17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Robot-operated quality control station based on the UTT method
NASA Astrophysics Data System (ADS)
Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz; Muszyńska, Magdalena; Nawrocki, Jacek
2017-03-01
This paper presents a robotic test stand for the ultrasonic transmission tomography (UTT) inspection of stator vane thickness. The article presents the method of the test stand design in Autodesk Robot Structural Analysis Professional 2013 software suite. The performance of the designed test stand solution was simulated in the RobotStudio software suite. The operating principle of the test stand measurement system is presented with a specific focus on the measurement strategy. The results of actual wall thickness measurements performed on stator vanes are presented.
Stand for testing the electrical race car engine
NASA Astrophysics Data System (ADS)
Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.
2015-11-01
An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.
Installation of TVC Actuators in a Two Axis Inertial Load Simulator Test Stand
NASA Technical Reports Server (NTRS)
Dziubanek, Adam
2013-01-01
This paper is about the installation of Space Shuttle Main Engines (SSME) actuators in the new Two Axis Inertial Load Simulator (ILS) at MSFC. The new test stand will support the core stage of the Space Launch System (SLS). Because of the unique geometry of the new test stand standard actuator installation procedures will not work. I have been asked to develop a design on how to install the actuators into the new test stand. After speaking with the engineers and technicians I have created a possible design solution. Using Pro Engineer design software and running my own stress calculations I have proven my design is feasible. I have learned how to calculate the stresses my design will see from this task. From the calculations I have learned I have over built the apparatus. I have also expanded my knowledge of Pro Engineer and was able to create a model of my idea.
Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand
NASA Technical Reports Server (NTRS)
Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg
1990-01-01
Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of July 3, 1963. All four of its tower legs are well underway.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 5, 1963.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken October 26, 1962, depicts the excavation process of the single engine F-1 stand.
1963-09-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 30, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of June 24, 1963. Two if its four tower legs are underway.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken November 15, 1962, depicts the excavation process of the single engine F-1 stand site.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the fuel tanks that housed kerosene and just beyond those is the F-1 test stand.
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. Looking North, this aerial taken January 15, 1963, gives a closer view of the deep hole for the F-1 test stand site in the forefront. The S-IC test stand with towers prominent is to the right of center, and the Block House is seen left of center.
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows the progress of the F-1 Test Stand as of November 20, 1963.
1963-04-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 4, 1963 depicts the construction of the F-1 test stand foundation walls.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 17, 1963 depicts the construction of the F-1 test stand foundation walls.
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963, gives a close overall view of the newly developed test complex. Depicted in the forefront center is the S-IC test stand with towers prominent, the Block House is seen in the center just above the S-IC test stand, and the large hole to the left, located midway between the two is the F-1 test stand site.
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963 gives an overall view of the construction progress of the newly developed test complex. The large white building located in the center is the Block House. Just below and to the right of it is the S-IC test stand. The large hole to the left of the S-IC stand is the F-1 test stand site.
1963-01-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken January 14, 1963 depicts the F-1 test stand site with hoses pumping excess water from the site.
1963-08-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of August 13, 1963. All four of its tower legs are well underway into the skyline.
NASA Astrophysics Data System (ADS)
Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.
2012-05-01
The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.
Cell module and fuel conditioner development
NASA Astrophysics Data System (ADS)
Hoover, D. Q., Jr.
1980-01-01
Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.
3. "TEST STAND NO. 13, EXCAVATION PLAN & SECTIONS." Specifications ...
3. "TEST STAND NO. 1-3, EXCAVATION PLAN & SECTIONS." Specifications No. ENG 04-353-50-10; Drawing No. 60-0906; no sheet number within title block; D.O. SERIES 1109/10. Stamped: AS BUILT. No revisions or revision dates. Last work date on this drawing "Checked by EAG, 1/31/49." Though this drawing is specific to Test Stand 1-3, it also illustrates the general methods used for excavation design and retaining wall construction at Test Stand 1-5. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis
2016-10-01
A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.
1993-09-01
Marshall Space Flight Center's F-1 Engine Test Stand is shown in this picture. Constructed in 1963, the test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
1963-08-12
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken August 12, 1963, the S-IC stand has received some of its internal components. Directly in the center is the framework that houses the flame deflector. The F-1 test stand, designed and built to test a single F-1 engine, can be seen on the left side of the photo.
1997-06-04
This shot offers a bird's eye-view of a Fastrac II engine duration test at Marshall's Test Stand 116. The Fastrac II engine was designed as a part of the low cost X-34 Reusable Launch Vehicle (RLV). The purpose for these tests was to test the different types of metal alloys in the nozzle. Beside the engine were six additional nozzels which spray a continuous stream of water onto the test stand to reduce damage to the test stand and the engines. The X-34 program was cancelled in 2001.
1988-01-01
The Redstone Test Stand, shown here, was used throughout the 1950s to test the Redstone missionile, including the modified Redstone that launched America's first astronaut, Alan Shepard. The U. S. Department of the Interior's Park Services designated the Test Stand as a National Historic Landmark January 22, 1986.
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.
1998-01-01
The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.
25. HISTORIC VIEW OF A2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR ...
25. HISTORIC VIEW OF A-2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR GN2 CONTAINER. AT TEST STAND NO. 1 IN KUMMERSDORF. THE STAND WAS DESIGNED & CONSTRUCTED IN 1932. ROCKET IS BEING TANKED WITH LOX PRECEDING A STATIC FIRING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1963-09-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.
1962-08-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a back side view of the Block House.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.
1962-01-23
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken January 23, 1962, shows the excavation of the Block House site.
1962-06-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken February 2, 1962, shows the excavation of the Block House site.
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1993-01-01
During the period 8/16/92 through 2/15/93, work has been focused on three major topics: (1) screw modeling and testing; (2) motor selection; and (3) health monitoring and fault diagnosis. Detailed theoretical analysis has been performed to specify a full dynamic model for the roller screw. A test stand has been designed for model parameter estimation and screw testing. In addition, the test stand is expected to be used to perform a study on transverse screw loading.
Test Stand at the Rocket Engine Test Facility
1973-02-21
The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.
DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II
2017-01-13
value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for
Construction Progress of the S-IC Test Stand Complex Bunker House
NASA Technical Reports Server (NTRS)
1963-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed an emergency crew clad in fire proof gear, who were close at hand should any emergencies arise during testing. This photo of the completed bunker house was taken on May 7, 1963.
1963-02-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph taken February 4, 1963, gives an impressive look at the Block House looking directly through the ever-growing four towers of the S-IC Test Stand.
1967-09-09
This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
1961-08-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961.
1961-08-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 18, 1961.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.
1961-07-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, a worker can be seen inside the test stand work area with a jack hammer.
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken June 24, 1963, the four tower legs of the test stand can be seen at their maximum height.
1961-07-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 31, 1961, work is continued in the clearing of the test stand site.
1963-02-25
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken February 25, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.
1961-08-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 11, 1961.
1963-05-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.
1963-05-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken May 7, 1963, gives a close look at the four concrete tower legs of the S-IC test stand at their completed height.
1961-07-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, workers can be seen inside the test stand work area clearing the site.
1963-10-10
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.
1961-09-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the S-IC test stand as of September 7, 1961.
Construction Progress of the S-IC Test Stand-Steel Reinforcements
NASA Technical Reports Server (NTRS)
1961-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.
1961-07-10
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 10, 1961, actual ground breaking has occurred for the S-IC test stand site.
1961-06-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this early construction photo, taken June 30, 1961, workers are involved in the survey and site preparation for the test stand.
1962-10-08
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 8, 1962, depicts a front view of the Block House nearing completion.
