Sample records for test site remote

  1. Integrated Remote Sensing Modalities for Classification at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Anderson, D.; Craven, J.

    2016-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.

  2. Desert Research and Technology Studies (RATS) Local and Remote Test Sites

    NASA Technical Reports Server (NTRS)

    Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean

    2007-01-01

    Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.

  3. Remote telescope control of site testing with ASCOM

    NASA Astrophysics Data System (ADS)

    Ji, Kaifan; Liang, Bo; Peng, Yajie; Wang, Feng

    2012-04-01

    Remote telescope control is significant important for the astronomical site testing. Basing on ASCOM standard, a prototype of remote telescope control system has been implemented. In this paper, the details of the system design, both server end and client end, are introduced. We tested the prototype on a narrow-band dial-up networking and controlled a real remote telescope successfully. The result indicates that it is effective to control remote telescope and other devices with ASCOM.

  4. Applications of remote sensor data to geologic and economic analysis on the Bonanza Test Site, Colorado

    NASA Technical Reports Server (NTRS)

    Reeves, R. G. (Compiler)

    1972-01-01

    Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.

  5. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  6. Geological Characterization of Remote Field Sites Using Visible and Infrared Spectroscopy: Results from the 1999 Marsokhod Field Test

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.

    2000-01-01

    The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.

  7. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  8. Recovery Act. Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remote Sensing and On-Site Exploration, Testing, and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Paul; Skeehan, Kirsten; Smith, Jerome

    Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.

  9. Applications of ecological concepts and remote sensing technologies in archaeological site reconnaissance

    NASA Technical Reports Server (NTRS)

    Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel

    1991-01-01

    The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.

  10. The Thirty Meter Telescope Site Testing Robotic Computer System

    NASA Astrophysics Data System (ADS)

    Riddle, Reed L.; Schöck, M.; Skidmore, W.; Els, S.; Travouillon, T.

    2008-03-01

    The Thirty Meter Telescope (TMT) project is currently testing five remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote, they require a control system that can automatically manage the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This is a discussion of the TMT site testing robotic computer system as implemented.

  11. Remote FLS testing in the real world: ready for "prime time".

    PubMed

    Okrainec, Allan; Vassiliou, Melina; Jimenez, M Carolina; Henao, Oscar; Kaneva, Pepa; Matt Ritter, E

    2016-07-01

    Maintaining the existing FLS test centers requires considerable investment in human and financial resources. It can also be particularly challenging for those outside of North America to become certified due to the limited number of international test centers. Preliminary work suggests that it is possible to reliably score the FLS manual skills component remotely using low-cost videoconferencing technology. Significant work remains to ensure that testing procedures adhere to standards defined by SAGES for this approach to be considered equivalent to standard on-site testing. To validate the integrity and validity of the FLS manual skills examination administered remotely in a real-world environment according to FLS testing protocols and to evaluate participants' experience with the setting. Individuals with various levels of training from the University of Toronto completed a pre- and a post-test questionnaire. Participants presented to one of the two FLS testing rooms available for the study, each connected via Skype to a separate room with a FLS proctor who administered and scored the test remotely (RP). An on-site proctor (OP) was present in the room as a control. An invigilator was also present in the testing room to follow directions from the RP and ensure the integrity of test materials. Twenty-one participants were recruited, and 20 completed the test. There was no significant difference between scores by RP and OP. Interrater reliability between the RP and OP was excellent. One critical error was missed by the RP, but this would not have affected the test outcome. Participants reported being highly satisfied. We demonstrate that proctors located remotely can administer the FLS skills test in a secure and reliable fashion, with excellent interrater reliability compared to an on-site proctor. Remote proctoring of the FLS examination could become a strategy to increase certification rates while containing costs.

  12. The Thirty Meter Telescope site testing robotic computer system

    NASA Astrophysics Data System (ADS)

    Riddle, Reed L.; Schöck, Matthias; Skidmore, Warren

    2006-06-01

    The Thirty Meter Telescope (TMT) project is currently testing six remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote (usually hours from the nearest town), they requires a system that can control the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This paper is a discussion of the TMT site testing robotic computer system as implemented.

  13. FSA field test

    NASA Technical Reports Server (NTRS)

    Jaffe, P.; Weaver, R. W.; Lee, R. E.

    1981-01-01

    The 12 continental remote sites were decommissioned. Testing was consolidated into a five-site network consisting of the four Southern California sites and a new Florida site. 16 kW of new state-of-the-art modules were deployed at the five sites. Testing of the old modules continued at the Goldstone site but as a low-priority item. Array testing of modules is considered. Additional new testing capabilities were added. A battery-powered array data logger is discussed. A final set of failure and degradation data was obtained from the modules.

  14. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.

    1973-01-01

    Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.

  15. Automated training site selection for large-area remote-sensing image analysis

    NASA Astrophysics Data System (ADS)

    McCaffrey, Thomas M.; Franklin, Steven E.

    1993-11-01

    A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.

  16. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  17. A Browser-Server-Based Tele-audiology System That Supports Multiple Hearing Test Modalities

    PubMed Central

    Yao, Daoyuan; Givens, Gregg

    2015-01-01

    Abstract Introduction: Millions of global citizens suffering from hearing disorders have limited or no access to much needed hearing healthcare. Although tele-audiology presents a solution to alleviate this problem, existing remote hearing diagnosis systems support only pure-tone tests, leaving speech and other test procedures unsolved, due to the lack of software and hardware to enable communication required between audiologists and their remote patients. This article presents a comprehensive remote hearing test system that integrates the two most needed hearing test procedures: a pure-tone audiogram and a speech test. Materials and Methods: This enhanced system is composed of a Web application server, an embedded smart Internet-Bluetooth® (Bluetooth SIG, Kirkland, WA) gateway (or console device), and a Bluetooth-enabled audiometer. Several graphical user interfaces and a relational database are hosted on the application server. The console device has been designed to support the tests and auxiliary communication between the local site and the remote site. Results: The study was conducted at an audiology laboratory. Pure-tone audiogram and speech test results from volunteers tested with this tele-audiology system are comparable with results from the traditional face-to-face approach. Conclusions: This browser-server–based comprehensive tele-audiology offers a flexible platform to expand hearing services to traditionally underserved groups. PMID:25919376

  18. A Browser-Server-Based Tele-audiology System That Supports Multiple Hearing Test Modalities.

    PubMed

    Yao, Jianchu Jason; Yao, Daoyuan; Givens, Gregg

    2015-09-01

    Millions of global citizens suffering from hearing disorders have limited or no access to much needed hearing healthcare. Although tele-audiology presents a solution to alleviate this problem, existing remote hearing diagnosis systems support only pure-tone tests, leaving speech and other test procedures unsolved, due to the lack of software and hardware to enable communication required between audiologists and their remote patients. This article presents a comprehensive remote hearing test system that integrates the two most needed hearing test procedures: a pure-tone audiogram and a speech test. This enhanced system is composed of a Web application server, an embedded smart Internet-Bluetooth(®) (Bluetooth SIG, Kirkland, WA) gateway (or console device), and a Bluetooth-enabled audiometer. Several graphical user interfaces and a relational database are hosted on the application server. The console device has been designed to support the tests and auxiliary communication between the local site and the remote site. The study was conducted at an audiology laboratory. Pure-tone audiogram and speech test results from volunteers tested with this tele-audiology system are comparable with results from the traditional face-to-face approach. This browser-server-based comprehensive tele-audiology offers a flexible platform to expand hearing services to traditionally underserved groups.

  19. Engineering Education Using a Remote Laboratory through the Internet

    ERIC Educational Resources Information Center

    Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.

    2012-01-01

    An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage…

  20. The design of remote temperature monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao; Wei, Liuren

    2017-08-01

    This design is made on the basis of the single-chip microcomputer remote temperature monitoring system. STC89C51RC is the main core part, this design use the sensor DHT11 of temperature or humidity and wireless transceiver NRF24L01 the temperature of the test site for long-range wireless measurement and monitoring. The design contains the main system and the small system, of which the main system can show the actual test site temperature and humidity values, voice broadcast, out of control and receive data alarm function; The small system has the function of temperature and humidity, temperature monitoring and sending data. After debugging, the user customizable alarm upper and lower temperature, when the temperature exceeds limit value, the main system of buzzer alarm immediately. The system has simple structure, complete functions and can alarm in time, it can be widely used remote temperature acquisition and monitoring of the site.

  1. Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1973-01-01

    A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.

  2. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with the system. We are currently testing the system at two sites on the Colorado River in Grand Canyon and at one critical monitoring site on the Paria River where we have deployed suites of instruments for monitoring flow, sediment concentration, temperature, and conductivity. One aspect of the system that may be particularly useful for ecohydrological applications is the ability to remotely control on-site pump samplers, which allows for the collection of a water sample by the press of a button in the office.

  3. Pacific Missile Range Facility Intercept Test Support. Environmental Assessment/Overseas Environmental Assessment

    DTIC Science & Technology

    2010-04-01

    frequency monitoring, target control, and electronic warfare and networked operations. Kokee supports tracking radars, telemetry, communications, and...owned island of Niihau provide support and sites for a remotely operated PMRF surveillance radar, a Test Vehicle Recovery Site, an electronic warfare...site, multiple electronic warfare portable simulator sites, a marker for aircraft mining exercise programs, and a helicopter terrain-following

  4. Technical Analysis and Characterization of Southern Cayo, Belize for Tropical Testing and Evaluation of Foliage Penetration Remote Sensing Systems

    DTIC Science & Technology

    2011-05-01

    Characterization of Test Sites 57 Appendix 4 – Interactive Maps and Images...issued by the tropical test study panel, reporting the results of work conducted at 24 sites. The evolution of tropical testing to the suite of sites...macrophylla, Terminalia amazonia, Virola brachycarpa, and the palm Astrocaryum mexicanum. The mangrove and littoral forest are ecologically important to the

  5. Remotely-Sensed Geology from Lander-Based to Orbital Perspectives: Results for FIDO Rover Field Tests

    NASA Technical Reports Server (NTRS)

    Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.

    2000-01-01

    Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.

  6. Feasibility study for locating archaeological village sites by satellite remote sensing techniques. [multispectral photography of Alaska

    NASA Technical Reports Server (NTRS)

    Cook, J. P. (Principal Investigator); Stringer, W. J.

    1974-01-01

    The author has identified the following significant results. The objective is to determine the feasibility of detecting large Alaskan archaeological sites by satellite remote sensing techniques and mapping such sites. The approach used is to develop digital multispectral signatures of dominant surface features including vegetation, exposed soils and rock, hydrological patterns and known archaeological sites. ERTS-1 scenes are then printed out digitally in a map-like array with a letter reflecting the most appropriate classification representing each pixel. Preliminary signatures were developed and tested. It was determined that there was a need to tighten up the archaeological site signature by developing accurate signatures for all naturally-occurring vegetation and surface conditions in the vicinity of the test area. These second generation signatures have been tested by means of computer printouts and classified tape displays on the University of Alaska CDU-200 and by comparison with aerial photography. It has been concluded that the archaeological signatures now in use are as good as can be developed. Plans are to print out signatures for the entire test area and locate on topographic maps the likely locations of archaeological sites within the test area.

  7. Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph; Romig, Barbara

    2008-01-01

    Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.

  8. Assessment of Mars Exploration Rover Landing Site Predictions

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Arvidson, R. E.; Bell, J. F., III; Christensen, P. R.; Crisp, J. A.; Ehlmann, B. L.; Fergason, R. L.; Grant, J. A.; Haldemann, A. F. C.; Parker, T. J.; hide

    2005-01-01

    The Mars Exploration Rover (MER) landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong indicators of liquid water. The engineering constraints critical for safe landing were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing and targeted remote sensing data and models that resulted in a number of predictions of the surface characteristics of the sites, which are tested more fully herein than a preliminary assessment. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data and is essential for selecting and validating landing sites for future missions.

  9. 1. Photocopy of photograph (original photograph/negative located at the Remote ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of photograph (original photograph/negative located at the Remote Sensing Laboratory, Nellis Air Force Base, Las Vegas, Nevada). R.B., Photograph for Civil Effects Test Organization, May 9, 1962. Historic view of Japanese village, facing west - Nevada Test Site, Japanese Village, Area 4, Yucca Flat, 4-04 Road near Rainier Mesa Road, Mercury, Nye County, NV

  10. KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  11. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1972-01-01

    A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.

  12. Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel

    2011-01-01

    Archaeological sites are being compromised or destroyed at a catastrophic rate in most regions of the world. The best solution to this problem is for archaeologists to find and study these sites before they are compromised or destroyed. One way to facilitate the necessary rapid, wide area surveys needed to find these archaeological sites is through the generation of maps of probable archaeological sites from remotely sensed data. We describe an approach for identifying probable locations of archaeological sites over a wide area based on detecting subtle anomalies in vegetative cover through a statistically based analysis of remotely sensed data from multiple sources. We further developed this approach under a recent NASA ROSES Space Archaeology Program project. Under this project we refined and elaborated this statistical analysis to compensate for potential slight miss-registrations between the remote sensing data sources and the archaeological site location data. We also explored data quantization approaches (required by the statistical analysis approach), and we identified a superior data quantization approached based on a unique image segmentation approach. In our presentation we will summarize our refined approach and demonstrate the effectiveness of the overall approach with test data from Santa Catalina Island off the southern California coast. Finally, we discuss our future plans for further improving our approach.

  13. Testing a small UAS for mapping artisanal diamond mining sites in Africa

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2015-01-01

    Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.

  14. A comparison of remote therapy, face to face therapy and an attention control intervention for people with aphasia: a quasi-randomised controlled feasibility study.

    PubMed

    Woolf, Celia; Caute, Anna; Haigh, Zula; Galliers, Julia; Wilson, Stephanie; Kessie, Awurabena; Hirani, Shashi; Hegarty, Barbara; Marshall, Jane

    2016-04-01

    To test the feasibility of a randomised controlled trial comparing face to face and remotely delivered word finding therapy for people with aphasia. A quasi-randomised controlled feasibility study comparing remote therapy delivered from a University lab, remote therapy delivered from a clinical site, face to face therapy and an attention control condition. A University lab and NHS outpatient service. Twenty-one people with aphasia following left hemisphere stroke. Eight sessions of word finding therapy, delivered either face to face or remotely, were compared to an attention control condition comprising eight sessions of remotely delivered supported conversation. The remote conditions used mainstream video conferencing technology. Feasibility was assessed by recruitment and attrition rates, participant observations and interviews, and treatment fidelity checking. Effects of therapy on word retrieval were assessed by tests of picture naming and naming in conversation. Twenty-one participants were recruited over 17 months, with one lost at baseline. Compliance and satisfaction with the intervention was good. Treatment fidelity was high for both remote and face to face delivery (1251/1421 therapist behaviours were compliant with the protocol). Participants who received therapy improved on picture naming significantly more than controls (mean numerical gains: 20.2 (remote from University); 41 (remote from clinical site); 30.8 (face to face); 5.8 (attention control); P <.001). There were no significant differences between groups in the assessment of conversation. Word finding therapy can be delivered via mainstream internet video conferencing. Therapy improved picture naming, but not naming in conversation. © The Author(s) 2015.

  15. Remote sensing of environmental disturbance

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.

  16. Identification of expansive soils using remote sensing and in-situ field measurements : phase I.

    DOT National Transportation Integrated Search

    2012-10-01

    Researchers at the University of Arkansas have conducted research on the suitability of using remote sensing techniques (radar and LIDAR) to monitor the shrink-swell behavior of an expansive clay material in a field test site as part of the Mack Blac...

  17. Remote sensing and geographic database management systems applications for the protection and conservation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Palumbo, Gaetano; Powlesland, Dominic

    1996-12-01

    The Getty Conservation Institute is exploring the feasibility of using remote sensing associated with a geographic database management system (GDBMS) in order to provide archaeological and historic site managers with sound evaluations of the tools available for site and information management. The World Heritage Site of Chaco Canyon, New Mexico, a complex of archeological sites dating to the 10th to the 13th centuries AD, was selected as a test site. Information from excavations conducted there since the 1930s, and a range of documentation generated by the National Park Service was gathered. NASA's John C. Stennis Space Center contributed multispectral data of the area, and the Jet Propulsion Laboratory contributed data from ATLAS (airborne terrestrial applications sensor) and CAMS (calibrated airborne multispectral scanner) scanners. Initial findings show that while 'automatic monitoring systems' will probably never be a reality, with careful comparisons of historic and modern photographs, and performing digital analysis of remotely sensed data, excellent results are possible.

  18. A summary of the test procedures and operational details of an ocean dumping pollution monitoring experiment conducted 7 October 1976

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.

    1977-01-01

    A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.

  19. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  20. Life in the Atacama - Year 2: Geologic Reconnaissance Through Long-Range Roving and Implications on the Search for Life

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Cabrol, N. A.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Fisher, G.; Hock, A. N.; Ori, G. G.

    2005-01-01

    The "Life in the Atacama" (LITA) project included two field trials during the 2004 field season, each of which lasted about a week. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. The sites for these trials were in different locations, and are designated "Site B" and "Site C" respectively. The primary objective of the experiment is to develop and test the means to locate, characterize, and identify habitats and life remotely through long-range roving, which included field testing the rover, named Zoe. Zoe has onboard autonomous navigation for long-range roving, a plow to overturn rocks and expose near-surface rock materials, and high-resolution imaging, spectral, and fluorescence sampling capabilities. Highlights from the experiment included characterizing the geology in and near the landing ellipse, assessing pre-mission, satellite-based hypotheses, and improving the approach and procedures used by the remote and field teams for upcoming experiments through combined satellite, field-based, and microscopic perspectives and long-range roving.

  1. Evaluation of a low-end architecture for collaborative software development, remote observing, and data analysis from multiple sites

    NASA Astrophysics Data System (ADS)

    Messerotti, Mauro; Otruba, Wolfgang; Hanslmeier, Arnold

    2000-06-01

    The Kanzelhoehe Solar Observatory is an observing facility located in Carinthia (Austria) and operated by the Institute of Geophysics, Astrophysics and Meteorology of the Karl- Franzens University Graz. A set of instruments for solar surveillance at different wavelengths bands is continuously operated in automatic mode and is presently being upgraded to be used in supplying near-real-time solar activity indexes for space weather applications. In this frame, we tested a low-end software/hardware architecture running on the PC platform in a non-homogeneous, remotely distributed environment that allows efficient or moderately efficient application sharing at the Intranet and Extranet (i.e., Wide Area Network) levels respectively. Due to the geographical distributed of participating teams (Trieste, Italy; Kanzelhoehe and Graz, Austria), we have been using such features for collaborative remote software development and testing, data analysis and calibration, and observing run emulation from multiple sites as well. In this work, we describe the used architecture and its performances based on a series of application sharing tests we carried out to ascertain its effectiveness in real collaborative remote work, observations and data exchange. The system proved to be reliable at the Intranet level for most distributed tasks, limited to less demanding ones at the Extranet level, but quite effective in remote instrument control when real time response is not needed.

  2. KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  3. Remote sensing techniques in cultural resource management archaeology

    NASA Astrophysics Data System (ADS)

    Johnson, Jay K.; Haley, Bryan S.

    2003-04-01

    Cultural resource management archaeology in the United States concerns compliance with legislation set in place to protect archaeological resources from the impact of modern activities. Traditionally, surface collection, shovel testing, test excavation, and mechanical stripping are used in these projects. These methods are expensive, time consuming, and may poorly represent the features within archaeological sites. The use of remote sensing techniques in cultural resource management archaeology may provide an answer to these problems. Near-surface geophysical techniques, including magnetometry, resistivity, electromagnetics, and ground penetrating radar, have proven to be particularly successful at efficiently locating archaeological features. Research has also indicated airborne and satellite remote sensing may hold some promise in the future for large-scale archaeological survey, although this is difficult in many areas of the world where ground cover reflect archaeological features in an indirect manner. A cost simulation of a hypothetical data recovery project on a large complex site in Mississippi is presented to illustrate the potential advantages of remote sensing in a cultural resource management setting. The results indicate these techniques can save a substantial amount of time and money for these projects.

  4. Water supply studies. [management and planning of water supplies in California

    NASA Technical Reports Server (NTRS)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  5. LSA field test

    NASA Technical Reports Server (NTRS)

    Jaffe, P.

    1979-01-01

    Degradation tests indicate that electrical degradation is not a slow monotonically increasing phenomenon as originally thought but occurs abruptly as the result of some traumatic event. This finding has led to a change in the test philosophy. A discussion of this change is presented along with a summary of degradation and failure data from all the sites and results from a variety of special tests. New instrumentation for in-field measurements are described. Field testing activity was expanded by the addition of twelve remote sites located as far away as Alaska and the Canal Zone. Descriptions of the new sites are included.

  6. KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (right) explains to Center Director Jim Kennedy about the test blocks being used to test a newly developed coating to protect steel inside concrete. Between MacDowell and Kennedy are Dr. Paul Hintze and Lead Scientist Dr. Luz Marina Calle. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (right) explains to Center Director Jim Kennedy about the test blocks being used to test a newly developed coating to protect steel inside concrete. Between MacDowell and Kennedy are Dr. Paul Hintze and Lead Scientist Dr. Luz Marina Calle. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  7. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  8. Spectroscopic Results from the Life in the Atacama (LITA) Project 2004 Field Season

    NASA Technical Reports Server (NTRS)

    Piatek, J. L.; Moersch, J. E.; Wyatt, M.; Rampey, M.; Cabrol, N. A.; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Diaz, G. Chong

    2005-01-01

    Introduction: The Life in the Atacama (LITA) project includes rover field tests designed to look for life in the arid environment of the Atacama Desert (Chile). Field instruments were chosen to help remote observers identify potential habitats and the presence of life in these habitats, and included two spectrometers for help in identifying the mineralogy of the field sites. Two field trials were undertaken during the 2004 field season. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. Each field trial lasted approximately one week: the sites for these trials were in different locations, and are designated "Site B" and "Site C."

  9. Remote observing capability with Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Kosugi, George; Sasaki, Toshiyuki; Yagi, Masafumi; Ogasawara, Ryusuke; Mizumoto, Yoshihiko; Noumaru, Junichi; Kawai, Jun A.; Koura, Norikazu; Kusumoto, Toyoaki; Yamamoto, Tadahiro; Watanabe, Noboru; Ukawa, Kentaro

    2004-09-01

    We've implemented remote observing function to Subaru telescope Observation Software system (SOSs). Subaru telescope has three observing-sites, i.e., a telescope local-site and two remote observing-sites, Hilo base facility in Hawaii and Mitaka NAOJ headquarter in Japan. Our remote observing system is designed to allow operations not only from one of three observing-sites, but also from more than two sites concurrently or simultaneously. Considering allowance for delay in observing operations and a bandwidth of the network between the telescope-site and the remote observing-sites, three types of interfaces (protocols) have been implemented. In the remote observing mode, we use socket interface for the command and the status communication, vnc for ready-made applications and pop-up windows, and ftp for the actual data transfer. All images taken at the telescope-site are transferred to both of two remote observing-sites immediately after the acquisition to enable the observers' evaluation of the data. We present the current status of remote observations with Subaru telescope.

  10. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  11. Automated electroencephalography system and electroencephalographic coordinates of space motion sickness, part 1

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1976-01-01

    A self-contained and portable device which permits clinical electroencephalography (EEG) to be conducted in remote locations by minimally trained, nontechnical personnel was developed and tested. The unit accomplishes semiautomatic acquisition of EEG data from the patient, simultaneous transmission of eight data channels to a central hospital facility over conventional telephone equipment, and automatic printing (at the remote site) of the EEG report generated at the central location. Consequently, this system enables the delivery of high-quality EEG diagnostic services in a geographically remote site with the accuracy and speed formerly possible only in certain large medical centers. Beside obvious potential clinical applications, this system serves as an initial prototype of a unit which could provide inflight EEG during future space missions.

  12. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, W. A.; Lepicovsky, J.

    1992-01-01

    The software for configuring an LV counter processor system has been developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system has been developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  13. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The software for configuring a Laser Velocimeter (LV) counter processor system was developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system was developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  14. 2. Photocopy of photograph (original photograph/negative located at the Remote ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of photograph (original photograph/negative located at the Remote Sensing Laboratory, Nellis Air Force Base, Las Vegas, Nevada). David Wehner, EG&G Photographic Services Photographer, October 13, 1992. Overall view of Japanese village, facing north - Nevada Test Site, Japanese Village, Area 4, Yucca Flat, 4-04 Road near Rainier Mesa Road, Mercury, Nye County, NV

  15. Lateral variations in geologic structure and tectonic setting from remote sensing data

    NASA Astrophysics Data System (ADS)

    Alexander, S. S.

    1983-05-01

    The principal objective of this study was: (1) to assess the usefulness of remote sensing digital imagery, principally LANDSAT multispectral scanning (MSS) data, for inferring lateral variations in geologic structure and tectonic setting; and (2) to determine the extent to which these inferred variations correlate with observed variations in seismic excitation from underground nuclear explosion test sites in the Soviet Union. Soviet, French and U.S. test sites have been investigated to compare their geologic and tectonic responses as seen by LANDSAT. The characteristics of "granite' intrusive bodies exposed at Semipalatinsk (Degelen), North Africa (Hoggar), NTS (Climax stock), and an analog site in Maine (Mt. Katahdin), have been studied in detail. The tectonic stress field inferred from the tectonic release portion of seismic signatures of explosions in these three areas is compared with local and regional fracture patterns discernable from imagery. The usefulness of satellite synthetic aperture radar (SAR) to determine geologic conditions and delineate fault (fracture) patterns is demonstrated by the analysis of SEASAT data for an area in the eastern United States. Algorithms to enhance structural boundaries and to use textures to identify rock types were developed and applied to several test sites.

  16. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  17. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  18. Using NetMeeting for remote configuration of the Otto Bock C-Leg: technical considerations.

    PubMed

    Lemaire, E D; Fawcett, J A

    2002-08-01

    Telehealth has the potential to be a valuable tool for technical and clinical support of computer controlled prosthetic devices. This pilot study examined the use of Internet-based, desktop video conferencing for remote configuration of the Otto Bock C-Leg. Laboratory tests involved connecting two computers running Microsoft NetMeeting over a local area network (IP protocol). Over 56 Kbs(-1), DSL/Cable, and 10 Mbs(-1) LAN speeds, a prosthetist remotely configured a user's C-Leg by using Application Sharing, Live Video, and Live Audio. A similar test between sites in Ottawa and Toronto, Canada was limited by the notebook computer's 28 Kbs(-1) modem. At the 28 Kbs(-1) Internet-connection speed, NetMeeting's application sharing feature was not able to update the remote Sliders window fast enough to display peak toe loads and peak knee angles. These results support the use of NetMeeting as an accessible and cost-effective tool for remote C-Leg configuration, provided that sufficient Internet data transfer speed is available.

  19. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites

    PubMed Central

    Karl, Jason W.

    2017-01-01

    Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches. PMID:28414731

  20. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    PubMed

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.

  1. Experimental evidence for spring and autumn windows for the detection of geobotanical anomalies through the remote sensing of overlying vegetation

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.

    1985-01-01

    It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.

  2. Robotic positioning of standard electrophysiology catheters: a novel approach to catheter robotics.

    PubMed

    Knight, Bradley; Ayers, Gregory M; Cohen, Todd J

    2008-05-01

    Robotic systems have been developed to manipulate and position electrophysiology (EP) catheters remotely. One limitation of existing systems is their requirement for specialized catheters or sheaths. We evaluated a system (Catheter Robotics Remote Catheter Manipulation System [RCMS], Catheter Robotics, Inc., Budd Lake, New Jersey) that manipulates conventional EP catheters placed through standard introducer sheaths. The remote controller functions much like the EP catheter handle, and the system permits repeated catheter disengagement for manual manipulation without requiring removal of the catheter from the body. This study tested the hypothesis that the RCMS would be able to safely and effectively position catheters at various intracardiac sites and obtain thresholds and electrograms similar to those obtained with manual catheter manipulation. Two identical 7 Fr catheters (Blazer II; Boston Scientific Corp., Natick, Massachusetts) were inserted into the right femoral veins of 6 mongrel dogs through separate, standard 7 Fr sheaths. The first catheter was manually placed at a right ventricular endocardial site. The second catheter handle was placed in the mating holder of the RCMS and moved to approximately the same site as the first catheter using the Catheter Robotics RCMS. The pacing threshold was determined for each catheter. This sequence was performed at 2 right atrial and 2 right ventricular sites. The distance between the manually and robotically placed catheters tips was measured, and pacing thresholds and His-bundle recordings were compared. The heart was inspected at necropsy for signs of cardiac perforation or injury. Compared to manual positioning, remote catheter placement produced the same pacing threshold at 7/24 sites, a lower threshold at 11/24 sites, and a higher threshold at only 6/24 sites (p > 0.05). The average distance between catheter tips was 0.46 +/- 0.32 cm (median 0.32, range 0.13-1.16 cm). There was no difference between right atrial and right ventricular sites (p > 0.05). His-bundle electrograms were equal in amplitude and timing. Further, the remote navigation catheter was able to be disengaged, manually manipulated, then reengaged in the robot without issue. There was no evidence of perforation. The Catheter Robotics remote catheter manipulation system, which uses conventional EP catheters and introducer sheaths, appears to be safe and effective at directing EP catheters to intracardiac sites and achieving pacing thresholds and electrograms equivalent to manually placed catheters. Further clinical studies are needed to confirm these observations.

  3. Rare Earth or Cosmic Zoo: Testing the Frequency of Complex Life in the Universe

    NASA Astrophysics Data System (ADS)

    Bains, W.; Schulze-Makuch, D.

    2017-02-01

    We propose how to test between two major hypotheses about the frequency of life in the universe (Rare Earth and Cosmic Zoo) using future remote sensing capabilities targeted at exoplanets and site visits of planetary bodies in our solar system.

  4. Quality assurance and stability reference (QUASAR) monitoring concept for calibration/validation

    NASA Astrophysics Data System (ADS)

    Teillet, Philippe M.; Horler, D. N.; O'Neill, Norman T.

    1997-12-01

    The paper introduces the concept that calibration/validation (cal/val) can play an essential role in bringing remote sensing to mainstream consumers in an information-based society, provided that cal/val is an integral part of a quality-assurance strategy. A market model for remote sensing is introduced and used to demonstrate that quality assurance is the key to bridging the gap between early adopters of technology and mainstream markets. The paper goes on to propose the semi-continuous monitoring of quality assurance and stability reference (QUASAR) sites as an important first step towards a cal/val infrastructure beneficial to mainstream users. Prospective QUASAR test sites are described.

  5. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  6. Potential for remote sensing of agriculture from the international space station

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Khatib, Nader

    1999-01-01

    Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics, and aerosols), ground water contamination via drain-tile catch from the fields, and Leaf Area Index (LAI). Also, a tethered balloon flight sampled the site's vertical air column and both aerial infrared photography and satellite imagery were acquired. This paper summarizes the 1998 activities in establishing and operating the ``truth'' site. The goal of such a ``truth'' site is to develop and validate precision agriculture predictive models to improve farming practices. ISS sensor testing can greatly accelerate development of such systems.

  7. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    USGS Publications Warehouse

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng

    2010-01-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  8. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less

  9. Technology for Waste Treatment at Remote Army Sites

    DTIC Science & Technology

    1986-09-01

    Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by

  10. Ohio River main stem study - The role of geographic information systems and remote sensing in flood damage assessments

    NASA Technical Reports Server (NTRS)

    Edwardo, H. A.; Moulis, F. R.; Merry, C. J.; Mckim, H. L.; Kerber, A. G.; Miller, M. A.

    1985-01-01

    The Pittsburgh District, Corps of Engineers, has conducted feasibility analyses of various procedures for performing flood damage assessments along the main stem of the Ohio River. Procedures using traditional, although highly automated, techniques and those based on geographic information systems have been evaluated at a test site, the City of New Martinsville, Wetzel County, WV. The flood damage assessments of the test site developed from an automated, conventional structure-by-structure appraisal served as the ground truth data set. A geographic information system was developed for the test site which includes data on hydraulic reach, ground and reference flood elevations, and land use/cover. Damage assessments were made using land use mapping developed from an exhaustive field inspection of each tax parcel. This ground truth condition was considered to provide the best comparison of flood damages to the conventional approach. Also, four land use/cover data sets were developed from Thematic Mapper Simulator (TMS) and Landsat-4 Thematic Mapper (TM) data. One of these was also used to develop a damage assessment of the test site. This paper presents the comparative absolute and relative accuracies of land use/cover mapping and flood damage assessments, and the recommended role of geographic information systems aided by remote sensing for conducting flood damage assessments and updates along the main stem of the Ohio River.

  11. KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy a project being undertaken for the U.S. Navy. At left are nonchrome primers for aircraft being studied. Behind Kennedy is Lead Scientist Dr. Luz Marina Calle. Behind MacDowell is Dr. Paul Hintze, who is working on a graduate project for the National Research Council. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy a project being undertaken for the U.S. Navy. At left are nonchrome primers for aircraft being studied. Behind Kennedy is Lead Scientist Dr. Luz Marina Calle. Behind MacDowell is Dr. Paul Hintze, who is working on a graduate project for the National Research Council. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  12. KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Center Director Jim Kennedy (second from right) learns from Testbed Manager Louis MacDowell (right) about a project being undertaken for the U.S. Navy. Being studied are nonchrome primers for aircraft. At left are Lead Scientist Dr. Luz Marina Calle and Dr. Paul Hintze, who is working on a graduate project for the National Research Council. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Center Director Jim Kennedy (second from right) learns from Testbed Manager Louis MacDowell (right) about a project being undertaken for the U.S. Navy. Being studied are nonchrome primers for aircraft. At left are Lead Scientist Dr. Luz Marina Calle and Dr. Paul Hintze, who is working on a graduate project for the National Research Council. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  13. KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (foreground) explains to Center Director Jim Kennedy (third from right) about a study being undertaken for the U.S. Navy: nonchrome primers for aircraft. At left is Lead Scientist Dr. Luz Marina Calle and behind MacDowell is Dr. Paul Hintze, who is working on a graduate project for the National Research Council. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (foreground) explains to Center Director Jim Kennedy (third from right) about a study being undertaken for the U.S. Navy: nonchrome primers for aircraft. At left is Lead Scientist Dr. Luz Marina Calle and behind MacDowell is Dr. Paul Hintze, who is working on a graduate project for the National Research Council. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  14. A Retrospective Evaluation of Remote Pharmacist Interventions in a Telepharmacy Service Model Using a Conceptual Framework

    PubMed Central

    Murante, Lori J.; Moffett, Lisa M.

