 3{prime} end of NTRK1, generating the TRK-T3 fusion transcript found in papillary thyroid carcinoma. The cDNA therefore represents the full-length transcript of the TFG gene. TFG was localized to 3q11-q12 by fluorescence in situ hybridization. The 3{prime} and the 5{prime} ends of the TFG cDNA probe hybridized to a 2.2-kb band on Northern blot filters in all tissues examined. 28 refs., 5 figs., 1 tab.« less
VKCDB: voltage-gated K+ channel database updated and upgraded.
Gallin, Warren J; Boutet, Patrick A
2011-01-01
The Voltage-gated K(+) Channel DataBase (VKCDB) (http://vkcdb.biology.ualberta.ca) makes a comprehensive set of sequence data readily available for phylogenetic and comparative analysis. The current update contains 2063 entries for full-length or nearly full-length unique channel sequences from Bacteria (477), Archaea (18) and Eukaryotes (1568), an increase from 346 solely eukaryotic entries in the original release. In addition to protein sequences for channels, corresponding nucleotide sequences of the open reading frames corresponding to the amino acid sequences are now available and can be extracted in parallel with sets of protein sequences. Channels are categorized into subfamilies by phylogenetic analysis and by using hidden Markov model analyses. Although the raw database contains a number of fragmentary, duplicated, obsolete and non-channel sequences that were collected in early steps of data collection, the web interface will only return entries that have been validated as likely K(+) channels. The retrieval function of the web interface allows retrieval of entries that contain a substantial fraction of the core structural elements of VKCs, fragmentary entries, or both. The full database can be downloaded as either a MySQL dump or as an XML dump from the web site. We have now implemented automated updates at quarterly intervals.
Lucas Lledó, José Ignacio; Cáceres, Mario
2013-01-01
One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, % of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions —SVDetect, GRIAL, and VariationHunter—, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects. PMID:23637806
Vergani, Stefano; Korsunsky, Ilya; Mazzarello, Andrea Nicola; Ferrer, Gerardo; Chiorazzi, Nicholas; Bagnara, Davide
2017-01-01
Efficient and accurate high-throughput DNA sequencing of the adaptive immune receptor repertoire (AIRR) is necessary to study immune diversity in healthy subjects and disease-related conditions. The high complexity and diversity of the AIRR coupled with the limited amount of starting material, which can compromise identification of the full biological diversity makes such sequencing particularly challenging. AIRR sequencing protocols often fail to fully capture the sampled AIRR diversity, especially for samples containing restricted numbers of B lymphocytes. Here, we describe a library preparation method for immunoglobulin sequencing that results in an exhaustive full-length repertoire where virtually every sampled B-cell is sequenced. This maximizes the likelihood of identifying and quantifying the entire IGHV-D-J repertoire of a sample, including the detection of rearrangements present in only one cell in the starting population. The methodology establishes the importance of circumventing genetic material dilution in the preamplification phases and incorporates the use of certain described concepts: (1) balancing the starting material amount and depth of sequencing, (2) avoiding IGHV gene-specific amplification, and (3) using Unique Molecular Identifier. Together, this methodology is highly efficient, in particular for detecting rare rearrangements in the sampled population and when only a limited amount of starting material is available.
Lithium and age of pre-main sequence stars: the case of Parenago 1802
NASA Astrophysics Data System (ADS)
Giarrusso, M.; Tognelli, E.; Catanzaro, G.; Degl'Innocenti, S.; Dell'Omodarme, M.; Lamia, L.; Leone, F.; Pizzone, R. G.; Prada Moroni, P. G.; Romano, S.; Spitaleri, C.
2016-04-01
With the aim to test the present capability of the stellar surface lithium abundance in providing an estimation for the age of PMS stars, we analyze the case of the detached, double-lined, eclipsing binary system PAR 1802. For this system, the lithium age has been compared with the theoretical one, as estimated by applying a Bayesian analysis method on a large grid of stellar evolutionary models. The models have been computed for several values of chemical composition and mixing length, by means of the code FRANEC updated with the Trojan Horse reaction rates involving lithium burning.