1. GENERAL VIEW OF OBSERVATION BUNKERS TO THE EAST OF ...
1. GENERAL VIEW OF OBSERVATION BUNKERS TO THE EAST OF TEST STAND 1-A: IN FOREGROUND, BUILDING 8769, A TWO WINDOW DESIGN (NOT ON SITE PLAN); IN THE MIDDLE DISTANCE, BUILDING 8768, A ONE WINDOW DESIGN "OBSERVATION AND CAMERA BUILDING NO. 2" ON SITE PLAN; IN THE DISTANCE, AT FAR LEFT, BUILDING 8767, A FOUR WINDOW DESIGN "MASTER OBSERVATION AND CAMERA BUILDING NO. 1" ON SITE PLAN. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
2010-02-11
purchase a new gun. Mr. Mike Ackeret ( Transfer Engineering Inc.) Transfer Engineering’s expertise in specialty UHV work and machining propelled...modifications they helped design for the test stand. With UNLV guidance, Transfer Engineering designed and built the original UNLV SEE Test Stand...Staib electron gun, an isolated beam drift tube, a hexanode delay line with a chevron microchannel plate (MCP) stack, an isolated grid, an isolated
1963-01-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, depicts the progress of the stand as of January 14, 1963, with its four towers prominently rising.
1976-01-06
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo is of the horizontal liquid oxygen tanks.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken July 3, 1962 depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.
1962-03-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton water deflector at the rate of 320,000 gallons per minute. In this photo, taken March 20, 1962, construction of the Pump House area is well underway.
1963-09-25
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph, taken September 25, 1963, depicts the construction progress of the Pump House and massive round water tanks on the right.
Environmental Systems Test Stand
NASA Astrophysics Data System (ADS)
Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.
A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.
Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test
NASA Technical Reports Server (NTRS)
Nguyen, Tuan Q.
2014-01-01
NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.
Modal Analysis with the Mobile Modal Testing Unit
NASA Technical Reports Server (NTRS)
Wilder, Andrew J.
2013-01-01
Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.
2002-10-01
This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 22, 1963. Spherical liquid hydrogen tanks can be seen to the left. Just to the lower front of those are the cylindrical liquid oxygen (LOX) tanks.
1961-06-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 13, 1961, progress is being made with the excavation of the S-IC test stand site. During the digging, a natural spring was disturbed which caused a constant flooding problem. Pumps were used to remove the water all through the construction process and the site is still pumped today.
1963-03-29
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In the early stages of excavation, a natural spring was disturbed that caused a water problem which required constant pumping from the site and is even pumped to this day. Behind this reservoir of pumped water is the S-IC test stand boasting its ever-growing four towers as of March 29, 1963.
1961-08-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photograph taken on August 5th, 1961, a back hoe is nearly submerged in water in the test stand site. During the initial digging, the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump the water from the site on a daily basis and is still pumped from the site today.
1961-08-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961. Water gushing in from the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump water from the site on a daily basis and is still pumped from the site today. The equipment is partially submerged in the water emerging from the spring.
Construction Progress of the S-IC Test Stand-Pumps
NASA Technical Reports Server (NTRS)
1962-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.
1961-09-29
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 29, 1961, shows the progress of the concrete walls for the stand’s foundation. Some of the walls have been poured and some of the concrete forms have been removed.
1961-09-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.
1961-09-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 22, 1961, shows the progress of the concrete walls for the stand’s foundation. Some of the walls have been poured and some of the concrete forms have been removed.
1961-09-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the forms for the concrete foundation walls as of September 7, 1961.
Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Burt, Richard K.
2008-01-01
This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities, along with an introduction to the new missions that these sleeping giants will be fulfilling as NASA readies the Ares I for service in the 2015 timeframe, and plans the development work for fielding the Ares V late next decade (fig. 1). Validating modern computer design models and techniques requires the sorts of data that can only be generated by these one-of-a-kind facilities.
Hybrid Rocket Experiment Station for Capstone Design
NASA Technical Reports Server (NTRS)
Conley, Edgar; Hull, Bethanne J.
2012-01-01
Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.
1962-03-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September 1961 as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable, floating pump stations were placed in the site to drain the flood waters caused by a disturbed natural spring months prior during excavation. In this March 31, 1962 photo, the foundation walls can once again be seen.
1961-12-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 22, 1961, shows danger signs posted around the abandoned site with floods nearing the top. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-03-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken March 15, 1962, shows danger signs posted around the abandoned, flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-03-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable floating pump stations were placed in the site, as seen in this March 20, 1962 photo, to drain the flood waters caused by a disturbed natural spring months prior during excavation.
1961-12-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 18, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 1, 1961, shows the abandoned site with floods at the 6 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-08
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 8, 1961, shows the abandoned site with floods at the 16 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand would have to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 14, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken February 2, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows the construction of forms which became the concrete foundation for the massive stand. The lower right hand corner reveals a pump used for extracting water emerging from a disturbed natural spring that occurred during excavation of the site. The pumping became a daily ritual and the site is still pumped today.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Instabilities of geared couplings: Theory and practice
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Mondy, R. E.; Murphy, R. C.
1982-01-01
The use of couplings for high speed turbocompressors or pumps is essential to transmit power from the driver. Typical couplings are either of the lubricated gear or dry diaphragm type design. Gear couplings have been the standard design for many years and recent advances in power and speed requirements have pushed the standard design criteria to the limit. Recent test stand and field data on continuous lube gear type couplings have forced a closer examination of design tolerances and concepts to avoid operational instabilities. Two types of mechanical instabilities are reviewed in this paper: (1) entrapped fluid, and (2) gear mesh instability resulting in spacer throw-out onset. Test stand results of these types of instabilities and other directly related problems are presented together with criteria for proper coupling design to avoid these conditions. An additional test case discussed shows the importance of proper material selection and processing and what can happen to an otherwise good design.
Solid Propellant Test Article (SPTA) Test Stand
NASA Technical Reports Server (NTRS)
1991-01-01
This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.
Designing Control System Application Software for Change
NASA Technical Reports Server (NTRS)
Boulanger, Richard
2001-01-01
The Unified Modeling Language (UML) was used to design the Environmental Systems Test Stand (ESTS) control system software. The UML was chosen for its ability to facilitate a clear dialog between software designer and customer, from which requirements are discovered and documented in a manner which transposes directly to program objects. Applying the UML to control system software design has resulted in a baseline set of documents from which change and effort of that change can be accurately measured. As the Environmental Systems Test Stand evolves, accurate estimates of the time and effort required to change the control system software will be made. Accurate quantification of the cost of software change can be before implementation, improving schedule and budget accuracy.
Cryogenic System for the Cryomodule Test Stand at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy
This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less
1962-04-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.
[Research and workshop on alternative fuels for aviation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-09-01
The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available atmore » that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.« less
Design and implementation of a crystal collimation test stand at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.
2017-06-01
Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.
Development of A Thrust Stand to Meet LISA Mission Requirements
NASA Technical Reports Server (NTRS)
Willis, William D., III; Zakrzwski, C. M.; Bauer, Frank H. (Technical Monitor)
2002-01-01
A thrust stand has been built and tested that is capable of measuring the force-noise produced by electrostatic micro-Newton (micro-Newton) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 micro-Newton with a resolution of 0.1 micro-Newton. The stationary force-noise produced by these thrusters must not exceed 0.1 pN/4Hz in a 10 Hz bandwidth. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from 10(exp-4) to 1 Hz with 0.1 micro-Newton resolution, absolute thrust measurements from 1-100 micro-Newton with better than 0.1 micro-Newton resolution, and dynamic thruster response from 10(exp -4) to 10 Hz. The ITS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.
1962-04-16
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on April 16, 1962.
1962-06-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a six month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications in March 1962. The original foundation walls built in the prior year were torn down and re-poured to accommodate the larger boosters. This photo depicts that modification progress as of June 13,1962.
1962-05-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on May 21, 1962.
1961-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows pumps used for extracting water emerging form a disturbed natural spring that occurred during the excavation of the site. The pumping became a daily ritual and the site is still pumped today.