    2014-01-01

    Abstract Objectives: This retrospective cross-sectional study evaluated a telepharmacy service model using a conceptual framework to compare documented remote pharmacist interventions by year, hospital, and remote pharmacist and across rural hospitals with or without an on-site rural hospital pharmacist. Materials and Methods: Documented remote pharmacist interventions for patients at eight rural hospitals in the Midwestern United States during prospective prescription order review/entry from 2008 to 2011 were extracted from RxFusion® database (a home-grown system, i.e., internally developed program at The Nebraska Medical Center (TNMC) for capturing remote pharmacist-documented intervention data). The study authors conceptualized an analytical framework, mapping the 37 classes of remote pharmacist interventions to three broader-level definitions: (a) intervention, eight categories (interaction/potential interaction, contraindication, adverse effects, anticoagulation monitoring, drug product selection, drug regimen, summary, and recommendation), (b) patient medication management, two categories (therapy review and action), and (c) health system-centered medication use process, four categories (prescribing, transcribing and documenting, administering, and monitoring). Frequencies of intervention levels were compared by year, hospital, remote pharmacist, and hospital pharmacy status (with a remote pharmacist and on-site pharmacist or with a remote pharmacist only) using chi-squared test and univariate logistic regression analyses, as appropriate. Results: For 450,000 prescription orders 19,222 remote pharmacist interventions were documented. Frequency of interventions significantly increased each year (36% in 2009, 55% in 2010, and 7% in 2011) versus the baseline year (2008, 3%) when service started. The frequency of interventions also differed significantly across the eight hospitals and 16 remote pharmacists for the three defined intervention levels and categories. Remote pharmacist interventions at hospitals with an on-site and remote pharmacist (n=12,141) versus those with a remote pharmacist alone (n=7,081) were significantly more likely to be (1) patient-centered, (2) related to “actionable” medication management recommendations (unadjusted odds ratio [OR]=1.12), and (3) related to the “transcribing” (OR=1.47) and “prescribing” (OR=1.40) steps of the health system-centered medication use process level (all p<0.01). Conclusions: This is one of the first studies to demonstrate the patient- and health system-centered nature of pharmaceutical care delivered via a telepharmacy service model by evaluating documented remote pharmacist interventions with an analytical framework. PMID:24611489

  15. Ground-cover vegetation management at backcountry recreation sites

    Treesearch

    Stephen Fay

    1975-01-01

    Increasing use of remote backcountry recreation sites in the Northeast is resulting in a loss of the thin soil mantle and destruction of the ground-cover vegetation. Fencing, fertilization and liming and a combination of fencing, fertilization, and liming were tested as means of reestablishing ground-cover vegetation on bare mineral soils of the Tuckerman Ravine...

  16. A Mobile Robot for Remote Response to Incidents Involving Hazardous Materials

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.

    1994-01-01

    This paper will describe a teleoperated mobile robot system being developed at JPL for use by the JPL Fire Department/HAZMAT Team. The project, which began in October 1990, is focused on prototyping a robotic vehicle which can be quickly deployed and easily operated by HAZMAT Team personnel allowing remote entry and exploration of a hazardous material incident site. The close involvement of JPL Fire Department personnel has been critical in establishing system requirements as well as evaluating the system. The current robot, called HAZBOT III, has been especially designed for operation in environments that may contain combustible gases. Testing of the system with the Fire Department has shown that teleoperated robots can successfully gain access to incident sites allowing hazardous material spills to be remotely located and identified. Work is continuing to enable more complex missions through enhancement of the operator interface and by allowing tetherless operation.

  17. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  18. Analysis of terrestrial conditions and dynamics

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1984-01-01

    Land spectral reflectance properties for selected locations, including the Goddard Space Flight Center, the Wallops Flight Facility, a MLA test site in Cambridge, Maryland, and an acid test site in Burlington, Vermont, were measured. Methods to simulate the bidirectional reflectance properties of vegetated landscapes and a data base for spatial resolution were developed. North American vegetation patterns observed with the Advanced Very High Resolution Radiometer were assessed. Data and methods needed to model large-scale vegetation activity with remotely sensed observations and climate data were compiled.

  19. Development and field testing of a Light Aircraft Oil Surveillance System (LAOSS)

    NASA Technical Reports Server (NTRS)

    Burns, W.; Herz, M. J.

    1976-01-01

    An experimental device consisting of a conventional TV camera with a low light level photo image tube and motor driven polarized filter arrangement was constructed to provide a remote means of discriminating the presence of oil on water surfaces. This polarized light filtering system permitted a series of successive, rapid changes between the vertical and horizontal components of reflected polarized skylight and caused the oil based substances to be more easily observed and identified as a flashing image against a relatively static water surface background. This instrument was flight tested, and the results, with targets of opportunity and more systematic test site data, indicate the potential usefulness of this airborne remote sensing instrument.

  20. a Hyperspectral Based Method to Detect Cannabis Plantation in Inaccessible Areas

    NASA Astrophysics Data System (ADS)

    Houmi, M.; Mohamadi, B.; Balz, T.

    2018-04-01

    The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco) from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM) based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria), to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians) less than 0.03.

  1. 46 CFR 160.151-49 - Approval of servicing facilities at remote sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... remote site, equipment needed for repair does not need to be available at that site. A facility must be... 46 Shipping 6 2011-10-01 2011-10-01 false Approval of servicing facilities at remote sites. 160.151-49 Section 160.151-49 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...

  2. Virtual blood bank

    PubMed Central

    Wong, Kit Fai

    2011-01-01

    Virtual blood bank is the computer-controlled, electronically linked information management system that allows online ordering and real-time, remote delivery of blood for transfusion. It connects the site of testing to the point of care at a remote site in a real-time fashion with networked computers thus maintaining the integrity of immunohematology test results. It has taken the advantages of information and communication technologies to ensure the accuracy of patient, specimen and blood component identification and to enhance personnel traceability and system security. The built-in logics and process constraints in the design of the virtual blood bank can guide the selection of appropriate blood and minimize transfusion risk. The quality of blood inventory is ascertained and monitored, and an audit trail for critical procedures in the transfusion process is provided by the paperless system. Thus, the virtual blood bank can help ensure that the right patient receives the right amount of the right blood component at the right time. PMID:21383930

  3. System architecture for asynchronous multi-processor robotic control system

    NASA Technical Reports Server (NTRS)

    Steele, Robert D.; Long, Mark; Backes, Paul

    1993-01-01

    The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.

  4. Research for applications of remote sensing to state and local governments (ARSIG)

    NASA Technical Reports Server (NTRS)

    Foster, K. E.; Johnson, J. D.

    1973-01-01

    Remote sensing and its application to problems confronted by local and state planners are reported. The added dimension of remote sensing as a data gathering tool has been explored identifying pertinent land use factors associated with urban growth such as soil associations, soil capability, vegetation distribution, and flood prone areas. Remote sensing within rural agricultural setting has also been utilized to determine irrigation runoff volumes, cropping patterns, and land use. A variety of data sources including U-2 70 mm multispectral black and white photography, RB-57 9-inch color IR, HyAC panoramic color IR and ERTS-1 imagery have been used over selected areas of Arizona including Tucson, Arizona (NASA Test Site #30) and the Sulphur Springs Valley.

  5. Nasa's Land Remote Sensing Plans for the 1980's

    NASA Technical Reports Server (NTRS)

    Higg, H. C.; Butera, K. M.; Settle, M.

    1985-01-01

    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  6. The Ottawa telehealth project.

    PubMed

    Cheung, S T; Davies, R F; Smith, K; Marsh, R; Sherrard, H; Keon, W J

    1998-01-01

    To examine the telehealth system as a means of improving access to cardiac consultations and specialized health services in remote areas of Ontario. The University of Ottawa Heart Institute has set up a telehealth test program, Healthcare and Education Access for Remote Residents by Telecommunications (HEARRT), in collaboration with industry and the provincial and federal government, as well as several remote clinical test sites. The program makes off-site cardiology consultations possible. History taking and physical examinations are conducted by video and electronic stethoscope. Laboratory results and echocardiograms are transmitted by document camera and VCR. The technology is being tested in both stable outpatient and emergency situations. Various telecommunications bandwidths and encoding systems are being evaluated, including satellite and terrestrial-based asynchronous transfer-mode circuits. Patient satisfaction and cost-effectiveness are also being assessed. Bandwidths from as low as 384 kbps using H.320 encoders to 40 Mbps using digital transport of NTSC video signals have been evaluated. Although lower bandwidths are sufficient for sending echocardiographic and electrocardiogram data, bandwidths with transport speeds of 4 to 6 Mbps appear necessary to capture the nuances of the cardiac physical examination. A preliminary satisfaction survey of 19 patients noted that all felt that they could communicate effectively with the cardiologist by video, and each had confidence in the advice offered. None reported that he or she would rather have traveled to the doctor in person. Initial and projected examination of the costs suggested that telehealth will effectively reduce overall health care spending while decreasing travel expenses for rural patients. Telehealth technology is sufficiently sophisticated to allow off-site cardiology assessments. Preliminary results suggest there is a sound business case for the implementation of telehealth technology to meet the needs of remote residents in northern Ontario. Working closely with government and industry, we will develop a marketing and commercialization plan to support the use of this technology throughout Ontario and expand application to patient education and continuing medical education.

  7. Linking Arctic plant biodiversity measurements with landscape heterogeneity

    NASA Astrophysics Data System (ADS)

    Gerber, F.; Schaepman-Strub, G.; Furrer, R.

    2016-12-01

    Climate warming in the Arctic region triggers changes in the vegetation productivity and species composition of the tundra. To investigate these changes and their feedback to climate, we consider species richness and abundance data of the International Tundra EXperiment (ITEX). As this information is very sparse in time and space, we aim to upscale available records to climatically relevant scales with a remote sensing based characterization of the study sites. More precisely, we relate species richness and evenness derived from the ITEX data to summary statistics describing the landscape heterogeneity, which are derived from an elevation model (ASTER GDEM) and spectral satellite observations (LANDSAT 5 and 7). Preliminary results from the statistical analysis using generalized linear mixed models show that no remote sensing based landscape characterization does significantly explain species richness. Reasons could be a mismatch of the spatial scales, an inappropriate characterization of the test sites through the satellite measurements, incomparable plot measurements from the different test sites and/or too few plot measurements. We are looking forward to presenting our results and getting your inputs.

  8. IP Subsurface Imaging in the Presence of Buried Steel Infrastructure

    NASA Astrophysics Data System (ADS)

    Smart, N. H.; Everett, M. E.

    2017-12-01

    The purpose of this research is to explore the use of induced polarization to image closely-spaced steel columns at a controlled test site. Texas A&M University's Riverside Campus (RELLIS) was used as a control test site to examine the difference between actual and remotely-sensed observed depths. Known borehole depths and soil composition made this site ideal. The subsurface metal structures were assessed using a combination of ER (Electrical Resistivity) and IP (Induced Polarization), and later processed using data inversion. Surveying was set up in reference to known locations and depths of steel structures in order to maximize control data quality. In comparing of known and remotely-sensed foundation depths a series of questions is raised regarding how percent error between imaged and actual depths can be lowered. We are able to draw questions from the results of our survey, as we compare them with the known depth and width of the metal beams. As RELLIS offers a control for us to conduct research, ideal survey geometry and inversion parameters can be met to achieve optimal results and resolution

  9. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  10. Overview (northeast to southwest) of remote sprint launch site #4. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview (northeast to southwest) of remote sprint launch site #4. In center is limited area sentry station, just behind it can be seen the exhaust and intake shafts for the remote launch operations building, and to the far right is the exclusion area sentry station - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND

  11. Quantification of airborne fossil and biomass carbonylic carbon by combined radiocarbon and liquid chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    Larsen, B. R.; Tudos, A.; Slanina, J.; Van der Borg, K.; Kotzias, D.

    Airborne carbonyl compounds have been sampled at three European semi-remote to semi-urban test sites for radiocarbon ( 14C) analysis. The used methodology included collection on 2,4-dinitrophenylhydrazine coated silica gel cartridges, chromatographic isolation of the formed hydrazones, combustion into CO 2, reduction into graphite followed by accelerator mass spectrometry. In combination with this, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry was used for chemical speciation of the collected carbonyls. At all sites the carbonyls were found to be of a mixed biogenic/anthropogenic origin. The determining factor for the proportion of fossil (anthropogenic) carbon in the samples was the vicinity of urban sources for carbonyls and their photochemical precursors. At meteorological conditions, which gave the test sites semi-rural/semi-remote characteristics the samples contained an average of 24% (range: 10-34%) of fossil carbonylic carbon. When air masses were transported from urban areas to the test-sites significantly higher proportions of fossil carbonylic carbon were determined with a maximum of 61%. Principal component analysis on this limited data set indicated that a low fossil proportion of carbonylic carbon is associated with high proportions of acetaldehyde, acetone, pentanone and acrolein. Until further radicarbon studies are carried out the conclusion remains that for the carbonyl compounds measured European background levels are of a predominant biogenic origin.

  12. 78 FR 19051 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... that is in test mode in excess of one. (c)-(f) No change. (g) Other Port Fees Remote Multi-cast ITCH... environment to test upcoming NASDAQ releases and product enhancements, as well as test software prior to... public in accordance with the provisions of 5 U.S.C. 552, will be available for Web site viewing and...

  13. EML Chester - 1982. Annual report of the Regional Baseline Station at Chester, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volchok, H.L.

    1982-11-01

    The Environmental Measurements Laboratory (EML) has maintained a regional baseline station at Chester, New Jersey since 1976. The site provides EML with a remote, rural facility for carrying out regional baseline research and for testing field equipment. This report updates the various programs underway at the Chester site. Separate abstracts have been prepared for the included papers. (ACR)

  14. Interactive internet-based clinical education: an efficient and cost-savings approach to point-of-care test training.

    PubMed

    Knapp, Herschel; Chan, Kee; Anaya, Henry D; Goetz, Matthew B

    2011-06-01

    We successfully created and implemented an effective HIV rapid testing training and certification curriculum using traditional in-person training at multiple sites within the U.S. Department of Veterans Affairs (VA) Healthcare System. Considering the multitude of geographically remote facilities in the nationwide VA system, coupled with the expansion of HIV diagnostics, we developed an alternate training method that is affordable, efficient, and effective. Using materials initially developed for in-person HIV rapid test in-services, we used a distance learning model to offer this training via live audiovisual online technology to educate clinicians at a remote outpatient primary care VA facility. Participants' evaluation metrics showed that this form of remote education is equivalent to in-person training; additionally, HIV testing rates increased considerably in the months following this intervention. Although there is a one-time setup cost associated with this remote training protocol, there is potential cost savings associated with the point-of-care nurse manager's time productivity by using the Internet in-service learning module for teaching HIV rapid testing. If additional in-service training modules are developed into Internet-based format, there is the potential for additional cost savings. Our cost analysis demonstrates that the remote in-service method provides a more affordable and efficient alternative compared with in-person training. The online in-service provided training that was equivalent to in-person sessions based on first-hand supervisor observation, participant satisfaction surveys, and follow-up results. This method saves time and money, requires fewer personnel, and affords access to expert trainers regardless of geographic location. Further, it is generalizable to training beyond HIV rapid testing. Based on these consistent implementation successes, we plan to expand use of online training to include remote VA satellite facilities spanning several states for a variety of diagnostic devices. Ultimately, Internet-based training has the potential to provide "big city" quality of care to patients at remote (rural) clinics.

  15. Simple Technique for in Field Samples Collection in the Cases of Skin Rash Illness and Subsequent PCR Detection of Orthopoxviruses and Varicella Zoster Virus

    PubMed Central

    Magazani, Edmond K.; Garin, Daniel; Muyembe, Jean-Jacques T.; Bentahir, Mostafa; Gala, Jean-Luc

    2014-01-01

    Background In case of outbreak of rash illness in remote areas, clinically discriminating monkeypox (MPX) from severe form of chickenpox and from smallpox remains a concern for first responders. Objective The goal of the study was therefore to use MPX and chickenpox outbreaks in Democratic Republic of Congo (DRC) as a test case for establishing a rapid and specific diagnosis in affected remote areas. Methods In 2008 and 2009, successive outbreaks of presumed MPX skin rash were reported in Bena Tshiadi, Yangala and Ndesha healthcare districts of the West Kasai province (DRC). Specimens consisting of liquid vesicle dried on filter papers or crusted scabs from healing patients were sampled by first responders. A field analytical facility was deployed nearby in order to carry out a real-time PCR (qPCR) assay using genus consensus primers, consensus orthopoxvirus (OPV) and smallpox-specific probes spanning over the 14 kD fusion protein encoding gene. A PCR-restriction fragment length polymorphism was used on-site as backup method to confirm the presence of monkeypox virus (MPXV) in samples. To complete the differential diagnosis of skin rash, chickenpox was tested in parallel using a commercial qPCR assay. In a post-deployment step, a MPXV-specific pyrosequencing was carried out on all biotinylated amplicons generated on-site in order to confirm the on-site results. Results Whereas MPXV proved to be the agent causing the rash illness outbreak in the Bena Tshiadi, VZV was the causative agent of the disease in Yangala and Ndesha districts. In addition, each on-site result was later confirmed by MPXV-specific pyrosequencing analysis without any discrepancy. Conclusion This experience of rapid on-site dual use DNA-based differential diagnosis of rash illnesses demonstrates the potential of combining tests specifically identifying bioterrorism agents and agents causing natural outbreaks. This opens the way to rapid on-site DNA-based identification of a broad spectrum of causative agents in remote areas. PMID:24841633

  16. Remote sensing applications to forest vegetation classification and conifer vigor loss due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.; Meyer, M. P.; French, D. W.

    1972-01-01

    Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.

  17. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    DTIC Science & Technology

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  18. Virtual Planetary Analysis Environment for Remote Science

    NASA Technical Reports Server (NTRS)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  19. Remote control of an impact demonstration vehicle

    NASA Technical Reports Server (NTRS)

    Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.

    1985-01-01

    Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.

  20. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Tsatsoulis, Costas; Frost, Victor

    1991-01-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  1. Application of remote sensing for prediction and detection of thermal pollution, phase 2

    NASA Technical Reports Server (NTRS)

    Veziroglu, T. N.; Lee, S. S.

    1975-01-01

    The development of a predictive mathematical model for thermal pollution in connection with remote sensing measurements was continued. A rigid-lid model has been developed and its application to far-field study has been completed. The velocity and temperature fields have been computed for different atmospheric conditions and for different boundary currents produced by tidal effects. In connection with the theoretical work, six experimental studies of the two sites in question (Biscayne Bay site and Hutchinson Island site) have been carried out. The temperature fields obtained during the tests at the Biscayne Bay site have been compared with the predictions of the rigid-lid model and these results are encouraging. The rigid-lid model is also being applied to near-field study. Preliminary results for a simple case have been obtained and execution of more realistic cases has been initiated. The development of a free-surface model also been initiated. The governing equations have been formulated and the computer programs have been written.

  2. Remote Leak Detection: Indirect Thermal Technique

    NASA Technical Reports Server (NTRS)

    Clements, Sandra

    2002-01-01

    Remote sensing technologies are being considered for efficient, low cost gas leak detection. Eleven specific techniques have been identified for further study and evaluation of several of these is underway. The Indirect Thermal Technique is one of the techniques that is being explored. For this technique, an infrared camera is used to detect the temperature change of a pipe or fitting at the site of a gas leak. This temperature change is caused by the change in temperature of the gas expanding from the leak site. During the 10-week NFFP program, the theory behind the technique was further developed, experiments were performed to determine the conditions for which the technique might be viable, and a proof-of-concept system was developed and tested in the laboratory.

  3. On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers

    NASA Astrophysics Data System (ADS)

    Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.

    2017-10-01

    This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.

  4. Bringing "Scientific Expeditions" Into the Schools

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as simulations or measurements of fluid dynamics). The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics (CFD) and wind tunnel testing. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualiZation of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: 1. The visual is much higher in resolution (1280xl024 pixels with 24 bits of color) than typical video format transmitted over the network. 2. The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). 3. A rich variety of guided expeditions through the data can be included easily. 4. A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. 5. The scenes can be viewed in 3D using stereo vision. 6. The network bandwidth used for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.)

  5. On the search for extant life on Mars

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1996-01-01

    Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.

  6. On the search for extant life on Mars.

    PubMed

    Klein, H P

    1996-01-01

    Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.

  7. Operation of agricultural test fields for study of stressed crops by remote sensing

    NASA Technical Reports Server (NTRS)

    Toler, R. W.

    1974-01-01

    A test site for the study of winter wheat development and collection of ERTS data was established in September of 1973. The test site is a 10 mile square area located 12.5 miles west of Amarillo, Texas on Interstate Hwy. 40, in Randall and Potter counties. The center of the area is the Southwestern Great Plains Research Center at Bushland, Texas. Within the test area all wheat fields were identified by ground truth and designated irrigated or dryland. The fields in the test area other than wheat were identified as to pasture or the crop that was grown. A ground truth area of hard red winter wheat was established west of Hale Center, Texas. Maps showing the location of winter wheat fields in excess of 40 acres in size within a 10 mile radius were supplied NASA. Satellite data was collected for this test site (ERTS-1).

  8. Engineering education using a remote laboratory through the Internet

    NASA Astrophysics Data System (ADS)

    Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.

    2012-03-01

    An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage characteristic curve of a photovoltaic panel installed on the roof of a laboratory, facing south and with the ability to alter its tilt angle, using a closed loop servo motor mounted on the horizontal axis of the panel. The user has the sense of a direct contact with the system since they can intervene and alter the tilt of the panel and get a live visual feedback besides the remote instrumentation panel. The whole procedure takes a few seconds to complete and the characteristic curve is displayed in a chart giving the student and anyone else interested the chance to analyse the results and understand the respective theory; meanwhile, the test data are stored in a file for future use. This type of remote experiment could be used for distance education, training, part-time study and to help students with disabilities to participate in a laboratory environment.

  9. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then received on a television and audio monitor. We also test live transmission of pediatric echocardiograms using the EMMI from a remote hospital to the Bowman Gray School of Medicine (BGSM) via a GCNS2000 ATM switch. This replaces the current method of having these studies transferred to a VHS tape and then mailed overnight to our pediatric cardiologist for review. This test should provide valuable insight into the staffing and operational requirements of a tele-ultrasound unit with pediatric echocardiogram capabilities. The EMMI thus provides a means for the radiologist to be in constant communication with the technologist to guide the scanning of areas in question and enable general problem solving. Live scans are sent from one EMMI at the remote site to the other EMMI at the review station in the radiology department via the GCNS2000 switch. This arrangement allows us to test the use of public ATM services for this application as this switch is a wide area, central office ATM switch. Static images are sent using the DICOM standard when available, otherwise the established institutional digital radiology methods are used.

  10. Remote geologic structural analysis of Yucca Flat

    NASA Astrophysics Data System (ADS)

    Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.

  11. The Effectiveness of Remote Facilitation in Simulation-Based Pediatric Resuscitation Training for Medical Students.

    PubMed

    Ohta, Kunio; Kurosawa, Hiroshi; Shiima, Yuko; Ikeyama, Takanari; Scott, James; Hayes, Scott; Gould, Michael; Buchanan, Newton; Nadkarni, Vinay; Nishisaki, Akira

    2017-08-01

    To assess the effectiveness of pediatric simulation by remote facilitation. We hypothesized that simulation by remote facilitation is more effective compared to simulation by an on-site facilitator. We defined remote facilitation as a facilitator remotely (1) introduces simulation-based learning and simulation environment, (2) runs scenarios, and (3) performs debriefing with an on-site facilitator. A remote simulation program for medical students during pediatric rotation was implemented. Groups were allocated to either remote or on-site facilitation depending on the availability of telemedicine technology. Both groups had identical 1-hour simulation sessions with 2 scenarios and debriefing. Their team performance was assessed with behavioral assessment tool by a trained rater. Perception by students was evaluated with Likert scale (1-7). Fifteen groups with 89 students participated in a simulation by remote facilitation, and 8 groups with 47 students participated in a simulation by on-site facilitation. Participant demographics and previous simulation experience were similar. Both groups improved their performance from first to second scenario: groups by remote simulation (first [8.5 ± 4.2] vs second [13.2 ± 6.2], P = 0.003), and groups by on-site simulation (first [6.9 ± 4.1] vs second [12.4 ± 6.4], P = 0.056). The performance improvement was not significantly different between the 2 groups (P = 0.94). Faculty evaluation by students was equally high in both groups (7 vs 7; P = 0.65). A pediatric acute care simulation by remote facilitation significantly improved students' performance. In this pilot study, remote facilitation seems as effective as a traditional, locally facilitated simulation. The remote simulation can be a strong alternative method, especially where experienced facilitators are limited.

  12. Collaborative Information Technologies

    NASA Astrophysics Data System (ADS)

    Meyer, William; Casper, Thomas

    1999-11-01

    Significant effort has been expended to provide infrastructure and to facilitate the remote collaborations within the fusion community and out. Through the Office of Fusion Energy Science Information Technology Initiative, communication technologies utilized by the fusion community are being improved. The initial thrust of the initiative has been collaborative seminars and meetings. Under the initiative 23 sites, both laboratory and university, were provided with hardware required to remotely view, or project, documents being presented. The hardware is capable of delivering documents to a web browser, or to compatible hardware, over ESNET in an access controlled manner. The ability also exists for documents to originate from virtually any of the collaborating sites. In addition, RealNetwork servers are being tested to provide audio and/or video, in a non-interactive environment with MBONE providing two-way interaction where needed. Additional effort is directed at remote distributed computing, file systems, security, and standard data storage and retrieval methods. This work supported by DoE contract No. W-7405-ENG-48

  13. A new acquisition and imaging system for environmental measurements: an experience on the Italian cultural heritage.

    PubMed

    Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo

    2014-05-23

    A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up.

  14. A New Acquisition and Imaging System for Environmental Measurements: An Experience on the Italian Cultural Heritage

    PubMed Central

    Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo

    2014-01-01

    A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up. PMID:24859030

  15. PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES

    EPA Science Inventory

    After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...

  16. Refinement of a Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel; Chen, Li

    2012-01-01

    To facilitate locating archaeological sites before they are compromised or destroyed, we are developing approaches for generating maps of probable archaeological sites, through detecting subtle anomalies in vegetative cover, soil chemistry, and soil moisture by analyzing remotely sensed data from multiple sources. We previously reported some success in this effort with a statistical analysis of slope, radar, and Ikonos data (including tasseled cap and NDVI transforms) with Student's t-test. We report here on new developments in our work, performing an analysis of 8-band multispectral Worldview-2 data. The Worldview-2 analysis begins by computing medians and median absolute deviations for the pixels in various annuli around each site of interest on the 28 band difference ratios. We then use principle components analysis followed by linear discriminant analysis to train a classifier which assigns a posterior probability that a location is an archaeological site. We tested the procedure using leave-one-out cross validation with a second leave-one-out step to choose parameters on a 9,859x23,000 subset of the WorldView-2 data over the western portion of Ft. Irwin, CA, USA. We used 100 known non-sites and trained one classifier for lithic sites (n=33) and one classifier for habitation sites (n=16). We then analyzed convex combinations of scores from the Archaeological Predictive Model (APM) and our scores. We found that that the combined scores had a higher area under the ROC curve than either individual method, indicating that including WorldView-2 data in analysis improved the predictive power of the provided APM.

  17. Enabling Remote Access to Fieldwork: Gaining Insight into the Pedagogic Effectiveness of "Direct" and "Remote" Field Activities

    ERIC Educational Resources Information Center

    Stokes, Alison; Collins, Trevor; Maskall, John; Lea, John; Lunt, Paul; Davies, Sarah

    2012-01-01

    This study considers the pedagogical effectiveness of remote access to fieldwork locations. Forty-one students from across the GEES disciplines (geography, earth and environmental sciences) undertook a fieldwork exercise, supported by two lecturers. Twenty students accessed the field site directly and the remainder accessed the site remotely using…

  18. Remote sensing research for agricultural applications

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The thematic mapper simulator (TMS) flown by the U-2/ER-2 aircraft is being used as a surrogate for LANDSAT-4TM data. Progress is reported on spectral data acquisition including TMS, color infrared high altitude aerial photography, and LANDSAT 3 MSS and ground data collection to support classification and testing. A test site in San Joaquin County was selected for analysis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer; Clifton, Andrew; Bonin, Timothy

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing considermore » uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict errors in lidar-measured wind speed. The results show how uncertainty varies over time and can be used to help select data with different levels of uncertainty for different applications, for example, low uncertainty data for power performance testing versus all data for plant performance monitoring.« less

  20. [Study on artificial neural network combined with multispectral remote sensing imagery for forest site evaluation].

    PubMed

    Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long

    2013-10-01

    Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.

  1. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test.

    PubMed

    Wang, Teng; Shi, Qibin; Nikkhoo, Mehdi; Wei, Shengji; Barbot, Sylvain; Dreger, Douglas; Bürgmann, Roland; Motagh, Mahdi; Chen, Qi-Fu

    2018-05-10

    Surveillance of clandestine nuclear tests relies on a global seismic network, but the potential of spaceborne monitoring has been underexploited. Here, we determined the complete surface displacement field of up to 3.5 m of divergent horizontal motion with 0.5 m of subsidence associated with North Korea's largest underground nuclear test using satellite radar imagery. Combining insight from geodetic and seismological remote sensing, we found that the aftermath of the initial explosive deformation involved subsidence associated with sub-surface collapse and aseismic compaction of the damaged rocks of the test site. The explosive yield from the nuclear detonation with seismic modeling for 450m depth was between 120-304 kt of TNT equivalent. Our results demonstrate the capability of spaceborne remote sensing to help characterize large underground nuclear tests. Copyright © 2018, American Association for the Advancement of Science.

  2. PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES (SLIDES)

    EPA Science Inventory

    After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...

  3. Overall view from south to north of remote sprint launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND

  4. Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.

    Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions

  5. Performance of the Digital Science Partnership Remotely-Operated 0.5-Meter Corrected Dall-Kirkham Telescopes

    NASA Astrophysics Data System (ADS)

    Kielkopf, John F.; Carter, B.; Brown, C.; Hart, R.; Hay, J.; Waite, I.

    2007-12-01

    The Digital Science Partnership, a collaboration of the University of Louisville and the University of Southern Queensland, operates a pair of 0.5-meter telescopes for teaching, research, and informal education. The instruments were installed at sites near Toowoomba, Australia, and Louisville, Kentucky in 2006. The Planewave Instruments optical systems employ a unique Dall-Kirkham design incorporating a two-element corrector that demagnifies the image, flattens the focal plane, and reduces coma. These instruments have a moderately fast f/6.8 focal ratio and maintain image quality with little vignetting over a field 42 mm in diameter (0.7 degree). With a 9-micron pixel CCD such as the KAF-6303E, the image scale of 0.55 seconds of arc per pixel typically yields seeing-limited image quality at our sites. The telescopes and their enclosure are operated in a live remote observing mode through Linux-based software, including a dome-control system that uses RFID tags for absolute rotation encoding. After several months of testing and development we have examples of images and photometry from both sites that illustrate the performance of the system. We will discuss image quality, as well as practical matters such as pointing accuracy and field acquisition, auto-guiding, communication latency in large file transfer, and our experience with remote observing assisted by teleconferencing. Time-delay-integration (TDI) imaging, in which the telescope is stationary while the CCD is clocked to track in right ascension, is under study. The technique offers wide fields of view with very high signal-to-noise ratio, and can be implemented in robotically operated instruments used in monitoring, rapid-response, and educational programs. Results for conventional and TDI imaging from the dark site in Australia compared to the brighter suburban site in Kentucky show the benefits of access to dark sites through international partnerships that remote operation technology offers.

  6. The Associate Principal Astronomer for AI Management of Automatic Telescopes

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.

    1998-01-01

    This research program in scheduling and management of automatic telescopes had the following objectives: 1. To field test the 1993 Automatic Telescope Instruction Set (ATIS93) programming language, which was specifically developed to allow real-time control of an automatic telescope via an artificial intelligence scheduler running on a remote computer. 2. To develop and test the procedures for two-way communication between a telescope controller and remote scheduler via the Internet. 3. To test various concepts in Al scheduling being developed at NASA Ames Research Center on an automatic telescope operated by Tennessee State University at the Fairborn Observatory site in southern Arizona. and 4. To develop a prototype software package, dubbed the Associate Principal Astronomer, for the efficient scheduling and management of automatic telescopes.

  7. The effects of spatially displaced visual feedback on remote manipulator performance

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Stuart, Mark A.

    1989-01-01

    The effects of spatially displaced visual feedback on the operation of a camera viewed remote manipulation task are analyzed. A remote manipulation task is performed by operators exposed to the following different viewing conditions: direct view of the work site; normal camera view; reversed camera view; inverted/reversed camera view; and inverted camera view. The task completion performance times are statistically analyzed with a repeated measures analysis of variance, and a Newman-Keuls pairwise comparison test is administered to the data. The reversed camera view is ranked third out of four camera viewing conditions, while the normal viewing condition is found significantly slower than the direct viewing condition. It is shown that generalization to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.

  8. FIFE data analysis: Testing BIOME-BGC predictions for grasslands

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.

    1994-01-01

    The First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) was conducted in a 15 km by 15 km research area located 8 km south of Manhattan, Kansas. The site consists primarily of native tallgrass prairie mixed with gallery oak forests and croplands. The objectives of FIFE are to better understand the role of biology in controlling the interactions between the land and the atmosphere, and to determine the value of remotely sensed data for estimating climatological parameters. The goals of FIFE are twofold: the upscale integration of models, and algorithm development for satellite remote sensing. The specific objectives of the field campaigns carried out in 1987 and 1989 were the simultaneous acquisition of satellite, atmospheric, and surface data; and the understanding of the processes controlling surface energy and mass exchange. Collected data were used to study the dynamics of various ecosystem processes (photosynthesis, evaporation and transpiration, autotrophic and heterotrophic respiration, etc.). Modelling terrestrial ecosystems at scales larger than that of a homogeneous plot led to the development of simple, generalized models of biogeochemical cycles that can be accurately applied to different biomes through the use of remotely sensed data. A model was developed called BIOME-BGC (for BioGeochemical Cycles) from a coniferous forest ecosystem model, FOREST-BGC, where a biome is considered a combination of a life forms in a specified climate. A predominately C4-photosynthetic grassland is probably the most different from a coniferous forest possible, hence the FIFE site was an excellent study area for testing BIOME-BGC. The transition from an essentially one-dimensional calculation to three-dimensional, landscape scale simulations requires the introduction of such factors as meteorology, climatology, and geomorphology. By using remotely sensed geographic information data for important model inputs, process-based ecosystem simulations at a variety of scales are possible. The second objective of this study is concerned with determining the accuracy of the estimated fluxes from BIOME-BGC, when extrapolated spatially over the entire 15-km by 15-km FIFE site. To accomplish this objective, a topographically distributed map of soil depth at the FIFE site was developed. These spatially-distributed fluxes were then tested with data from aircraft by eddy-flux correlation obtained during the FIFE experiment.

  9. Application of remote sensors in coastal zone observations

    NASA Technical Reports Server (NTRS)

    Caillat, J. M.; Elachi, C.; Brown, W. E., Jr.