Segmented-memory recurrent neural networks.
Chen, Jinmiao; Chaudhari, Narendra S
2009-08-01
Conventional recurrent neural networks (RNNs) have difficulties in learning long-term dependencies. To tackle this problem, we propose an architecture called segmented-memory recurrent neural network (SMRNN). A symbolic sequence is broken into segments and then presented as inputs to the SMRNN one symbol per cycle. The SMRNN uses separate internal states to store symbol-level context, as well as segment-level context. The symbol-level context is updated for each symbol presented for input. The segment-level context is updated after each segment. The SMRNN is trained using an extended real-time recurrent learning algorithm. We test the performance of SMRNN on the information latching problem, the "two-sequence problem" and the problem of protein secondary structure (PSS) prediction. Our implementation results indicate that SMRNN performs better on long-term dependency problems than conventional RNNs. Besides, we also theoretically analyze how the segmented memory of SMRNN helps learning long-term temporal dependencies and study the impact of the segment length.
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann, Carolin; Budke, Carsten; Schomburg, Benjamin; Majer, Zsuzsa; Wissbrock, Marco; Koop, Thomas; Sewald, Norbert
2010-01-01
Antifreeze glycoproteins enable life at temperatures below the freezing point of physiological solutions. They usually consist of the repetitive tripeptide unit (-Ala-Ala-Thr-) with the disaccharide alpha-D-galactosyl-(1-3)-beta-N-acetyl-D-galactosamine attached to each hydroxyl group of threonine. Monoglycosylated analogues have been synthesized from the corresponding monoglycosylated threonine building block by microwave-assisted solid phase peptide synthesis. This method allows the preparation of analogues containing sequence variations which are not accessible by other synthetic methods. As antifreeze glycoproteins consist of numerous isoforms they are difficult to obtain in pure form from natural sources. The synthetic peptides have been structurally analyzed by CD and NMR spectroscopy in proton exchange experiments revealing a structure as flexible as reported for the native peptides. Microphysical recrystallization tests show an ice structuring influence and ice growth inhibition depending on the concentration, chain length and sequence of the peptides.
Genome Sequences of Ilzat and Eleri, Two Phages Isolated Using Microbacterium foliorum NRRL B-24224
Ali, Ilzat; Jones, Acacia Eleri; Mohamed, Aleem
2018-01-01
ABSTRACT Bacteriophages Ilzat and Eleri are newly isolated Siphoviridae infecting Microbacterium foliorum NRRL B-24224. The phage genomes are similar in length, G+C content, and architecture and share 62.9% nucleotide sequence identity. PMID:29650566
Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
Ramaker, Katrin; Henkel, Maik; Krause, Thorsten; Röckendorf, Niels; Frey, Andreas
2018-11-01
Delivering reagents into cells is a key demand in molecular medicine. The vehicle of choice is often cell penetrating peptides (CPPs), which can ferry conjugated cargo across membranes. Although numerous peptides have been shown to promote such uptake events, there has been no comprehensive comparison of individual performance under standardized conditions. We have devised a method to rapidly analyze the ability of a multitude of CPP conjugates to carry a model cargo into HeLa cells. Sequence information for 474 CPPs was collected from literature sources, and the respective peptides were synthesized and modified with carboxyfluorescein (FAM) as model cargo. All candidates were evaluated in an identical uptake test, and transport was quantified using cellular fluorescence intensities. Substantial differences in the ability to carry the fluorophore into the cells were observed, with transport performance differing by a factor of 70 between the best CPP investigated and cargo alone. Strong correlations were observed between uptake efficiency and both sequence length and the presence of positive net charge. A compilation of the 20 top performers with regard to cargo delivery performance and cell compatibility is provided.
Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis
2016-09-02
Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sammond, Deanne W.; Payne, Christina M.; Brunecky, Roman; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.
2012-01-01
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions. PMID:23139804
Fast and secure encryption-decryption method based on chaotic dynamics
Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.
1995-01-01
A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.
Virtual Northern Analysis of the Human Genome
Hurowitz, Evan H.; Drori, Iddo; Stodden, Victoria C.; Donoho, David L.; Brown, Patrick O.