Developing the RAL front end test stand source to deliver a 60 mA, 50 Hz, 2 ms H- beam
NASA Astrophysics Data System (ADS)
Faircloth, Dan; Lawrie, Scott; Letchford, Alan; Gabor, Christoph; Perkins, Mike; Whitehead, Mark; Wood, Trevor; Tarvainen, Olli; Komppula, Jani; Kalvas, Taneli; Dudnikov, Vadim; Pereira, Hugo; Izaola, Zunbeltz; Simkin, John
2013-02-01
All the Front End Test Stand (FETS) beam requirements have been achieved, but not simultaneously [1]. At 50 Hz repetition rates beam current droop becomes unacceptable for pulse lengths longer than 1 ms. This is fundamental limitation of the present source design. Previous researchers [2] have demonstrated that using a physically larger Penning surface plasma source should overcome these limitations. The scaled source development strategy is outlined in this paper. A study of time-varying plasma behavior has been performed using a V-UV spectrometer. Initial experiments to test scaled plasma volumes are outlined. A dedicated plasma and extraction test stand (VESPA-Vessel for Extraction and Source Plasma Analysis) is being developed to allow new source and extraction designs to be appraised. The experimental work is backed up by modeling and simulations. A detailed ANSYS thermal model has been developed. IBSimu is being used to design extraction and beam transport. A novel 3D plasma modeling code using beamlets is being developed by Cobham Vector Fields using SCALA OPERA, early source modeling results are very promising. Hardware on FETS is also being developed in preparation to run the scaled source. A new 2 ms, 50 Hz, 25 kV pulsed extraction voltage power supply has been constructed and a new discharge power supply is being designed. The design of the post acceleration electrode assembly has been improved.
Small-Scale Hybrid Rocket Test Stand & Characterization of Swirl Injectors
NASA Astrophysics Data System (ADS)
Summers, Matt H.
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
Application of the Life Safety Code to a Historic Test Stand
NASA Technical Reports Server (NTRS)
Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.
2011-01-01
NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact. An effort was launched to thoroughly evaluate the applicable life safety requirements, examine the context in which they were derived, and determine a means by which the TS4550 modifications could be made within budget and on schedule, while still providing the occupants with appropriate levels of safety.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Prabhat Kumar; Rabehl, Roger
2014-07-01
Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operationalmore » modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.« less
Test stand for Titan 34D SRM static firing
NASA Technical Reports Server (NTRS)
Glozman, Vladimir; Shipway, George
1988-01-01
An existing liquid engine test stand at the AF Astronautics Laboratory was refurbished and extensively modified to accommodate the static firing of the Titan 34D solid rocket motor (SRM) in the vertical nozzle down orientation. The main load restraint structure was designed and built to secure the SRM from lifting off during the firing. In addition, the structure provided weather protection, temperature conditioning of the SRM, and positioning of the measurement and recording equipment. The structure was also used for stacking/de-stacking of SRM segments and other technological processes. The existing stand, its foundation and anchorage were thoroughly examined and reanalyzed. Necessary stand modifications were carried out to comply with the requirements of the Titan 34D SRM static firing.
Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests
NASA Astrophysics Data System (ADS)
Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu
2009-10-01
This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.
HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand
NASA Technical Reports Server (NTRS)
Chaparro, Javier
2013-01-01
During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of the Commodities Exchange Pallet, I also assisted in preparation for testing the upper stage of a sounding rocket developed as a Center Innovation Fund project. The main objective of this project is to demonstrate the integration between a propulsion system and a solid oxide fuel cell (SOFC). The upper stage and SOFC are scheduled to complete an integrated test in August of 2016. As part of preparation for scheduled testing, I was responsible for designing the upper stage's test stand/support structure and main engine plume deflector to be used during hot-fire testing (fig. 3). The structural components of the test stand need to meet safety requirements for operation of the propulsion system, which consist of a 100 pounds-thrust main engine and two 15 pounds-thrust reaction control thrusters. My main accomplishment for this project was the completion of the design and the parts selection for construction of the structure, scheduled to begin late April of 2016.
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1994-01-01
This progress report documents research and development efforts performed from August 16, 1993 through August 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Since the submission of our last progress report in February 1994, our efforts have been almost entirely focused on final construction of the test stand and experiment design. Hence, this report is dedicated solely to these topics. However, updates on our research personnel and our health monitoring and fault management efforts are provided in this summary. Following this executive summary are two report sections. The first is devoted to the motor drive being constructed for the test stand. The thrust of the next section is the mechanical and hydraulic design and construction based on the planned experimental requirements. Following both major sections are three appendices.
NASA Technical Reports Server (NTRS)
Wallhagen, R. E.; Arpasi, D. J.
1974-01-01
The design and evaluation are described of a digital turbojet engine control which is capable of sensing catastrophic failures in either the engine rotor speed or the compressor discharge static-pressure signal and is capable of switching control modes to maintain near normal operation. The control program was developed for and tested on a turbojet engine located in a sea-level test stand. The control program is also capable of acquiring all the data that are necessary for the fail-operational control to function.
Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery
NASA Technical Reports Server (NTRS)
Bogner, R. S.
1972-01-01
A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.
Development of a Thrust Stand to Meet LISA Mission Requirements
NASA Technical Reports Server (NTRS)
Willis, William D., III; Zakrzwski, Charles M.; Merkowitz, Stephen M.
2002-01-01
A thrust stand has been built to measure the force-noise produced by electrostatic micro-Newton (muN) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 muN with a resolution of 0.1 muN. The stationary force-noise produced by these thrusters must not exceed 0.1 muN/dHz in the measurement bandwidth 10(exp -4) to 1 Hz. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from l0( -4) to 1 Hz with 0.1 muN/dHz sensitivity, absolute thrust measurements from 1-100 muN with better than 0.1 muN resolution, and dynamic thruster response from to 10 Hz. The LTS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.
Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony
2016-06-01
In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and tomore » keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.« less
Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)
NASA Astrophysics Data System (ADS)
Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.
2013-10-01
The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.
An Approach to Developing the Laboratory Through Senior Design Projects.
ERIC Educational Resources Information Center
Faghri, Amir
1987-01-01
Describes a program in which senior engineering students are given the opportunity to design, make, and test apparatus intended for an upper-level teaching laboratory. Discusses such projects as a vapor compressor test stand with refrigerant mass flow measurement, a double-walled concentric annular heat pipe, and a vacuum filling station. (TW)
Testing to Transition the J-2X from Paper to Hardware
NASA Technical Reports Server (NTRS)
Byrd, Tom
2010-01-01
The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer water flow, turbine air flow, turbopump seal testing, main injector and gas generator, injector testing, augmented spark igniter testing, nozzle side loads cold flow testing, nozzle extension film cooling flow testing, control system testing with hardware in the loop, and nozzle extension emissivity coating tests. In parallel with hardware manufacturing, work is progressing on the new A-3 test stand to support full duration altitude testing. The Stennis A-2 test stand is scheduled to be turned over to the Constellation Program in September 2010 to be modified for J-2X testing also. As the structural steel was rising on the A-3 stand, work was under way in the nearby E complex on the chemical steam generator and subscale diffuser concepts to be used to evacuate the A-3 test cell and simulate altitude conditions.
Locomotive Crash Energy Management Coupling Tests
DOT National Transportation Integrated Search
2018-04-18
This paper describes the results of the CEM equipped locomotive coupling tests. In this set of tests, a moving CEM locomotive was coupled to a standing cab car. The primary objective was to demonstrate the robustness of the PBC design and determine t...
A Design Tool for Matching UAV Propeller and Power Plant Performance
NASA Astrophysics Data System (ADS)
Mangio, Arion L.
A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.
Ergonomic design of a barber's workstation.
al-Haboubi, M H; Baig, A
1997-06-01
Long hours of work while standing have been known to cause health problems for humans. Such professions include that of the barber. A survey was conducted of barbers from different barber shops in Saudi Arabia to determine their discomfort level. A prototype workstation was then designed and constructed in which the barber sits and performs work. The workstation was tested by nine barbers in the Human Factors Laboratory in the Systems Engineering Department at King Fahd University of Petroleum and Minerals. These barbers were among those surveyed earlier in their shops. Their discomfort level was again taken and an experiment was conducted to design the shape of the footrest. The discomfort levels obtained while standing and sitting were statistically analysed. From the results, it was concluded that the mean of the discomfort levels while standing is significantly (alpha = 0.01) higher than that while sitting.
NASA Technical Reports Server (NTRS)
Block, P. J. W.
1982-01-01
Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.
NASA Technical Reports Server (NTRS)
Wong, Kin C.