    1975-01-01

    A review of processes taking place along coastlines and their biological consideration led to the determination of the elements which are required in the study of coastal structures and which are needed for better utilization of the resources from the oceans. The processes considered include waves, currents, and their influence on the erosion of coastal structures. Biological considerations include coastal fisheries, estuaries, and tidal marshes. Various remote sensors were analyzed for the information which they can provide and sites were proposed where a general ocean-observation plan could be tested.

  10. Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska.

    PubMed

    Ramey, Andrew M; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D; Schmutz, Joel A; Atterby, Clara; Järhult, Josef D; Bonnedahl, Jonas

    2017-12-11

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  11. Remotely sensed geology from lander-based to orbital perspectives: Results of FIDO rover May 2000 field tests

    USGS Publications Warehouse

    Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.

    2002-01-01

    Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.

  12. 40 CFR 86.884-9 - Smoke measurement system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...

  13. 40 CFR 86.884-9 - Smoke measurement system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...

  14. 40 CFR 86.884-9 - Smoke measurement system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...

  15. 40 CFR 86.884-9 - Smoke measurement system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...

  16. Bilevel Shared Control Of A Remote Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.; Venkataraman, Subramanian T.

    1992-01-01

    Proposed concept blends autonomous and teleoperator control modes, each overcoming deficiencies of the other. Both task-level and execution-level functions performed at local and remote sites. Applicable to systems with long communication delay between local and remote sites or systems intended to function partly autonomously.

  17. Apollo 16 landing site: Summary of earth based remote sensing data, part W

    NASA Technical Reports Server (NTRS)

    Zisk, S. H.; Masursky, H.; Milton, D. J.; Schaber, G. G.; Shorthill, R. W.; Thompson, T. W.

    1972-01-01

    Infrared and radar studies of the Apollo 16 landing site are summarized. Correlations and comparisons between earth based remote sensing data, IR observations, and other data are discussed in detail. Remote sensing studies were devoted to solving two problems: (1) determining the physical difference between Cayley and Descartes geologic units near the landing site; and (2) determining the nature of the bright unit of Descartes mountain material.

  18. An intelligent remote monitoring system for artificial heart.

    PubMed

    Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G

    2005-12-01

    A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.

  19. Disparities in cancer stage at diagnosis and survival of Aboriginal and non-Aboriginal South Australians.

    PubMed

    Banham, David; Roder, David; Keefe, Dorothy; Farshid, Gelareh; Eckert, Marion; Cargo, Margaret; Brown, Alex

    2017-06-01

    This study tested the utility of retrospectively staging cancer registry data for comparing stage and stage-specific survivals of Aboriginal and non-Aboriginal people. Differences by area level factors were also explored. This test dataset comprised 950 Aboriginal cases and all other cases recorded on the South Australian cancer registry with a 1977-2010 diagnosis. A sub-set of 777 Aboriginal cases diagnosed in 1990-2010 were matched with randomly selected non-Aboriginal cases by year of birth, diagnostic year, sex, and primary site of cancer. Competing risk regression summarised associations of Aboriginal status, stage, and geographic attributes with risk of cancer death. Aboriginal cases were 10 years younger at diagnosis, more likely to present in recent diagnostic years, to be resident of remote areas, and have primary cancer sites of head & neck, lung, liver and cervix. Risk of cancer death was associated in the matched analysis with more advanced stage at diagnosis. More Aboriginal than non-Aboriginal cases had distant metastases at diagnosis (31.3% vs 22.0, p<0.001). After adjusting for stage, remote-living Aboriginal residents had higher risks of cancer death than Aboriginal residents of metropolitan areas. Non-Aboriginal cases had the lowest risk of cancer death. Retrospective staging proved to be feasible using registry data. Results indicated more advanced stages for Aboriginal than matched non-Aboriginal cases. Aboriginal people had higher risks of cancer death, which persisted after adjusting for stage, and applied irrespective of remoteness of residence, with highest risk of death occurring among Aboriginal people from remote areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The measurement and evaluation of bidirectional reflectance characteristics of Dunhuang radiometric calibration test site

    NASA Astrophysics Data System (ADS)

    Zhao, Chun-yan; Li, Xin; Wei, Wei; Zheng, Xiao-bing

    2016-10-01

    With the progress of quantitative remote sensing, the acquisition of surface BRDF becomes more and more important. In order to improve the accuracy of the surface BRDF measurements, a VNIR-SWIR Bidirectional Reflectance Automatic Measurement System, which was developed by Hefei Institutes of Physical Science (HIPS), is introduced that allows in situ measurements of hyperspectral bidirectional reflectance data. Hyperspectral bidirectional reflectance distribution function data sets taken with the BRDF automatic measurement system nominally cover the spectral range between 390 and 2390 nm in 971 bands. In July 2007, September 2008, June 2011, we acquired a series of the BRDF data covered Dunhuang radiometric calibration test site in terms of the BRDF measurement system. We have not obtained such comprehensive and accurate data as they are, since 1990s when the site was built up. These data are applied to calibration for FY-2 and other satellites sensors. Field BRDF data of a Dunhuang site surface reveal a strong spectral variability. An anisotropy factor (ANIF), defined as the ratio between the directional reflectance and nadir reflectance over the hemisphere, is introduced as a surrogate measurement for the extent of spectral BRDF effects. The ANIF data show a very high correlation with the solar zenith angle due to multiple scattering effects over a desert site. Since surface geometry, multiple scattering, and BRDF effects are related, these findings may help to derive BRDF model parameters from the in-situ BRDF measurement remotely sensed hyperspectral data sets.

  1. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  2. MEDSAT - A remote sensing satellite for malaria early warning and control

    NASA Technical Reports Server (NTRS)

    Vesecky, John; Slawski, James; Stottlemeyer, Bret; De La Sierra, Ruben; Daida, Jason; Wood, Byron; Lawless, James

    1992-01-01

    A remote sensing, medical satellite (MEDSAT) aids in the control of carrier (vector) borne disease. The prototype design is a light satellite to test for control of malaria. The design features a 340-kg satellite with visual/IR and SAR sensors in a low inclination orbit observing a number of worldwide test sites. The approach is to use four-band visual/IR and dual-polarized L-band SAR images obtained from MEDSAT in concert with in-situ data to estimate the temporal and spatial variations of malaria risk. This allows public health resources to focus on the most vulnerable areas at the appropriate time. It is concluded that a light-satellite design for a MEDSAT satellite with a Pegasus launch is feasible.

  3. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska

    USGS Publications Warehouse

    Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas

    2018-01-01

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  4. Static Wind-Tunnel and Radio-Controlled Flight Test Investigation of a Remotely Piloted Vehicle Having a Delta Wing Planform

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Fratello, David J.; Robelen, David B.; Makowiec, George M.

    1990-01-01

    At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.

  5. Remote video assessment for missile launch facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.G.; Stewart, W.A.

    1995-07-01

    The widely dispersed, unmanned launch facilities (LFs) for land-based ICBMs (intercontinental ballistic missiles) currently do not have visual assessment capability for existing intrusion alarms. The security response force currently must assess each alarm on-site. Remote assessment will enhance manpower, safety, and security efforts. Sandia National Laboratories was tasked by the USAF Electronic Systems Center to research, recommend, and demonstrate a cost-effective remote video assessment capability at missile LFs. The project`s charter was to provide: system concepts; market survey analysis; technology search recommendations; and operational hardware demonstrations for remote video assessment from a missile LF to a remote security center viamore » a cost-effective transmission medium and without using visible, on-site lighting. The technical challenges of this project were to: analyze various video transmission media and emphasize using the existing missile system copper line which can be as long as 30 miles; accentuate and extremely low-cost system because of the many sites requiring system installation; integrate the video assessment system with the current LF alarm system; and provide video assessment at the remote sites with non-visible lighting.« less

  6. Accuracy of commercially available c-reactive protein rapid tests in the context of undifferentiated fevers in rural Laos.

    PubMed

    Phommasone, Koukeo; Althaus, Thomas; Souvanthong, Phonesavanh; Phakhounthong, Khansoudaphone; Soyvienvong, Laxoy; Malapheth, Phatthaphone; Mayxay, Mayfong; Pavlicek, Rebecca L; Paris, Daniel H; Dance, David; Newton, Paul; Lubell, Yoel

    2016-02-04

    C-Reactive Protein (CRP) has been shown to be an accurate biomarker for discriminating bacterial from viral infections in febrile patients in Southeast Asia. Here we investigate the accuracy of existing rapid qualitative and semi-quantitative tests as compared with a quantitative reference test to assess their potential for use in remote tropical settings. Blood samples were obtained from consecutive patients recruited to a prospective fever study at three sites in rural Laos. At each site, one of three rapid qualitative or semi-quantitative tests was performed, as well as a corresponding quantitative NycoCard Reader II as a reference test. We estimate the sensitivity and specificity of the three tests against a threshold of 10 mg/L and kappa values for the agreement of the two semi-quantitative tests with the results of the reference test. All three tests showed high sensitivity, specificity and kappa values as compared with the NycoCard Reader II. With a threshold of 10 mg/L the sensitivity of the tests ranged from 87-98 % and the specificity from 91-98 %. The weighted kappa values for the semi-quantitative tests were 0.7 and 0.8. The use of CRP rapid tests could offer an inexpensive and effective approach to improve the targeting of antibiotics in remote settings where health facilities are basic and laboratories are absent. This study demonstrates that accurate CRP rapid tests are commercially available; evaluations of their clinical impact and cost-effectiveness at point of care is warranted.

  7. Nacelle Aerodynamic and Inertial Loads (NAIL) project. Appendix B

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The testing was conducted on the Boeing-owned 747 RA001 test bed airplane during the concurrent 767/JT9D-7R4 engine development program. Following a functional check flight conducted from Boeing Field International (BFI) on 3 October 1980, the airplane and test personnel were ferried to Valley Industrial Park (GSG) near Glasgow, Montana, on 7 October 1980. The combined NAL and 7670JT9D-7R4 test flights were conducted at the Glasgow remote test site, and the airplane was returned to Seattle on 26 October 1980.

  8. Remote sensing of vigor loss in conifers due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Meyer, M. P.; French, D. W.; Latham, R. P.; Nelson, C. A.; Douglass, R. W.

    1971-01-01

    The initial operation of a multiband/multidate tower-tramway test site in northeastern Minnesota for the development of specifications for subsequent multiband aerial photography of more extensive study areas was completed. Multiband/multidate configurations suggested by the tower-tramway studies were and will be flown with local equipment over the Togo test site. This site was photographed by the NASA RB57F aircraft in August and September 1971. It appears that, of all the film/filter combinations attempted to date (including optical recombining of several spectral band images via photo enhancement techniques), Ektachrome infrared film with a Wratten 12 filter is the best for detecting dwarf mistletoe, and other tree diseases as well. Using this film/filter combination, infection centers are easily detectable even on the smallest photo scale (1:100,000) obtained on the Togo site.

  9. On validating remote sensing simulations using coincident real data

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  10. Detecting Methane Leaks

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D.

    1984-01-01

    Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.

  11. 76 FR 66018 - Endangered and Threatened Wildlife and Plants; Delisting of the Plant Frankenia johnstonii

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... johnstonii will be implemented for 9 years, and will include habitat evaluation using remote sensing of 20 populations and on-site monitoring of 10 populations. Habitat assessments with remote sensing will occur about... site visit will be triggered from remote sensing analysis when a 30 percent loss of habitat is detected...

  12. Testing the efficiency of rover science protocols for robotic sample selection: A GeoHeuristic Operational Strategies Test

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Bartley, J. K.; Chidsey, T. C.; Cohen, B. A.; Gilleaudeau, G. J.; Hynek, B. M.; Kah, L. C.; Minitti, M. E.; Williams, R. M. E.; Black, S.; Gemperline, J.; Schaufler, R.; Thomas, R. J.

    2018-05-01

    The GHOST field tests are designed to isolate and test science-driven rover operations protocols, to determine best practices. During a recent field test at a potential Mars 2020 landing site analog, we tested two Mars Science Laboratory data-acquisition and decision-making methods to assess resulting science return and sample quality: a linear method, where sites of interest are studied in the order encountered, and a "walkabout-first" method, where sites of interest are examined remotely before down-selecting to a subset of sites that are interrogated with more resource-intensive instruments. The walkabout method cost less time and fewer resources, while increasing confidence in interpretations. Contextual data critical to evaluating site geology was acquired earlier than for the linear method, and given a higher priority, which resulted in development of more mature hypotheses earlier in the analysis process. Combined, this saved time and energy in the collection of data with more limited spatial coverage. Based on these results, we suggest that the walkabout method be used where doing so would provide early context and time for the science team to develop hypotheses-critical tests; and that in gathering context, coverage may be more important than higher resolution.

  13. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The Hayden Pass (Orient mine area) includes 60 sq miles of the northern Sangre de Cristo Mountains and San Luis Valley in south-central Colorado. Based on interpretation of the remote sensor data, a geologic map was prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives an indication of the usefulness and reliability of the remote sensor data. The relative utility of color and color infrared photography was tested. The photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all quaternary deposits and 62% of all areas of tertiary volcanic outcrop. Using a filter wheel photometer, more than 8,600 measurements of band reflectance of several sedimentary rocks were performed. The following conclusions were drawn: (1) the typical spectral reflectance curve shows a gradual increase with increasing wavelength; (2) the average band reflectance is about 0.20; and (3) within a formation, the minimum natural variation is about 0.04, or about 20% of the mean band reflectance.

  14. Marine optical characterizations

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.; Ge, Yuntao; Hovey, Phil; King, ED; Stengel, Eric; Yuen, Marilyn; Koval, Larisa

    1995-01-01

    During the past three months, the MOCE Team conducted two field experiments in Mill Creek,Chesapeake Bay, from July 24 to August 4, and at the MOBY operations site at Snug Harbor, Honolulu, Hawaii, from August 15-30, prepared two technical memoranda, and continued MOCE-2 and MOCE-3 data reduction. The primary purposes of the experiments were to test the SeaWiFS 'remote sensing reflectance' protocol, obtain turbid water data for ocean color satellite algorithm development, perform calibration for both Near Infrared (NIR) and Visible Rainbow Spectrometer system, continue assembling the operational Marine Optical Buoy, and to test the MOBY cellular phone communications link at the Lanai mooring site.

  15. Telerobotics test bed for space structure assembly

    NASA Technical Reports Server (NTRS)

    Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.

    1994-01-01

    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.

  16. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less

  17. Application research for 4D technology in flood forecasting and evaluation

    NASA Astrophysics Data System (ADS)

    Li, Ziwei; Liu, Yutong; Cao, Hongjie

    1998-08-01

    In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.

  18. Integration of remote sensing and surface geophysics in the detection of faults

    NASA Technical Reports Server (NTRS)

    Jackson, P. L.; Shuchman, R. A.; Wagner, H.; Ruskey, F.

    1977-01-01

    Remote sensing was included in a comprehensive investigation of the use of geophysical techniques to aid in underground mine placement. The primary objective was to detect faults and slumping, features which, due to structural weakness and excess water, cause construction difficulties and safety hazards in mine construction. Preliminary geologic reconnaissance was performed on a potential site for an underground oil shale mine in the Piceance Creek Basin of Colorado. LANDSAT data, black and white aerial photography and 3 cm radar imagery were obtained. LANDSAT data were primarily used in optical imagery and digital tape forms, both of which were analyzed and enhanced by computer techniques. The aerial photography and radar data offered supplemental information. Surface linears in the test area were located and mapped principally from LANDSAT data. A specific, relatively wide, linear pointed directly toward the test site, but did not extend into it. Density slicing, ratioing, and edge enhancement of the LANDSAT data all indicated the existence of this linear. Radar imagery marginally confirmed the linear, while aerial photography did not confirm it.

  19. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  20. Operation of AST3 telescope and site testing at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Hu, Yi; Ma, Bin; Hu, Keliang; Ashley, Michael C. B.; Wang, Lifan; Yuan, Xiangyan

    2016-07-01

    We have successfully operated the AST3 telescope remotely as well as robotically for time-domain sky survey in 2015 and 2016. We have set up a real-time system to support the operation of the unattended telescope, monitoring the status of all instruments as well as the weather conditions. The weather tower also provides valuable information of the site at the highest plateau in Antarctica, demonstrating the extremely stable atmosphere above the ground and implying excellent seeing at Dome A.

  1. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.

    PubMed

    Sandino, Juan; Pegg, Geoff; Gonzalez, Felipe; Smith, Grant

    2018-03-22

    The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust ( Austropuccinia psidii ) on paperbark tea trees ( Melaleuca quinquenervia ) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec ® camera, orthorectified in Headwall SpectralView ® , and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools.

  2. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence

    PubMed Central

    2018-01-01

    The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust (Austropuccinia psidii) on paperbark tea trees (Melaleuca quinquenervia) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec® camera, orthorectified in Headwall SpectralView®, and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools. PMID:29565822

  3. Operating a wide-area high-availability collaborative remote observing system for classically-scheduled observations at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Wirth, Gregory D.; Allen, Steven L.; Deich, William T. S.; Goodrich, Robert W.; Lanclos, Kyle; Lyke, James E.

    2011-03-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 9 years, WMKO remote observing has expanded to allow observing teams at dedicated sites located across California to observe via the Internet either in collaboration with colleagues in Waimea or entirely from California; this capability was extended to Swinburne University in Melbourne, Australia in 2010 and to Yale University in New Haven, Connecticut in early 2011. All Keck facility science instruments are currently supported. Observers distributed between as many as four sites can collaborate in the interactive operation of each instrument by means of shared VNC desktops and multipoint video and/or telephone conferencing. Automated routers at primary remote observing sites ensure continued connectivity during Internet outages. Each Keck remote observing facility is similarly equipped and configured so observers have the same operating environment. This architecture provides observers the flexibility to conduct observations from the location best suited to their needs and to adapt to last-minute changes. It also enhances the ability of off-site technical staff to provide remote support.

  4. Simple, almost anywhere, with almost anyone: remote low-cost telementored resuscitative lung ultrasound.

    PubMed

    McBeth, Paul B; Crawford, Innes; Blaivas, Michael; Hamilton, Trevor; Musselwhite, Kimberly; Panebianco, Nova; Melniker, Lawrence; Ball, Chad G; Gargani, Luna; Gherdovich, Carlotta; Kirkpatrick, Andrew W

    2011-12-01

    Apnea (APN) and pneumothorax (PTX) are common immediately life-threatening conditions. Ultrasound is a portable tool that captures anatomy and physiology as digital information allowing it to be readily transferred by electronic means. Both APN and PTX are simply ruled out by visualizing respiratory motion at the visceral-parietal pleural interface known as lung sliding (LS), corroborated by either the M-mode or color-power Doppler depiction of LS. We thus assessed how economically and practically this information could be obtained remotely over a cellular network. Ultrasound images were obtained on handheld ultrasound machines streamed to a standard free internet service (Skype) using an iPhone. Remote expert sonographers directed remote providers (with variable to no ultrasound experience) to obtain images by viewing the transmitted ultrasound signal and by viewing the remote examiner over a head-mounted webcam. Examinations were conducted between a series of remote sites and a base station. Remote sites included two remote on-mountain sites, a small airplane in flight, and a Calgary household, with base sites located in Pisa, Rome, Philadelphia, and Calgary. In all lung fields (20/20) on all occasions, LS could easily and quickly be seen. LS was easily corroborated and documented through capture of color-power Doppler and M-mode images. Other ultrasound applications such as the Focused Assessment with Sonography for Trauma examination, vascular anatomy, and a fetal wellness assessment were also demonstrated. The emergent exclusion of APN-PTX can be immediately accomplished by a remote expert economically linked to almost any responder over cellular networks. Further work should explore the range of other physiologic functions and anatomy that could be so remotely assessed.

  5. HammerCloud: A Stress Testing System for Distributed Analysis

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel C.; Elmsheuser, Johannes; Úbeda García, Mario; Paladin, Massimo

    2011-12-01

    Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).

  6. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    PubMed

    Cruse, Michael J; Kucharik, Christopher J; Norman, John M

    2015-01-01

    Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support ecological research via a relatively inexpensive method to collect continuous measurements of total, direct beam and diffuse PAR in remote locations.

  7. Using a Simple Apparatus to Measure Direct and Diffuse Photosynthetically Active Radiation at Remote Locations

    PubMed Central

    Cruse, Michael J.; Kucharik, Christopher J.; Norman, John M.

    2015-01-01

    Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support ecological research via a relatively inexpensive method to collect continuous measurements of total, direct beam and diffuse PAR in remote locations. PMID:25668208

  8. Remote observing environment using a KVM-over-IP for the OAO 188 cm telescope

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Kenshi; Inoue, Goki; Kuroda, Daisuke; Ukita, Nobuharu; Mizumoto, Yoshihiko; Izumiura, Hideyuki

    2016-08-01

    We have prepared remote observing environment for the 188 cm telescope at Okayama Astrophysical Observatory. A KVM-over-IP and a VPN gateway are employed as core devices, which offer reliable, secure and fast link between on site and remote sites. We have confirmed the KVM-over-IP has ideal characteristics for serving the remote observing environment; the use is simple for both users and maintainer; access from any platform is available; multiple and simultaneous access is possible; and maintenance load is small. We also demonstrated that the degradation of observing efficiency specific to the remote observing is negligibly small. The remote observing environment has fully opened since the semester 2016A, about 30% of the total observing time in the last semester was occupied by remote observing.

  9. Utility of remotely sensed data for identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1986-01-01

    Discussed are a variety of remotely sensed data sources that may have utility in the identification of conservation practices and related linear features. Test sites were evaluated in Alabama, Kansas, Mississippi, and Oklahoma using one or more of a variety of remotely sensed data sources, including color infrared photography (CIR), LANDSAT Thematic Mapper (TM) data, and aircraft-acquired Thermal Infrared Multispectral Scanner (TIMS) data. Both visual examination and computer-implemented enhancement procedures were used to identify conservation practices and other linear features. For the Kansas, Mississippi, and Oklahoma test sites, photo interpretations of CIR identified up to 24 of the 109 conservation practices from a matrix derived from the SCS National Handbook of Conservation Practices. The conservation practice matrix was modified to predict the possibility of identifying the 109 practices at various photographic scales based on the observed results as well as photo interpreter experience. Some practices were successfully identified in TM data through visual identification, but a number of existing practices were of such size and shape that the resolution of the TM could not detect them accurately. A series of computer-automated decorrelation and filtering procedures served to enhance the conservation practices in TM data with only fair success. However, features such as field boundaries, roads, water bodies, and the Urban/Ag interface were easily differentiated. Similar enhancement techniques applied to 5 and 10 meter TIMS data proved much more useful in delineating terraces, grass waterways, and drainage ditches as well as the features mentioned above, due partly to improved resolution and partly to thermally influenced moisture conditions. Spatially oriented data such as those derived from remotely sensed data offer some promise in the inventory and monitoring of conservation practices as well as in supplying parameter data for a variety of computer-implemented agricultural models.

  10. Telemedicine delivery of patient education in remote Ontario communities: feasibility of an Advanced Clinician Practitioner in Arthritis Care (ACPAC)-led inflammatory arthritis education program.

    PubMed

    Warmington, Kelly; Flewelling, Carol; Kennedy, Carol A; Shupak, Rachel; Papachristos, Angelo; Jones, Caroline; Linton, Denise; Beaton, Dorcas E; Lineker, Sydney

    2017-01-01

    Telemedicine-based approaches to health care service delivery improve access to care. It was recognized that adults with inflammatory arthritis (IA) living in remote areas had limited access to patient education and could benefit from the 1-day Prescription for Education (RxEd) program. The program was delivered by extended role practitioners with advanced training in arthritis care. Normally offered at one urban center, RxEd was adapted for videoconference delivery through two educator development workshops that addressed telemedicine and adult education best practices. This study explores the feasibility of and participant satisfaction with telemedicine delivery of the RxEd program in remote communities. Participants included adults with IA attending the RxEd program at one of six rural sites. They completed post-course program evaluations and follow-up interviews. Educators provided post-course feedback to identify program improvements that were later implemented. In total, 123 people (36 in-person and 87 remote, across 6 sites) participated, attending one of three RxEd sessions. Remote participants were satisfied with the quality of the video-conference (% agree/strongly agree): could hear the presenter (92.9%) and discussion between sites (82.4%); could see who was speaking at other remote sites (85.7%); could see the slides (95.3%); and interaction between sites adequately facilitated (94.0%). Educator and participant feedback were consistent. Suggested improvements included: use of two screens (speaker and slides); frontal camera angles; equal interaction with remote sites; and slide modifications to improve the readability on screen. Interview data included similar constructive feedback but highlighted the educational and social benefits of the program, which participants noted would have been inaccessible if not offered via telemedicine. Study findings confirm the feasibility of delivering the RxEd program to remote communities by using telemedicine. Future research with a focus on the sustainability of this and other models of technology-supported patient education for adults with IA across Ontario is warranted.

  11. Remote detection of geobotanical anomalies associated with hydrocarbon microseepage

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1985-01-01

    As part of the continuing study of the Lost River, West Virginia NASA/Geosat Test Case Site, an extensive soil gas survey of the site was conducted during the summer of 1983. This soil gas survey has identified an order of magnitude methane, ethane, propane, and butane anomaly that is precisely coincident with the linear maple anomaly reported previously. This and other maple anomalies were previously suggested to be indicative of anaerobic soil conditions associated with hydrocarbon microseepage. In vitro studies support the view that anomalous distributions of native tree species tolerant of anaerobic soil conditions may be useful indicators of methane microseepage in heavily vegetated areas of the United States characterized by deciduous forest cover. Remote sensing systems which allow discrimination and mapping of native tree species and/or species associations will provide the exploration community with a means of identifying vegetation distributional anomalies indicative of microseepage.

  12. Frequency comb-based multiple-access ultrastable frequency dissemination with 7 × 10(-17) instability.

    PubMed

    Zhang, Shuangyou; Zhao, Jianye

    2015-01-01

    In this letter, we demonstrate frequency-comb-based multiple-access ultrastable frequency dissemination over a 10-km single-mode fiber link. First, we synchronize optical pulse trains from an Er-fiber frequency comb to the remote site by using a simple and robust phase-conjugate stabilization method. The fractional frequency-transfer instability at the remote site is 2.6×10(-14) and 4.9×10(-17) for averaging times of 1 and 10,000 s, respectively. Then, we reproduce the harmonic of the repetition rate from the disseminated optical pulse trains at an arbitrary point along the fiber link to test comb-based multiple-access performance, and demonstrate frequency instability of 4×10(-14) and 7×10(-17) at 1 and 10,000 s averaging time, respectively. The proposed comb-based multiple-access frequency dissemination can easily achieve highly stable wideband microwave extraction along the whole link.

  13. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    NASA Astrophysics Data System (ADS)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  14. Final 2014 Remedial Action Report Project Chariot, Cape Thompson, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-01

    This report was prepared to document remedial action (RA) work performed at the former Project Chariot site located near Cape Thompson, Alaska during 2014. The work was managed by the U.S. Army Corps of Engineers (USACE) Alaska District for the U.S. Department of Energy (DOE) Office of Legacy Management (LM). Due to the short field season and the tight barge schedule, all field work was conducted at the site July 6 through September 12, 2014. Excavation activities occurred between July 16 and August 26, 2014. A temporary field camp was constructed at the site prior to excavation activities to accommodatemore » the workers at the remote, uninhabited location. A total of 785.6 tons of petroleum, oil, and lubricants (POL)-contaminated soil was excavated from four former drill sites associated with test holes installed circa 1960. Diesel was used in the drilling process during test hole installations and resulted in impacts to surface and subsurface soils at four of the five sites (no contamination was identified at Test Hole Able). Historic information is not definitive as to the usage for Test Hole X-1; it may have actually been a dump site and not a drill site. In addition to the contaminated soil, the steel test hole casings were decommissioned and associated debris was removed as part of the remedial effort.« less

  15. Remote sensing strategic exploration of large or superlarge gold ore deposits

    NASA Astrophysics Data System (ADS)

    Yan, Shouxun; Liu, Qingsheng; Wang, Hongmei; Wang, Zhigang; Liu, Suhong

    1998-08-01

    To prospect large or superlarge gold ore deposits, blending of remote sensing techniques and modern metallogenitic theories is one of the effective measures. The theory of metallogeny plays a director role before and during remote sensing technique applications. The remote sensing data with different platforms and different resolutions can be respectively applied to detect direct or indirect metallogenic information, and to identify the ore-controlling structure, especially, the ore-controlling structural assemblage, which, conversely, usually are the new conditions to study and to modify the metallogenic model, and to further develop the exploration model of large or superlarge ore deposits. Guidance by an academic idea of 'adjustment structure' which is the conceptual model of transverse structure, an obscured ore- controlling transverse structure has been identified on the refined TM imagery in the Hadamengou gold ore deposit, Setai Hyperspectral Geological Remote Sensing Testing Site (SHGRSTS), Wulashan mountains, Inner Mongolia, China. Meanwhile, The MAIS data has been applied to quickly identify the auriferous alteration rocks with Correspondence Analysis method and Spectral Angle Mapping (SAM) technique. The theoretical system and technical method of remote sensing strategic exploration of large or superlarge gold ore deposits have been demonstrated by the practices in the SHGRSTS.

  16. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.

  17. Mobile lidar system for monitoring of gaseous pollutants in atmosphere over industrial and urban area

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.

    1999-01-01

    The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.

  18. A PDA-based flexible telecommunication system for telemedicine applications.

    PubMed

    Nazeran, Homer; Setty, Sunil; Haltiwanger, Emily; Gonzalez, Virgilio

    2004-01-01

    Technology has been used to deliver health care at a distance for many years. Telemedicine is a rapidly growing area and recently there are studies devoted to prehospital care of patients in emergency cases. In this work we have developed a compact, reliable, and low cost PDA-based telecommunication device for telemedicine applications to transmit audio, still images, and vital signs from a remote site to a fixed station such as a clinic or a hospital in real time. This was achieved based on a client-server architecture. A Pocket PC, a miniature camera, and a hands-free microphone were used at the client site and a desktop computer running the Windows XP operating system was used as a server. The server was located at a fixed station. The system was implemented on TCP/IP and HTTP protocol. Field tests have shown that the system can reliably transmit still images, audio, and sample vital signs from a simulated remote site to a fixed station either via a wired or wireless network in real time. The Pocket PC was used at the client site because of its compact size, low cost and processing capabilities.

  19. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE PAGES

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...

    2015-11-23

    Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  20. Cervical lymph node metastases from remote primary tumor sites

    PubMed Central

    López, Fernando; Rodrigo, Juan P.; Silver, Carl E.; Haigentz, Missak; Bishop, Justin A.; Strojan, Primož; Hartl, Dana M.; Bradley, Patrick J.; Mendenhall, William M.; Suárez, Carlos; Takes, Robert P.; Hamoir, Marc; Robbins, K. Thomas; Shaha, Ashok R.; Werner, Jochen A.; Rinaldo, Alessandra; Ferlito, Alfio

    2016-01-01

    Although most malignant lymphadenopathy in the neck represent lymphomas or metastases from head and neck primary tumors, occasionally, metastatic disease from remote, usually infraclavicular, sites presents as cervical lymphadenopathy with or without an obvious primary tumor. In general, these tumors metastasize to supraclavicular lymph nodes, but occasionally may present at an isolated higher neck level. A search for the primary tumor includes information gained by histology, immunohistochemistry, and evaluation of molecular markers that may be unique to the primary tumor site. In addition, 18F-fluoro-2-deoxyglocose positron emission tomography combined with CT (FDG-PET/CT) has greatly improved the ability to detect the location of an unknown primary tumor, particularly when in a remote location. Although cervical metastatic disease from a remote primary site is often incurable, there are situations in which meaningful survival can be achieved with appropriate local treatment. Management is quite complex and requires a truly multidisciplinary approach. PMID:26713674

  1. Designing minimal space telerobotics systems for maximum performance

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1992-01-01

    The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.

  2. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote sensing data collection protocol to meet NEON science requirements? How do aircraft altitude, spatial sampling, spatial resolution, and LiDAR instrument configuration affect data retrievals? What are appropriate algorithms to derive ECVs from AOP data? What methodology should be followed to validate AOP remote sensing products and how should ground truth data be collected? Early test flights were focused on radiometric and geometric calibration as well as processing from raw data to Level-1 products. Subsequent flights were conducted focusing on collecting vegetation chemistry and structure measurements. These test flights that were conducted during 2012 have proved to be extremely valuable for verifying instrument functionality and performance, exercising remote sensing collection protocols, and providing data for algorithm and science product validation. Results from these early flights are presented, including the radiometric and geometric calibration of the AOP instruments. These 2012 flight campaigns are just the first of a series of test flights that will take place over the next several years as part of the NEON observatory construction. Lessons learned from these early campaigns will inform both airborne and ground data collection methodologies for future campaigns as well as guide the AOP sampling strategy before NEON enters full science operations.

  3. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere

    Treesearch

    D.Y. Hollinger; F.M. Kelliher; J.N. Byers; J.E. Hunt; T.M. McSeveny; P.L. Weir

    1994-01-01

    We used the eddy-correlation technique to investigate the exchange of C02 between an undisturbed old-growth forest and the atmosphere at a remote Southern Hemisphere site on 15 d between 1989 and 1990. Our goal was to determine how environmental factors regulate ecosystem CO2 exchange, and to test whether present knowledge...

  4. 17. Photocopy of photograph. VIEW OF WORKERS IN EAST OPERATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph. VIEW OF WORKERS IN EAST OPERATING GALLERY USING MANIPULATOR ARMS AT STATION E-108. Photographer unknown, ca. 1965, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  5. Remote analysis of biological invasion and the impact of enemy release

    Treesearch

    James R. Kellner; Gregory P. Asner; Kealoha M. Kinney; Scott R. Loarie; David E. Knapp; Ty Kennedy-Bowdoin; Erin J. Questad; Susan Cordell; Jarrod M. Thaxton

    2011-01-01

    Escape from natural enemies is a widely held generalization for the success of exotic plants. We conducted a large-scale experiment in Hawaii (USA) to quantify impacts of ungulate removal on plant growth and performance, and to test whether elimination of an exotic generalist herbivore facilitated exotic success. Assessment of impacted and control sites before and...

  6. Laser long-range remote-sensing program experimental results

    NASA Astrophysics Data System (ADS)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  7. Energy and remote sensing. [satellite exploration, monitoring, siting

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.

  8. Remote Calibration Procedure and Results for the Ctbto AS109 STS-2HG at Ybh

    NASA Astrophysics Data System (ADS)

    Uhrhammer, R. A.; Taira, T.; Hellweg, M.