2007-01-01
Background We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. Methodology/Principal Findings We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Conclusions/Significance Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes. PMID:17520019
Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R
2007-04-01
We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.
Donald, L. J.; Chernushevich, I. V.; Zhou, J.; Verentchikov, A.; Poppe-Schriemer, N.; Hosfield, D. J.; Westmore, J. B.; Ens, W.; Duckworth, H. W.; Standing, K. G.
1996-01-01
IclR protein, the repressor of the aceBAK operon of Escherichia coli, has been examined by time-of-flight mass spectrometry, with ionization by matrix assisted laser desorption or by electrospray. The purified protein was found to have a smaller mass than that predicted from the base sequence of the cloned iclR gene. Additional measurements were made on mixtures of peptides derived from IclR by treatment with trypsin and cyanogen bromide. They showed that the amino acid sequence is that predicted from the gene sequence, except that the protein has suffered truncation by removal of the N-terminal eight or, in some cases, nine amino acid residues. The peptide bond whose hydrolysis would remove eight residues is a typical target for the E. coli protease OmpT. We find that, by taking precautions to minimize Omp T proteolysis, or by eliminating it through mutation of the host strain, we can isolate full-length IclR protein (lacking only the N-terminal methionine residue). Full-length IclR is a much better DNA-binding protein than the truncated versions: it binds the aceBAK operator sequence 44-fold more tightly, presumably because of additional contacts that the N-terminal residues make with the DNA. Our experience thus demonstrates the advantages of using mass spectrometry to characterize newly purified proteins produced from cloned genes, especially where proteolysis or other covalent modification is a concern. This technique gives mass spectra from complex peptide mixtures that can be analyzed completely, without any fractionation of the mixtures, by reference to the amino acid sequence inferred from the base sequence of the cloned gene. PMID:8844850
Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field
Buck, Patrick M.; Bystroff, Christopher
2015-01-01
Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...
2015-11-11
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C
2007-05-01
The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs.
Design of multi-phase dynamic chemical networks
NASA Astrophysics Data System (ADS)
Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-08-01
Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.
Spectral analysis of variable-length coded digital signals
NASA Astrophysics Data System (ADS)
Cariolaro, G. L.; Pierobon, G. L.; Pupolin, S. G.
1982-05-01
A spectral analysis is conducted for a variable-length word sequence by an encoder driven by a stationary memoryless source. A finite-state sequential machine is considered as a model of the line encoder, and the spectral analysis of the encoded message is performed under the assumption that the sourceword sequence is composed of independent identically distributed words. Closed form expressions for both the continuous and discrete parts of the spectral density are derived in terms of the encoder law and sourceword statistics. The jump part exhibits jumps at multiple integers of per lambda(sub 0)T, where lambda(sub 0) is the greatest common divisor of the possible codeword lengths, and T is the symbol period. The derivation of the continuous part can be conveniently factorized, and the theory is applied to the spectral analysis of BnZS and HDBn codes.
Telomere dynamics in an immortal human cell line.