2003-01-01
This paper documents the derivation of the data reduction equations for the calibration of the six-component thrust stand located in the CE-22 Advanced Nozzle Test Facility. The purpose of the calibration is to determine the first-order interactions between the axial, lateral, and vertical load cells (second-order interactions are assumed to be negligible). In an ideal system, the measurements made by the thrust stand along the three coordinate axes should be independent. For example, when a test article applies an axial force on the thrust stand, the axial load cells should measure the full magnitude of the force, while the off-axis load cells (lateral and vertical) should read zero. Likewise, if a lateral force is applied, the lateral load cells should measure the entire force, while the axial and vertical load cells should read zero. However, in real-world systems, there may be interactions between the load cells. Through proper design of the thrust stand, these interactions can be minimized, but are hard to eliminate entirely. Therefore, the purpose of the thrust stand calibration is to account for these interactions, so that necessary corrections can be made during testing. These corrections can be expressed in the form of an interaction matrix, and this paper shows the derivation of the equations used to obtain the coefficients in this matrix.
Zhang, Xiao C; Bermudez, Ana M; Reddy, Pranav M; Sarpatwari, Ravi R; Chheng, Darin B; Mezoian, Taylor J; Schwartz, Victoria R; Simmons, Quinneil J; Jay, Gregory D; Kobayashi, Leo
2017-03-01
A stable and readily accessible work surface for bedside medical procedures represents a valuable tool for acute care providers. In emergency department (ED) settings, the design and implementation of traditional Mayo stands and related surface devices often limit their availability, portability, and usability, which can lead to suboptimal clinical practice conditions that may affect the safe and effective performance of medical procedures and delivery of patient care. We designed and built a novel, open-source, portable, bedside procedural surface through an iterative development process with use testing in simulated and live clinical environments. The procedural surface development project was conducted between October 2014 and June 2016 at an academic referral hospital and its affiliated simulation facility. An interdisciplinary team of emergency physicians, mechanical engineers, medical students, and design students sought to construct a prototype bedside procedural surface out of off-the-shelf hardware during a collaborative university course on health care design. After determination of end-user needs and core design requirements, multiple prototypes were fabricated and iteratively modified, with early variants featuring undermattress stabilizing supports or ratcheting clamp mechanisms. Versions 1 through 4 underwent 2 hands-on usability-testing simulation sessions; version 5 was presented at a design critique held jointly by a panel of clinical and industrial design faculty for expert feedback. Responding to select feedback elements over several surface versions, investigators arrived at a near-final prototype design for fabrication and use testing in a live clinical setting. This experimental procedural surface (version 8) was constructed and then deployed for controlled usability testing against the standard Mayo stands in use at the study site ED. Clinical providers working in the ED who opted to participate in the study were provided with the prototype surface and just-in-time training on its use when performing bedside procedures. Subjects completed the validated 10-point System Usability Scale postshift for the surface that they had used. The study protocol was approved by the institutional review board. Multiple prototypes and recursive design revisions resulted in a fully functional, portable, and durable bedside procedural surface that featured a stainless steel tray and intuitive hook-and-lock mechanisms for attachment to ED stretcher bed rails. Forty-two control and 40 experimental group subjects participated and completed questionnaires. The median System Usability Scale score (out of 100; higher scores associated with better usability) was 72.5 (interquartile range [IQR] 51.3 to 86.3) for the Mayo stand; the experimental surface was scored at 93.8 (IQR 84.4 to 97.5 for a difference in medians of 17.5 (95% confidence interval 10 to 27.5). Subjects reported several usability challenges with the Mayo stand; the experimental surface was reviewed as easy to use, simple, and functional. In accordance with experimental live environment deployment, questionnaire responses, and end-user suggestions, the project team finalized the design specification for the experimental procedural surface for open dissemination. An iterative, interdisciplinary approach was used to generate, evaluate, revise, and finalize the design specification for a new procedural surface that met all core end-user requirements. The final surface design was evaluated favorably on a validated usability tool against Mayo stands when use tested in simulated and live clinical settings. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Validation of Cardiovascular Parameters during NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.
2009-01-01
Microgravity exposure causes physiological deconditioning and impairs crewmember task performance. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in a series of operationally-relevant tasks. One of these, the Recovery from Fall/Stand Test (RFST), tests both the ability to recover from a prone position and cardiovascular responses to orthostasis. PURPOSE: Three minutes were chosen for the duration of this test, yet it is unknown if this is long enough to induce cardiovascular responses similar to the operational 5 min stand test. The purpose of this study was to determine the validity and reliability of heart rate variability (HRV) analysis of a 3 min stand and to examine the effect of spaceflight on these measures. METHODS: To determine the validity of using 3 vs. 5 min of standing to assess HRV, ECG was collected from 7 healthy subjects who participated in a 6 min RFST. Mean R-R interval (RR) and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the FTT on separate days, including the RFST with a 3 min stand. Analysis of variance (ANOVA) was performed on the HRV measures. One crewmember completed the FTT before a 14-day mission, on landing day (R+0) and one (R+1) day after returning to Earth. RESULTS VALIDITY: HRV measures reflecting autonomic activity were not significantly different during the 0-3 and 0-5 min segments. RELIABILITY: The average coefficient of variation for RR, systolic (SBP) and diastolic blood pressures during the RFST were less than 8% for the 3 sessions. ANOVA results yielded a greater inter-subject variability (p<0.006) than inter-session variability (p>0.05) for HRV in the RFST. SPACEFLIGHT: Lower RR and higher SBP were observed on R+0 in rest and stand. On R+1, both RR and SBP trended towards preflight rest and stand values. Postflight HRV showed higher LF/HF for rest and stand and lower HFnu during rest. CONCLUSION: These studies show that a 3 min stand delivers repeatable HRV data in the context of this larger series of FTT tests. Spaceflight-induced changes in blood pressure, RR and autonomic function (HRV) are evident from the RFST.
Control Room at the NACA’s Rocket Engine Test Facility
1957-05-21
Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.
Launch Vehicle Stage Adapter from Start to Stack
2016-10-16
See how a test version of the launch vehicle stage adapter (LVSA) for NASA's new rocket, the Space Launch System, is designed, built and stacked in a test stand at the agency's Marshall Space Flight Center in Huntsville, Alabama. The LVSA was moved to a 65-foot-tall test stand Oct. 12 at Marshall. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. Testing is scheduled to begin in early 2017. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB
A crush zone design for an existing passenger rail cab car
DOT National Transportation Integrated Search
2005-11-05
A Crash Energy Management (CEM) cab car crush zone : design has been developed for retrofit onto an existing Budd : M1 cab car. This design is to be used in the upcoming fullscale : train-to-train test of a CEM consist impacting a standing : freight ...
The Air Force Phillips Laboratory multimegawatt quasi-steady MPD thruster facility
NASA Astrophysics Data System (ADS)
Castillo, Salvador; Tilley, Dennis L.
1992-07-01
The operational multimegawatt quasi-steady MPD thruster facility is described in terms of its general design emphasizing the impulse thrust stand and diagnostics capabilities. The vacuum, propellant, and electrical systems are discussed with schematic diagrams of the respective component configurations and explanations of the needs of MPD thruster testing. The impulse thrust stand comprises an accelerometer/pendulum-impulse stand which can be used to correlate thruster impulse with accelerometer readings and thereby reduce measurement uncertainties. The diagnostics of the terminal characteristics of the thruster operation are complemented by diagnostics platforms that study plasma properties in the plume and the thruster. Preliminary tests indicate that the MPD thruster facility is prepared for detailed investigations of MPD thruster performance and plume diagnostics.
Development of a negative ion-based neutral beam injector in Novosibirsk.
Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L
2014-02-01
A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF), carried on an F-15B's cen
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially-
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'
The 3600 hp split-torque helicopter transmission
NASA Technical Reports Server (NTRS)
White, G.
1985-01-01
Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.
The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.
Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K
2010-02-01
The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions.
Dual-Actuator Active Vibration-Control System
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel
1994-01-01
Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.