    2013-12-01

    Berkeley Digital Seismic Station (BDSN) YBH, located in Yreka, CA, USA, is certified as Auxiliary Seismic Station 109 (AS109) by the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO). YBH, sited in an abandoned hard rock mining drift, houses a Streckeisen STS-2HG triaxial broadband seismometer (the AS109 sensor) and a co-sited three-component set of Streckeisen STS-1 broadband seismometers and a Kinemetrics Episensor strong motion accelerometer (the BDSN sensors). CTBTO requested that we preform a remote calibration test of the STS-2HG (20,000 V/(m/s) nominal sensitivity) to verify its response and sensitivity. The remote calibration test was done successfully on June 17, 2013 and we report here on the procedure and results of the calibration. The calibration of the STS-2HG (s/n 30235) was accomplished using two Random Telegraph (RT) stimuli which were applied to the triaxial U,V,W component calibration coils through an appropriate series resistance to limit the drive current. The first was a four hour RT at 1.25 Hz (to determine the low-frequency response) and the second was a one hour RT at 25 Hz (to determine the high-frequency response). The RT stimulus signals were generated by the Kinemetrics Q330 data logger and both the stimuli and the response were recorded simultaneously with synchronous sampling at 100 sps. The RT calibrations were invoked remotely from Berkeley. The response to the 1.25 Hz RT stimulus was used to determine the seismometer natural period, fraction of critical damping and sensitivity of the STS-2HG sensors and the response to the 25 Hz RT stimulus was used to determine their corresponding high-frequency response. The accuracy of the sensitivity as determined by the response to the RT stimuli is limited by the accuracy of the calibration coil motor constant (2 g/A) provided on the factory calibration sheet. As a check on the accuracy of the sensitivity determined from the response to the RT stimuli, we also compare the ground motions inferred from the STS-2HG with the corresponding ground motions inferred from the co-sited STS-1's and the Episensor strong motion accelerometer using seismic signals which have adequate signal-to-noise ratios in passband common to both instruments.

  9. Vegetation changes caused by fire in the Florida flatwoods as observed by remote sensing

    NASA Technical Reports Server (NTRS)

    Mealor, W. T., Jr.; Prunty, M. C., Jr.

    1969-01-01

    The nature of the flatwoods and the role that ground fires have played in maintaining them are discussed. Emphasis is placed on the areal and temporal extent of burns as recorded uniformly by remote sensors. Thermal infrared, color infrared, and Ektachrome imagery were obtained from sensors flown by a NASA aircraft at 15,000 feet over a test site in Osceola County, Florida, in March 1968. The overall pattern of burning can be sequenced and mapped uniformly from the imagery. By comparing the various imagery, areal and temporal extent of burned areas can be determined. It was concluded that remote sensed imagery provides more accurate and areally comprehensive media for assessing the impact of ground fires on the landscape of the flatwoods region than are available from any other data source.

  10. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad

    1993-01-01

    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  11. Introductory comments on the USGS geographic applications program

    NASA Technical Reports Server (NTRS)

    Gerlach, A. C.

    1970-01-01

    The third phase of remote sensing technologies and potentials applied to the operations of the U.S. Geological Survey is introduced. Remote sensing data with multidisciplinary spatial data from traditional sources is combined with geographic theory and techniques of environmental modeling. These combined imputs are subject to four sequential activities that involve: (1) thermatic mapping of land use and environmental factors; (2) the dynamics of change detection; (3) environmental surveillance to identify sudden changes and general trends; and (4) preparation of statistical model and analytical reports. Geography program functions, products, clients, and goals are presented in graphical form, along with aircraft photo missions, geography test sites, and FY-70.

  12. Automated EEG acquisition

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Hillman, C. E., Jr.

    1977-01-01

    Automated self-contained portable device can be used by technicians with minimal training. Data acquired from patient at remote site are transmitted to centralized interpretation center using conventional telephone equipment. There, diagnostic information is analyzed, and results are relayed back to remote site.

  13. Selective Automatic Fire Extinguisher for Computers (SAFECOMP). Developmental Test and Evaluation/Initial Operational Test and Evaluation

    DTIC Science & Technology

    1990-01-01

    ininsj^>ji-f\\Jinoj(vjM o ro -»T co m o •- IO M a m»*NO>M>fNNininNOmso(\\iOfininO’Om<-<if(MO- jio o^MONroN«-o»-Of-|ioinf-N>tO’-m>iin...will present interesting challanges for the SAFECOMP system. The Powell site remote location from Malmstrom AFB (Host Support Base) requires the

  14. A low cost, high performance remotely controlled backhoe/excavator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, J.

    1995-12-31

    This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backedmore » onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.« less

  15. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  16. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-01-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.

  17. Dutch X-band SLAR calibration

    NASA Technical Reports Server (NTRS)

    Groot, J. S.

    1990-01-01

    In August 1989 the NASA/JPL airborne P/L/C-band DC-8 SAR participated in several remote sensing campaigns in Europe. Amongst other test sites, data were obtained of the Flevopolder test site in the Netherlands on August the 16th. The Dutch X-band SLAR was flown on the same date and imaged parts of the same area as the SAR. To calibrate the two imaging radars a set of 33 calibration devices was deployed. 16 trihedrals were used to calibrate a part of the SLAR data. This short paper outlines the X-band SLAR characteristics, the experimental set-up and the calibration method used to calibrate the SLAR data. Finally some preliminary results are given.

  18. Image acquisition system for traffic monitoring applications

    NASA Astrophysics Data System (ADS)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic classification of vehicle class and recording of vehicle numberplates with a success rate around 90 percent in a period of 24 hours.

  19. Online catalog of world-wide test sites for the post-launch characterization and calibration of optical sensors

    USGS Publications Warehouse

    Chander, G.; Christopherson, J.B.; Stensaas, G.L.; Teillet, P.M.

    2007-01-01

    In an era when the number of Earth-observing satellites is rapidly growing and measurements from these sensors are used to answer increasingly urgent global issues, it is imperative that scientists and decision-makers can rely on the accuracy of Earth-observing data products. The characterization and calibration of these sensors are vital to achieve an integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of Earth. The U.S. Geological Survey (USGS), as a supporting member of the Committee on Earth Observation Satellites (CEOS) and GEOSS, is working with partners around the world to establish an online catalog of prime candidate test sites for the post-launch characterization and calibration of space-based optical imaging sensors. The online catalog provides easy public Web site access to this vital information for the global community. This paper describes the catalog, the test sites, and the methodologies to use the test sites. It also provides information regarding access to the online catalog and plans for further development of the catalog in cooperation with calibration specialists from agencies and organizations around the world. Through greater access to and understanding of these vital test sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. Copyright IAF/IAA. All rights reserved.

  20. Air National Guard Remotely Piloted Aircraft and Domestic Missions: Opportunities and Challenges

    DTIC Science & Technology

    2015-01-01

    a sense of urgency in requiring that the FAA produce a plan to accelerate the integration of commercial and government RPAs into the NAS and publish...J. Stence, and M. Woodring, “Lynx: A High-Resolution Synthetic Aperture Radar,” SPIE Aero- sense , Vol. 3704, 1999, pp. 2–4. 5 Tsunoda et al., 1999...accompany H.R. 658, FAA Modernization and Reform Act of 2012, 2012, pp. 195–197. 14 These sites were in addition to DoD’s Sense and Avoid test sites

  1. Remote terminal system evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.

    1975-01-01

    An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.

  2. Anisotropic energy flow and allosteric ligand binding in albumin

    NASA Astrophysics Data System (ADS)

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  3. Anisotropic energy flow and allosteric ligand binding in albumin.

    PubMed

    Li, Guifeng; Magana, Donny; Dyer, R Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  4. Anisotropic energy flow and allosteric ligand binding in albumin

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265

  5. Global carbon management using air capture and geosequestration at remote locations

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.; Goldberg, D.

    2014-12-01

    CO2 emissions need not only stop; according the IPCC, emissions need to turn negative. This requires means to remove CO2 from air and store it safely and permanently. We outline a combination of secure geosequestration and direct capture of CO2 from ambient air to create negative emissions at remote locations. Operation at remote sites avoids many difficulties associated with capture at the source, where space for added equipment is limited, good storage sites are in short supply, and proximity to private property engenders resistance. Large Igneous Provinces have been tested as secure CO2 reservoirs. CO2 and water react with reservoir rock to form stable carbonates, permanently sequestering the carbon. Outfitting reservoirs in large igneous provinces far from human habitation with ambient air capture systems creates large CO2 sequestration sites. Their remoteness offers advantages in environmental security and public acceptance and, thus, can smooth the path toward CO2 stabilization. Direct capture of CO2 from ambient air appears energetically and economically viable and could be scaled up quickly. Thermodynamic energy requirements are very small and a number of approaches have shown to be energy efficient in practice. Sorbent technologies include supported organoamines, alkaline brines, and quaternary ammonium based ion-exchange resins. To demonstrate that the stated goals of low cost and low energy consumption can be reached at scale, public research and demonstration projects are essential. We suggest co-locating air capture and geosequestration at sites where renewable energy resources can power both activities. Ready renewable energy would also allow for the co-production of synthetic fuels. Possible locations with large wind and basalt resources include Iceland and Greenland, the north-western United States, the Kerguelen plateau, Siberia and Morocco. Capture and sequestration in these reservoirs could recover all of the emissions of the 20th century and still contribute to a carbon neutral economy throughout the 21st century. Mobilizing industrial infrastructure to these areas poses a challenge. However, the urgency of the climate problem requires immediate action, with economic incentives and commitments to site evaluation and engineering development.

  6. Solar electric power for instruments at remote sites

    USGS Publications Warehouse

    McChesney, P.J.

    2000-01-01

    Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.

  7. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  8. 18. Photocopy of photograph. VIEW WITHIN POSTMORTEM CELL OF MANIPULATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph. VIEW WITHIN POST-MORTEM CELL OF MANIPULATOR ARMS BEING USED TO MOVE METAL BARS FROM ONE LOCATION TO ANOTHER. Photographer unknown, ca. 1965, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  9. 19. Photocopy of photograph. VIEW OF WORKER MANIPULATING SMALL GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph. VIEW OF WORKER MANIPULATING SMALL GLASS OBJECTS IN THE HOT BAY WITH MANIPULATOR ARMS AT WORK STATION E-2. Photographer unknown, ca. 1969, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  10. Graphic products used in the evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.

  11. Mobile inductively coupled plasma system

    DOEpatents

    D'Silva, Arthur P.; Jaselskis, Edward J.

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  12. Remote Dynamic Earthquake Triggering in Shale Gas Basins in Canada and Implications for Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Harrington, Rebecca M.; Liu, Yajing; Wang, Bei; Kao, Honn; Yu, Hongyu

    2017-04-01

    Here we investigate the occurrence of remote dynamic triggering in three sedimentary basins in Canada where recent fluid injection activity is correlated with increasing numbers of earthquakes. In efforts to count as many small, local earthquakes as possible for the statistical test of triggering, we apply a multi-station matched-filter detection method to continuous waveforms to detect uncataloged local earthquakes in 10-day time windows surrounding triggering mainshocks occurring between 2013-2015 with an estimated local peak ground velocity exceeding 0.01 cm/s. We count the number of earthquakes in 24-hour bins and use a statistical p-value test to determine if the changes in seismicity levels after the mainshock waves have passed are statistically significant. The p-value tests show occurrences of triggering following transient stress perturbations of < 10 kPa at all three sites that suggest local faults may remain critically stressed over periods similar to the time frame of our study ( 2 years) or longer, potentially due to maintained high pore pressures in tight shale formations following injection. The time window over which seismicity rates change varies at each site, with more delayed triggering occurring at sites where production history is longer. The observations combined with new modeling results suggest that the poroelastic response of the medium may be the dominant factor influencing instantaneous triggering, particularly in low-permeability tight shales. At sites where production history is longer and permeabilities have been increased, both pore pressure diffusion and the poroelastic response of the medium may work together to promote both instantaneous and delayed triggering. Not only does the interplay of the poroelastic response of the medium and pore pressure diffusion have implications for triggering induced earthquakes near injection sites, but it may be a plausible explanation for observations of instantaneous and delayed earthquake triggering in general.

  13. An evaluation of remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites in Pennsylvania

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2014-01-01

    This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.

  14. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  15. Development of a CCD based solar speckle imaging system

    NASA Astrophysics Data System (ADS)

    Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.

    1986-02-01

    A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.

  16. Supervisory autonomous local-remote control system design: Near-term and far-term applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul

    1993-01-01

    The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.

  17. Spatial and Temporal Trends of Particle Phase Organophosphate Ester Concentrations in the Atmosphere of the Great Lakes.

    PubMed

    Salamova, Amina; Peverly, Angela A; Venier, Marta; Hites, Ronald A

    2016-12-20

    The concentrations of six organophosphate esters (OPEs) in atmospheric particle phase samples collected once every 12 days at five sites in the North American Great Lakes basin over the period of March 2012 to December 2014, inclusive, are reported. These OPEs include tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl) phosphate (TDCIPP), tri-n-butyl phosphate (TNBP), triphenyl phosphate (TPHP), and 2-ethylhexyl diphenyl phosphate (EHDP). Median total OPE concentrations (∑OPE) ranged from 93 pg/m 3 at Sleeping Bear Dunes to 1046 pg/m 3 at Chicago. The ∑OPE levels were significantly (P < 0.05) higher at Chicago and Cleveland, our urban sites, than at our rural and remote sites. The composition profiles were dominated by chlorinated OPEs at the urban and rural sites and by nonchlorinated OPEs at the remote sites. The concentrations of all OPEs were significantly (P < 0.001) correlated to one another, suggesting that these compounds share similar sources. Most atmospheric ∑OPE concentrations were significantly (P < 0.05) decreasing over time, with halving times of about 3.5 years at the urban sites and about 1.5 years at the rural and remote sites. Interestingly, TCEP and EHDP concentrations were increasing over time at the rural and remote sites with doubling times of 2.2 and 3.7 years, respectively.

  18. Operating a wide-area remote observing system for the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.

    2008-07-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.

  19. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  20. NASA Remote Sensing Research as Applied to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  1. Autonomous flight and remote site landing guidance research for helicopters

    NASA Technical Reports Server (NTRS)

    Denton, R. V.; Pecklesma, N. J.; Smith, F. W.

    1987-01-01

    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test.

  2. Semiautonomous teleoperation system with vision guidance

    NASA Astrophysics Data System (ADS)

    Yu, Wai; Pretlove, John R. G.

    1998-12-01

    This paper describes the ongoing research work on developing a telerobotic system in Mechatronic Systems and Robotics Research group at the University of Surrey. As human operators' manual control of remote robots always suffer from reduced performance and difficulties in perceiving information from the remote site, a system with a certain level of intelligence and autonomy will help to solve some of these problems. Thus, this system has been developed for this purpose. It also serves as an experimental platform to test the idea of using the combination of human and computer intelligence in teleoperation and finding out the optimum balance between them. The system consists of a Polhemus- based input device, a computer vision sub-system and a graphical user interface which communicates the operator with the remote robot. The system description is given in this paper as well as the preliminary experimental results of the system evaluation.

  3. Delineation of fault zones using imaging radar

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Gulen, L.; Prange, M.; Matarese, J.; Pettengill, G. H.; Ford, P. G.

    1986-01-01

    The assessment of earthquake hazards and mineral and oil potential of a given region requires a detailed knowledge of geological structure, including the configuration of faults. Delineation of faults is traditionally based on three types of data: (1) seismicity data, which shows the location and magnitude of earthquake activity; (2) field mapping, which in remote areas is typically incomplete and of insufficient accuracy; and (3) remote sensing, including LANDSAT images and high altitude photography. Recently, high resolution radar images of tectonically active regions have been obtained by SEASAT and Shuttle Imaging Radar (SIR-A and SIR-B) systems. These radar images are sensitive to terrain slope variations and emphasize the topographic signatures of fault zones. Techniques were developed for using the radar data in conjunction with the traditional types of data to delineate major faults in well-known test sites, and to extend interpretation techniques to remote areas.

  4. Real-time, interactive, visually updated simulator system for telepresence

    NASA Technical Reports Server (NTRS)

    Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.

    1991-01-01

    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.

  5. Feasibility and reliability of remote assessment of PALS psychomotor skills via interactive videoconferencing.

    PubMed

    Weeks, Douglas L; Molsberry, Dianne M

    2009-03-01

    This study determined inter-rater agreement between skill assessments provided by on-site PALS evaluators with ratings from evaluators at a remote site viewing the same skill performance over a videoconferencing network. Judgments about feasibility of remote evaluation were also obtained from the evaluators and PALS course participants. Two remote and two on-site instructors independently rated performance of 27 course participants who performed cardiac and shock/respiratory emergency core cases. Inter-rater reliability was assessed with the intraclass correlation coefficient (ICC). Feasibility was assessed with surveys of evaluators and course participants. Core cases were under the direction of the remote evaluators. The ICC for overall agreement on pass/fail decisions was 0.997 for the cardiac cases and 0.998 for the shock/respiratory cases. Perfect agreement was reached on 52 of 54 pass/fail decisions. Across all evaluators, all core cases, and all participants, 2584 ratings of individual skill criteria were provided, of which 21 (0.8%) were ratings in which a single evaluator disagreed with the other three evaluators. No trends emerged for location of the disagreeing evaluator. Survey responses indicated that remote evaluation was acceptable and feasible to course participants and to the evaluators. Videoconferencing technology was shown to provide adequate spatial and temporal resolution for PALS evaluators at-a-distance from course participants to agree with ratings of on-site evaluators.

  6. Evaluation of the feasibility of using the data collection system to operate a network of hydrological and climatological stations at sites remote from normal communication links

    NASA Technical Reports Server (NTRS)

    Perrier, R. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The General Electric DCP has proven to be a versatile, rugged piece of hardware and has surpassed original expectation; it is very simple to use and does not require skilled staff for its use, installation, and operation. It is well suited for use in remote sites where no power is available. From this experience, it is concluded that the data collection system will be very useful in operating a network of hydrometeorological stations situated in sites remote from normal communication links.

  7. Development and Demonstration of an Aerial Imagery Assessment Method to Monitor Changes in Restored Stream Condition

    NASA Astrophysics Data System (ADS)

    Fong, L. S.; Ambrose, R. F.

    2017-12-01

    Remote sensing is an excellent way to assess the changing condition of streams and wetlands. Several studies have measured large-scale changes in riparian condition indicators, but few have remotely applied multi-metric assessments on a finer scale to measure changes, such as those caused by restoration, in the condition of small riparian areas. We developed an aerial imagery assessment method (AIAM) that combines landscape, hydrology, and vegetation observations into one index describing overall ecological condition of non-confined streams. Verification of AIAM demonstrated that sites in good condition (as assessed on-site by the California Rapid Assessment Method) received high AIAM scores. (AIAM was not verified with poor condition sites.) Spearman rank correlation tests comparing AIAM and the field-based California Rapid Assessment Method (CRAM) results revealed that some components of the two methods were highly correlated. The application of AIAM is illustrated with time-series restoration trajectories of three southern California stream restoration projects aged 15 to 21 years. The trajectories indicate that the projects improved in condition in years following their restoration, with vegetation showing the most dynamic change over time. AIAM restoration trajectories also overlapped to different degrees with CRAM chronosequence restoration performance curves that demonstrate the hypothetical development of high-performing projects. AIAM has high potential as a remote ecological assessment method and effective tool to determine restoration trajectories. Ultimately, this tool could be used to further improve stream and wetland restoration management.

  8. Site 300 City Water Master Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jeff

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varyingmore » from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.« less

  9. Promon's participation in the Brasilsat program: first & second generations

    NASA Astrophysics Data System (ADS)

    Depaiva, Ricardo N.

    This paper presents an overview of the Brasilsat program, space and ground segments, developed by Hughes and Promon. Promon is a Brazilian engineering company that has been actively participating in the Brasilsat Satellite Telecommunications Program since its beginning. During the first generation, as subcontractor of the Spar/Hughes/SED consortium, Promon had a significant participation in the site installation of the Ground Segment, including the antennas. During the second generation, as partner of a consortium with Hughes, Promon participated in the upgrade of Brasilsat's Ground Segment systems: the TT&C (TCR1, TCR2, and SCC) and the COCC (Communications and Operations Control Center). This upgrade consisted of the design and development of hardware and software to support the second generation requirements, followed by integration and tests, factory acceptance tests, transport to site, site installation, site acceptance tests and warranty support. The upgraded systems are distributed over four sites with remote access to the main ground station. The solutions adopted provide a high level of automation, and easy operator interaction. The hardware and software technologies were selected to provide the flexibility to incorporate new technologies and services from the demanding satellite telecommunications market.

  10. Integrating Indigenous Traditional, Local and Scientific Knowledge for Improved Management, Policy and Decision-Making in Reindeer Husbandry in the Russian Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Yurchak, Boris; Turi, Johan Mathis; Mathiesen, Svein D.; Aissi-Wespi, Rita L.

    2004-01-01

    As scientists and policy-makers from both indigenous and non-indigenous communities begin to build closer partnerships to address common sustainability issues such as the health impacts of climate change and anthropogenic activities, it becomes increasingly important to create shared information management systems which integrate all relevant factors for optimal information sharing and decision-making. This paper describes a new GIs-based system being designed to bring local and indigenous traditional knowledge together with scientific data and information, remote sensing, and information technologies to address health-related environment, weather, climate, pollution and land use change issues for improved decision/policy-making for reindeer husbandry. The system is building an easily-accessible archive of relevant current and historical, traditional, local and remotely-sensed and other data and observations for shared analysis, measuring, and monitoring parameters of interest. Protection of indigenous culturally sensitive information will be respected through appropriate data protocols. A mechanism which enables easy information sharing among all participants, which is real time and geo-referenced and which allows interconnectivity with remote sites is also being designed into the system for maximum communication among partners. A preliminary version of our system will be described for a Russian reindeer test site, which will include a combination of indigenous knowledge about local conditions and issues, remote sensing and ground-based data on such parameters as the vegetation state and distribution, snow cover, temperature, ice condition, and infrastructure.

  11. SUPERFUND REMOTE SENSING SUPPORT

    EPA Science Inventory

    This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...

  12. Strip mine reclamation: criteria and methods for measurement of revegetation success. Progress report, April 1, 1980-March 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrel, J.E.; Kucera, C.L.; Johannsen, C.J.

    1980-12-01

    During this contract period research was continued at finding suitable methods and criteria for determining the success of revegetation in Midwestern prime ag lands strip mined for coal. Particularly important to the experimental design was the concept of reference areas, which were nearby fields from which the performance standards for reclaimed areas were derived. Direct and remote sensing techniques for measuring plant ground cover, production, and species composition were tested. 15 mine sites were worked in which were permitted under interim permanent surface mine regulations and in 4 adjoining reference sites. Studies at 9 prelaw sites were continued. All sitesmore » were either in Missouri or Illinois. Data gathered in the 1980 growing season showed that 13 unmanaged or young mineland pastures generally had lower average ground cover and production than 2 reference pastures. In contrast, yields at approximately 40% of 11 recently reclaimed mine sites planted with winter wheat, soybeans, or milo were statistically similar to 3 reference values. Digital computer image analysis of color infrared aerial photographs, when compared to ground level measurements, was a fast, accurate, and inexpensive way to determine plant ground cover and areas. But the remote sensing approach was inferior to standard surface methods for detailing plant species abundance and composition.« less

  13. Pb isotopes as an indicator of the Asian contribution to particulate air pollution in urban California.

    PubMed

    Ewing, Stephanie A; Christensen, John N; Brown, Shaun T; Vancuren, Richard A; Cliff, Steven S; Depaolo, Donald J

    2010-12-01

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29% Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  14. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate amore » median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.« less

  15. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: a case study from western Greece

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos

    2015-06-01

    In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.

  16. Geologic evaluation of remote sensing data, site 157, Awza-Borrego Desert, California

    NASA Technical Reports Server (NTRS)

    Wolfe, E. W.

    1969-01-01

    Remote sensing data were obtained at site 157 in May 1968 under mission 73 of the NASA aircraft program. The site is located in an area of high temperatures and extreme aridity immediately west of the Imperial Valley, Southern California. Site 157 is partially surrounded by pre-Cenozoic crystalline rocks exposed in the Fish Creek, Vallecito, and Tierra Blanca Mountains. The study area itself is underlain by more than 20,000 feet of sedimentary strata of late Cenozoic age.

  17. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  18. Documentation of archaeological sites in northern iraq using remote sensing methods

    NASA Astrophysics Data System (ADS)

    Matoušková, E.; Pavelka, K.; Nováček, K.; Starková, L.

    2015-08-01

    The MULINEM (The Medieval Urban Landscape in Northeastern Mesopotamia) project is aiming to investigate a Late Sasanian and Islamic urban network in the land of Erbil, historic province of Hidyab (Adiabene) that is located in the northern Iraq. The research of the hierarchical urban network in a defined area belongs to approaches rarely used in the study of the Islamic urbanism. The project focuses on the cluster of urban sites of the 6th-17th centuries A.D. This paper focuses on remote sensing analysis of historical sites with special interest of FORMOSAT-2 data that have been gained through a research announcement: Free FORMOSAT-2 satellite Imagery. Documentation of two archaeological sites (Makhmúr al-Qadima and Kushaf) are introduced. FORMOSAT-2 data results have been compared to historic CORONA satellite data of mentioned historical sites purchased earlier by the University of West Bohemia. Remote sensing methods were completed using in-situ measurements.

  19. An evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.

  20. Use of a remote clinical decision support service for a multicenter trial to implement prediction rules for children with minor blunt head trauma.

    PubMed

    Goldberg, Howard S; Paterno, Marilyn D; Grundmeier, Robert W; Rocha, Beatriz H; Hoffman, Jeffrey M; Tham, Eric; Swietlik, Marguerite; Schaeffer, Molly H; Pabbathi, Deepika; Deakyne, Sara J; Kuppermann, Nathan; Dayan, Peter S

    2016-03-01

    To evaluate the architecture, integration requirements, and execution characteristics of a remote clinical decision support (CDS) service used in a multicenter clinical trial. The trial tested the efficacy of implementing brain injury prediction rules for children with minor blunt head trauma. We integrated the Epic(®) electronic health record (EHR) with the Enterprise Clinical Rules Service (ECRS), a web-based CDS service, at two emergency departments. Patterns of CDS review included either a delayed, near-real-time review, where the physician viewed CDS recommendations generated by the nursing assessment, or a real-time review, where the physician viewed recommendations generated by their own documentation. A backstopping, vendor-based CDS triggered with zero delay when no recommendation was available in the EHR from the web-service. We assessed the execution characteristics of the integrated system and the source of the generated recommendations viewed by physicians. The ECRS mean execution time was 0.74 ±0.72 s. Overall execution time was substantially different at the two sites, with mean total transaction times of 19.67 and 3.99 s. Of 1930 analyzed transactions from the two sites, 60% (310/521) of all physician documentation-initiated recommendations and 99% (1390/1409) of all nurse documentation-initiated recommendations originated from the remote web service. The remote CDS system was the source of recommendations in more than half of the real-time cases and virtually all the near-real-time cases. Comparisons are limited by allowable variation in user workflow and resolution of the EHR clock. With maturation and adoption of standards for CDS services, remote CDS shows promise to decrease time-to-trial for multicenter evaluations of candidate decision support interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    NASA Astrophysics Data System (ADS)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  2. PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...

  3. Audiographics for Distance Education: An Alternative Technology.

    ERIC Educational Resources Information Center

    Fredrickson, Scott

    Audiographics is the merging of microcomputer graphics, telephone communications systems, and teaching strategies into a cost effective method of delivering distance education classes. The teacher creates visual images that are sent to and stored on computers at the remote sites. At the appropriate time the teacher and the remote site assistants…

  4. Investigating change detection of archaeological sites by multiscale and multitemporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.; Lanorte, A.; Coluzzi, R.; Masini, N.

    2009-04-01

    The systematic monitoring of cultural and natural heritage is a basic step for its conservation. Monitoring strategies should constitute an integral component of policies relating to land use, development, and planning. To this aim remote sensing technologies can be used profitably. This paper deals with the use of multitemporal, multisensors, and multiscale satellite data for assessing and monitoring changes affecting cultural landscapes and archaeological sites. The discussion is focused on some significant test cases selected in Peru (South America) and Southern Italy . Artifacts, unearthed sites, and marks of buried remains have been investigated by using multitemporal aerial and satellite data, such as Quickbird, ASTER, Landsat MSS and TM.

  5. Remotely sensed vegetation moisture as explanatory variable of Lyme borreliosis incidence

    NASA Astrophysics Data System (ADS)

    Barrios, J. M.; Verstraeten, W. W.; Maes, P.; Clement, J.; Aerts, J. M.; Farifteh, J.; Lagrou, K.; Van Ranst, M.; Coppin, P.

    2012-08-01

    The strong correlation between environmental conditions and abundance and spatial spread of the tick Ixodes ricinus is widely documented. I. ricinus is in Europe the main vector of the bacterium Borrelia burgdorferi, the pathogen causing Lyme borreliosis (LB). Humidity in vegetated systems is a major factor in tick ecology and its effects might translate into disease incidence in humans. Time series of two remotely sensed indices with sensitivity to vegetation greenness and moisture were tested as explanatory variables of LB incidence. Wavelet-based multiresolution analysis allowed the examination of these signals at different temporal scales in study sites in Belgium, where increases in LB incidence were reported in recent years. The analysis showed the potential of the tested indices for disease monitoring, the usefulness of analyzing the signal in different time frames and the importance of local characteristics of the study area for the selection of the vegetation index.

  6. Photographic copy of photograph, dated September 1971, (original print in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1971, (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view looking north of remote sprint launch site #2, during construction. In the foreground is the remote launch operations building (RLOB); sprint silos are being installed in the background - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND

  7. Comprehensive Calibration and Validation Site for Information Remote Sensing

    NASA Astrophysics Data System (ADS)

    Li, C. R.; Tang, L. L.; Ma, L. L.; Zhou, Y. S.; Gao, C. X.; Wang, N.; Li, X. H.; Wang, X. H.; Zhu, X. H.

    2015-04-01

    As a naturally part of information technology, Remote Sensing (RS) is strongly required to provide very precise and accurate information product to serve industry, academy and the public at this information economic era. To meet the needs of high quality RS product, building a fully functional and advanced calibration system, including measuring instruments, measuring approaches and target site become extremely important. Supported by MOST of China via national plan, great progress has been made to construct a comprehensive calibration and validation (Cal&Val) site, which integrates most functions of RS sensor aviation testing, EO satellite on-orbit caration and performance assessment and RS product validation at this site located in Baotou, 600km west of Beijing. The site is equipped with various artificial standard targets, including portable and permanent targets, which supports for long-term calibration and validation. A number of fine-designed ground measuring instruments and airborne standard sensors are developed for realizing high-accuracy stepwise validation, an approach in avoiding or reducing uncertainties caused from nonsynchronized measurement. As part of contribution to worldwide Cal&Val study coordinated by CEOS-WGCV, Baotou site is offering its support to Radiometric Calibration Network of Automated Instruments (RadCalNet), with an aim of providing demonstrated global standard automated radiometric calibration service in cooperation with ESA, NASA, CNES and NPL. Furthermore, several Cal&Val campaigns have been performed during the past years to calibrate and validate the spaceborne/airborne optical and SAR sensors, and the results of some typical demonstration are discussed in this study.

  8. Evaluation of remote hydrologic data-acquisition systems, west-central Florida

    USGS Publications Warehouse

    Turner, J.F.; Woodham, W.M.

    1980-01-01

    The study provides an evaluation of the hydrologic applications of a land-line and two satellite data-relay systems operated during 1977-78 in the Southwest Florida Water Management District. These systems were tested to evaluate operational and reliability characteristics. Telephone lines were used to relay data in the land-line system, and the Geostationary Operational Environmental Satellite (GOES) and Land satellite (Landsat) were used in the satellite system. The land-line system was tested for 15 months at a streamflow site. Accurate data were obtained 94% of the time during the test period. Data losses were attributed to telephone-line interference, low-battery voltage, and vandalism. The GOES system was tested at a rainfall site for 17 months. During this period, 79% of the transmissions received from the station were relayed by the GOES system to the U.S. Geological Survey computer, resulting in successful processing of 88% of all possible rainfall observations. On the average, seven data transmissions were completed each day. The Landsat system was tested at a rainfall site for about 17 months and for about 8 months at a streamflow site. During these periods of operation, only about 2% of all data observations for the stations were successfully relayed by the Landsat system to the U.S. Geological Survey computer. An average of about three data transmissions was completed each day for each site. (USGS).

  9. Remote Performance Monitoring of a Thermoplastic Composite Bridge at Camp Mackall, NC

    DTIC Science & Technology

    2011-11-01

    level, flow, creep, and force for slope stability, subsidence, seismicity studies, structural restoration, or site assessment applications. • Mining ...monitors mine ventilation, slope stability, convergence, and equipment performance. • Machinery testing- provides temperature, pressure, RPM, veloci...Contact an Applications Engineer for help in deter- mining the best antenna for your application. • 21831 0 dBd, ’l.t Wave Dipole Whip Antenna

  10. The application of automatic recognition techniques in the Apollo 9 SO-65 experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1970-01-01

    A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.

  11. Evaluation criteria for software classification inventories, accuracies, and maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.

  12. Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements.

    PubMed

    Brantley, Halley L; Thoma, Eben D; Eisele, Adam P

    2015-09-01

    Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) from oil and natural gas production were investigated using direct measurements of component-level emissions on pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-level emissions in the Barnett, DJ, and Pinedale basins. Results from the 2011 DJ on-site study indicate that emissions from condensate storage tanks are highly variable and can be an important source of VOCs and HAPs, even when control measures are present. Comparison of the measured condensate tank emissions with potentially emitted concentrations modeled using E&P TANKS (American Petroleum Institute [API] Publication 4697) suggested that some of the tanks were likely effectively controlled (emissions less than 95% of potential), whereas others were not. Results also indicate that the use of a commercial high-volume sampler (HVS) without corresponding canister measurements may result in severe underestimates of emissions from condensate tanks. Instantaneous VOC and HAP emissions measured on-site on controlled systems in the DJ Basin were significantly higher than VOC and HAP emission results from the study conducted by Eastern Research Group (ERG) for the City of Fort Worth (2011) using the same method in the Barnett on pads with low or no condensate production. The measured VOC emissions were either lower or not significantly different from the results of studies of uncontrolled emissions from condensate tanks measured by routing all emissions through a single port monitored by a flow measurement device for 24 hr. VOC and HAP concentrations measured remotely using the U.S. Environmental Protection Agency (EPA) Other Test Method (OTM) 33A in the DJ Basin were not significantly different from the on-site measurements, although significant differences between basins were observed. VOC and HAP emissions from upstream production operations are important due to their potential impact on regional ozone levels and proximate populations. This study provides information on the sources and variability of VOC and HAP emissions from production pads as well as a comparison between different measurement techniques and laboratory analysis protocols. On-site and remote measurements of VOC and HAP emissions from oil and gas production pads indicate that measurable emissions can occur despite the presence of control measures, often as a result of leaking thief hatch seals on condensate tanks. Furthermore, results from the remote measurement method OTM 33A indicate that it can be used effectively as an inspection technique for identifying oil and gas well pads with large fugitive emissions.