Murnane, J P; Sabatier, L; Marder, B A; Morgan, W F
1994-01-01
The integration of transfected plasmid DNA at the telomere of chromosome 13 in an immortalized simian virus 40-transformed human cell line provided the first opportunity to study polymorphism in the number of telomeric repeat sequences on the end of a single chromosome. Three subclones of this cell line were selected for analysis: one with a long telomere on chromosome 13, one with a short telomere, and one with such extreme polymorphism that no distinct band was discernible. Further subcloning demonstrated that telomere polymorphism resulted from both gradual changes and rapid changes that sometimes involved many kilobases. The gradual changes were due to the shortening of telomeres at a rate similar to that reported for telomeres of somatic cells without telomerase, eventually resulting in the loss of nearly all of the telomere. However, telomeres were not generally lost completely, as shown by the absence of polymorphism in the subtelomeric plasmid sequences. Instead, telomeres that were less than a few hundred base pairs in length showed a rapid, highly heterogeneous increase in size. Rapid changes in telomere length also occurred on longer telomeres. The frequency of this type of change in telomere length varied among the subclones and correlated with chromosome fusion. Therefore, the rapid changes in telomere length appeared occasionally to result in the complete loss of telomeric repeat sequences. Rapid changes in telomere length have been associated with telomere loss and chromosome instability in yeast and could be responsible for the high rate of chromosome fusion observed in many human tumor cell lines. Images PMID:7957062
2012-01-01
Background Hypospadias is a birth defect of the urethra in males, and a milder form of 46,XY disorder of sexual development (DSD). The disease is characterized by a ventrally placed urinary opening due to a premature fetal arrest of the urethra development. Moreover, the Androgen receptor (AR) gene has an essential role in the hormone-dependent stage of sexual development. In addition, longer AR polyglutamine repeat lengths encoded by CAG repeats are associated with lower transcriptional activity in vitro. In the present study, we aimed at investigating the role of the CAG repeat length in the AR gene in hypospadias cases as compared to the controls. Our study included 211 hypospadias and 208 controls of Caucasian origin. Methods We amplified the CAG repeat region with PCR, and calculated the difference in the mean CAG repeat length between the hypospadias and control group using the T-test for independent groups. Results We detected a significant increase of the CAG repeat length in the hypospadias cases when compared to the controls (contrast estimate: 2.29, 95% Confidence Interval (1.73-2.84); p-value: 0.001). In addition, the odds ratios between the hypospadias and controls revealed that the hypospadias cases are two to 3 times as likely to have longer CAG repeats than a shorter length for each repeat length investigated. Conclusions We have investigated the largest number of hypospadias cases with regards to the CAG repeat length, and we provide evidence that a higher number of the CAG repeat sequence in the AR gene have a clear effect on the risk of hypospadias in Caucasians. PMID:23167717
Information capacity of nucleotide sequences and its applications.
Sadovsky, M G
2006-05-01
The information capacity of nucleotide sequences is defined through the specific entropy of frequency dictionary of a sequence determined with respect to another one containing the most probable continuations of shorter strings. This measure distinguishes a sequence both from a random one, and from ordered entity. A comparison of sequences based on their information capacity is studied. An order within the genetic entities is found at the length scale ranged from 3 to 8. Some other applications of the developed methodology to genetics, bioinformatics, and molecular biology are discussed.
Analysis of ProSEDS Test of Bare-Tether Collection
NASA Technical Reports Server (NTRS)
Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.
2003-01-01
NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.
Unrelated sequences at the 5' end of mouse LINE-1 repeated elements define two distinct subfamilies.
Wincker, P; Jubier-Maurin, V; Roizès, G
1987-01-01
Some full length members of the mouse long interspersed repeated DNA family L1Md have been shown to be associated at their 5' end with a variable number of tandem repetitions, the A repeats, that have been suggested to be transcription controlling elements. We report that the other type of repeat, named F, found at the 5' end of a few L1 elements is also an integral part of full length L1 copies. Sequencing shows that the F repeats are GC rich, and organized in tandem. The L1 copies associated with either A or F repeats can be correlated with two different subsets of L1 sequences distinguished by a series of variant nucleotides specific to each and by unassociated but frequent restriction sites. These findings suggest that sequence replacement has occurred at least once in 5' of L1Md, and is related to the generation of specific subfamilies. Images PMID:3684566
A Hybrid Approach for the Automated Finishing of Bacterial Genomes
Robins, William P.; Chin, Chen-Shan; Webster, Dale; Paxinos, Ellen; Hsu, David; Ashby, Meredith; Wang, Susana; Peluso, Paul; Sebra, Robert; Sorenson, Jon; Bullard, James; Yen, Jackie; Valdovino, Marie; Mollova, Emilia; Luong, Khai; Lin, Steven; LaMay, Brianna; Joshi, Amruta; Rowe, Lori; Frace, Michael; Tarr, Cheryl L.; Turnsek, Maryann; Davis, Brigid M; Kasarskis, Andrew; Mekalanos, John J.; Waldor, Matthew K.; Schadt, Eric E.