Space Launch System, Core Stage, Structural Test Design and Implementation
NASA Technical Reports Server (NTRS)
Shaughnessy, Ray
2017-01-01
As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and methodology for supporting the SLS Core Stage STA test stands and related STE. The paper will address key requirements, system development activities and project challenges. Additionally, the interrelationships as well as interdependencies within the SLS project will be discussed.
Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros
2002-01-01
Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...
NASA Astrophysics Data System (ADS)
Elias, Nurainaa; Mat Yahya, Nafrizuan
2018-04-01
Chin stands aid is a device designed to reduce fatigue on the chin during the Visual Mechanical Inspection (VMI) task for operators in TT Electronic Sdn Bhd, Kuantan, Malaysia. It is also used to reduce cycle time and also improve employee well-being in terms of comfort. In this project, a 3D model of chin stands aid with an ergonomics approach is created using SOLIDWORKS software. Two different concepts were designed and the best one is chosen based on the Pugh concept selection method, concept screening and also concept scoring. After the selection of concepts is done, a prototype of chin stands aid will be developed and a simulation of the prototype is performed. The simulation has been executed by using Workbench ANSYS software as a tool. Stress analysis, deformation analysis, and fatigue analysis have been done to know the strength and lifespan of the product. The prototype also has been tested to know the functionality and also comfortability for the user to use the chin stands aid.
A drive system to add standing mobility to a manual standing wheelchair.
Nickel, Eric; Hansen, Andrew; Pearlman, Jonathan; Goldish, Gary
2016-05-16
Current manual standing wheelchairs are not mobile in the standing position. The addition of standing mobility may lead to improved health and function for the user and may increase utilization of standing wheelchairs. In this project, a chain drive system was fitted to a manual standing wheelchair, adding mobility in the standing position. The hand rims are accessible from both seated and standing positions. The prototype uses 16-inch drive wheels in front with casters in the rear. Additional anterior casters are elevated when seated for navigating obstacles and then descend when standing to create a six-wheeled base with extended anterior support. Stability testing shows the center of pressure remains within the base of support when leaning to the sides or front in both seated and standing positions. Four veterans with spinal cord injury provided feedback on the design and reported that mobility during standing was very important or extremely important to them. The veterans liked the perceived stability and mobility of the prototype and provided feedback for future refinements. For example, reducing the overall width (width from hand rim to hand rim) and weight could make this system more functional for users.
Application of Bridge Pier Scour Equations for Large Woody Vegetation
2016-07-01
official Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT...11 Figure 3. Standing tree test configuration, pretest ...12 Figure 4. Fallen tree test configuration, pretest
1991-07-01
This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.
An industrial sewing machine variable speed controller
NASA Technical Reports Server (NTRS)
Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank
1992-01-01
The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.
An industrial sewing machine variable speed controller
NASA Astrophysics Data System (ADS)
Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank
The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.
Looking northeast from Test Stand 'A' superstructure towards Test Stand ...
Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
A torsion balance for impulse and thrust measurements of micro-Newton thrusters
NASA Astrophysics Data System (ADS)
Yang, Yuan-Xia; Tu, Liang-Cheng; Yang, Shan-Qing; Luo, Jun
2012-01-01
This paper reports the performance of a torsion-type thrust stand suitable for studies of micro-Newton thrusters, which is developed for ground testing the micro-Newton thruster in Chinese Test of the Equivalence Principle with Optical readout space mission. By virtue of specially suspending design and precise assembly of torsion balance configuration, the thrust stand with load capacity up to several kilograms is able to measure the impulse bit up to 1350 μNs with a resolution of 0.47 μNs, and the average thrust up to 264 μN with a resolution of 0.09 μN in both open and close loop operation. A pulsed plasma thruster, the preliminary prototype developed for Chinese TEPO space mission, is tested by the thrust stand, and the results reveal that the average impulse bit per pulse is measured to be 58.4 μNs with a repeatability of about 5%.
F-35A Training Basing Environmental Impact Statement. Volume 1
2012-06-01
Global Change Research Program USMC U.S. Marine Corps USN U.S. Navy UTTR Utah Test and Training Range VCP vitrified clay pipe VFR Visual Flight...burning flare struck the ground, it could result in a fire, with potential environmental consequences. The design , manufacturing, and testing process...C–6, and C–7). Of these, 14 are considered to have the potential to be designated as an NRHP Missile Test Stands Historic District. Premilitary
NASA Technical Reports Server (NTRS)
Haag, Thomas W.
1995-01-01
A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2009-01-01
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.
Implementation of object-oriented programming in study of electrical race car
NASA Astrophysics Data System (ADS)
Nowak, M.; Baier, M.
2016-08-01
The paper covers issue of conducting advanced research of electrical race car participating in international competition called Sileverline Corporate Challenge. Process of designing race cars in Silesian Greenpower team is aided by a professional engine test stand built particularly in purpose of this research. Phase of testing and simulation is an important part of the implementation of new technologies. Properly developed solutions and test procedures are able to significantly shorten development time and reduce design costs. Testing process must be controlled by a modular and flexible application, easy to modify and ensuring safety. This paper describes the concept of object-oriented programming in LabVIEW and exemplary architecture of object-oriented control application designed to control engine test stand of the electrical race car. Eventually, the task of application will be to steer the electromagnetic brake and the engine load torque to perform according to data from the actual race track. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The paper covers the research verifying the effectiveness of the cooling system.
FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Troy; Diamond, J. S.; McDowell, D.
2016-10-12
An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less
In-Line Heat Treatment and Hot Rolling
NASA Astrophysics Data System (ADS)
Raudensky, M.; Horsky, J.; Hnizdil, M. P.; Pohanka, Kotrbacek M.
2011-01-01
In-line heat treatment of rolled materials is becoming increasingly used at hot rolling plants. The advantage of this method is the achievement of required material structure without the necessity of reheating. This paper describes a design procedure for cooling sections for the purpose of obtaining the required structure and mechanical properties. The procedure is typically used for the cooling of tubes, rails, long products and plates. Microstructure and nature of grains, grain size and composition determine the overall mechanical behaviour of steel. Heat treatment provides an efficient way to manipulate the properties of steel by controlling the cooling rate. The rate of cooling is defined by a heat transfer coefficient (HTC). Good controllability of HTC can be reached using either air-water or water nozzles. Thus, an on-line heat treatment with the assistance of spray nozzles enables a manufacturing process that can improve product performance by increasing steel strength, hardness and other desirable characteristics. These techniques also allow selective hardening, such that selective areas of a single object can be subjected to different treatments. An experimental stand designed for the study of cooling steel samples has been built at the Brno University of Technology. The stand comprises a movable trolley containing a test sample which moves under the spray at a given velocity. Sensors indicate the temperature history of the tested material. This experimental stand enables simulation of a variety of cooling regimes and evaluates the final structure of tested samples. The same experimental stand is also a tool for use in the design of cooling sections in order to find the required heat treatment procedure and final structure. Examples of the cooling of rails and tubes are given in the paper.
Brain and Spinal Tumors: Hope through Research
... remember that all potential therapies must stand the tests of well-designed, carefully controlled clinical trials and long-term follow-up of treated patients before any conclusions can be drawn about their safety or effectiveness. New trial designs are also being developed to more quickly evaluate ...
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The results of pretesting and performance testing of Stack 564 are reported. The design features, progress in fabrication and plans for assembly of Stack 800 are given. The status of endurance testing of Stack 560 is reported. The design, fabrication, test procedures and preliminary tests of the 10 kW double counterflow reformer and the reformer test stand are described. Results of vendor contacts to define the performance and cost of fuel conditioning system components are reported. The results of burner tests and continuing development of the BOLTAR program are reported.