  13. Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin

    NASA Astrophysics Data System (ADS)

    Dyer, Brian

    2014-03-01

    Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.

  14. Health science students and their learning environment: a comparison of perceptions of on-site, remote-site, and traditional classroom students.

    PubMed

    Elison-Bowers, P; Snelson, Chareen; Casa de Calvo, Mario; Thompson, Heather

    2008-02-05

    This study compared the responses of on-site, remote-site, and traditional classroom students on measures of student/teacher interaction, course structure, physical learning environment, and overall course enjoyment/satisfaction. The sample population consisted of students taking undergraduate courses in medical terminology at two western colleges. The survey instrument was derived from Thomerson's questionnaire, which included closed- and open-ended questions assessing perceptions of students toward their courses. Controlling for grade expectations, results revealed no significant differences among the on-site, remote-site, and traditional classroom students in any of the four cluster domains. However, a nonsignificant (and continuing) trend suggested that students preferred the traditional classroom environment. When results were controlled for age, significant differences emerged between traditional and nontraditional students on measures of student/teacher interaction, physical learning environment, and overall enjoyment/satisfaction, as nontraditional students exhibited higher scores. Students' responses to open-ended questions indicated they enjoyed the convenience of online instruction, but reported finding frustration with technology itself.

  15. Investigating Near Space Interaction Regions: Developing a Remote Observatory

    NASA Astrophysics Data System (ADS)

    Gallant, M.; Mierkiewicz, E. J.; Oliversen, R. J.; Jaehnig, K.; Percival, J.; Harlander, J.; Englert, C. R.; Kallio, R.; Roesler, F. L.; Nossal, S. M.; Gardner, D.; Rosborough, S.

    2016-12-01

    The Investigating Near Space Interaction Regions (INSpIRe) effort will (1) establish an adaptable research station capable of contributing to terrestrial and planetary aeronomy; (2) integrate two state-of-the-art second generation Fabry-Perot (FP) and Spatial Heteorodyne Spectrometers (SHS) into a remotely operable configuration; (3) deploy this instrumentation to a clear-air site, establishing a stable, well-calibrated observatory; (4) embark on a series of observations designed to contribute to three major areas of geocoronal research: geocoronal physics, structure/coupling, and variability. This poster describes the development of the INSpIRe remote observatory. Based at Embry-Riddle Aeronautical University (ERAU), initiative INSpIRe provides a platform to encourage the next generation of researchers to apply knowledge gained in the classroom to real-world science and engineering. Students at ERAU contribute to the INSpIRe effort's hardware and software needs. Mechanical/optical systems are in design to bring light to any of four instruments. Control software is in development to allow remote users to control everything from dome and optical system operations to calibration and data collection. In April 2016, we also installed and tested our first science instrument in the INSpIRe trailer, the Redline DASH Demonstration Instrument (REDDI). REDDI uses Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, and its deployment as part of INSpIRe is a collaborative research effort between the Naval Research Lab, St Cloud State University, and ERAU. Similar to a stepped Michelson device, REDDI measures oxygen (630.0 nm) winds from the thermosphere. REDDI is currently mounted in a temporary location under INSpIRe's main siderostat until its entrance optical system can be modified. First light tests produced good signal-to-noise fringes in ten minute integrations, indicating that we will soon be able to measure thermospheric winds from our Daytona Beach testing site. Future work will involve installation and software integration of FP and SHS systems and the Embry-Riddle Instrument Control System. The INSpIRe project is funded through NSF-CAREER award AGS135231 and the NASA Planetary Solar System Observations Program. The REDDI instrument was supported by the Chief of Naval Research.

  16. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    USGS Publications Warehouse

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  17. Remote sensing investigations at a hazardous-waste landfill

    USGS Publications Warehouse

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  18. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nangle, John; Simon, Joseph

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  19. Field site selection

    NASA Technical Reports Server (NTRS)

    Schwarz, D. E.; Ellefsen, R. E.

    1981-01-01

    Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.

  20. Multi-channel Auto-dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Amonette, J. E.

    2008-12-01

    We describe a novel field instrument that takes input from up to 27 soil flux chambers and measures flux using the steady-state method. CO2 concentrations are determined with an infrared gas analyzer (IRGA, 0- 3000 ppmv range) with corrections for temperature, barometric pressure, and moisture content. The concentrations are monitored during data collection and, if they exceed the range of the IRGA, a stepped dilution program is automatically implemented that allows up to 50-fold dilution of the incoming gas stream with N2 supplied by boil-off from a large dewar. The upper concentration limit of the system with dilution is extended to at least 150,000 ppmv CO2. The data are stored on a datalogger having a cellular modem connection that allows remote control of the system as well as transmittal of data. The system is designed to operate for six weeks with no on-site maintenance required. Longer periods are possible with modifications to allow on-site generation of N2 from air. Example data from a recent CO2 test injection at the Zero- Emission Research and Technology (ZERT) field site in Bozeman, MT are presented.

  1. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  2. The Most Remote Point Method for the Site Selection of the Future VGOS Network

    NASA Astrophysics Data System (ADS)

    Hase, Hayo; Pedreros, Felipe

    2014-12-01

    The VLBI Global Observing System (VGOS) will be part of the Global Geodetic Observing System (GGOS) and will consist of globally well distributed geodetic observatories. The most remote point (MRP) method is used to identify gaps in the network geometry. In each iteration step the identified most remote points are assumed to become new observatory sites improving the homogeneity of the global network. New locations for VGOS observatories have been found in La Plata, Tahiti, O'Higgins, Galapagos, Colombo, and Syowa. This contribution is an excerpt of a work published in Journal of Geodesy (DOI: 10.1007/s00190-014-0731-y) covering the site selection for the GGOS.%

  3. Light-driven, proton-controlled, catalytic aerobic C-H oxidation mediated by a Mn(III) porphyrinoid complex.

    PubMed

    Neu, Heather M; Jung, Jieun; Baglia, Regina A; Siegler, Maxime A; Ohkubo, Kei; Fukuzumi, Shunichi; Goldberg, David P

    2015-04-15

    The visible light-driven, catalytic aerobic oxidation of benzylic C-H bonds was mediated by a Mn(III) corrolazine complex. To achieve catalytic turnovers, a strict selective requirement for the addition of protons was established. The resting state of the catalyst was unambiguously characterized by X-ray diffraction as [Mn(III)(H2O)(TBP8Cz(H))](+), in which a single, remote site on the ligand is protonated. If two remote sites are protonated, however, reactivity with O2 is shut down. Spectroscopic methods revealed that the related Mn(V)(O) complex is also protonated at the same remote site at -60 °C, but undergoes valence tautomerization upon warming.

  4. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.« less

  5. Description of a Remote Ionospheric Scintillation Data Collection Facility

    DOT National Transportation Integrated Search

    1973-03-01

    An experimental technique is described which measures L-band ionospheric scintillation at a remote, unmanned site. Details of an automatic data collection facility are presented. The remote facility comprises an L-band receiver, and a complete VHF co...

  6. Remote Sensing of Vegetation Recovery from Disturbance in Drylands

    NASA Astrophysics Data System (ADS)

    Poitras, T. B.; Villarreal, M. L.; Waller, E.; Duniway, M.; Nauman, T.

    2016-12-01

    Characteristics of dryland ecosystems such as climatic extremes and water limitations render semi-arid regions vulnerable to disturbance and slow to recover. Land surface monitoring over time through the use of remote sensing may have potential for identifying dryland ecosystem recovery after anthropogenic and natural disturbance. However, semi-arid vegetation cover is challenging to measure using remote sensing techniques due to low vegetation cover and confusion between bright and variable soils and non-photosynthetic vegetation (NPV). We therefore evaluated the ability of various multispectral indices to distinguish bare ground from total vegetation cover, in order to determine those that can detect changes over time in heavily disturbed sites. We calculated nine spectral indices from Landsat TM using Google Earth Engine (March through October, 2006 through 2008) and tested relationships between index values and ground measurements from long-term monitoring data collected in and around Canyonlands National Park in Utah. We also tested multivariate models, with some showing improvement under cross-validation. We found that indices that included shortwave infrared bands and soil brightness were important for capturing gradients in bare ground, and vegetation cover was best quantified with near-infrared bands. These results will be used to help assess the landscape-scale impacts of oil and gas development in dryland ecosystems and to measure response to restoration efforts. Keywords: remote sensing, landsat, drylands

  7. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Sondrup; Gail Heath; Trent Armstrong

    2011-04-01

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define themore » topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.« less

  8. Robotic Telepresence: Perception, Performance, and User Experience

    DTIC Science & Technology

    2012-02-01

    defined as “a human-computer-machine condition in which a user receives sufficient information about a remote, real-world site through a machine so...that the user feels physically present at the remote, real-world site ” (Aliberti and Bruen, 2006). Telepresence often includes capabilities for a more...outdoor route reconnaissance course (figures 4 and 5) was located at the Molnar MOUT (Military Operations in Urban Terrain) site in Fort Benning, GA. It

  9. Clinical Training at Remote Sites Using Mobile Technology: An India-USA Partnership

    ERIC Educational Resources Information Center

    Vyas, R.; Albright, S.; Walker, D.; Zachariah, A.; Lee, M. Y.

    2010-01-01

    Christian Medical College (CMC), India, and Tufts University School of Medicine, USA, have developed an "institutional hub and spokes" model (campus-based e-learning supporting m-learning in the field) to facilitate clinical education and training at remote secondary hospital sites across India. Iterative research, design, development,…

  10. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  11. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2005-01-01

    Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  12. Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Joseph, Everette; Min, Qilong; Yin, Bangsheng; Sakai, Ricardo; Payne, Megan K.

    2017-06-01

    Monitoring PM2.5 (particulate matter with aerodynamic diameter d ≤ 2.5 µm) mass concentration has become of more importance recently because of the negative impacts of fine particles on human health. However, monitoring PM2.5 during cloudy and nighttime periods is difficult since nearly all the passive instruments used for aerosol remote sensing are not able to measure aerosol optical depth (AOD) under either cloudy or nighttime conditions. In this study, an empirical model based on the regression between PM2.5 and the near-surface backscatter measured by ceilometers was developed and tested using 6 years of data (2006 to 2011) from the Howard University Beltsville Campus (HUBC) site. The empirical model can explain ˜ 56, ˜ 34 and ˜ 42 % of the variability in the hourly average PM2.5 during daytime clear, daytime cloudy and nighttime periods, respectively. Meteorological conditions and seasons were found to influence the relationship between PM2.5 mass concentration and the surface backscatter. Overall the model can explain ˜ 48 % of the variability in the hourly average PM2.5 at the HUBC site when considering the seasonal variation. The model also was tested using 4 years of data (2012 to 2015) from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, which was geographically and climatologically different from the HUBC site. The results show that the empirical model can explain ˜ 66 and ˜ 82 % of the variability in the daily average PM2.5 at the ARM SGP site and HUBC site, respectively. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring under cloudy and nighttime conditions. Since ceilometers are used broadly over the world, they may provide an important supplemental source of information of aerosols to determine surface PM2.5 concentrations.

  13. Hyperspectral Geobotanical Remote Sensing for Monitoring and Verifying CO 2 Containment Final Report CRADA No. TC-2036-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W. L.; Ebrom, D. A.

    This collaborative effort was in support of the CO 2 Capture Project (CCP), to develop techniques that integrate overhead images of plant species, plant health, geological formations, soil types, aquatic, and human use spatial patterns for detection and discrimination of any CO 2 releases from underground storage formations. The goal of this work was to demonstrate advanced hyperspectral geobotanical remote sensing methods to assess potential leakage of CO 2 from underground storage. The timeframes and scales relevant to the long-term storage of CO 2 in the subsurface make remote sensing methods attractive. Moreover, it has been shown that individual fieldmore » measurements of gas composition are subject to variability on extremely small temporal and spatial scales. The ability to verify ultimate reservoir integrity and to place individual surface measurements into context will be crucial to successful long-term monitoring and verification activities. The desired results were to produce a defined and tested procedure that could be easily used for long-term monitoring of possible CO 2 leakage from underground CO 2 sequestration sites. This testing standard will be utilized on behalf of the oil industry.« less

  14. Validation of a remote sensing model to identify Simulium damnosum s.l. breeding sites in Sub-Saharan Africa.

    PubMed

    Jacob, Benjamin G; Novak, Robert J; Toe, Laurent D; Sanfo, Moussa; Griffith, Daniel A; Lakwo, Thomson L; Habomugisha, Peace; Katabarwa, Moses N; Unnasch, Thomas R

    2013-01-01

    Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement.

  15. Validation of a Remote Sensing Model to Identify Simulium damnosum s.l. Breeding Sites in Sub-Saharan Africa

    PubMed Central

    Jacob, Benjamin G.; Novak, Robert J.; Toe, Laurent D.; Sanfo, Moussa; Griffith, Daniel A.; Lakwo, Thomson L.; Habomugisha, Peace; Katabarwa, Moses N.; Unnasch, Thomas R.

    2013-01-01

    Background Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. Methodology/Principal Findings Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. Conclusions/Significance This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement. PMID:23936571

  16. Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Blavier, J.-F.; Toon, G. C.; Sen, B.

    2000-01-01

    This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.

  17. Photographic copy of photograph, dated September 1973 (original in possession ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1973 (original in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view (northwest to southeast) of remote sprint launch site #4 during construction. In the background are the waste stabilization ponds. In the foreground, left to right, are the remote launch operations building, the exclusion area sentry stations, and the sprint launch cells - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND

  18. Synchronized computational architecture for generalized bilateral control of robot arms

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A master six degree of freedom Force Reflecting Hand Controller (FRHC) is available at a master site where a received image displays, in essentially real time, a remote robotic manipulator which is being controlled in the corresponding six degree freedom by command signals which are transmitted to the remote site in accordance with the movement of the FRHC at the master site. Software is user-initiated at the master site in order to establish the basic system conditions, and then a physical movement of the FRHC in Cartesean space is reflected at the master site by six absolute numbers that are sensed, translated and computed as a difference signal relative to the earlier position. The change in position is then transmitted in that differential signal form over a high speed synchronized bilateral communication channel which simultaneously returns robot-sensed response information to the master site as forces applied to the FRHC so that the FRHC reflects the feel of what is taking place at the remote site. A system wide clock rate is selected at a sufficiently high rate that the operator at the master site experiences the Force Reflecting operation in real time.

  19. Measurement Sets and Sites Commonly Used for Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.

  20. Measurement Sets and Sites Commonly used for Characterizations

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.

  1. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1975-01-01

    Selected samples of anomalous surface features commonly associated with the various types of uranium deposits are presented and recommendations for sensor applications are given. The features studied include: epigenetic uranium ore roll type; precambrian basal conglomerate type; vein-type uranium deposits; pipe-structure or diatreme deposits; evaporitic uranium deposits. The hydrogeology of the Mosquito Range and the San Luis Valley is also examined.

  2. Simulation of Boreal Ecosystem Carbon and Water Budgets: Scaling from Local to Regional Extents

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1997-01-01

    A coupled water and energy balance model is developed. This model can predict the partitioning of water and energy between major source, sink and storage elements within the Boreal-Ecosystem-Atmospheric Study (BOREAS) areas. The results of testing the model against data collected at BOREAS tower sites during Intensive Field Campaigns and remotely sensed data collected across the BOREAS region are presented.

  3. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less

  4. Assessment of practicality of remote sensing techniques for a study of the effects of strip mining in Alabama

    NASA Technical Reports Server (NTRS)

    Hughes, T. H.; Dillion, A. C., III; White, J. R., Jr.; Drummond, S. E., Jr.; Hooks, W. G.

    1975-01-01

    Because of the volume of coal produced by strip mining, the proximity of mining operations, and the diversity of mining methods (e.g. contour stripping, area stripping, multiple seam stripping, and augering, as well as underground mining), the Warrior Coal Basin seemed best suited for initial studies on the physical impact of strip mining in Alabama. Two test sites, (Cordova and Searles) representative of the various strip mining techniques and environmental problems, were chosen for intensive studies of the correlation between remote sensing and ground truth data. Efforts were eventually concentrated in the Searles Area, since it is more accessible and offers a better opportunity for study of erosional and depositional processes than the Cordova Area.

  5. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  6. The influence of autocorrelation in signature extraction: An example from a geobotanical investigation of Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J. (Principal Investigator)

    1981-01-01

    The presence of positive serial correlation (autocorrelation) in remotely sensed data results in an underestimate of the variance-covariance matrix when calculated using contiguous pixels. This underestimate produces an inflation in F statistics. For a set of Thematic Mapper Simulator data (TMS), used to test the ability to discriminate a known geobotanical anomaly from its background, the inflation in F statistics related to serial correlation is between 7 and 70 times. This means that significance tests of means of the spectral bands initially appear to suggest that the anomalous site is very different in spectral reflectance and emittance from its background sites. However, this difference often disappears and is always dramatically reduced when compared to frequency distributions of test statistics produced by the comparison of simulated training sets possessing equal means, but which are composed of autocorrelated observations.

  7. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  8. Geographic analysis of multiple sensor data from the NASA/USGS earth resources program

    NASA Technical Reports Server (NTRS)

    Pascucci, R. F.; North, G. W.; Albrizio, R. A.; Shelkin, B. D.

    1969-01-01

    Qualitative and quantitative analyses were made of multi-sensor data acquired during aircraft missions. While the principal analysis effort was concentrated on imagery taken over test sites in Southern California, data were also studied from records acquired on missions over test sites at Phoenix, Chicago, Asheville, and New Orleans. The objectives of the analyses were: (1) to determine the capabilities of ten remote sensors in identifying the elements of information necessary in conducting geographic investigations in land use analysis, urban problems, surface energy budget, and soil moisture; (2) to determine the feasibility of using these sensors for these purposes at orbital altitudes; and (3) to collate and analyze ground and air data previously collected and assemble it in a format useful in the accomplishment of cost effectiveness studies.

  9. Evaluation of hybrid inverters for strategic environmental research and development program applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginn, J.W.

    1995-11-01

    The photovoltaic systems test facility at Sandia National Laboratories is evaluating the performance of large hybrid power-processing centers (PPC`s). The primary customer for this work has been the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense. One of the goals of SERDP is to develop power-processing hardware to be used in photovoltaic-hybrid power systems at remote military installations. Power for these installations is presently provided by engine-generators. Currently, hardware for twelve such sites is in various stages of procurement. The subject of this talk is testing of the PPC for the first SERDP system, a 300-kWmore » unit for Superior Valley, a US Navy site at China Lake, California.« less

  10. Simulation of Sentinel-2A Red Edge Bands with RPAS Based Multispectral Data

    NASA Astrophysics Data System (ADS)

    Davids, Corine; Storvold, Rune; Haarpaintner, Jorg; Arnason, Kolbeinn

    2016-08-01

    Very high spatial and spectral resolution multispectral data was collected over the Hallormstađur test site in eastern Iceland using a fixed wing remotely piloted aerial system as part of the EU FP7 project North State (www.northstatefp7.eu). The North State project uses forest variable estimates derived from optical and radar satellite data as either input or validation for carbon flux models. The RPAS data from the Hallormsstađur forest test site in Iceland is here used to simulate Landsat and Sentinel-2A data and to explore the advantages of the new Sentinel-2A red edge bands for forest vegetation mapping. Simple supervised classification shows that the inclusion of the red edge bands improves the tree species classification considerably.

  11. Derivative Analysis of AVIRIS Hyperspectral Data for the Detection of Plant Stress

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Berglund, Judith

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test site at Shelton, Nebraska. The test field was set off in blocks that were differentially treated with nitrogen. Four replicates of 0-kg/ha to 200-kg/ha, in 50-kg/ha increments, were present. Low-altitude AVIRIS hyperspectral data were collected over the site in 224 spectral bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to evaluate published, derivative-based algorithms for the detection of plant stress, different derivative-based approaches were applied to the collected AVIRIS image cube. The results indicate that, given good quality hyperspectral imagery, derivative techniques compare favorably with simple, well known band ratio algorithms for detection of plant stress.

  12. Remote sensing for site characterization

    USGS Publications Warehouse

    Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  13. An Experimental Remote Question-Answer Scan Television and Student Evaluation System.

    ERIC Educational Resources Information Center

    Rigas, Anthony L.

    Presented is a description of the development and use of a technical system designed to provide students (in this case, engineering students) situated at remote sites a means for better interaction with their instructors. For example, students at such sites cannot get their immediate questions answered because of the physical location of their…

  14. ON-ROAD REMOTE SENSING OF AUTOMOBILE EMISSIONS IN THE RESEARCH TRIANGLE PARK, NORTH CAROLINA AREA: 1997-2001

    EPA Science Inventory

    The report describes automobile exhaust remote sensing data collected by EPA at a number of sites in the Research Triangle Park, NC area during 1997. Data were also collected at one site in Raleigh, NC from 1998 through 2001 for the Coordinating Research Council (CRC) study of re...

  15. Application of airborne remote sensing to the ancient Pompeii site

    NASA Astrophysics Data System (ADS)

    Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi

    1996-12-01

    The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.

  16. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  17. Settlement patterns and communication routes of the western Maya wetlands: An archaeological and remote-sensing survey, Chunchucmil, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Hixson, David R.

    This dissertation investigates the role of the seasonal wetlands in the political economy and subsistence strategies of the ancient Maya of Chunchucmil, Yucatan, Mexico. A combination of pedestrian surveys and remote-sensing tasks were performed in order to better understand the settlement patterns and potential communication routes in and through the wetlands between Chunchucmil and the Gulf of Mexico. These western wetlands had been proposed as the principal avenue for interregional trade between coastal merchants and inland consumers, yet were thought to be uninhabited and uncultivable. Following the survey tasks outlined in this dissertation, these wetlands were found to contain an abundance of archaeological settlements and features indicating habitation, utilization, and trade throughout this diverse ecological zone. The remote-sensing platforms utilized in this study include both multispectral (Landsat) and synthetic aperture radar (AirSAR), combined with additional remotely sensed resources. One of the goals of this survey was to test the capabilities of these two sensors for the direct detection of archaeological features from air and space. The results indicate that Landsat can be highly successful at detecting site location and measuring site size under certain environmental conditions. The Airborne Synthetic Aperture Radar proved to be adept at detecting large mounded architecture within the Yucatecan karstic plain, but its further utility is hampered by limitations of resolution, scale, and land cover. One of the salient features of the landscape west of Chunchucmil is a network of stone pathways called andadores. These avenues through the wetlands outline a dendritic network of communication, trade, and extraction routes. The following dissertation places this network and its associated settlements (from suburban centers to diminutive camps) within their regional context, examining the roles they may have played in supporting a large mercantile economy centered at the site of Chunchucmil.

  18. Health Science Students and Their Learning Environment: A Comparison of Perceptions of On-Site, Remote-Site, and Traditional Classroom Students

    PubMed Central

    Elison-Bowers, P.; Snelson, Chareen; Casa de Calvo, Mario; Thompson, Heather

    2008-01-01

    This study compared the responses of on-site, remote-site, and traditional classroom students on measures of student/teacher interaction, course structure, physical learning environment, and overall course enjoyment/satisfaction. The sample population consisted of students taking undergraduate courses in medical terminology at two western colleges. The survey instrument was derived from Thomerson's questionnaire, which included closed- and open-ended questions assessing perceptions of students toward their courses. Controlling for grade expectations, results revealed no significant differences among the on-site, remote-site, and traditional classroom students in any of the four cluster domains. However, a nonsignificant (and continuing) trend suggested that students preferred the traditional classroom environment. When results were controlled for age, significant differences emerged between traditional and nontraditional students on measures of student/teacher interaction, physical learning environment, and overall enjoyment/satisfaction, as nontraditional students exhibited higher scores. Students' responses to open-ended questions indicated they enjoyed the convenience of online instruction, but reported finding frustration with technology itself. PMID:18311326

  19. Using Tree-Rings and Remote Sensing to Investigate Forest Productivity Response to Landscape Fragmentation in Northeastern Algeria

    NASA Astrophysics Data System (ADS)

    Rouini, N.; Lepley, K. S.; Messaoudene, M.

    2017-12-01

    Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.

  20. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.

  1. Analysis of trends in isoprene and monoterpenes in a remote forest and an anthropogenic influenced forest

    NASA Astrophysics Data System (ADS)

    Usenko, S.; Sheesley, R. J.; Winfield, Z.; Yoon, S.; Erickson, M.; Flynn, J. H., III; Alvarez, S. L.; Wallace, H. W., IV; Griffin, R. J.

    2017-12-01

    The University of Houston Mobile Air Quality Laboratory (MAQL) was deployed to the University of Michigan Biological Station (UMBS) in July 2016 as part of the PROPHET-AMOS study and then was deployed to Jones Forest located north of Houston, TX from August 12 through September 23, 2016. Both sites are heavily forested, but UMBS is remote with no anthropogenic influence while Jones Forest sees frequent pollution transport from Houston. UMBS experienced periods of high isoprene:monoterpenes and periods of equivalent isoprene:monoterpenes, while Jones Forest had a consistently high isoprene:monoterpenes. This provided for a test bed to look at the interactions within two forested environments as well as the influence of anthropogenic sources. The MAQL was outfitted to measure O3 (2B Technology), NOy and SO2 (Thermo Scientific), NO/NOx (Air Quality Design), CO (Los Gatos), and select biogenic volatile organic carbon (BVOC) with their oxidation products (Ionicon PTR-MS). The instruments sampled from MAQL's 6 m tower at both sites. The UMBS site was below canopy and the Jones Forest site was in an open field surrounded by forest. The trends in isoprene and monoterpenes were explored in relation to time-of-day, temperature, and precipitation for both locations. In addition, the production of methyl vinyl ketone and methacrolein under these different conditions of meteorology, trace gas composition and BVOC composition was explored.

  2. Coupling fine-scale root and canopy structure using ground-based remote sensing

    DOE PAGES

    Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...

    2017-02-21

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less

  3. Coupling fine-scale root and canopy structure using ground-based remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less

  4. Assessment of remote sensing technologies to discover and characterize waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-03-11

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.

  5. Safety and Hazard Analysis for the Coherent/Acculite Laser Based Sandia Remote Sensing System (Trailer B70).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    A laser safety and hazard analysis is presented, for the Coherent(r) driven Acculite(r) laser central to the Sandia Remote Sensing System (SRSS). The analysis is based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The trailer (B70) based SRSS laser system is a mobile platform which is used to perform laser interaction experiments and tests at various national test sites. The trailer based SRSS laser system is generally operated on the United State Air Forcemore » Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances. In order to protect personnel who work inside the Nominal Hazard Zone (NHZ) from hazardous laser exposures, it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (ODmin) necessary for the laser safety eyewear used by authorized personnel. Also, the Nominal Ocular Hazard Distance (NOHD) and The Extended Ocular Hazard Distance (EOHD) are calculated in order to protect unauthorized personnel who may have violated the boundaries of the control area and might enter into the laser's NHZ for testing outside the trailer. 4Page intentionally left blank« less

  6. Determination of Winter Wheat Phenology in Bavaria- A Contribution to Regional Crop Health Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Bruggemann, Lena; Bach, Heike; Ruf, Tobias; Appel, Florian; Migdall, Silke; Hank, Tobias; Mauser, Wolfram; Eiblmeier, Peter

    2016-08-01

    The central topic of this study is the monitoring of winter wheat phenology and the detection of anthesis (flowering) using remotely sensed data as well as crop growth modeling. It is not possible to directly observe the flowering of wheat with optical satellite sensors. Thus, an approach that combines crop growth modeling with remote sensing data covering optical and microwave spectral ranges was developed. This was done in three steps: The hydro-agroecological land surface model PROMET was first run in a stand-alone version for selected sites distributed throughout Bavaria using only static input parameters (e.g. soil map) and current meteorological data as driving factors. Thus, multitemporal information from optical remote sensing data was assimilated into the model runs in a second step to improve the accuracy of the results. Finally, the use of radar data for anthesis detection in winter wheat was tested using Sentinel-1 data of 2015 in dual polarization mode (VV+VH).

  7. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  8. Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR

    NASA Astrophysics Data System (ADS)

    Thompson Alves de Souza, Carlos Eduardo

    Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR Carlos Eduardo Thompson Alves de Souza cethompsoniii@hotmail.com Archaeologist Member of the European Association of Archaeologists B.A.Archaeology MA.Remote Sensing Abstract The Archaeological Research in Urban Environment with the Air Light Detection and Ranging is problematic for the Overlay Layers mixed with contexts concerning the Interpretation of Archaeological Data. However, in the Underwater Archaeology the results are excellent. This paper considers the application of Remote Sensing and Air Light Detection and Ranging (LIDAR) as separate things as well as Land Archaeology and the Underwater Archaeology. European Archaeologists know very little about Brazil and the article presents an Overview of Research in Brazil with Remote Sensing in Archaeology and Light Detection and Ranging in Land Archaeology and Underwater Archaeology, because Brazil has Continental Dimensions. Braziliańs Methodology for Location, Analysis and Monitoring of Archaeological Sites is necessarily more Complex and Innovative and therefore can serve as a New Paradigm for other archaeologists involved in the Advanced Management Heritage.

  9. Using LiDAR and remote microclimate loggers to downscale near-surface air temperatures for site-level studies

    Treesearch

    Andrew D. George; Frank R. Thompson; John. Faaborg

    2015-01-01

    A spatial mismatch exists between regional climate models and conditions experienced by individual organisms. We demonstrate an approach to downscaling air temperatures for site-level studies using airborne LiDAR data and remote microclimate loggers. In 2012-2013, we established a temperature logger network in the forested region of central Missouri, USA, and obtained...

  10. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    EPA Science Inventory

    We used a combination of data from USDA Forest Service inventories, intensive
    chronosequences, extensive sites, and satellite remote sensing, to estimate biomass
    and net primary production (NPP) for the forested region of western Oregon. The
    study area was divided int...

  11. Norfolk and environs: A land use perspective

    USGS Publications Warehouse

    Alexander, Robert H.; Buzzanell, Peter J.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.

    1975-01-01

    The Norfolk-Portsmouth Standard Metropolitan Statistical Area (SMSA) in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods, built around the availability of remotely sensed data from the Earth Resources Technology Satellite (ERTS-I), later renamed LANDSAT I. The Norfolk tests were part of a larger experiment known as the Central Atlantic Regional Ecological Test Site (CARETS), designed to test the extent to which LANDSAT and associated high-altitude aircraft data could be used as cost-effective inputs to a regional land use information system. The Norfolk SMSA contains a variety of land uses typical of the urbanized eastern seaboard, along with typical associated problems: rapid urbanization; heavy recreational, commercial, and residential demands on fragile beaches and coastal marsh environments; industrial, transportation, and governmental land and water uses impacting on residential and agricultural areas; drainage and land stability difficulties affecting construction and other uses; and increasing difficulties in maintaining satisfactory air and water quality.

  12. Preliminary Assessment of Mars Exploration Rover Landing Site Predictions

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Grant, J.; Parker, T.; Crisp, J.; Squyres, S.; Carr, M.; Haldemann, A.; Arvidson, R.; Ehlmann, B.; Bell, J.

    2004-01-01

    Selection of the Mars Exploration Rover (MER) landing sites took place over a three year period in which engineering constraints were identified, 155 possible sites were downselected to the final two, surface environments and safety considerations were developed, and the potential science return at the sites was considered. Landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong morphologic and mineralogical indicators of liquid water in their past and thus appeared capable of addressing the science objectives of the MER missions, which are to determine the aqueous, climatic, and geologic history of sites on Mars where conditions may have been favorable to the preservation of evidence of possible pre-biotic or biotic processes. Engineering constraints important to the selection included: latitude (10 N-15 S) for maximum solar power; elevation (<-1.3 km) for sufficient atmosphere to slow the lander; low horizontal winds, shear and turbulence in the last few kilometers to minimize horizontal velocity; low 10-m scale slopes to reduce airbag spinup and bounce; moderate rock abundance to reduce abrasion or stroke-out of the airbags; and a radar-reflective, load-bearing and trafficable surface safe for landing and roving that is not dominated by fine-grained dust. In selecting the MER landing sites these engineering constraints were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing remote sensing data and models as well as targeted orbital information acquired from Mars Global Surveyor and Mars Odyssey. This evaluation resulted in a number of predictions of the surface characteristics of the sites, which are tested in this abstract. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data, is essential for selecting and validating landing sites for future missions, and is required for correctly interpreting the surfaces and materials globally present on Mars.

  13. FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.

    2002-08-01

    The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.

  14. BOREAS RSS-4 1994 Southern Study Area Jack Pine LAI and FPAR Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Plummer, Stephen

    2000-01-01

    The RSS-4 team collected several data sets related to leaf, plant, and stand physical, optical, and chemical properties. This data set contains leaf area indices and FPAR measurements that were taken at the three conifer sites in the BOREAS SSA during August 1993 and at the jack pine tower flux and a subset of auxiliary sites during July and August 1994. The measurements were made with LAI-2000 and Ceptometer instruments. The measurements were taken for the purpose of model parameterization and to test empirical relationships that were hypothesized between biophysical parameters and remotely sensed data. The data are stored in tabular ASCII files.

  15. Nevada Test Site Environmental Report 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status withmore » environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.« less

  16. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region

    PubMed Central

    Callister, Kate E.; Griffioen, Peter A.; Avitabile, Sarah C.; Haslem, Angie; Kelly, Luke T.; Kenny, Sally A.; Nimmo, Dale G.; Farnsworth, Lisa M.; Taylor, Rick S.; Watson, Simon J.; Bennett, Andrew F.; Clarke, Michael F.

    2016-01-01

    Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km2 study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046

  17. Two-Way Interactive Television: An Emerging Technology for University Level Business School Instruction.

    ERIC Educational Resources Information Center

    Heiens, Richard A.; Hulse, Deborah B.

    1996-01-01

    An organizational behavior course was delivered via two-way interactive television to a campus site (71 students) and three remote locations (48 students). Remote students were slightly older and predominantly female. There were no significant differences in academic performance between on-campus and remote students. (SK)

  18. Biodiesel/Cummins CRADA Report

    DTIC Science & Technology

    2014-07-01

    sediment on the Racor turbine , coalescing centrifuge, check ball, and rubber seal pieces. The fuel flow sensor was opened, and a small obstruction was...is a wireless router that connects the computer (via BlueTooth) with a remote site (via the cellular network). This setup allowed the test team to...2 ¾” shaft on the BUSL. The data appeared to be accurate for short periods, and then appeared to lose calibration due to sensor misalignment

  19. RPV Assessment of Remote Missile Site Intrusion Alarms.

    DTIC Science & Technology

    1982-08-01

    meter j fuselage, servos, battery, alternator. 14. Pitot tube and plumbing - Centrol model no. C-5255. 15. Engine CD ignition unit - KBG model 10308...1.29 Alternator with Coupling 6.22 Magnetometer and Mount .30 +26V Lead Acid Battery Pack 5.81 Pitot Tube .15 Subrudder .43 Regulator .28 94.15 Empty...Conent, Major Henry , USAF. Training Division, 1550 Aircrew Training Test Wing, Military Airlift Command, Kirtland AFB NM. Telephone interview. 29 June

  20. Remote Control Effect of Li+, Na+, K+ Ions on the Super Energy Transfer Process in ZnMoO4:Eu3+, Bi3+ Phosphors

    PubMed Central

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286

  1. Remote Sensing of Landscapes with Spectral Images

    NASA Astrophysics Data System (ADS)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  2. Java-based browsing, visualization and processing of heterogeneous medical data from remote repositories.