2013-01-01
Dramatic improvements in DNA sequencing technology have revolutionized our ability to characterize most genomic diversity. However, accurate resolution of large structural events has remained challenging due to the comparatively shorter read lengths of second-generation technologies. Emerging third-generation sequencing technologies, which yield markedly increased read length on rapid time scales and for low cost, have the potential to address assembly limitations. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at > 99.9% accuracy. Complex regions with clinically significant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 reference we obtain 14 and 8 scaffolds greater than 1kb, respectively, correcting several errors in the underlying source data. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly. PMID:22750883
Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio
2009-08-01
Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.
Gasser, R B; Rossi, L; Zhu, X
1999-11-01
The sequence of the second internal transcribed spacer of ribosomal DNA was determined for four species of Nematodirus (Nematodirus rupicaprae, Nematodirus oiratianus, Nematodirus davtiani alpinus and Nematodirus europaeus) from roe deer or alpine chamois. The second internal transcribed spacer of the four species varied in length from 228 to 236 bp, and the G + C contents ranged from 41 to 44%. While no intraspecific sequence variation was detected among multiple samples representing three of the taxa, sequence differences of 5.9-9.7% were detected among the four species, Nematodirus davtiani alpinus and N. rupicaprae were genetically most similar (94.1%), followed by N. oiratianus, N. europaeus and N. rupicaprae (91.1-91.5%), whereas N. oiratianus was genetically most different from N. davtiani alpinus. The interspecific sequence differences were exploited for the delineation of the four species by PCR-based restriction fragment length polymorphism (using two enzymes) and single-strand conformation polymorphism. The results have implications for diagnosis, epidemiology and for studying the systematics of the Nematodirinae.
SSRscanner: a program for reporting distribution and exact location of simple sequence repeats.
Anwar, Tamanna; Khan, Asad U
2006-02-20
Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com.
Formation of rings from segments of HeLa-cell nuclear deoxyribonucleic acid
Hardman, Norman
1974-01-01
Duplex segments of HeLa-cell nuclear DNA were generated by cleavage with DNA restriction endonuclease from Haemophilus influenzae. About 20–25% of the DNA segments produced, when partly degraded with exonuclease III and annealed, were found to form rings visible in the electron microscope. A further 5% of the DNA segments formed structures that were branched in configuration. Similar structures were generated from HeLa-cell DNA, without prior treatment with restriction endonuclease, when the complementary polynucleotide chains were exposed by exonuclease III action at single-chain nicks. After exposure of an average single-chain length of 1400 nucleotides per terminus at nicks in HeLa-cell DNA by exonuclease III, followed by annealing, the physical length of ring closures was estimated and found to be 0.02–0.1μm, or 50–300 base pairs. An almost identical distribution of lengths was recorded for the regions of complementary base sequence responsible for branch formation. It is proposed that most of the rings and branches are formed from classes of reiterated base sequence with an average length of 180 base pairs arranged intermittenly in HeLa-cell DNA. From the rate of formation of branched structures when HeLa-cell DNA segments were heat-denatured and annealed, it is estimated that the reiterated sequences are in families containing approximately 2400–24000 copies. ImagesPLATE 2PLATE 1 PMID:4462738
2013-06-28
of cuts that each fragment should be cut into so the fragments are no greater than a specific length threshold. Additionally, vector sequences and...restriction sites are attached to each fragment while ensuring the restriction sites are unique to each sequence. The vector sequences serve as hooks...for assembly into vector for cloning purposes, and also as primer binding domains for PCR ampl ification. The restriction sites are added to
The complete mitochondrial genome of a chronic hepatitis associated liver cancer LEC rat strain.
Zhang, Sihao; Jiang, Zhaoming; Zhang, Shuai; Xia, Mingfeng; Tian, Fang; Tian, Hu
2016-05-01
We sequenced a complete mitochondrial genome sequencing of a chronic hepatitis-associated liver cancer disease LEC rat strain for the first time. The total length of the mitogenome was 16,316 bp with 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. This mitochondrial genome sequence will provide new genetic resource into liver cancer disease.