NASA Astrophysics Data System (ADS)
Sauerborn, Markus; Liebenstund, Lena; Raue, Markus; Mang, Thomas; Herrmann, Ulf; Dueing, Andreas
2017-06-01
The Solar-Institute Jülich (SIJ) developed the micro heliostat system - a small sized heliostat - during the last years. One special performance of the micro heliostat is the option to integrate inexpensive plastic elements. The use of plastic as a cost reducer in the heliostat technique is also offering the chance to integrate complex designed components with a higher quality and special system function. The plastic for this application requires a high standing against UV radiation and thermal cycles with a daily extreme temperature variation. The temperature range inside the closed micro heliostat box can annually fluctuate between -20 °C and 80 °C in the worst case. Special aging tests were designed and performed for the first time in cooperation with the Institute for Applied Polymer Science (IAP) in order to identify and qualify a resistance plastic for the micro heliostat. This systematic plastic aging testing for the micro heliostat is introduced here. The tests were carried out under extreme ambient situations, which simulate the temperature and irradiation conditions that the heliostat has to stand for years. A particular climate of arid areas with continuous high solar radiation was defined for these tests. Two accelerating aging methods were adapted to reach adequate aging results in a reduced time. The aging of the investigated kinds of plastics were followed by tensile test, impact test, measuring Shore hardness, dynamic-mechanical analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy to compare the different types of polymers. Parallel to these tests running real outdoor tests were performed, to control this accelerated aging. To have adequate conditions that the plastic in a micro heliostat has to stand, an identical closed test box with a glass cover was designed. The test samples inside the box were irradiated by the sun. The wanted forecast for the analyzed plastic was defined by the comparison of the real and the accelerated aging results.
Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab
DiMarco, J.; Tartaglia, M.; Terechkine, I.
2016-12-05
Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less
Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiMarco, J.; Tartaglia, M.; Terechkine, I.
Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less
Aerial shows Stennis test stands
2004-04-16
An aerial photo shows the B-1/B-2 Test Stand (foreground), A-2 Test Stand (middle) and A-1 Test Stand (back). The historic stands have been used to test engines used on every manned Apollo and space shuttle mission.
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
A design procedure for fan inflow control structures
NASA Technical Reports Server (NTRS)
Gedge, M. R.
1980-01-01
Significant differences exist in the noise generated by engine in flight and engines operating on the test stand. It was observed that these differences can be reduced by use of an inflow control structure (ICS) in the static test configuration. The results of the second phase of a three phase program are described and the results of a test program conducted to assess and modify various theoretical models, leading to the development of an ICS design system is summarized.
A 20-liter test stand with gas purification for liquid argon research
Li, Y.; Thorn, C.; Tang, W.; ...
2016-06-06
Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.
A 20-liter test stand with gas purification for liquid argon research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Thorn, C.; Tang, W.
Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.
Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.
2009-01-01
Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in the planning stages.
NASA Astrophysics Data System (ADS)
Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, P.; Sedghi, B.; Mueller, M.
2012-09-01
During the advanced design phase of the European Extremely Large Telescope (E-ELT) several critical components have been prototyped. During the last year some of them have been tested in dedicated test stands. In particular, a representative section of the E-ELT primary mirror has been assembled with 2 active and 2 passive segments. This test stand is equipped with complete prototype segment subunits, i.e. including support mechanisms, glass segments, edge sensors, position actuators as well as additional metrology for monitoring. The purpose is to test various procedures such as calibration, alignment and handling and to study control strategies. In addition the achievable component and subsystem performances are evaluated, and interface issues are identified. In this paper an overview of the activities related to the E-ELT M1 Test Facility will be given. Experiences and test results are presented.
Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities
NASA Technical Reports Server (NTRS)
Richter, Hanz
2004-01-01
A rocket test stand and associated subsystems are complex devices whose operation requires that certain preparatory calculations be carried out before a test. In addition, real-time control calculations must be performed during the test, and further calculations are carried out after a test is completed. The latter may be required in order to evaluate if a particular test conformed to specifications. These calculations are used to set valve positions, pressure setpoints, control gains and other operating parameters so that a desired system behavior is obtained and the test can be successfully carried out. Currently, calculations are made in an ad-hoc fashion and involve trial-and-error procedures that may involve activating the system with the sole purpose of finding the correct parameter settings. The goals of this project are to develop mathematical models, control methodologies and associated simulation environments to provide a systematic and comprehensive prediction and real-time control capability. The models and controller designs are expected to be useful in two respects: 1) As a design tool, a model is the only way to determine the effects of design choices without building a prototype, which is, in the context of rocket test stands, impracticable; 2) As a prediction and tuning tool, a good model allows to set system parameters off-line, so that the expected system response conforms to specifications. This includes the setting of physical parameters, such as valve positions, and the configuration and tuning of any feedback controllers in the loop.
1965-04-16
This photograph depicts a dramatic view of the first test firing of all five F-1 engines for the Saturn V S-IC stage at the Marshall Space Flight Center. The testing lasted a full duration of 6.5 seconds. It also marked the first test performed in the new S-IC static test stand and the first test using the new control blockhouse. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. Required to hold down the brute force of a 7,500,000-pound thrust, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900 ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minute.
Krebs, N; Berry, S L; Tucker, C B
2011-01-01
Interest in the use of rubber flooring in freestall barns has increased, but little is known about which design features of these surfaces are important for cattle. In 2 experiments, we evaluated how the type and compressibility of the flooring surface in front of the feed bunk influenced the behavioral response to 4 h of forced standing after morning milking. Two flooring types were compared: rubber and concrete. Rubber was tested at 3 levels of compressibility: 2, 4, and 35 times as compressible as concrete. Four hours of forced standing was evaluated because it mimicked conditions that can occur on dairies, particularly when waiting for artificial insemination or veterinary treatment. The effects of cow weight and hoof surface area, gait score, and hoof health on the response to treatment were evaluated. Restless behavior, as measured by number of steps, almost doubled over the 4h of forced standing, regardless of flooring material. Cows lay down, on average, within 5 min after access to the lying area was provided. These results indicate that the 4 h of forced standing was uncomfortable. No differences in restless behavior were observed in association with the type or compressibility of the flooring surface in front of the feed bunk. Cow size, hoof health, or gait score did not consistently explain the response to the flooring treatments or stepping rate, although these populations of animals were generally healthy. It is unclear if comfort did not differ between the flooring options tested during 4 h of forced standing or if alterative methodology, such as measuring more subtle shifts in weight, is required to assess design features of rubber flooring. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, V.; Agostinetti, P.; Brombin, M.
2015-04-08
In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with themore » aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.« less
Definition study for variable cycle engine testbed engine and associated test program
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.
1978-01-01
The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.
Collective Protection (COLPRO) Novel Closures Testing
2013-03-28
science and technology programs for future ColPro systems may include interfaces such as novel designs using zippers, hook-and-pile closures, and...necessitate new testing procedures. Additionally, stand- ards of performance must be adjusted as technologies advance. Test procedures and parameters...listed in this TOP may require updating to accommodate new technologies in test items or in test instrumentation. Any variation to the TOP procedures
2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...
2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
Engine throat/nozzle optics for plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Duncan, D. B.
1991-01-01
The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.
Design verification tests for an axial gap permanent magnet compressor motor
NASA Astrophysics Data System (ADS)
Hawsey, R. A.; Bailey, J. M.
1987-07-01
A 30-hp, direct-drive, permanent magnet motor (PMM) has been constructed. The motor is to operate at 15,000 rpm and is designed to drive a Worthington compressor at the US DOE-owned gaseous diffusion plants. The PMM prevents traditional dynamometer testing, including locked rotor current, voltage, and torque measurements. A test plan is presented for data acquisition on the dynamometer test stand in order to calculate the equivalent circuit for the motor. A description of the hardware required for these measurements is included in the plan.
Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC
NASA Technical Reports Server (NTRS)
SaintCyr, William W.; Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; SaintCyr, William W.
2010-01-01
John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft). To achieve the simulated altitude environment, chemical steam generators using isopropyl alcohol, LOX, and RELEASED - Printed documents may be obsolete; validate prior to use. water would run for the duration of the test and would generate approximately 2096 Kg/s of steam to reduce pressure in the test cell and downstream of the engine. The testing at the A-3 Test Stand is projected to begin in late 2010, meanwhile the J-2X component testing on A-1 is scheduled to begin later this year.
Bilayer free-standing beam splitter for Fourier transform infrared spectrometry.
Rowell, N L; Wang, E A
1996-06-01
We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).
High-efficiency particulate air filter test stand and aerosol generator for particle loading studies
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.
2007-08-01
This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.
Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A
2007-08-01
This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.
28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...
28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Validity of the occupational sitting and physical activity questionnaire.