    PubMed

    Masseroli, M; Bonacina, S; Pinciroli, F

    2004-01-01

    The actual development of distributed information technologies and Java programming enables employing them also in the medical arena to support the retrieval, integration and evaluation of heterogeneous data and multimodal images in a web browser environment. With this aim, we used them to implement a client-server architecture based on software agents. The client side is a Java applet running in a web browser and providing a friendly medical user interface to browse and visualize different patient and medical test data, integrating them properly. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. Based on the Java Advanced Imaging API, processing and analysis tools were developed to support the evaluation of remotely retrieved bioimages through the quantification of their features in different regions of interest. The Java platform-independence allows the centralized management of the implemented prototype and its deployment to each site where an intranet or internet connection is available. Giving healthcare providers effective support for comprehensively browsing, visualizing and evaluating medical images and records located in different remote repositories, the developed prototype can represent an important aid in providing more efficient diagnoses and medical treatments.

  3. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.

  4. Popping a Hole in High-Speed Pursuits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit

  5. Improving proton therapy accessibility through seamless electronic integration of remote treatment planning sites.

    PubMed

    Belard, Arnaud; Dolney, Derek; Zelig, Tochner; McDonough, James; O'Connell, John

    2011-06-01

    Proton radiotherapy is a relatively scarce treatment modality in radiation oncology, with only nine centers currently operating in the United States. Funded by Public Law 107-248, the University of Pennsylvania and the Walter Reed Army Medical Center have developed a remote proton radiation therapy solution with the goals of improving access to proton radiation therapy for Department of Defense (DoD) beneficiaries while minimizing treatment delays and time spent away from home/work (time savings of up to 3 weeks per patient). To meet both Health Insurance Portability and Accountability Act guidelines and the more stringent security restrictions imposed by the DoD, our program developed a hybrid remote proton radiation therapy solution merging a CITRIX server with a JITIC-certified (Joint Interoperability Test Command) desktop videoconferencing unit. This conduit, thoroughly tested over a period of 6 months, integrates both institutions' radiation oncology treatment planning infrastructures into a single entity for DoD patients' treatment planning and delivery. This telemedicine solution enables DoD radiation oncologists and medical physicists the ability to (1) remotely access a proton therapy treatment planning platform, (2) transfer patient plans securely to the University of Pennsylvania patient database, and (3) initiate ad-hoc point-to-point and multipoint videoconferences to dynamically optimize and validate treatment plans. Our robust and secure remote treatment planning solution grants DoD patients not only access to a state-of-the-art treatment modality, but also participation in the treatment planning process by Walter Reed Army Medical Center radiation oncologists and medical physicists. This telemedicine system has the potential to lead to a greater integration of military treatment facilities and/or satellite clinics into regional proton therapy centers.

  6. Mass balance assessment using GPS

    NASA Technical Reports Server (NTRS)

    Hulbe, Christina L.

    1993-01-01

    Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.

  7. Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing

    2017-04-01

    Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.

  8. A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage.

    PubMed

    Van derWerff, Harald; Van der Meijde, Mark; Jansma, Fokke; Van der Meer, Freek; Groothuis, Gert Jan

    2008-06-04

    Hydrocarbon leakage into the environment has large economic and environmental impact. Traditional methods for investigating seepages and their resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an efficient tool that offers a non-destructive investigation method. Optical remote sensing has been extensively tested for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, we investigate indirect manifestations of pipeline leakage by way of visualizing vegetation anomalies in airborne hyperspectral imagery. Agricultural land-use causes a heterogeneous landcover; variation in red edge position between fields was much larger than infield red edge position variation that could be related to hydrocarbon pollution. A moving and growing kernel procedure was developed to normalzie red edge values relative to values of neighbouring pixels to enhance pollution related anomalies in the image. Comparison of the spatial distribution of anomalies with geochemical data obtained by drilling showed that 8 out of 10 polluted sites were predicted correctly while 2 out of 30 sites that were predicted clean were actually polluted.

  9. A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage

    PubMed Central

    van der Werff, Harald; van der Meijde, Mark; Jansma, Fokke; van der Meer, Freek; Groothuis, Gert Jan

    2008-01-01

    Hydrocarbon leakage into the environment has large economic and environmental impact. Traditional methods for investigating seepages and their resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an efficient tool that offers a non-destructive investigation method. Optical remote sensing has been extensively tested for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, we investigate indirect manifestations of pipeline leakage by way of visualizing vegetation anomalies in airborne hyperspectral imagery. Agricultural land-use causes a heterogeneous landcover; variation in red edge position between fields was much larger than infield red edge position variation that could be related to hydrocarbon pollution. A moving and growing kernel procedure was developed to normalzie red edge values relative to values of neighbouring pixels to enhance pollution related anomalies in the image. Comparison of the spatial distribution of anomalies with geochemical data obtained by drilling showed that 8 out of 10 polluted sites were predicted correctly while 2 out of 30 sites that were predicted clean were actually polluted. PMID:27879905

  10. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  11. Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, S.A.

    1996-01-01

    In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less

  12. A geobotanical investigation based on linear discriminant and profile analyses of airborne Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.

    1987-01-01

    This paper discusses the application of linear discriminant and profile analyses to detailed investigation of an airborne Thematic Mapper Simulator (TMS) image collected over a geobotanical test site. The test site was located on the Keweenaw Peninsula of Michigan's Upper Peninsula, and remote sensing data collection coincided with the onset of leaf senescence in the regional deciduous flora. Linear discriminant analysis revealed that sites overlying soil geochemical anomalies were distinguishable from background sites by the reflectance and thermal emittance of the tree canopy imaged in the airborne TMS data. The correlation of individual bands with the linear discriminant function suggested that the TMS thermal Channel 7 (10.32-12.33 microns) contributed most, while TMS Bands 2 (0.53-0.60 microns), 3 (0.63-0.69 microns), and 5 (1.53-1.73 microns) contributed somewhat more modestly to the separation of anomalous and background sites imaged by the TMS. The observed changes in canopy reflectance and thermal emittance of the deciduous flora overlying geochemically anomalous areas are consistent with the biophysical changes which are known or presumed to occur as a result of injury induced in metal-stressed vegetation.

  13. Ground cover changes resulting from low-level camping stress on a remote site

    Treesearch

    R. E. Leonard; J. M. McBride; P. W. Conkling; J. L. McMahon

    1983-01-01

    This study reports the effects of low-level camping stress on vegetation in a remote site. South Big Garden Island in Penobscot Bay, Maine, was studied because (1) it had no prior recreational use; thus, comprehensive base line data could be obtained; and (2) the exact number of campers could be monitored throughout the study period. The continuous line-intercept...

  14. Airborne Remote Sensing of Trafficability in the Coastal Zone

    DTIC Science & Technology

    2009-01-01

    validation instruments: Analytical Spectral Devices (ASD) full-range spectrometer; light weight deflectometer ( LWD ), which measures dynamic deflection...liquid water absorption features. The corresponding bearing strength measured by the LWD was high at the shoreline site and low at the backdune site...REVIEW REMOTE SENSING FIGURE 7 Correlation of in situ grain size, moisture, and bearing strength measurements. Scatterplot of percent moisture vs LWD

  15. Comparison of Radionuclide Ratios in Atmospheric Nuclear Explosions and Nuclear Releases from Chernobyl and Fukushima seen in Gamma Ray Spectormetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.

    2013-05-01

    The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis ismore » a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.« less

  16. Evaluation of Crops Moisture Provision by Space Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Ilienko, Tetiana

    2016-08-01

    The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.

  17. Online Remote Sensing Interface

    NASA Technical Reports Server (NTRS)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  18. Mapping Near-Surface Salinization Using Long-wavelength AIRSAR

    NASA Technical Reports Server (NTRS)

    Paine, Jeffery G.

    2003-01-01

    In May 1999, NASA's Jet Propulsion Laboratory acquired airborne synthetic aperture radar (AIRSAR) data over the Hatchel and Montague Test Sites in Texas. We analyzed P- and L-band polarimetric radar data from these AIRSAR missions to assess whether AIRSAR could be used as a rapid and remote platform for screening large areas at risk for near-surface soil and water salinization. Ongoing geological, geophysical, and hydrological studies at the Hatchel Test Site in Runnels County and the Montague Test Site in Montague County have demonstrated the utility of high-resolution airborne electromagnetic (EM) induction in mapping electrical conductivity changes that accompany shallow natural and oil-field related salinization at these sites in the Colorado and Red River basins. We compared AIRSAR and airborne EM data quantitatively by (1) selecting representative flight lines from airborne EM surveys of the Hatchel and Montague sites, (2) extracting measurement locations and apparent conductivities at the highest available EM frequency, (3) identifying and extracting all P- and L-band backscatter intensities for all locations within 5 m of an airborne EM measurement, and (4) examining the spatial and magnitude relationships between apparent conductivity and all radar polarization and polarization-ratio combinations. For both test sites, backscatter intensity in all individual P- and L-band polarizations was slightly negatively correlated with apparent conductivity. In most modes this was manifested as a decrease in the range and magnitude of backscatter intensity as apparent conductivity increased. Select single-band and cross-band polarization ratios exhibited somewhat higher correlation with apparent conductivity by partly diminishing the dominance of the vegetation contribution to V backscatter intensity. The highest correlation with conductivity was obtained using the L-band vertical- to cross-polarization ratio, the P-band vertical- to L-band cross-polarization ratio, and the P-band vertical-to cross-polarization ratio. These correlations were higher for the more arid (and less electrically conductive) Hatchel Test Site than they were for the Montague Test Site.

  19. Remote control of an MR imaging study via tele-collaboration tools

    NASA Astrophysics Data System (ADS)

    Sullivan, John M., Jr.; Mullen, Julia S.; Benz, Udo A.; Schmidt, Karl F.; Murugavel, Murali; Chen, Wei; Ghadyani, Hamid

    2005-04-01

    In contrast to traditional 'video conferencing' the Access Grid (AG), developed by Argonne National Laboratory, is a collaboration of audio, video and shared application tools which provide the 'persistent presence' of each participant. Among the shared application tools are the ability to share viewing and control of presentations, browsers, images and movies. When used in conjunction with Virtual Network Computing (VNC) software, an investigator can interact with colleagues at a remote site, and control remote systems via local keyboard and mouse commands. This combination allows for effective viewing and discussion of information, i.e. data, images, and results. It is clear that such an approach when applied to the medical sciences will provide a means by which a team of experts can not only access, but interact and control medical devices for the purpose of experimentation, diagnosis, surgery and therapy. We present the development of an application node at our 4.7 Tesla MR magnet facility, and a demonstration of remote investigator control of the magnet. A local magnet operator performs manual tasks such as loading the test subject into the magnet and administering the stimulus associated with the functional MRI study. The remote investigator has complete control of the magnet console. S/he can adjust the gradient coil settings, the pulse sequence, image capture frequency, etc. A geographically distributed audience views and interacts with the remote investigator and local MR operator. This AG demonstration of MR magnet control illuminates the potential of untethered medical experiments, procedures and training.

  20. COVER Project and Earth resources research transition

    NASA Technical Reports Server (NTRS)

    Botkin, D. B.; Estes, J. E. (Principal Investigator)

    1986-01-01

    Results of research in the remote sensing of natural boreal forest vegetation (the COVER project) are summarized. The study objectives were to establish a baseline forest test site; develop transforms of LANDSAT MSS and TM data for forest composition, biomass, leaf area index, and net primary productivity; and perform tasks required for testing hypotheses regarding observed spectral responses to changes in leaf area index in aspen. In addition, the transfer and documentation of data collected in the COVER project (removed from the Johnson Space Center following the discontinuation of Earth resources research at that facility) is described.

  1. User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems

    NASA Technical Reports Server (NTRS)

    Ratajczak, Anthony F.

    1987-01-01

    The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.

  2. From ecological test site to geographic information system: lessons for the 1980's

    USGS Publications Warehouse

    Alexander, Robert H.

    1981-01-01

    Geographic information systems were common elements in two kinds of interdisciplinary regional demonstration projects in the 1970's. Ecological test sits attempted to provide for more efficient remote-sensing data delivery for regional environmental management. Regional environmental systems analysis attempted to formally describe and model the interacting regional social and environmental processes, including the resource-use decision making process. Lessons for the 1980's are drawn from recent evaluations and assessments of these programs, focusing on cost, rates of system development and technology transfer, program coordination, integrative analysis capability, and the involvement of system users and decision makers.

  3. User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems

    NASA Astrophysics Data System (ADS)

    Ratajczak, Anthony F.

    1987-03-01

    The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.

  4. Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.

    NASA Technical Reports Server (NTRS)

    Liang, T.; Mcnair, A. J.; Philipson, W. R.

    1977-01-01

    Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

  5. Modeling and Design of an Electro-Rheological Fluid Based Haptic System for Tele-Operation of Space Robots

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph

    2000-01-01

    For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.

  6. The First Government Sanctioned Delivery of Medical Supplies by Remotely Controlled Unmanned Aerial System (UAS)

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jones, Frank; Thorson, Taylor; Grube, Richard; Mellanson, Cecil; Joyce, Lee; Coggin, John; Kennedy, Jack

    2016-01-01

    The first government sanctioned delivery of medical supplies by UAS occurred at Wise, Virginia, on July 17, 2015. The "Let's Fly Wisely" event was a demonstration of the humanitarian use of UAS to facilitate delivery of medical supplies to remote or otherwise difficult-to-reach areas. The event was the result of coordinated efforts by a partnership which included the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), Virginia Polytechnic Institute, the Mid-Atlantic Aviation Partnership (MAAP), Flirtey Corporation, Lonesome Pine Airport, Remote Area Medical (RAM), Health Wagon, SEESPAN Aerial Interactive, Rx Partnership, and Wise County, Virginia. The historic event occurred during the annual Remote Area Medical clinic at the Wise County Fairgrounds. The medical supplies in small packages were delivered to the Wise County Fairgrounds from the Lonesome Pine Airport by UAS operated by Firtey. A larger supply of medical supplies were delivered to the Lonesome Pine Airport from the Tazewell County Airport by NASA Langley's SR22 UAS Surrogate Research aircraft. The UAS Surrogate aircraft was remotely controlled for most of the flight by a UAS Ground Control Station located at the Lonesome Pine Airport. The medical supplies were delivered from the UAS Surrogate to Flirtey for final delivery by Hex Multi-Rotor UAS in smaller packages and multiple trips to the fairgrounds. A Certificate of Authorization (COA) issued by the Federal Aviation Administration (FAA) designated the site as an authorized UAS test site. The paper will present additional details of the historic delivery of pharmaceuticals by UAS during the "Let's Fly Wisely" event. The paper will also provide details of NASA's SR22 UAS Surrogate Research aircraft. The UAS Surrogate was designed to investigate the procedures, aircraft sensors and other systems that may be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS).

  7. A Web Service and Interface for Remote Electronic Device Characterization

    ERIC Educational Resources Information Center

    Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.

    2011-01-01

    A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…

  8. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  9. Shrub sensitivity to recent warming across Arctic Alaska from dendrochronological and remote sensing records

    NASA Astrophysics Data System (ADS)

    Andreu-Hayles, Laia; Gaglioti, Benjamin V.; D'Arrigo, Rosanne; Anchukaitis, Kevin J.; Goetz, Scott

    2017-04-01

    Shrub expansion into Arctic and alpine tundra ecosystems has been documented during the last several decades based on repeat aerial photography, remote sensing, and ground-truthed estimates of vegetation cover. Today, summer temperatures limit the northern limit of Arctic shrubs, and warmer summers have been shown to have higher NDVI in shrub tundra zones. Although global warming has been considered the main driver of shrub expansion, soil types, shrub species and non-linear responses can moderate how sensitive shrub growth is to climate warming. Here, we assess the sensitivity of shrub growth to inter-annual climate variability using a newly generated network of 18 shrub ring-width chronologies in the tundra regions of the North Slope of Alaska. We then test whether the dendroclimatic patterns we observe at individual sites are representative of the broader region using remotely sensed productivity data (NDVI). The common period of both satellite and shrub ring data from all sites was 1982 to 2010. Instrumental daily data from Toolik Lake and interpolated products was compared to detrended growth rates of Salix spp. (willow) and Alnus sp. (alder), located on and to the west of the Dalton Highway ( 68-70°N 148°W). Whereas summer temperatures were found to enhance shrub growth, warm temperatures outside the core of the growing season have the inverse effect in some chronologies. All tundra shrub chronologies shared a common strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In this work we will discuss shrub climate sensitive across Alaska and how NDVI data compared to the shrub ring-width network.

  10. Testing the regionalization of a SVAT model for a region with high observation density

    NASA Astrophysics Data System (ADS)

    Eiermann, Sven; Thies, Boris; Bendix, Jörg

    2014-05-01

    The variable soil moisture is an important quantity in weather and climate investigations, because it has an essential influence on the energy exchange between the land surface and the atmosphere. However the recording of soil moisture in high spatio-temporal resolution is problematic. The planned Tandem-L mission of the German Aerospace Center (DLR) with an innovative L-band radar on board provides the opportunity to get daily soil moisture data at a spatial resolution of 50 meters. Within the Helmholtz Alliance Remote Sensing and Earth System Dynamics this data is planned to be used to regionalize a Soil Vegetation Atmosphere Transfer Model, in order to analyze the energy flux and the gas exchange and to improve the prediction of the water exchange between soil, vegetation and atmosphere. As investigation areas selected regions of the TERENO (TERrestrial ENviromental Observatoria) test sites and, later on, a region in South Ecuador will be used, for which data for the model initialization and validation are available. The reason for testing the method for the TERENO test sites first is the good data basis as a result of the already established high observation density there. The poster will present the methods being used for the model adaptation for the TERENO test sites and discuss the improvements achieved by these methods.

  11. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks at WSRC.« less

  12. The Economics of Remote Sensing for Planning and Construction

    ERIC Educational Resources Information Center

    Rottweiler, Kurt A.; Wilson, Jerry C.

    1971-01-01

    Discusses the latest in remote sensing technology including multispectral scanners, thermal scanners, aero magnetometers and side looking radar. Describes the application of this technology to preconstruction site surveys. (JF)

  13. Active Satellite Sensors for the needs of Cultural Heritage: Introducing SAR applications in Cyprus through ATHENA project

    NASA Astrophysics Data System (ADS)

    Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2017-04-01

    Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through SAR Interferometry. The current paper presents some preliminary results from the archaeological site of "Nea Paphos", addressing the potential use of the radar technology.

  14. Applications of remote sensing to estuarine management. [environmental surveys of the Chesapeake Bay (U.S.)

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.

    1976-01-01

    Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.

  15. Screening tests for the rapid detection of diarrhetic shellfish toxins in Washington State.

    PubMed

    Eberhart, Bich-Thuy L; Moore, Leslie K; Harrington, Neil; Adams, Nicolaus G; Borchert, Jerry; Trainer, Vera L

    2013-09-30

    The illness of three people due to diarrhetic shellfish poisoning (DSP) following their ingestion of recreationally harvested mussels from Sequim Bay State Park in the summer of 2011, resulted in intensified monitoring for diarrhetic shellfish toxins (DSTs) in Washington State. Rapid testing at remote sites was proposed as a means to provide early warning of DST events in order to protect human health and allow growers to test "pre-harvest" shellfish samples, thereby preventing harvest of toxic product that would later be destroyed or recalled. Tissue homogenates from several shellfish species collected from two sites in Sequim Bay, WA in the summer 2012, as well as other sites throughout Puget Sound, were analyzed using three rapid screening methods: a lateral flow antibody-based test strip (Jellett Rapid Test), an enzyme-linked immunosorbent assay (ELISA) and a protein phosphatase 2A inhibition assay (PP2A). The results were compared to the standard regulatory method of liquid chromatography coupled with tandem mass spectroscopy (LC-MS/MS). The Jellett Rapid Test for DSP gave an unacceptable number of false negatives due to incomplete extraction of DSTs using the manufacturer's recommended method while the ELISA antibody had low cross-reactivity with dinophysistoxin-1, the major toxin isomer in shellfish from the region. The PP2A test showed the greatest promise as a screening tool for Washington State shellfish harvesters.

  16. Screening Tests for the Rapid Detection of Diarrhetic Shellfish Toxins in Washington State

    PubMed Central

    Eberhart, Bich-Thuy L.; Moore, Leslie K.; Harrington, Neil; Adams, Nicolaus G.; Borchert, Jerry; Trainer, Vera L.

    2013-01-01

    The illness of three people due to diarrhetic shellfish poisoning (DSP) following their ingestion of recreationally harvested mussels from Sequim Bay State Park in the summer of 2011, resulted in intensified monitoring for diarrhetic shellfish toxins (DSTs) in Washington State. Rapid testing at remote sites was proposed as a means to provide early warning of DST events in order to protect human health and allow growers to test “pre-harvest” shellfish samples, thereby preventing harvest of toxic product that would later be destroyed or recalled. Tissue homogenates from several shellfish species collected from two sites in Sequim Bay, WA in the summer 2012, as well as other sites throughout Puget Sound, were analyzed using three rapid screening methods: a lateral flow antibody-based test strip (Jellett Rapid Test), an enzyme-linked immunosorbent assay (ELISA) and a protein phosphatase 2A inhibition assay (PP2A). The results were compared to the standard regulatory method of liquid chromatography coupled with tandem mass spectroscopy (LC-MS/MS). The Jellett Rapid Test for DSP gave an unacceptable number of false negatives due to incomplete extraction of DSTs using the manufacturer’s recommended method while the ELISA antibody had low cross-reactivity with dinophysistoxin-1, the major toxin isomer in shellfish from the region. The PP2A test showed the greatest promise as a screening tool for Washington State shellfish harvesters. PMID:24084788

  17. Nuclear power: Siting and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Openshaw, S.

    1986-01-01

    By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtainedmore » from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety.« less

  18. Photographic copy of photograph, dated September 1973 (original in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1973 (original in the possession of CSSD-HO, Huntsville AL). Photographer unknown. Aerial photograph (west to 0 east) of remote sprint launch site #1. In background are waste stabilization pounds. On next row are the sprint cells. In foreground are the remote launch operations building on left and the limited area sentry station on right. The view illustrates the relatively flat topography of the SRMSC area Benjamin Halpern, 5-18 October 1992 - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 1, Just South of Ramsey-Cavalier County line & 3 miles West of Hampden, ND, Nekoma, Cavalier County, ND

  19. A teleoperated system for remote site characterization

    NASA Technical Reports Server (NTRS)

    Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon

    1994-01-01

    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).

  20. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ni; Gu, Lianhong; Black, T. Andrew

    Here, soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zonemore » soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites.« less

  1. Theater Nuclear Force Survivability, Security and Safety Instrumentation. Volume I. Engineering Development Phase - Fiscal Year 1980.

    DTIC Science & Technology

    1980-12-31

    development and acquisition program. It is generally agreed that the measures of merit in system acquisition programs are costs, schedule, and achievement...very few system acquisitions have successfully achieved their predicted measures of merit. The reasons for the poor record have been attributed to a...and Logistics -- The instrumentation must be easily maintained and easily transported to remote test sites in CONUS and Europe. 13 4. Useful Lifetime

  2. Aviation's role in earth resources surveys

    NASA Technical Reports Server (NTRS)

    Syvertson, C. A.; Mulholland, D. R.

    1972-01-01

    The role of satellites designed to make a wide variety of earth observations is discussed along with the renewed interest in the use of aircraft as platforms for similar and complementary earth resources surveys. Surveys covering the areas of forestry, agriculture, hydrology, oceanography, geology, and geography are included. Aerials surveys equipped for nonphotographic remote sensing and aircraft flights synchronized with satellite observations to provide correlated data are discussed. Photographs are shown to illustrate preliminary results from several of the test sites.

  3. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  4. Analysis of Antarctic Remote-Site Automatic Weather Station Data for Period January 1979 - February 1980.

    DTIC Science & Technology

    1982-06-01

    usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both

  5. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2007-01-01

    Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  6. Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions

    NASA Astrophysics Data System (ADS)

    Gentry, Diana M.; Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2017-10-01

    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions.

  7. Radiometric characterization of hyperspectral imagers using multispectral sensors

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-08-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  8. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  9. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test.

    PubMed

    Yingst, R A; Berger, J; Cohen, B A; Hynek, B; Schmidt, M E

    2017-03-01

    We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human "rover" to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area.

  10. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through the use of remote sensing. In 2007, NASA awarded six competitively chosen projects in Space Archaeology through an open solicitation whose purpose, among several, was to addresses the potential benefits to modern society that can be derived through a better understanding of how past cultures succeeded or failed to adapt to local, regional, and global change. A further objective of NASA's space archaeology is the protection and preservation of cultural heritage sites while planning for the sustainable development of cultural resources. NASA s archaeological approach through remote sensing builds on traditional methods of aerial archaeology (i.e. crop marks) and utilizes advanced technologies for collecting and analyzing archaeological data from digital imagery. NASA s archaeological research and application projects using remote sensing have been conducted throughout the world. In North America, NASA has imaged prehistoric mound sites in Mississippi; prehistoric shell middens in Louisiana, Puebloan sites in New Mexico and more recently the sites associated with the Lewis and Clark Corps of Discovery Expedition (1804-1806). In Central America, NASA archaeologists have researched Mayan sites throughout the region, including the Yucatan and Costa Rica, as well as Olmec localities in Veracruz. Other data has been collected over Angkor, Cambodia, Giza in Egypt, the lost city of Ubar on the Arabian Peninsula.

  11. CERES and the S'COOL Project

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Young, David F.; Barkstrom, Bruce R.; Wielicki, Bruce A.

    1997-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from a Japanese launch site in November 1997. This instrument is a follow-on to the Earth Radiation Budget Experiment (ERBE) begun in the 1980's. The instrument will measure the radiation budget - incoming and outgoing radiant energy - of the Earth. It will establish a baseline and look for climatic trends. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children from around the globe in making ground truth measurements at the time of a CERES overpass. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. This experience is helping guide the development of the S'COOL project. National testing is planned for April 1997, international testing for July 1997, and global testing for October 1997. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students.

  12. Automatic archaeological feature extraction from satellite VHR images

    NASA Astrophysics Data System (ADS)

    Jahjah, Munzer; Ulivieri, Carlo

    2010-05-01

    Archaeological applications need a methodological approach on a variable scale able to satisfy the intra-site (excavation) and the inter-site (survey, environmental research). The increased availability of high resolution and micro-scale data has substantially favoured archaeological applications and the consequent use of GIS platforms for reconstruction of archaeological landscapes based on remotely sensed data. Feature extraction of multispectral remotely sensing image is an important task before any further processing. High resolution remote sensing data, especially panchromatic, is an important input for the analysis of various types of image characteristics; it plays an important role in the visual systems for recognition and interpretation of given data. The methods proposed rely on an object-oriented approach based on a theory for the analysis of spatial structures called mathematical morphology. The term "morphology" stems from the fact that it aims at analysing object shapes and forms. It is mathematical in the sense that the analysis is based on the set theory, integral geometry, and lattice algebra. Mathematical morphology has proven to be a powerful image analysis technique; two-dimensional grey tone images are seen as three-dimensional sets by associating each image pixel with an elevation proportional to its intensity level. An object of known shape and size, called the structuring element, is then used to investigate the morphology of the input set. This is achieved by positioning the origin of the structuring element to every possible position of the space and testing, for each position, whether the structuring element either is included or has a nonempty intersection with the studied set. The shape and size of the structuring element must be selected according to the morphology of the searched image structures. Other two feature extraction techniques were used, eCognition and ENVI module SW, in order to compare the results. These techniques were applied to different archaeological sites in Turkmenistan (Nisa) and in Iraq (Babylon); a further change detection analysis was applied to the Babylon site using two HR images as a pre-post second gulf war. We had different results or outputs, taking into consideration the fact that the operative scale of sensed data determines the final result of the elaboration and the output of the information quality, because each of them was sensitive to specific shapes in each input image, we had mapped linear and nonlinear objects, updating archaeological cartography, automatic change detection analysis for the Babylon site. The discussion of these techniques has the objective to provide the archaeological team with new instruments for the orientation and the planning of a remote sensing application.

  13. Teletoxicology: Patient Assessment Using Wearable Audiovisual Streaming Technology.

    PubMed

    Skolnik, Aaron B; Chai, Peter R; Dameff, Christian; Gerkin, Richard; Monas, Jessica; Padilla-Jones, Angela; Curry, Steven

    2016-12-01

    Audiovisual streaming technologies allow detailed remote patient assessment and have been suggested to change management and enhance triage. The advent of wearable, head-mounted devices (HMDs) permits advanced teletoxicology at a relatively low cost. A previously published pilot study supports the feasibility of using the HMD Google Glass® (Google Inc.; Mountain View, CA) for teletoxicology consultation. This study examines the reliability, accuracy, and precision of the poisoned patient assessment when performed remotely via Google Glass®. A prospective observational cohort study was performed on 50 patients admitted to a tertiary care center inpatient toxicology service. Toxicology fellows wore Google Glass® and transmitted secure, real-time video and audio of the initial physical examination to a remote investigator not involved in the subject's care. High-resolution still photos of electrocardiograms (ECGs) were transmitted to the remote investigator. On-site and remote investigators recorded physical examination findings and ECG interpretation. Both investigators completed a brief survey about the acceptability and reliability of the streaming technology for each encounter. Kappa scores and simple agreement were calculated for each examination finding and electrocardiogram parameter. Reliability scores and reliability difference were calculated and compared for each encounter. Data were available for analysis of 17 categories of examination and ECG findings. Simple agreement between on-site and remote investigators ranged from 68 to 100 % (median = 94 %, IQR = 10.5). Kappa scores could be calculated for 11/17 parameters and demonstrated slight to fair agreement for two parameters and moderate to almost perfect agreement for nine parameters (median = 0.653; substantial agreement). The lowest Kappa scores were for pupil size and response to light. On a 100-mm visual analog scale (VAS), mean comfort level was 93 and mean reliability rating was 89 for on-site investigators. For remote users, the mean comfort and reliability ratings were 99 and 86, respectively. The average difference in reliability scores between on-site and remote investigators was 2.6, with the difference increasing as reliability scores decreased. Remote evaluation of poisoned patients via Google Glass® is possible with a high degree of agreement on examination findings and ECG interpretation. Evaluation of pupil size and response to light is limited, likely by the quality of streaming video. Users of Google Glass® for teletoxicology reported high levels of comfort with the technology and found it reliable, though as reported reliability decreased, remote users were most affected. Further study should compare patient-centered outcomes when using HMDs for consultation to those resulting from telephone consultation.

  14. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.

  15. Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Edgett, Kenneth S.

    1994-01-01

    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.

  16. Feasibility of remote administration of the Fundamentals of Laparoscopic Surgery (FLS) skills test.

    PubMed

    Okrainec, Allan; Vassiliou, Melina; Kapoor, Andrew; Pitzul, Kristen; Henao, Oscar; Kaneva, Pepa; Jackson, Timothy; Ritter, E Matt

    2013-11-01

    Fundamentals of Laparoscopic Surgery (FLS) certification testing currently is offered at accredited test centers or at select surgical conferences. Maintaining these test centers requires considerable investment in human and financial resources. Additionally, it can be challenging for individuals outside North America to become FLS certified. The objective of this pilot study was to assess the feasibility of remotely administering and scoring the FLS examination using live videoconferencing compared with standard onsite testing. This parallel mixed-methods study used both FLS scoring data and participant feedback to determine the barriers to feasibility of remote proctoring for the FLS examination. Participants were tested at two accredited FLS testing centers. An official FLS proctor administered and scored the FLS exam remotely while another onsite proctor provided a live score of participants' performance. Participant feedback was collected during testing. Interrater reliabilities of onsite and remote FLS scoring data were compared using intraclass correlation coefficients (ICCs). Participant feedback was analyzed using modified grounded theory to identify themes for barriers to feasibility. The scores of the remote and onsite proctors showed excellent interrater reliability in the total FLS (ICC 0.995, CI [0.985-0.998]). Several barriers led to critical errors in remote scoring, but most were accompanied by a solution incorporated into the study protocol. The most common barrier was the chain of custody for exam accessories. The results of this pilot study suggest that remote administration of the FLS has the potential to decrease costs without altering test-taker scores or exam validity. Further research is required to validate protocols for remote and onsite proctors and to direct execution of these protocols in a controlled environment identical to current FLS test administration.

  17. Assessment of radioisotope heaters for remote terrestrial applications

    NASA Astrophysics Data System (ADS)

    Uherka, Kenneth L.

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  18. Controlling mechanisms over the internet

    NASA Astrophysics Data System (ADS)

    Lumia, Ronald

    1997-01-01

    The internet, widely available throughout the world, can be used to control robots, machine tools, and other mechanisms. This paper will describe a low-cost virtual collaborative environment (VCE) which will connect users with distant equipment. The system is based on PC technology, and incorporates off-line-programming with on-line execution. A remote user programs the systems graphically and simulates the motions and actions of the mechanism until satisfied with the functionality of the program. The program is then transferred from the remote site to the local site where the real equipment exists. At the local site, the simulation is run again to check the program from a safety standpoint. Then, the local user runs the program on the real equipment. During execution, a camera in the real workspace provides an image back to the remote user through a teleconferencing system. The system costs approximately 12,500 dollars and represents a low-cost alternative to the Sandia National Laboratories VCE.

  19. Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Chirici, Gherardo; Chiesi, Marta; Corona, Piermaria; Salvati, Riccardo; Papale, Dario; Fibbi, Luca; Sirca, Costantino; Spano, Donatella; Duce, Pierpaolo; Marras, Serena; Matteucci, Giorgio; Cescatti, Alessandro; Maselli, Fabio

    2016-02-01

    Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).

  20. Nevada National Security Site Environmental Report 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Wills, ed

    2012-09-12

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NSO website at http://www.nv.energy.gov/library/publications/aser.aspx. This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, 'Environment,more » Safety and Health Reporting.' Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2011 at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory-Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.« less

  1. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  2. Application of Geographic Information System and Remotesensing in effective solid waste disposal sites selection in Wukro town, Tigray, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.

    2014-11-01

    Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.

  3. TVA's photovoltaic activities

    NASA Astrophysics Data System (ADS)

    Chinery, G. T.; Wood, J. M.

    1985-08-01

    This paper describes the Tennessee Valley Authority's (TVA) current photovoltaic (PV) activities. These include four roof-mounted 4 kWp residential arrays (which are also Southeast Residential Station field sites) and two 5-6 kWp commercial sites, all grid connected with no battery storage. Also included are approximately 30 kWp of non-grid-connected remote sites with storage (remote lighting, weather stations, etc.). Monitoring results from the two 'online' residential systems are presented. Finally, TVA's future PV plans are discussed, both with respect to interfacing with a multitude of residential and commercial cogenerators and with regard to possible TVA PV central station plans.

  4. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  5. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    NASA Astrophysics Data System (ADS)

    Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-01

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.

  6. Overview of Ground Air Quality Measurements and Their Links to Airborne, Remote Sensing and Model Studies during the KORUS-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Lee, G.; Ahn, J. Y.; Chang, L. S.; Kim, J.; Park, R.

    2017-12-01

    During the KORUS-AQ, extensive sets of chemical measurements for reactive gases and aerosol species were made at 3 major sites on upwind island (Baengyeong Island), urban (Olympic Park in Seoul) and downwind rural forest location (Taewha Forest). Also, intensive aerosol size and composition observations from 5 NIER super sites, 3 NIMR monitoring sites, and 5 other university sites were currently facilitated in the KORUS-AQ data set. In addition, air quality criteria species data from 264 nation-wide ground monitoring sites with 5 minute temporal resolution during the whole campaign period were supplemented to cover mostly in densely populated urban areas, but sparsely in rural areas. The specific objectives of these ground sites were to provide highly comprehensive data set to coordinate the close collaborations among other research platforms including airborne measurements, remote sensing, and model studies. The continuous measurements at ground sites were well compared with repetitive low-level aircraft observations of NASA's DC-8 over Olympic Park and Taewha Forest site. Similarly, many ground measurements enabled the validation of chemical transport models and the remote sensing observations from ground and NASA's King Air. The observed results from inter-comparison studies in many reactive gases and aerosol compositions between different measurement methods and platforms will be presented. Compiling data sets from ground sites, source-wise analysis for ozone and aerosol, their in-situ formations, and transport characteristics by local/regional circulation will be discussed, too.

  7. Medics as a channel for worksite health promotion in remote global locations.

    PubMed

    Bisits Bullen, Piroska A

    2012-01-01

    In the energy and mining sectors, it is common for employees to work in geographically remote locations, often with a medic for emergency response. This study evaluated an intervention to increase the number of medics conducting health promotion in remote worksites. Interviews were conducted to gather data for informing intervention and survey development. The intervention was evaluated in a quasiexperimental posttest-only comparison group design using survey data collected at baseline and again after 12 months. The intervention was implemented in remote worksites (N  =  201). There were 96 worksites in the intervention condition and 105 sites in the control condition. The target population was medics, including nurses, doctors, and paramedics, operating in remote worksites in 44 countries. The intervention was a series of campaign tool kits. The tool kits were adapted to the remote environment and could be customized for culture, language, and education level. The survey assessed frequency of health promotion activities, satisfaction with the intervention, and barriers to implementation. Survey data were analyzed using descriptive statistics and χ(2) tests. Interview results were coded to identify themes. Most medics (88%) in the intervention group reported running "tool box talks" (short education sessions) on at least a monthly basis, compared with 78% in the comparison group (p  =  .056). The trend was similar for displaying posters (71% vs. 55%; p  =  .021) and advocating for policy changes (84% vs. 71%; p  =  .027). Medic satisfaction was high. Difficulty distributing tool kits was the main barrier to implementation. When provided with appropriate tools, medics may be an ideal channel for health promotion in remote worksites.

  8. Evaluation of vegetation indices for rangeland biomass estimation in the Kimberley area of Western Australia

    NASA Astrophysics Data System (ADS)

    Mundava, C.; Helmholz, P.; Schut, A. G. T.; Corner, R.; McAtee, B.; Lamb, D. W.

    2014-09-01

    The objective of this paper is to test the relationships between Above Ground Biomass (AGB) and remotely sensed vegetation indices for AGB assessments in the Kimberley area in Western Australia. For 19 different sites, vegetation indices were derived from eight Landsat ETM+ scenes over a period of two years (2011-2013). The sites were divided into three groups (Open plains, Bunch grasses and Spinifex) based on similarities in dominant vegetation types. Dry and green biomass fractions were measured at these sites. Single and multiple regression relationships between vegetation indices and green and total AGB were calibrated and validated using a "leave site out" cross validation. Four tests were compared: (1) relationships between AGB and vegetation indices combining all sites; (2) separate relationships per site group; (3) multiple regressions including selected vegetation indices per site group; and (4) as in 3 but including rainfall and elevation data. Results indicate that relationships based on single vegetation indices are moderately accurate for green biomass in wide open plains covered with annual grasses. The cross-validation results for green AGB improved for a combination of indices for the Open plains and Bunch grasses sites, but not for Spinifex sites. When rainfall and elevation data are included, cross validation improved slightly with a Q2 of 0.49-0.72 for Open plains and Bunch grasses sites respectively. Cross validation results for total AGB were moderately accurate (Q2 of 0.41) for Open plains but weak or absent for other site groups despite good calibration results, indicating strong influence of site-specific factors.

  9. Field Comparisons of Three Biomarker Detection Methods in Icelandic Mars Analogue Environments

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Amador, E. S.; Cable, M. L.; Chaudry, N.; Cullen, T.; Jacobsen, M.; Murusekan, G.; Schwieterman, E.; Stevens, A.; Stockton, A.; Yin, C.; Cullen, D.; Geppert, W.

    2014-12-01

    The ability to estimate the spatial and temporal distributions of biomarkers has been identified as a key need for planning life detection strategies. In a typical planetary exploration scenario, sampling site selection will be informed only by remote sensing data; however, if a difference of a few tens of meters, or centimeters, makes a significant difference in the results, science objectives may not be met. We conducted an analogue planetary expedition to test the correlation of three common biomarker detection methods -- cell counts through fluorescence microscopy, ATP quantification, and quantitative PCR with universal primer sets (bacteria, archaea, and fungi) -- and their spatial scale representativeness. Sampling sites in recent Icelandic lava fields (Fimmvörđuháls and Eldfell) spanned four nested spatial scales: 1 m, 10 m, 100 m, and > 1 km. Each site was homogeneous at typical 'remote sampling' resolution (overall temperature, apparent moisture content, and regolith grain size). No correlation between cell counts and either ATP or qPCR data was significant at any distance scale; ATP quantification and the archaeal and fungal qPCR data showed a marginal negative correlation at the 1 m level. Visible cell count data was statistically site-dependent for sites 10 m and 100 m apart, but not for sites > 1 km apart, whereas ATP results and qPCR data showed site dependence at all four scales. Distance had no significant effect on variability in cell counts and qPCR data, but was positively correlated with ATP variability. These results highlight the difficulty of choosing a 'good' biomarker: not only may different methods yield conflicting results, but they may also be differentially representative of the overall area. We intend to expand on this work with a follow-up campaign using comprehensive assays of physicochemical site properties to better distinguish between effects of environmental variability and intrinsic biomarker variability.

  10. Mapping ecological states in a complex environment

    NASA Astrophysics Data System (ADS)

    Steele, C. M.; Bestelmeyer, B.; Burkett, L. M.; Ayers, E.; Romig, K.; Slaughter, A.

    2013-12-01

    The vegetation of northern Chihuahuan Desert rangelands is sparse, heterogeneous and for most of the year, consists of a large proportion of non-photosynthetic material. The soils in this area are spectrally bright and variable in their reflectance properties. Both factors provide challenges to the application of remote sensing for estimating canopy variables (e.g., leaf area index, biomass, percentage canopy cover, primary production). Additionally, with reference to current paradigms of rangeland health assessment, remotely-sensed estimates of canopy variables have limited practical use to the rangeland manager if they are not placed in the context of ecological site and ecological state. To address these challenges, we created a multifactor classification system based on the USDA-NRCS ecological site schema and associated state-and-transition models to map ecological states on desert rangelands in southern New Mexico. Applying this system using per-pixel image processing techniques and multispectral, remotely sensed imagery raised other challenges. Per-pixel image classification relies upon the spectral information in each pixel alone, there is no reference to the spatial context of the pixel and its relationship with its neighbors. Ecological state classes may have direct relevance to managers but the non-unique spectral properties of different ecological state classes in our study area means that per-pixel classification of multispectral data performs poorly in discriminating between different ecological states. We found that image interpreters who are familiar with the landscape and its associated ecological site descriptions perform better than per-pixel classification techniques in assigning ecological states. However, two important issues affect manual classification methods: subjectivity of interpretation and reproducibility of results. An alternative to per-pixel classification and manual interpretation is object-based image analysis. Object-based image analysis provides a platform for classification that more closely resembles human recognition of objects within a remotely sensed image. The analysis presented here compares multiple thematic maps created for test locations on the USDA-ARS Jornada Experimental Range ranch. Three study sites in different pastures, each 300 ha in size, were selected for comparison on the basis of their ecological site type (';Clayey', ';Sandy' and a combination of both) and the degree of complexity of vegetation cover. Thematic maps were produced for each study site using (i) manual interpretation of digital aerial photography (by five independent interpreters); (ii) object-oriented, decision-tree classification of fine and moderate spatial resolution imagery (Quickbird; Landsat Thematic Mapper) and (iii) ground survey. To identify areas of uncertainty, we compared agreement in location, areal extent and class assignation between 5 independently produced, manually-digitized ecological state maps and with the map created from ground survey. Location, areal extent and class assignation of the map produced by object-oriented classification was also assessed with reference to the ground survey map.

  11. Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection

    USGS Publications Warehouse

    Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.

    2015-01-01

    The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.

  12. Remote sensing as a tool for estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.

    1979-01-01

    The Universal Soil Loss Equation is a frequently used methodology for estimating soil erosion potential. The Universal Soil Loss Equation requires a variety of types of geographic information (e.g. topographic slope, soil erodibility, land use, crop type, and soil conservation practice) in order to function. This information is traditionally gathered from topographic maps, soil surveys, field surveys, and interviews with farmers. Remote sensing data sources and interpretation techniques provide an alternative method for collecting information regarding land use, crop type, and soil conservation practice. Airphoto interpretation techniques and medium altitude, multi-date color and color infrared positive transparencies (70mm) were utilized in this study to determine their effectiveness for gathering the desired land use/land cover data. Successful results were obtained within the test site, a 6136 hectare watershed in Dane County, Wisconsin.

  13. Monitoring system including an electronic sensor platform and an interrogation transceiver

    DOEpatents

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  14. The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites

    DTIC Science & Technology

    1990-12-01

    THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to

  15. Assessing indicators of rangeland health with remote sensing in southeast Arizona

    Treesearch

    Jared Buono; Philip Heilman; David Williams; Phillip Guertin

    2005-01-01

    The goal of this study was to scale up ground-based range assessments to ranch and landscape scales in southeast Arizona using remote sensing and minimum amount of field data collection. Remotely sensed metrics of canopy cover, biomass, and mesquite composition were used to assess soil and site stability and biotic integrity. Ground-based assessments were conducted on...

  16. Energy and remote sensing

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.

  17. A Study of the Communication Capabilities of the OPARS Flight Planning System for Various Levels of Demand.

    DTIC Science & Technology

    1980-03-01

    Oceanography Center (FNOC) is currently testing and evaluating a computerized flight plan system, referred to, for short, as OPARS. This sytem , developed to...replace the Lockheed Jetplan flight plan sytem , provides users at remote sites with direct access to the FNOC computer via 11 telephone lines. The...validity, but only for format. For example, an entry of ABCE , as the four- letter identification code for the destination airfield, would be accepted

  18. Medical student evaluations of lectures attended in person or from rural sites via interactive videoconferencing.

    PubMed

    Callas, Peter W; Bertsch, Tania F; Caputo, Michael P; Flynn, Brian S; Doheny-Farina, Stephen; Ricci, Michael A

    2004-01-01

    Interactive videoconferencing may be an effective way for medical students on remote rotations to attend teaching sessions at the main campus. To compare medical student evaluations of lectures for those attending in person and those attending through interactive videoconferencing. Lecture evaluations were completed by medical students on University of Vermont College of Medicine clinical clerkship rotations. Students on clerkships at rural sites attended lectures using our telemedicine network. Responses from in-person and remote attendees were compared. Evaluation forms for 110 lectures were received from 648 in-person and 255 remote attendees. All evaluation items were rated "good" or "excellent" by at least 95% of in-person attendees. Over 90% of remote attendees rated nontelemedicine evaluation items, such as appropriateness of lecture topic for students, as good or excellent. Ratings of telemedicine-specific questions, such as ability to hear the lecturer, were lower. Level of satisfaction was high for most aspects of remote lecture attendance, although not quite as high as for in-person attendance. Improved technical reliability would likely increase remote attendee satisfaction. Overall, lecture attendance using videoconferencing was found to be an acceptable alternative to travel for medical students in rural clerkships.

  19. Regional glucose utilization in infarcted and remote myocardium: its relation to coronary anatomy and perfusion.

    PubMed

    Fragasso, G; Chierchia, S L; Landoni, C; Lucignani, G; Rossetti, E; Sciammarella, M; Vanoli, G E; Fazio, F

    1998-07-01

    We studied the relationship between coronary anatomy, perfusion and metabolism in myocardial segments exhibiting transient and persistent perfusion defects on stress/rest 99Tcm-MIBI single photon emission tomography in 35 patients (31 males, 4 females, mean age 56 +/- 7 years) with a previous myocardial infarction. Quantitative coronary angiography and assessment of myocardial perfusion reserve and glucose metabolism were performed within 1 week of one another. Perfusion was assessed by SPET after the intravenous injection of 740 MBq of 99Tcm-MIBI at rest and after exercise. Regional myocardial glucose metabolism was assessed by position emission tomography at rest (200 MBq of 18F-2-deoxyglucose, FDG) after an overnight fast with no glucose loading. All 35 patients exhibited persistent perfusion defects consistent with the clinically identified infarct site, and 27 (77%) also showed various degrees of within-infarct FDG uptake; 11 patients developed exercise-induced transient perfusion defects within, or in the vicinity of, 15 infarct segments and resting FDG uptake was present in 10 of these segments (67%). Five patients also showed exercise-induced transient perfusion defects in nine segments remote from the site of infarct: resting FDG uptake was present in six of these regions (67%). Finally, nine patients had increased glucose uptake in non-infarcted regions not showing transient perfusion defects upon exercise testing and perfused by coronary arteries with only minor irregularities. Our results confirm the presence of viable tissue in a large proportion of infarct sites. Moreover, FDG uptake can be seen in regions perfused by coronary arteries showing minor irregularities, not necessarily resulting in detectable transient perfusion defects on a MIBI stress scan. Since the clinical significance of such findings is not clear, further studies should be conducted to assess the long-term evolution of perfusion, function and metabolism in non-revascularized patients of those remote areas which are apparently normally perfused, but show abnormal fasting FDG uptake after myocardial infarction. Such studies may have important implications for the management of post-infarct patients, as the preservation of coronary vasodilator reserve and myocardial metabolism in remote myocardium may be seen as an additional goal in the treatment of such patients.

  20. Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics

    DTIC Science & Technology

    2008-07-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5652--08-9137 Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics July...NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Field Test on the Feasibility of Remoting HF Antenna...optic link was employed to remote a high-frequency ( HF , 2-30 MHz) direction-finding (DF) array. The test link comprised a seven-element “L” array

  1. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  2. Intraoperative Cochlear Implant Device Testing Utilizing an Automated Remote System: A Prospective Pilot Study.

    PubMed

    Lohmann, Amanda R; Carlson, Matthew L; Sladen, Douglas P

    2018-03-01

    Intraoperative cochlear implant device testing provides valuable information regarding device integrity, electrode position, and may assist with determining initial stimulation settings. Manual intraoperative device testing during cochlear implantation requires the time and expertise of a trained audiologist. The purpose of the current study is to investigate the feasibility of using automated remote intraoperative cochlear implant reverse telemetry testing as an alternative to standard testing. Prospective pilot study evaluating intraoperative remote automated impedance and Automatic Neural Response Telemetry (AutoNRT) testing in 34 consecutive cochlear implant surgeries using the Intraoperative Remote Assistant (Cochlear Nucleus CR120). In all cases, remote intraoperative device testing was performed by trained operating room staff. A comparison was made to the "gold standard" of manual testing by an experienced cochlear implant audiologist. Electrode position and absence of tip fold-over was confirmed using plain film x-ray. Automated remote reverse telemetry testing was successfully completed in all patients. Intraoperative x-ray demonstrated normal electrode position without tip fold-over. Average impedance values were significantly higher using standard testing versus CR120 remote testing (standard mean 10.7 kΩ, SD 1.2 vs. CR120 mean 7.5 kΩ, SD 0.7, p < 0.001). There was strong agreement between standard manual testing and remote automated testing with regard to the presence of open or short circuits along the array. There were, however, two cases in which standard testing identified an open circuit, when CR120 testing showed the circuit to be closed. Neural responses were successfully obtained in all patients using both systems. There was no difference in basal electrode responses (standard mean 195.0 μV, SD 14.10 vs. CR120 194.5 μV, SD 14.23; p = 0.7814); however, more favorable (lower μV amplitude) results were obtained with the remote automated system in the apical 10 electrodes (standard 185.4 μV, SD 11.69 vs. CR120 177.0 μV, SD 11.57; p value < 0.001). These preliminary data demonstrate that intraoperative cochlear implant device testing using a remote automated system is feasible. This system may be useful for cochlear implant programs with limited audiology support or for programs looking to streamline intraoperative device testing protocols. Future studies with larger patient enrollment are required to validate these promising, but preliminary, findings.

  3. Remote viewing.

    PubMed

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  4. Automobile gross emitter screening with remote sensing data using objective-oriented neural network.

    PubMed

    Chen, Ho-Wen; Yang, Hsi-Hsien; Wang, Yu-Sheng

    2009-11-01

    One of the costs of Taiwan's massive economic development has been severe air pollution problems in many parts of the island. Since vehicle emissions are the major source of air pollution in most of Taiwan's urban areas, Taiwan's government has implemented policies to rectify the degrading air quality, especially in areas with high population density. To reduce vehicle pollution emissions an on-road remote sensing and monitoring system is used to check the exhaust emissions from gasoline engine automobiles. By identifying individual vehicles with excessive emissions for follow-up inspection and testing, air quality in the urban environment is expected to improve greatly. Because remote sensing is capable of measuring a large number of moving vehicles in a short period, it has been considered as an assessment technique in place of the stationary emission-sampling techniques. However, inherent measurement uncertainty of remote sensing instrumentation, compounded by the indeterminacy of monitoring site selection, plus the vagaries of weather, causes large errors in pollution discrimination and limits the application of the remote sensing. Many governments are still waiting for a novel data analysis methodology to clamp down on heavily emitting vehicles by using remote sensing data. This paper proposes an artificial neural network (ANN), with vehicle attributes embedded, that can be trained by genetic algorithm (GA) based on different strategies to predict vehicle emission violation. Results show that the accuracy of predicting emission violation is as high as 92%. False determinations tend to occur for vehicles aged 7-13 years, peaking at 10 years of age.

  5. The NASA landing gear test airplane

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.

    1995-01-01

    A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.

  6. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    NASA Astrophysics Data System (ADS)

    Bärring, O.; Bonfillou, E.; Clement, B.; Coelho Dos Santos, M.; Dore, V.; Gentit, A.; Grossir, A.; Salter, W.; Valsan, L.; Xafi, A.

    2014-05-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  7. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. (5) The scenes can be viewed in 3D using stereo vision. (6) The network bandwidth for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.) This talk will illustrate the use of these new technologies and present a proposal for using these technologies to improve science education.

  8. Spatial and Seasonal Distributions of Current Use Pesticides (CUPs) in the Atmospheric Particulate Phase in the Great Lakes Region.

    PubMed

    Wang, Shaorui; Salamova, Amina; Hites, Ronald A; Venier, Marta

    2018-06-05

    The authors analyzed spatial and seasonal variations of current use pesticides (CUPs) levels in the atmospheric particulate phase in the Great Lakes basin. Twenty-four hour air samples were collected at six sites (two urban, two rural, and two remote) in 2015. The concentrations of 15 CUPs, including nine pyrethroid insecticides, four herbicides, one organophosphate insecticide, and one fungicide, were measured. The total CUPs concentrations were higher at the urban sites (0.38-1760 pg/m 3 ) than at the rural and remote sites (0.07-530 pg/m 3 ). The most abundant CUPs were pyrethroid insecticides at the urban sites. The levels of the other CUPs did not vary much among the six sites, except at the most remote site at Eagle Harbor, where the levels were significantly lower. Chlorothalonil was the most frequently detected CUP, which was detected in more than 76% of the samples. The atmospheric concentrations of total pyrethroid insecticides and total herbicides were correlated with local human population and developed land use. Significantly higher concentrations of most CUPs were observed in the warmer months than in the colder months at all sites. In addition to agricultural applications, which occur during the warmer months, the CUPs atmospheric concentrations may also be influenced by nonagricultural activities and the urban development.

  9. Network Extender for MIL-STD-1553 Bus

    NASA Technical Reports Server (NTRS)

    Marcus, Julius; Hanson, T. David

    2003-01-01

    An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender

  10. Nevada National Security Site Environmental Report 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Wills, ed.

    2011-09-13

    This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2010 at the Nevada Nationalmore » Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.« less

  11. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  12. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  13. Good Seeing: Best Practices for Sustainable Operations at the Air Force Maui Optical and Supercomputing Site

    DTIC Science & Technology

    2016-01-01

    supportive of this work from the start . This research would not have been possible without the contributions made by a number of individuals throughout...and funding structures. We started with these questions in particular based on the primary concerns at AMOS identified in the results of Phase I...from the start . Keck maintains connections with a series of other sites within a remote observing network. Remote observing from the mainland

  14. Remote-handled/special case TRU waste characterization summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.

    1984-02-27

    Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The following will be a site by site discussion of RH waste handling, placement, and container data. This will be followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that is the most up to date and accurate data available today. 2 figures, 10 tables.

  15. Alternate Hybrid Power Sources for Remote Site Applications.

    DTIC Science & Technology

    1981-02-01

    Fuel for remote LORAN-C sites is often acquired at higher costs in foreign spot markets . The effective fuel cost including the expense associated with...primary purpose of FPUP is to provide market support for manufacturers of solar cells and systems by encouraging federal agencies to utilize photo...supplied to them. 84 If 10,000 units were manufactured each year for the residential market with 10 kWh peak power and 25 kWh of usable energy stored in

  16. Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles

    NASA Astrophysics Data System (ADS)

    Amigo, José Manuel; Ratola, Nuno; Alves, Arminda

    2011-10-01

    In this work, pine needles were used as polycyclic aromatic hydrocarbons (PAHs) markers to study the PAHs distribution over several geographical locations in Portugal and over time. Four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites, covering the major urban centres, some industrial points, smaller cities, rural areas and remote locations. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from 2005 and 2006 shoots, corresponding to one up to three years of exposure. Spatial trends of the incidence of PAHs indicate an increase from the remote to the urban and industrial sites. The mean values for the sum of 16 PAHs ranged from 96 ± 30 ng g -1 (dry weight) for remote sites to 866 ± 304 ng g -1 (dw) for industrial sites for P. pinaster needles and from 188 ± 117 ng g -1 (dw) for rural sites to 337 ± 153 ng g -1 (dw) for urban sites for P. pinea. Geographic information system tools and principal component analysis revealed that the contamination patterns of PAHs are somehow related to several socio-geographic parameters of the sampling sites. The geographical trend for the PAHs is similar between seasons in terms of PAH levels, but some diverse behaviour is found on the separation of lighter and heavier PAHs. Differences between P. pinaster and P. pinea needles are stronger in terms of PAH uptake loads than in the site type fingerprints.

  17. Use of telemedicine in the remote programming of cochlear implants.

    PubMed

    Ramos, Angel; Rodriguez, Carina; Martinez-Beneyto, Paz; Perez, Daniel; Gault, Alexandre; Falcon, Juan Carlos; Boyle, Patrick

    2009-05-01

    Remote cochlear implant (CI) programming is a viable, safe, user-friendly and cost-effective procedure, equivalent to standard programming in terms of efficacy and user's perception, which can complement the standard procedures. The potential benefits of this technique are outlined. We assessed the technical viability, risks and difficulties of remote CI programming; and evaluated the benefits for the user comparing the standard on-site CI programming versus the remote CI programming. The Remote Programming System (RPS) basically consists of completing the habitual programming protocol in a regular CI centre, assisted by local staff, although guided by a remote expert, who programs the CI device using a remote programming station that takes control of the local station through the Internet. A randomized prospective study has been designed with the appropriate controls comparing RPS to the standard on-site CI programming. Study subjects were implanted adults with a HiRes 90K(R) CI with post-lingual onset of profound deafness and 4-12 weeks of device use. Subjects underwent two daily CI programming sessions either remote or standard, on 4 programming days separated by 3 month intervals. A total of 12 remote and 12 standard sessions were completed. To compare both CI programming modes we analysed: program parameters, subjects' auditory progress, subjects' perceptions of the CI programming sessions, and technical aspects, risks and difficulties of remote CI programming. Control of the local station from the remote station was carried out successfully and remote programming sessions were achieved completely and without incidents. Remote and standard program parameters were compared and no significant differences were found between the groups. The performance evaluated in subjects who had been using either standard or remote programs for 3 months showed no significant difference. Subjects were satisfied with both the remote and standard sessions. Safety was proven by checking emergency stops in different conditions. A very small delay was noticed that did not affect the ease of the fitting. The oral and video communication between the local and the remote equipment was established without difficulties and was of high quality.

  18. New York State Police remote communications site small wind energy conversion system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-03-01

    This report concludes a year-long demonstration and study of the use of a North Wind Model HR2 wind energy conversion system to supply the power for a remote New York State Police microwave repeater site at Mt. Morris in the Adirondack Mountains. Data were collected on a multi-channel digital strip chart recorder which provided a printout of the real-time relation between windspeed, power output, battery capacity and voltage, and contribution from backup power. These data proved that the site could be run on wind power alone and predictions can now be made on the performance of an HR2 or similarmore » wind system at other sites. 5 figs., 1 tab.« less

  19. Integration of Fish and Wildlife Data with Geobased and Remotely Sensed Land Use/land Cover Data: a Demonstration Using Sites in Pennsylvania. [Berwick and Lancaster

    NASA Technical Reports Server (NTRS)

    Cushwa, C. T.; Laroche, G.; Dubrock, C. W.

    1982-01-01

    The U.S. Fish and Wildlife Service developed a statewide fish and wildlife data base for the Pennsylvania Game Commission that includes 125 categories of information on each of the 844 species. This species data base is integrated with geobased and remotely-sensed land use/land cover data from two sites in Pennsylvania. One site is an energy development project; the other is a high-energy use area. Analyses using the combined animal and land use data bases can be demonstrated for a variety of land use/land cover types at both sites. The ability to make "what if" analysis prior to project implementation is presented.

  20. A Study on the Deriving Requirements of ARGO Operation System

    NASA Astrophysics Data System (ADS)

    Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk

    2009-12-01

    Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.

  1. Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions.

    PubMed

    Gentry, Diana M; Amador, Elena S; Cable, Morgan L; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B; Murukesan, Gayathri; Schwieterman, Edward W; Stevens, Adam H; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C; Geppert, Wolf

    2017-10-01

    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions. Key Words: Astrobiology-Biodiversity-Microbiology-Iceland-Planetary exploration-Mars mission simulation-Biomarker. Astrobiology 17, 1009-1021.

  2. Type 1 Adenylyl Cyclase is Essential for Maintenance of Remote Contextual Fear Memory

    PubMed Central

    Shan, Qiang; Chan, Guy C.-K.; Storm, Daniel R.

    2008-01-01

    Although molecular mechanisms for hippocampus-dependent memory have been extensively studied, much less is known about signaling events important for remote memory. Here we report that mice lacking type 1 adenylyl cyclase (AC1) are able to establish and retrieve remote contextual memory but unable to sustain it as long as wild type mice. Interestingly, mice over-expressing AC1 show superior remote contextual memory even though they exhibit normal hippocampus-dependent contextual memory. These data illustrate that calcium coupling to cAMP contributes to the stability of remote memory and identifies AC1 as a potential drug target site to improve long-term remote memory. PMID:19036980

  3. Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery

    NASA Astrophysics Data System (ADS)

    Stagakis, Stavros; Vanikiotis, Theofilos; Sykioti, Olga

    2016-09-01

    The advancing technology of hyperspectral remote sensing offers the opportunity of accurate land cover characterization of complex natural environments. In this study, a linear spectral unmixing algorithm that incorporates a novel hierarchical Bayesian approach (BI-ICE) was applied on two spatially and temporally adjacent CHRIS/PROBA images over a forest in North Pindos National Park (Epirus, Greece). The scope is to investigate the potential of this algorithm to discriminate two different forest species (i.e. beech - Fagus sylvatica, pine - Pinus nigra) and produce accurate species-specific abundance maps. The unmixing results were evaluated in uniformly distributed plots across the test site using measured fractions of each species derived by very high resolution aerial orthophotos. Landsat-8 images were also used to produce a conventional discrete-type classification map of the test site. This map was used to define the exact borders of the test site and compare the thematic information of the two mapping approaches (discrete vs abundance mapping). The required ground truth information, regarding training and validation of the applied mapping methodologies, was collected during a field campaign across the study site. Abundance estimates reached very good overall accuracy (R2 = 0.98, RMSE = 0.06). The most significant source of error in our results was due to the shadowing effects that were very intense in some areas of the test site due to the low solar elevation during CHRIS acquisitions. It is also demonstrated that the two mapping approaches are in accordance across pure and dense forest areas, but the conventional classification map fails to describe the natural spatial gradients of each species and the actual species mixture across the test site. Overall, the BI-ICE algorithm presented increased potential to unmix challenging objects with high spectral similarity, such as different vegetation species, under real and not optimum acquisition conditions. Its full potential remains to be investigated in further and more complex study sites in view of the upcoming satellite hyperspectral missions.

  4. Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test

    USGS Publications Warehouse

    Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.

    2001-01-01

    Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field spectra. Copyright 2001 by the American Geophysical Union.

  5. Using Videoconferencing To Deliver a Health Education Program to Women Health Consumers in Rural and Remote Queensland: An Early Attempt and Future Plans.

    ERIC Educational Resources Information Center

    Faulkner, Kathryn; McClelland, Linda

    2002-01-01

    A seminar on menopausal health was presented to a live audience and remote audiences at 10 sites in rural Queensland (Australia) via videoconferencing. Questionnaires completed by 128 audience members indicated positive reception of the content and delivery method. Similar replies from live and remote audience members indicated that the…

  6. Ozone in remote areas of the Southern Rocky Mountains

    Treesearch

    Robert C. Musselman; John L. Korfmacher

    2014-01-01

    Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007e2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current...

  7. Developing a WWW Resource Centre for Acquiring and Accessing Open Learning Materials on Research Methods (ReMOTE).

    ERIC Educational Resources Information Center

    Newton, Robert; Marcella, Rita; Middleton, Iain; McConnell, Michael

    This paper reports on ReMOTE (Research Methods Online Teaching Environment), a Robert Gordon University (Scotland) project focusing on the development of a World Wide Web (WWW) site devoted to the teaching of research methods. The aim of ReMOTE is to provide an infrastructure that allows direct links to specialist sources in order to enable the…

  8. Constraints and Approach for Selecting the Mars Surveyor '01 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Weitz, C.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  9. Constraints, Approach and Present Status for Selecting the Mars Surveyor 2001 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Anderson, F.; Bridges, N.; Briggs, G.; Gilmore, M.; Gulick, V.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; hide

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough, defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  10. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications. We suggest that this should be the gold standard of airway resource provision and is in line with NAP4 recommendations.

  11. On-orbit characterization of hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel

    Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.

  12. Usability and reliability of a remotely administered adult autism assessment, the autism diagnostic observation schedule (ADOS) module 4.

    PubMed

    Schutte, Jamie L; McCue, Michael P; Parmanto, Bambang; McGonigle, John; Handen, Benjamin; Lewis, Allen; Pulantara, I Wayan; Saptono, Andi

    2015-03-01

    The Autism Diagnostic Observation Schedule (ADOS) Module 4 is an autism assessment designed for verbally fluent adolescents and adults. Because of a shortage of available clinical expertise, it can be difficult for adults to receive a proper autism spectrum disorder (ASD) diagnostic assessment. A potential option to address this shortage is remote assessment. The objective of this study was to examine the feasibility, usability, and reliability of administering the ADOS Module 4 remotely using the Versatile and Integrated System for Telerehabilitation (VISYTER). VISYTER consists of computer stations at the client site and clinician site for video communication and a Web portal for managing and coordinating the assessment process. Twenty-three adults with an ASD diagnosis participated in a within-subject crossover design study in which both a remote ADOS and a face-to-face ADOS were administered. After completing the remote ADOS, participants completed a satisfaction survey. Participant satisfaction with the remote ADOS delivery system was high. The kappa value was greater than 0.61 on 21 of 31 ADOS items. There was substantial agreement on ADOS classification (i.e., diagnosis) between assessments delivered face-to-face versus assessments delivered remotely (interclass coefficient=0.92). Non-agreement may have been due to outside factors or practice effect despite a washout period. The results of this study demonstrate that an autism assessment designed to be delivered face to face can be administered remotely using an integrated Web-based system with high levels of usability and reliability.

  13. Research Library

    Science.gov Websites

    Los Alamos National Laboratory Research Library Search Site submit Contact Us | Remote Access | Subject Guides Los Alamos National Laboratory Menu Contacts Remote Catalog About Awards Electronic Public Research Library: delivering essential knowledge services for national security sciences since 1947 Los

  14. Remote sensing of rangeland biodiversity

    USDA-ARS?s Scientific Manuscript database

    Rangelands are managed based on state and transition models for an ecological site. Transitions to alternative ecological states are indicative of degrading rangelands. Three key variables may be remotely sensed to detect transitions between alternative states: amount of bare soil, presence of inva...

  15. Medical and economic benefits of telehealth in low- and middle-income countries: results of a study in four district hospitals in Mali.

    PubMed

    Bagayoko, Cheick Oumar; Traoré, Diakaridia; Thevoz, Laurence; Diabaté, Soumahila; Pecoul, David; Niang, Mahamoudane; Bediang, Georges; Traoré, Seydou Tidiane; Anne, Abdrahamane; Geissbuhler, Antoine

    2014-01-01

    The aim of this study was to evaluate the impact of telehealth on 1) the diagnosis, and management in obstetrics and cardiology, 2) health care costs from patients' perspectives, 3) attendance at health centres located in remote areas of Mali. The impact of telehealth on health care utilization, quality, and costs was assessed using a five-point Likert-scale based questionnaire consisting of three dimensions. It was completed by health care professionals in four district hospitals. The role of telehealth on attendance at health centres was also assessed based on data collected from the consultations logs before and during the project, between project sites and control sites. Referrals specific to the activities of the research study were also evaluated using a questionnaire to measure the real share of telehealth tools in increasing attendance at project sites. Finally, the cost savings achieved was estimated using the transport and lodging costs incurred if patients were to travel to the capital city for the same tests or care. The telehealth activities contributed to improving medical diagnoses in cardiology and obstetrics (92.6%) and the patients' management system on site (96.2%). The attendance records at health centres increased from 8 to 35% at all project sites during the study period. Patients from project sites saved an average of 12380 XOF (CFA Francs) or 25 USD (American dollar) and a maximum of 35000 XOF or 70 USD compared to patients from neighbouring sites, who must go to the capital city to receive the same care. We conclude that in Mali, enhanced training in ultrasound / electrocardiography and the introduction of telehealth have improved the health system in remote areas and resulted in high levels of appropriate diagnosis and patient management in the areas of obstetrics and cardiology. Telehealth can also significantly reduce the cost to the patient.

  16. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  17. SATNET development and operation. Pluribus satellite IMP development. Remote site maintenance. Internet operations and maintenance. Mobile access terminal network. TCP for the HP3000. TCP-TAC. TCP for VAX-UNIX. Combined quarterly technical report

    NASA Astrophysics Data System (ADS)

    Bressler, R. D.

    1981-11-01

    This quarterly technical report describes work on the development of and experimentation with packet broadcast by satellite; on development of Pluribus Satellite IMPs; on a study of the technology of Remote Site Maintenance; on Internetwork monitoring; on shipboard satellite communications; and on the development of Transmission Control Protocols for the HP3000, TAC, and VAX-UNIX.

  18. Echo the Bat and the Pigeon Adventure

    NASA Technical Reports Server (NTRS)

    Butcher, Ginger

    2000-01-01

    A multimedia, CD ROM to teach 2nd graders about remote sensing was created and developed into a web site. Distribution was expanded for Grades K-4 or 5-8. The idea was to have a story introduction, interactive story and a teacher's website. Interactive Multimedia Adventures in Grade School Education using Remote Sensing (I.M.A.G.E.R.S.) was created. The lessons are easy to use, readily available and aligned with national standards. This resource combines hands-on activities with an interactive web site

  19. Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.

    1975-01-01

    A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.

  20. Desert Research and Technology Studies (DRATS) Traverse Planning

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich

    2012-01-01

    Slide 1] The Desert Research and Technology Studies (DRATS) include large scale field tests of manned lunar surface exploration systems; these tests are sponsored by the Director s Office of Integration (DOI) [sic, Directorate Integration Office (DIO)] within the Constellation Program and they include geological exploration objectives along well designed traverses. These traverses are designed by the Traverse Team, an ad hoc group of some 10 geologists form NASA and academia, as well as experts in mission operation who define the operational constraints applicable to specific simulation scenarios. [Slide 2] These DRATS/DOI tests focus on 1) the performance of major surface systems, such as rovers, mobile habitats, communication architecture, navigation tools, earth-moving equipment, unmanned reconnaissance robots etc. under realistic field conditions and 2) the development of operational concepts that integrate all of these systems into a single, optimized operation. The participation of science is currently concentrating on geological sciences, with the objective of developing suitable tools and documentation protocols to sample representative rocks for Earth return, and to generate some conceptual understanding of the ground support structure that will be needed for the real time science-support of a lunar surface crew. [Slide 3] Major surface systems exercised in the June 2008 analog tests at the Moses Lake site, WA. [Upper left] The Chariot Rover (developed at Johnson Space Center) is an unpressurized vehicle driven by fully suited crews. [Upper right] Mobile Habitat provided by the Jet Propulsion Laboratory. Chariot is the more nimble and mobile vehicle and the idea is to drive the habitat remotely to some rendezvous place where Chariot would catch up - after a lengthy traverse - at the end of the day. [Lower left] The K-10 remotely operated robot (provided by NASA Ames Research Center) conducting scientific/geologic reconnaissance of the prospective traverse region, locating specific sites for more detailed exploration by Chariot and its crew. [Lower right] This earth-moving equipment (provided by NASA KSC) can be attached to Chariot and is envisioned to, for example, level an outpost site or to mine lunar soi

  1. Ka-Band Atmospheric Phase Stability Measurements in Goldstone, CA; White Sands, NM; and Guam

    NASA Technical Reports Server (NTRS)

    Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.

    2014-01-01

    As spacecraft communication links are driven to higher frequencies (e.g. Ka-band) both by spectrum congestion and the appeal of higher data rates, the propagation phenomena at these frequencies must be well characterized for effective system design. In particular, the phase stability of a site at a given frequency will govern whether or not the site is a practical location for an antenna array, particularly if uplink capabilities are desired. Propagation studies to characterize such phenomena must be done on a site-by-site basis due to the wide variety of climates and weather conditions at each ground terminal. Accordingly, in order to statistically characterize the atmospheric effects on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA's operational sites to directly measure each site's tropospheric phase stability. Using three years of results from these experiments, this paper will statistically characterize the simultaneous atmospheric phase noise measurements recorded by the STIs deployed at the following ground station sites: the Goldstone Deep Space Communications Complex near Barstow, CA; the White Sands Ground Terminal near Las Cruces, NM; and the Guam Remote Ground Terminal on the island of Guam.

  2. Settlement patterns, GIS, remote sensing, and the late prehistory of the Black Prairie in east central Mississippi

    NASA Technical Reports Server (NTRS)

    Johnson, Jay K.

    1991-01-01

    Data recovered as the result of a recent field project designed to test a model of the distribution of protohistoric settlement in an unusual physiographic zone in eastern Mississippi are examined using GIS based techniques to manipulate soil and stream distance information. Significant patterning is derived. The generally thin soils and uniform substratum of the Black Prairie in combination with a distinctive settlement pattern offer a promising opportunity for the search for site specific characteristics within airborne imagery. Landsat TM data provide information on modern ground cover which is used as a mask to select areas in which a multivariate search for archaeological site signatures within a TIMS image is most likely to prove fruitful.

  3. Classification of forest land attributes using multi-source remotely sensed data

    NASA Astrophysics Data System (ADS)

    Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri

    2016-02-01

    The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.

  4. SKYMONITOR: A Global Network for Sky Brightness Measurements

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  5. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test

    PubMed Central

    Yingst, R.A.; Berger, J.; Cohen, B.A.; Hynek, B.; Schmidt, M.E.

    2017-01-01

    We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human “rover” to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area. PMID:29307922

  6. A series of low-altitude aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18, and 25 at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colton, D.P.

    1999-12-01

    A series of low-altitude, aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18,and 25 of the Nevada Test Site was conducted from December 1996 through June 1999. The surveys were conducted for the US Department of Energy by the Remote Sensing Laboratory, located in Las Vegas, Nevada, and maintained and operated by Bechtel Nevada. The flights were conducted at a nominal altitude of 15 meters above ground level along a set of parallel flight lines spaced 23 meters apart. The purpose of these low-altitude surveys was to measure, map, and define the areas of americium-241more » activity. The americium contamination will be used to determine the areas of plutonium contamination. Americium-241 activity was detected within 8 of the 11 regions. The three regions where americium-241 was not detected were in the inactive Nuclear Rocket Development Station complex in Area 25, which encompassed the Test Cell A and Test Cell C reactor test stands and the Reactor Maintenance Assembly and Disassembly facility.« less

  7. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  8. A micro-vibration generated method for testing the imaging quality on ground of space remote sensing

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Wu, Qingwen

    2018-03-01

    In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.

  9. Practical lessons in remote connectivity.

    PubMed Central

    Kouroubali, A.; Starren, J.; Barrows, R. C.; Clayton, P. D.

    1997-01-01

    Community Health Information Networks (CHINs) require the ability to provide computer network connections to many remote sites. During the implementation of the Washington Heights and Inwood Community Health Management Information System (WHICHIS) at the Columbia-Presbyterian Medical Center (CPMC), a number of remote connectivity issues have been encountered. Both technical and non-technical issues were significant during the installation. We developed a work-flow model for this process which may be helpful to any health care institution attempting to provide seamless remote connectivity. This model is presented and implementation lessons are discussed. PMID:9357643

  10. Initial utility experience with cluster of three Mod-2 wind turbine systems

    NASA Technical Reports Server (NTRS)

    Seely, D. B.; Warchol, E. J.; Butler, N. G.; Ciranny, S.

    1982-01-01

    This paper describes the initial utility experiences of operating three MOD-2s during the Engineering Acceptance Testing. Electrical quantities of bus voltage, phase currents and power are initially being recorded to evaluate impacts to customers on the 69-kV subtransmission line during synchronization and operation of one or more WTSs. To date, effects on the system have been essentially undetectable. Measurements of television signal strengths were taken at an existing television remote pickup and relay station at the WTS site. Potential TV signal interference problems from the WTSs have been avoided by replacing the remote pickups with microwave repeater links for the four TV channels received from Portland, Oregon. Preliminary measurements of audible and sub-audible noise levels indicate that the upwind rotor, tubular tower design of the MOD-2 does not have the pulsing high intensity infrasound problems experienced by the MOD-1 machine at Boone, North Carolina.

  11. Lunar and Planetary Science XXXV: Lunar Remote Sensing: Seeing the Big Picture

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Lunar Remote Sensing: Seeing the Big Picture" contained the following reports:Approaches for Approximating Topography in High Resolution, Multispectral Data; Verification of Quality and Compatibility for the Newly Calibrated Clementine NIR Data Set; Near Infrared Spectral Properties of Selected Nearside and Farside Sites ; Global Comparisons of Mare Volcanism from Clementine Near-Infrared Data; Testing the Relation Between UVVIS Color and TiO2 Composition in the Lunar Maria; Color Reflectance Trends in the Mare: Implications for Mapping Iron with Multispectral Images ; The Composition of the Lunar Megaregolith: Some Initial Results from Global Mapping; Global Images of Mg-Number Derived from Clementine Data; The Origin of Lunar Crater Rays; Properties of Lunar Crater Ejecta from New 70-cm Radar Observations ; Permanent Sunlight at the Lunar North Pole; and ESA s SMART-1 Mission to the Moon: Goals, Status and First Results.

  12. An update on remote measurement of soil moisture over vegetation using infrared temperature measurements: A FIFE perspective

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.

    1988-01-01

    Using model development, image analysis and micrometeorological measurements, the object is to push beyond the present limitations of using the infrared temperature method for remotely determining surface energy fluxes and soil moisture over vegetation. Model development consists of three aspects: (1) a more complex vegetation formulation which is more flexible and realistic; (2) a method for modeling the fluxes over patchy vegetation cover; and (3) a method for inferring a two-layer soil vertical moisture gradient from analyses of horizontal variations in surface temperatures. HAPEX and FIFE satellite data will be used along with aircraft thermal infrared and solar images as input for the models. To test the models, moisture availability and bulk canopy resistances will be calculated from data collected locally at the Rock Springs experimental field site and, eventually, from the FIFE project.

  13. NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1976-01-01

    Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.

  14. Extending IPsec for Efficient Remote Attestation

    NASA Astrophysics Data System (ADS)

    Sadeghi, Ahmad-Reza; Schulz, Steffen

    When establishing a VPN to connect different sites of a network, the integrity of the involved VPN endpoints is often a major security concern. Based on the Trusted Platform Module (TPM), available in many computing platforms today, remote attestation mechanisms can be used to evaluate the internal state of remote endpoints automatically. However, existing protocols and extensions are either unsuited for use with IPsec or impose considerable additional implementation complexity and protocol overhead.

  15. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  16. American black bear denning behavior: Observations and applications using remote photography

    USGS Publications Warehouse

    Bridges, A.S.; Fox, J.A.; Olfenbuttel, C.; Vaughan, M.B.

    2004-01-01

    Researchers examining American black bear (Ursus americanus) denning behavior have relied primarily on den-site visitation and radiotelemetry to gather data. Repeated den-site visits are time-intensive and may disturb denning bears, possibly causing den abandonment, whereas radiotelemetry is sufficient only to provide gross data on den emergence. We used remote cameras to examine black bear denning behavior in the Allegheny Mountains of western Virginia during March-May 2003. We deployed cameras at 10 den sites and used 137 pictures of black bears. Adult female black bears exhibited greater extra-den activity than we expected prior to final den emergence, which occurred between April 12 and May 6, 2003. Our technique provided more accurate den-emergence estimation than previously published methodologies. Additionally, we observed seldom-documented behaviors associated with den exits and estimated cub age at den emergence. Remote cameras can provide unique insights into denning ecology, and we describe their potential application to reproductive, survival, and behavioral research.

  17. Development and demonstration of a telerobotic excavation system

    NASA Technical Reports Server (NTRS)

    Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.

    1994-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  18. Determining accessibility to dermatologists and teledermatology locations in Kentucky: demonstration of an innovative geographic information systems approach.

    PubMed

    Shannon, Gary William; Buker, Carol Marie

    2010-01-01

    Teledermatology provides a partial solution to the problem of accessibility to dermatology services in underserved areas, yet methodologies to determine the locations and geographic dimensions of these areas and the locational efficiency of remote teledermatology sites have been found wanting. This article illustrates an innovative Geographic Information Systems approach using dermatologists' addresses, U.S. Census population data, and the Topologically Integrated Geographic Encoding and Referencing System. Travel-time-based service areas were calculated and mapped for each dermatologist in the state of Kentucky and for possible locations of several remote teledermatology sites. Populations within the current and possible remote service areas were determined. These populations and associated maps permit assessment of the locational efficiency of the current distribution of dermatologists, location of underserved areas, and the potential contribution of proposed hypothetical teledermatology sites. This approach is a valuable and practical tool for evaluating access to current distributions of dermatologists as well as planning for and implementing teledermatology.

  19. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  20. People, Places and Pixels: Remote Sensing in the Service of Society

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    2003-01-01

    What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.

  1. New signatures of underground nuclear tests revealed by satellite radar interferometry

    USGS Publications Warehouse

    Vincent, P.; Larsen, S.; Galloway, D.; Laczniak, R.J.; Walter, W.R.; Foxall, W.; Zucca, J.J.

    2003-01-01

    New observations of surface displacement caused by past underground nuclear tests at the Nevada Test Site (NTS) are presented using interferometric synthetic aperture radar (InSAR). The InSAR data reveal both coseismic and postseismic subsidence signals that extend one kilometer or more across regardless of whether or not a surface crater was formed from each test. While surface craters and other coseismic surface effects (ground cracks, etc.) may be detectable using high resolution optical or other remote sensing techniques, these broader, more subtle subsidence signals (one to several centimeters distributed over an area 1-2 kilometers across) are not detectable using other methods [Barker et al., 1998]. A time series of interferograms reveal that the postseismic signals develop and persist for months to years after the tests and that different rates and styles of deformation occur depending on the geologic and hydrologic setting and conditions of the local test area.

  2. CommServer: A Communications Manager For Remote Data Sites

    NASA Astrophysics Data System (ADS)

    Irving, K.; Kane, D. L.

    2012-12-01

    CommServer is a software system that manages making connections to remote data-gathering stations, providing a simple network interface to client applications. The client requests a connection to a site by name, and the server establishes the connection, providing a bidirectional channel between the client and the target site if successful. CommServer was developed to manage networks of FreeWave serial data radios with multiple data sites, repeaters, and network-accessed base stations, and has been in continuous operational use for several years. Support for Iridium modems using RUDICS will be added soon, and no changes to the application interface are anticipated. CommServer is implemented on Linux using programs written in bash shell, Python, Perl, AWK, under a set of conventions we refer to as ThinObject.

  3. Morpheus Lander Testing Campaign

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Mitchell, Jennifer D.

    2011-01-01

    NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.

  4. Geospatial Analysis and Remote Sensing from Airplanes and Satellites for Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Haley, Bryan S.

    2005-01-01

    Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management.

  5. Evaluation of teleoperated surgical robots in an enclosed undersea environment.

    PubMed

    Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J

    2009-05-01

    The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiff, Scott D.; Dazeley, Steven; Reyna, David

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goalsmore » and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.« less

  7. Remote sensing measurements of real world high exhaust emitters

    DOT National Transportation Integrated Search

    1999-03-12

    Remote Sensing measurements were taken at five primary sites in the Denver Area between April 1997 and March 1998 using an RS2000 unit capable of measuring HC, CO, and NO. The RD unit also measures vehicle speed and acceleration to permit determinati...

  8. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  9. Pest measurement and management

    USDA-ARS?s Scientific Manuscript database

    Pest scouting, whether it is done only with ground scouting methods or using remote sensing with some ground-truthing, is an important tool to aid site-specific crop management. Different pests may be monitored at different times and using different methods. Remote sensing has the potential to provi...

  10. Outfall siting with dye-buoy remote sensing of coastal circulation

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.

    1978-01-01

    A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.

  11. Cellular phone enabled non-invasive tissue classifier.

    PubMed

    Laufer, Shlomi; Rubinsky, Boris

    2009-01-01

    Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro.

  12. Remote site-selective C–H activation directed by a catalytic bifunctional template

    PubMed Central

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-01-01

    Converting C–H bonds directly into carbon-carbon and carbon-heteroatom bonds can significantly improve step-economy in synthesis by providing alternative disconnections to traditional functional group manipulations. In this context, directed C–H activation reactions have been extensively explored for regioselective functionalization1-5. Though applicability can be severely curtailed by distance from the directing group and the shape of the molecule, a number of approaches have been developed to overcome this limitation6-12. For instance, recognition of the distal and geometric relationship between an existing functional group and multiple C–H bonds has recently been exploited to achieve meta-selective C–H activation by use of a covalently attached U-shaped template13-17. However, stoichiometric installation of the template is not feasible in the absence of an appropriate functional group handle. Here we report the design of a catalytic, bifunctional template that binds heterocyclic substrate via reversible coordination instead of covalent linkage, allowing remote site-selective C–H olefination of heterocycles. The two metal centers coordinated to this template play different roles; anchoring substrates to the proximity of catalyst and cleaving the remote C–H bonds respectively. Using this strategy, we demonstrate remote site-selective C–H olefination of heterocyclic substrates which do not have functional group handles for covalently attaching templates. PMID:28273068

  13. Cellular Phone Enabled Non-Invasive Tissue Classifier

    PubMed Central

    Laufer, Shlomi; Rubinsky, Boris

    2009-01-01

    Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554

  14. Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment

    NASA Astrophysics Data System (ADS)

    De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani

    2011-03-01

    Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.

  15. Geology of Lunar Landing Sites and Origin of Basin Ejecta from a Clementine Perspective

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Haskin, Larry A.

    1998-01-01

    The goals of this research were to examine Clementine multispectral data covering the Apollo landing sites in order to: (1) provide ground truth for the remotely sensed observations, (2) extend our understanding of the Apollo landing sites to the surrounding regions using the empirically calibrated Clementine data, and (3) investigate the composition and distribution of impact-basin ejecta using constraints based upon the remotely sensed data and the Apollo samples. Our initial efforts (in collaboration with P. Lucey and coworkers) to use the Apollo soil compositions to "calibrate" information derived from the remotely sensed data resulted in two extremely useful algorithms for computing estimates of the concentrations of FeO and TiO2 from the UV-VIS 5-band data. In this effort, we used the average surface soil compositions from 37 individual Apollo and 3 Luna sample stations that could be resolved using the Clementine data. We followed this work with a detailed investigation of the Apollo 17 landing site, where the sampling traverses were extensive and the spectral and compositional contrast between different soils covers a wide range. We have begun to investigate the nature and composition of basin ejecta by comparing the thick deposits on the rim of Imbrium in the vicinity of the Apollo 15 site and those occurring southeast of the Serenitatis basin, in the Apollo 17 region. We continue this work under NAG5-6784, "Composition, Lithology, and Heterogeneity of the lunar crust using remote sensing of impact-basin uplift structures and ejecta as probes. The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of these results are given in the attached papers, manuscripts, and extended abstracts.

  16. Geology team

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.

  17. Remote preenrollment checking of consent forms to reduce nonconformity.

    PubMed

    Journot, Valérie; Pérusat-Villetorte, Sophie; Bouyssou, Caroline; Couffin-Cadiergues, Sandrine; Tall, Aminata; Chêne, Geneviève

    2013-01-01

    In biomedical research, the signed consent form must be checked for compliance with regulatory requirements. Checking usually is performed on site, most frequently after a participant's final enrollment. We piloted a procedure for remote preenrollment consent forms checking. We applied it in five trials and assessed its efficiency to reduce form nonconformity before participant enrollment. Our clinical trials unit (CTU) routinely uses a consent form with an additional copy that contains a pattern that partially masks the participant's name and signature. After completion and signatures by the participant and investigator, this masked copy is faxed to the CTU for checking. In case of detected nonconformity, the CTU suspends the participant's enrollment until the form is brought into compliance. We checked nonconformities of consent forms both remotely before enrollment and on site in five trials conducted in our CTU. We tabulated the number and nature of nonconformities by location of detection: at the CTU or on site. We used these data for a pseudo before-and-after analysis and estimated the efficiency of this remote checking procedure in terms of reduction of nonconformities before enrollment as compared to the standard on-site checking procedure. We searched for nonconformity determinants among characteristics of trials, consent forms, investigator sites, and participants through multivariate logistic regression so as to identify opportunities for improvement in our procedure. Five trials, starting sequentially but running concurrently, with remote preenrollment and on-site checking of consent forms from 415 participants screened in 2006-2009 led to 518 consent forms checked; 94 nonconformities were detected in 75 forms, 75 (80%) remotely and 19 more (20%) on site. Nonconformities infrequently concerned dates of signatures (7%) and information about participants (12%). Most nonconformities dealt with investigator information (76%), primarily contact information (54%). The procedure reduced nonconformities by 81% (95% confidence interval (CI): 73%-89%) before enrollment. Nonconforming consent forms dropped from 25% to 0% over the period, indicating a rapid learning effect between trials. Fewer nonconformities were observed for participants screened later in a trial (odds ratio (95% CI): 0.5 (0.3-0.8); p = 0.004), indicating a learning effect within trials. Nonconformities were more common for participants enrolled after screening (2.4 (1.1-5.3); p = 0.03), indicating a stricter scrutiny by form checkers. Although our study had a pseudo before-and-after design, no major bias was identified. Power and generalizability of our findings were sufficient to support implementation in future trials. This procedure substantially limited nonconformity of consent forms with regulatory requirements before enrollment, thus proving a key component of a risk-based monitoring strategy that has been recommended to optimize resources for clinical research.

  18. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  19. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2006-01-01

    NASA's Ikhana unmanned aerial vehicle (UAV) is a General Atomics MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate through partnerships, other government agencies and universities. Ikhana, a Native American word meaning 'intelligence', can carry over 2000 lbs of atmospheric and remote sensing instruments in the payload bay and external pods. The aircraft is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. Redundant flight control, avionics, power, and network systems increase the system reliability and allow easier access to public airspace. The aircraft is remotely piloted from a mobile ground control station (GCS) using both C-band line-of-sight and Ku-band over-the-horizon satellite datalinks. NASA's GCS has been modified to support on-site science monitoring, or the downlink data can be networked to remote sites. All ground support systems are designed to be deployable to support global Eart science investigations. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The ARTS can host research algorithms that will autonomously command and control on-board sensors, perform sensor health monitoring, conduct data analysis, and request changes to the flight plan to maximize data collection. The ARTS also has the ability to host algorithms that will autonomously control the aircraft trajectory based on sensor needs, (e.g. precision trajectory for repeat pass interferometry) or to optimize mission objectives (e.g. search for specific atmospheric conditions). Standard on-board networks will collect science data for recording and for inclusion in the aircraft's high bandwidth downlink. The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for the Summer 2007.

  20. A centralized platform for geo-distributed PACS management.

    PubMed

    Silva, Luís A Bastião; Pinho, Renato; Ribeiro, Luís S; Costa, Carlos; Oliveira, José Luís

    2014-04-01

    Picture Archive and Communication System (PACS) is a globally adopted concept and plays a fundamental role in patient care flow within healthcare institutions. However, the deployment of medical imaging repositories over multiple sites still brings several practical challenges namely related to operation and management (O&M). This paper describes a Web-based centralized console that provides remote monitoring, testing, and management over multiple geo-distributed PACS. The system allows the PACS administrator to define any kind of service or operation, reducing the need for local technicians and providing a 24/7 monitoring solution.

  1. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.; Tibrea, S.; Nance, T.

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  2. Teaching/learning principles

    NASA Technical Reports Server (NTRS)

    Hankins, D. B.; Wake, W. H.

    1981-01-01

    The potential remote sensing user community is enormous, and the teaching and training tasks are even larger; however, some underlying principles may be synthesized and applied at all levels from elementary school children to sophisticated and knowledgeable adults. The basic rules applying to each of the six major elements of any training course and the underlying principle involved in each rule are summarized. The six identified major elements are: (1) field sites for problems and practice; (2) lectures and inside study; (3) learning materials and resources (the kit); (4) the field experience; (5) laboratory sessions; and (6) testing and evaluation.

  3. Skylab-EREP studies in computer mapping of terrain in the Cripple Creek-Canon City area of Colorado

    NASA Technical Reports Server (NTRS)

    Smedes, H. W.; Ranson, K. J.; Holstrom, R. L.

    1975-01-01

    Multispectral-scanner data from satellites are used as input to computers for automatically mapping terrain classes of ground cover. Some major problems faced in this remote-sensing task include: (1) the effect of mixtures of classes and, primarily because of mixtures, the problem of what constitutes accurate control data, and (2) effects of the atmosphere on spectral responses. The fundamental principles of these problems are presented along with results of studies of them for a test site of Colorado, using LANDSAT-1 data.

  4. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  5. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Understanding heterogeneity in metropolitan India: The added value of remote sensing data for analyzing sub-standard residential areas

    NASA Astrophysics Data System (ADS)

    Baud, Isa; Kuffer, Monika; Pfeffer, Karin; Sliuzas, Richard; Karuppannan, Sadasivam

    2010-10-01

    Analyzing the heterogeneity in metropolitan areas of India utilizing remote sensing data can help to identify more precise patterns of sub-standard residential areas. Earlier work analyzing inequalities in Indian cities employed a constructed index of multiple deprivations (IMDs) utilizing data from the Census of India 2001 ( http://censusindia.gov.in). While that index, described in an earlier paper, provided a first approach to identify heterogeneity at the citywide scale, it neither provided information on spatial variations within the geographical boundaries of the Census database, nor about physical characteristics, such as green spaces and the variation in housing density and quality. In this article, we analyze whether different types of sub-standard residential areas can be identified through remote sensing data, combined, where relevant, with ground-truthing and local knowledge. The specific questions address: (1) the extent to which types of residential sub-standard areas can be drawn from remote sensing data, based on patterns of green space, structure of layout, density of built-up areas, size of buildings and other site characteristics; (2) the spatial diversity of these residential types for selected electoral wards; and (3) the correlation between different types of sub-standard residential areas and the results of the index of multiple deprivations utilized at electoral ward level found previously. The results of a limited number of test wards in Delhi showed that it was possible to extract different residential types matching existing settlement categories using the physical indicators structure of layout, built-up density, building size and other site characteristics. However, the indicator 'amount of green spaces' was not useful to identify informal areas. The analysis of heterogeneity showed that wards with higher IMD scores displayed more or less the full range of residential types, implying that visual image interpretation is able to zoom in on clusters of deprivation of varying size. Finally, the visual interpretation of the diversity of residential types matched the results of the IMD analysis quite well, although the limited number of test wards would need to be expanded to strengthen this statement. Visual image analysis strengthens the robustness of the IMD, and in addition, gives a better idea of the degree of heterogeneity in deprivations within a ward.

  7. Development of a remote spectroelectrochemical sensor for technetium as pertechnetate

    NASA Astrophysics Data System (ADS)

    Monk, David James

    Subsurface contamination by technetium (Tc) is of particular concern in the monitoring, characterization, and remediation of underground nuclear waste storage tanks, processing areas, and associated surroundings at the Hanford Site and other U.S. DOE sites nationwide. The concern over this radioactive element arises for two reasons. First, its most common isotope, 99Tc, has an extremely long lifetime of 2.15 x 105 years. Second, it's most common chemical form in environmental conditions, pertechnetate (TcO4-), exhibits very fast migration through soils and readily presents itself to any nearby aquifer. Standard procedures of sampling and analysis in a laboratory prove to be slow and costly in the case of subsurface contamination by radioactive materials. It is highly desirable to develop sensors for these materials that possess the capability of either in-situ or on-site placement for continuous monitoring or immediate analysis of collected samples. These sensors need to possess adequate detection limit and selectivity, rapid response, reversibility (many measurements with one sensor), the ability to perform remotely, and ruggedness. This dissertation describes several areas of the continued work toward a sensor for 99Tc as TcO4-. Research initially focused on developing spectroelectrochemical instrumentation and a disposable sensing element, engineered to address the need to perform remote measurements. The instrument was then tested using samples containing 99Tc, resulting in the development of ancillary equipment and techniques to address concerns associated with performing experiments on radioactive materials. In these tests, the electrochemistry of TcO4 - was demonstrated to be irreversible. Electrochemical reduction of TcO4- on a bare or polymer modified electrode resulted in the continuous build up of technetium oxide (TcO2) on the electrode surface. This TcO2 formed in visual quantities in these films during electrochemistry, and proved to be non-ideal for spectroelectrochemical sensing. In the most recent work described, the development of metal templating techniques using complexes synthesized with rhenium (Re) was investigated as one means to circumvent this irreversibility. In an extension of the metal templating research, custom ligands were being designed which will impart structural rigidity and fluorescence to the template complexes, to facilitate selectivity and sensitivity at levels previously unprecedented for optical techniques.

  8. An aerial radiological survey of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/hmore » at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.« less

  9. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.

  10. Rural and remote care

    PubMed Central

    Marciniuk, Darcy

    2016-01-01

    The challenges of providing quality respiratory care to persons living in rural or remote communities can be daunting. These populations are often vulnerable in terms of both health status and access to care, highlighting the need for innovation in service delivery. The rapidly expanding options available using telehealthcare technologies have the capacity to allow patients in rural and remote communities to connect with providers at distant sites and to facilitate the provision of diagnostic, monitoring, and therapeutic services. Successful implementation of telehealthcare programs in rural and remote settings is, however, contingent upon accounting for key technical, organizational, social, and legal considerations at the individual, community, and system levels. This review article discusses five types of telehealthcare delivery that can facilitate respiratory care for residents of rural or remote communities: remote monitoring (including wearable and ambient systems; remote consultations (between providers and between patients and providers), remote pulmonary rehabilitation, telepharmacy, and remote sleep monitoring. Current and future challenges related to telehealthcare are discussed. PMID:26902542

  11. NNDC Data Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuli, J.K.; Sonzogni,A.

    The National Nuclear Data Center has provided remote access to some of its resources since 1986. The major databases and other resources available currently through NNDC Web site are summarized. The National Nuclear Data Center (NNDC) has provided remote access to the nuclear physics databases it maintains and to other resources since 1986. With considerable innovation access is now mostly through the Web. The NNDC Web pages have been modernized to provide a consistent state-of-the-art style. The improved database services and other resources available from the NNOC site at www.nndc.bnl.govwill be described.

  12. Can we infer plant facilitation from remote sensing? A test across global drylands

    PubMed Central

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H.; Maestre, Fernando T.; Soliveres, Santiago; Berdugo, Miguel; Kéfi, Sonia; Marquet, Pablo A.; Abades, Sebastian; Scheffer, Marten

    2016-01-01

    Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant-plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely-sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely-sensed images freely available through Google Earth™ with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant-plant interactions. Most of the patterns found from the remotely-sensed images were more right-skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth™ images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely-sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. PMID:26552256

  13. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies caused by explosions and observed on the test site and adjacent territories, and (iv) long-range transport of radioactive aerosols with analysis of dynamics of spatial distribution, averaged and accumulated fields for concentration and deposition patterns.

  14. Development and evaluation of a water level proportional water sampler

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lange, A.; Doppler, T.

    2013-12-01

    We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.

  15. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  16. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  17. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    PubMed

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Remote sensing in Iowa agriculture: Identification and classification of Iowa crop lands using ERTS-1 and complimentary underflight imagery

    NASA Technical Reports Server (NTRS)

    Mahlstede, J. P.; Carlson, R. E.; Thomson, G. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Results of the continuing analysis of ERTS-1 imagery covering Iowa during 1972 and periods during 1973 are covered. Emphasis is placed on the identification and classification of major crop types at two test sites in Iowa. Standard photointerpretive methods were used in this analysis including the direct enlargement of black and white single-band products and additive color multi-band procedures using a miniadcol system. The use of sequential coverage during the crop growing season is emphasized as a means to improve the effectiveness of ERTS-1 photointerpretations of crop land acreage estimates in Iowa. Illustrative black and white and color prints of both ERTS-1 and underflight imagery are included. In addition, forest land inventories at one test site are reported. A new method for the inventory of forest lands using ERTS-1 imagery is reported and compared with estimates obtained using earlier underflight imagery.

  19. Next-generation spectrometer aids study of Mediterranean

    NASA Astrophysics Data System (ADS)

    Abrams, M. J.; Bianchi, R.; Buongiorno, M. F.

    The Mediterranean region's highly diverse topography, lithology, soils, microclimates, vegetation, and seawater result in a variety of ecosystems. Remote sensing techniques, especially imaging spectrometry, have the potential to provide data for environmental studies on a regional scale in this part of the world.A test deployment of the multispectral infrared and visible imaging spectrometer (MIVIS), a new 102-channel imaging spectrometer, was carried out in Sicily in July 1994. Active volcanoes were surveyed to differentiate volcanic products and determine SO2 emissions in plumes (Figure 1), coastlines were imaged jointly with LIDAR to study pollution, ecosystems at several ocean areas were monitored, vegetated areas were imaged to determine the health of the biota, and archeological sites were studied to reconstruct ancient land use practices. For sites, refer to Figure 2.

  20. Exploring the Potential of PROBA-V for Evapotranspiration Monitoring in Wetlands

    NASA Astrophysics Data System (ADS)

    Barrios, Jose Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Francoise

    2016-08-01

    This study aims at deriving daily evapotranspiration (ET) estimates at a convenient spatial resolution for ecosystem monitoring. The methodological approach was based on the computation of the energy balance over the study sites. The study explored the potential of integrating remote sensing (RS) products derived from the Meteosat Second Generation (MSG) satellite -in virtue of their high temporal resolution- and Proba-V data, supplying moderate spatial resolution data. This strategy was tested for the year 2014 on three wetlands sites located in Europe where eddy covariance measurements were available for validation. The modelled results correlated well with the validation data and showed the added value of combining the strengths of different satellite missions. The results open interesting perspectives for refining this approach with the upcoming Sentinel-3 datasets.

Top