Chau, Josephine Y; Van Der Ploeg, Hidde P; Dunn, Scott; Kurko, John; Bauman, Adrian E
2012-01-01
Sitting at work is an emerging occupational health risk. Few instruments designed for use in population-based research measure occupational sitting and standing as distinct behaviors. This study aimed to develop and validate brief measure of occupational sitting and physical activity. A convenience sample (n = 99, 61% female) was recruited from two medium-sized workplaces and by word-of-mouth in Sydney, Australia. Participants completed the newly developed Occupational Sitting and Physical Activity Questionnaire (OSPAQ) and a modified version of the MONICA Optional Study on Physical Activity Questionnaire (modified MOSPA-Q) twice, 1 wk apart. Participants also wore an ActiGraph accelerometer for the 7 d in between the test and retest. Analyses determined test-retest reliability with intraclass correlation coefficients and assessed criterion validity against accelerometers using the Spearman ρ. The test-retest intraclass correlation coefficients for occupational sitting, standing, and walking for OSPAQ ranged from 0.73 to 0.90, while that for the modified MOSPA-Q ranged from 0.54 to 0.89. Comparison of sitting measures with accelerometers showed higher Spearman correlations for the OSPAQ (r = 0.65) than for the modified MOSPA-Q (r = 0.52). Criterion validity correlations for occupational standing and walking measures were comparable for both instruments with accelerometers (standing: r = 0.49; walking: r = 0.27-0.29). The OSPAQ has excellent test-retest reliability and moderate validity for estimating time spent sitting and standing at work and is comparable to existing occupational physical activity measures for assessing time spent walking at work. The OSPAQ brief instrument measures sitting and standing at work as distinct behaviors and would be especially suitable in national health surveys, prospective cohort studies, and other studies that are limited by space constraints for questionnaire items.
Influence of standing or seated pelvis on dummy responses in rear impacts.
Viano, David C; Parenteau, Chantal S; Burnett, Roger
2012-03-01
There is a question whether the standing or seated pelvis should be used in Hybrid III dummy evaluations of seats and belt restraint systems in severe rear impacts. This study compares the standing and seated Hybrid III pelvis in matched rear sled tests. Sixteen sled tests were found at 10, 16 and 24 km/h rear delta V in Ford's archives where matched tests were run with the standing and seated pelvis in a belted Hybrid III dummy. Two new tests were conducted at 40 km/h rear delta V to extend the severity range. The head, chest and pelvis were instrumented with triaxial accelerometers and the upper and lower neck, thoracic spine and lumbar spine had transducers measuring triaxial loads and moments. Belt Loads were measured. High-speed video recorded different views of the dummy motion. Dummy kinematics and biomechanical responses were compared for all of the data with the two different Hybrid III pelvic designs. In the 40 km/h sled tests, the dummy motion and excursion were essentially similar with the standing and seated pelvis. The similarities included the lap belt interaction with the pelvis and the leg movement upward flexing the hip joint. Overall, similar biomechanic and kinematic responses were found, including the pelvic acceleration, spinal forces and moments. For the lower speed tests at 10, 16 and 24 km/h, the motion sequence was also similar with the two different pelvises, including the upward movement of the legs as the seat was loaded and rebound kinematics. The biomechanical responses were similar. The seated pelvis involves only a small portion of the upper leg molded into the vinyl skin of the pelvis and does not limit leg rotation at the hip joint. Furthermore, lap belt loads were minimal during the rearward movement of the dummy. The matched testing showed no significant difference in occupant kinematics or biomechanical responses between the standing and seated pelvis in rear sled tests. The Hybrid III dummy with the seated pelvis is suitable for FMVSS 301 and other testing of seats and belt restraint systems in severe rear impacts. Copyright © 2011 Elsevier Ltd. All rights reserved.
1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...
1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Magee, J. P.; Alexander, H. R.
1973-01-01
The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.
Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands
NASA Technical Reports Server (NTRS)
Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.
2010-01-01
The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.
On the Design and Test of a Liquid Injection Electric Thruster
NASA Technical Reports Server (NTRS)
Jones, T. A.; Kenney, J. T.; Youmans, E. H.
1973-01-01
A liquid injection electric thruster (LINJET) was designed and tested. The results of the tests were very encouraging with thruster performance levels well in excess of design goals. Supporting activities to the engine design and test included a five-million pulse life test on the main capacitor, a 46-million pulse test on the trigger electronics, design and fabrication of a zero resistance torque connector for use with the torsional pendulum thrust stand, design and fabrication of a logic box for control of engine firing, and a physical and chemical properties characterization of the perfluorocarbon propellant. While the results were encouraging, testing was limited, as many problems existed with the design. The most significant problem was involved with excessive propellant flow which contributed to false triggering and shorting. Low power active thermal control of the propellant storage cavity, coupled with a re-evaluation of the injection ring pore size and area exposed to the main capacitor discharge are areas that should be investigated should this design be carried forward.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
1993-01-01
A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.
20. Building 202, detail of stand A, rocket test stand ...
20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE ...
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE A-4 ENGINE AND ROCKET PROPULSION TEST STAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...
GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2016-01-01
In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of…
26 CFR 1.509(a)-3 - Broadly, publicly supported organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... support test and the not-more-than-one-third support test are designed to insure that an organization... excluded. Requests for such determination may be filed by the grantee organization in the time and manner... and contributions from the general public. At the time of B's death, no person standing in a...
26 CFR 1.509(a)-3 - Broadly, publicly supported organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... support test and the not-more-than-one-third support test are designed to insure that an organization... excluded. Requests for such determination may be filed by the grantee organization in the time and manner... and contributions from the general public. At the time of B's death, no person standing in a...
NASA Astrophysics Data System (ADS)
Allen, A.; Villard, S.; Corbacio, M.; Goulet, D.; Plante, M.; Souques, M.; Deschamps, F.; Ostiguy, G.; Lambrozo, J.; Thomas, A. W.; Legros, A.
2016-03-01
Although studies have found that extremely low-frequency (ELF, < 300 Hz) magnetic fields (MF) can modulate human standing balance, the acute effects of electromagnetic fields on standing balance have not been systematically investigated. This work aims to establish the threshold for acute standing balance modulation during ELFMF exposure. One hundred volunteers will be exposed to transcranial electric stimulations (Direct Current - DC and Alternating Current - AC, 1 mA) and ELFMF (0 to 160 Hz, 0 to 100 mT). The displacement of their center of pressure will be collected and analyzed as an indicator of vestibular performance. During pilot testing (n=6), we found increased lateral sway with DC, and to a lesser extent, AC exposure. The ELFMF exposure system still needs to be adapted to allow meaningful results. Future protocol design will test for possible effects due to exposures in the radiofrequency range (i.e. above 3 kHz). These results will contribute to the literature documenting exposure guidelines aiming to protect workers and the general public.
40 CFR 86.312-79 - Dynamometer and engine equipment specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... test stand and other instruments for measurement of power output shall be accurate to within 2 percent... system must have a single tail pipe. For engines designed for a dual exhaust system, a standard or...
Standing Vs Supine; Does it Matter in Cough Stress Testing?
Patnam, Radhika; Edenfield, Autumn L; Swift, Steven E
The aim of this study was to compare the sensitivity of cough stress test in the standing versus supine position in the evaluation of incontinent females. We performed a prospective observational study of women with the chief complaint of urinary incontinence (UI) undergoing a provocative cough stress test (CST). Subjects underwent both a standing and a supine CST. Testing order was randomized via block randomization. Cough stress test was performed in a standard method via backfill of 200 mL or until the subject described strong urge. The subjects were asked to cough, and the physician documented urine leakage by direct observation. The gold standard for stress UI diagnosis was a positive CST in either position. Sixty subjects were enrolled, 38 (63%) tested positive on any CST, with 38 (63%) positive on standing compared with 29 (28%) positive on supine testing. Nine women (15%) had positive standing and negative supine testing. No subjects had negative standing with positive supine testing. There were no significant differences in positive tests between the 2 randomized groups (standing first and supine second vs. supine first and standing second). When compared with the gold standard of any positive provocative stress test, the supine CST has a sensitivity of 76%, whereas the standing CST has a sensitivity of 100%. The standing CST is more sensitive than the supine CST and should be performed in any patient with a complaint of UI and negative supine CST. The order of testing either supine or standing first does not affect the results.
Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system
NASA Astrophysics Data System (ADS)
Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui
2015-05-01
The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.
Benzo, Roberto M.; Gremaud, Allene L.; Jerome, Matthew; Carr, Lucas J.
2016-01-01
Prolonged sedentary behavior is an independent risk factor for multiple negative health outcomes. Evidence supports introducing standing desks into K-12 classrooms and work settings to reduce sitting time, but no studies have been conducted in the college classroom environment. The present study explored the acceptability and feasibility of introducing standing desks in college classrooms. A total of 993 students and 149 instructors completed a single online needs assessment survey. This cross-sectional study was conducted during the fall semester of 2015 at a large Midwestern University. The large majority of students (95%) reported they would prefer the option to stand in class. Most students (82.7%) reported they currently sit during their entire class time. Most students (76.6%) and instructors (86.6%) reported being in favor of introducing standing desks into college classrooms. More than half of students and instructors predicted having access to standing desks in class would improve student’s “physical health”, “attention”, and “restlessness”. Collectively, these findings support the acceptability of introducing standing desks in college classrooms. Future research is needed to test the feasibility, cost-effectiveness and efficacy of introducing standing desks in college classrooms. Such studies would be useful for informing institutional policies regarding classroom designs. PMID:27537901
2011-07-29
Work continues on the A-3 Test Stand at Stennis Space Center. The new stand will allow operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet. The test stand is scheduled for completion and activation in 2013.
2010-10-01
An 80,000-gallon liquid hydrogen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
2010-09-24
A 35,000-gallon liquid oxygen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
Photographic copy of site plan for proposed Test Stand "D" ...
Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Evaluation of a Low-Noise Formate Spiral-Bevel Gear Set
NASA Technical Reports Server (NTRS)
Lewicki, David g.; Woods, Ron L.; Litvin, Faydor L.; Fuentes, Alfonso
2007-01-01
Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.
A-3 Test Stand continues with test cell installation
2010-07-20
Employees at Stennis Space Center continue work on the A-3 Test Stand. As shown, a section of the test cell is lifted for installation on the stand's structural steel frame. Work on the A-3 Test Stand began in 2007. It is scheduled for activation in 2012.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladder June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladded June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
The design and analysis of single flank transmission error tester for loaded gears
NASA Technical Reports Server (NTRS)
Bassett, Duane E.; Houser, Donald R.
1987-01-01
To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement.
13. Photographic copy of site plan displaying Test Stand 'C' ...
13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2000-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.
Credit BG. View looking northeast at southwestern side of Test ...
Credit BG. View looking northeast at southwestern side of Test Stand "D" complex. Test Stand "D" workshop (Building 4222/E-23) is at left; shed to its immediate right is an entrance to underground tunnel system which interconnects all test stands. To the right of Test Stand "D" tower are four Clayton water-tube flash boilers once used in the Steam Generator Plant 4280/E-81 to power the vacuum ejector system at "D" and "C" stands. A corner of 4280/E-81 appears behind the boilers. Boilers were removed as part of stand dismantling program. The Dv (vertical vacuum) Test Cell is located in the Test Stand "D" tower, behind the sunscreen on the west side. The top of the tower contains a hoist for lifting or lowering rocket engines into the Dv Cell. Other equipment mounted in the tower is part of the steam-driven vacuum ejector system - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Thrust Stand for Electric Propulsion Performance Evaluation
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Jones, J. E.; Cox, M. D.
2004-01-01
An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.
1. Photographic copy of original engineering drawing for Test Stand ...
1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
View looking west at Test Stand 'A' complex in morning ...
View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Decker, T. A.; Williams, R. E.; Kuether, C. L.; Logar, N. D.; Wyman-Cornsweet, D.
1975-01-01
A computer-operated binocular vision testing device was developed as one part of a system designed for NASA to evaluate the visual function of astronauts during spaceflight. This particular device, called the Mark 3 Haploscope, employs semi-automated psychophysical test procedures to measure visual acuity, stereopsis, phoria, fixation disparity, refractive state and accommodation/convergence relationships. Test procedures are self-administered and can be used repeatedly without subject memorization. The Haploscope was designed as one module of the complete NASA Vision Testing System. However, it is capable of stand-alone operation. Moreover, the compactness and portability of the Haploscope make possible its use in a broad variety of testing environments.
25. "TEST STAND 1A UTILIZED TO TEST THE ATLAS ICBM", ...
25. "TEST STAND 1-A UTILIZED TO TEST THE ATLAS ICBM", CROPPED OUT: "DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB." Photo no. 11,371 57; G-AFFTC 15 OCT 57. Looking southwest from below the stand. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
CRASHWORTHY TROOP SEAT INVESTIGATION
1974-12-01
helicopter structure and landing gear. Newly de - signed helicopters will have landing gear designed to with- stand high sink rates and structure whioh provides...when there is no ___ ditb i- the-restrant s tystem s p§’-Hardware components sAiall carry the restraint harness design loads without permanent de ...Specification can be accepted, a troop seat design must be tested to demonstrate compliance with the proposed draft General Military Specification. Such
Standing wave performance test of IDT-SAW transducer prepared by silk-screen printing
NASA Astrophysics Data System (ADS)
Wang, Ziping; Jiang, Zhengxuan; Chen, Liangbin; Li, Yefei; Li, Meixia; Wang, Shaohan
2018-05-01
With the advantages of high performance and low loss, interdigital surface acoustic wave (IDT-SAW) transducers are widely used in the fields of nondestructive testing, communication and broadcasting. The production, performance and application of surface acoustic wave (SAW) actuators has become a research hotspot. Based on the basic principle of SAW, an IDT-SAW transducer is designed and fabricated using silk-screen printing in this work. The experiment results show that in terms of SAW performance, the fabricated IDT-SAW transducer can generate standing wave fields comparable to those generated using traditional fabrication methods. The resonant frequency response of the IDT-SAW transducer and SAW attenuation coefficient were obtained by experiments. It has provided a method to test the transducer sensing performance by using fabricated IDT-SAW transducer.
Validation Data for Mechanical System Algorithms Used in Building Energy Analysis Programs.
1982-02-01
15 Zone Design 15 Built-Up Air Handler 15 Ventilation Requirements 16 The DES 16 Duct Design 17 Air -Delivery System 17 VAV Operation 17 Constant Volume...observed to operate well at reduced air flows, even at low flow in the so- called surge region. Recommendations 1. The HVAC system and component...With Inlet Guide Vanes Operating Within a Built-Up Air Handler 31 Test 2 -- Boiler Operation, Capacity, Efficiency, and Stand-By Losses 32 Test 3
2011-09-14
Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.
NASA Technical Reports Server (NTRS)
Hebert, Phillip W., Sr.
2008-01-01
May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.
1. TEST AREA 1115, SOUTH PART OF SUPPORT COMPLEX, LOOKING ...
1. TEST AREA 1-115, SOUTH PART OF SUPPORT COMPLEX, LOOKING TO EAST FROM ABOVE BUILDING 8655, THE FUEL STORAGE TANK FARM, IN FOREGROUND SHADOW. AT THE RIGHT IS BUILDING 8660, ELECTRICAL SUBSTATION; TO ITS LEFT IS BUILDING 8663, THE HELIUM COMPRESSION PLANT. THE LIGHT TONED STRUCTURE IN THE MIDDLE DISTANCE, CENTER, IS THE MACHINE SHOP FOR TEST STAND 1-3. IN THE FAR DISTANCE IS TEST STAND 1-A, WITH THE WHITE SPHERICAL TANKS, AND TEST STAND 2-A TO ITS RIGHT. ALONG THE HORIZON FROM FAR LEFT ARE TEST STAND 1-D, TEST STAND 1-C, WATER TANKS ABOVE TEST AREA 1-125, AND TEST STAND 1-B IN TEST AREA 1-120. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
2000-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Dynamic Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.
2012-11-08
NASA recorded a historic week Nov. 5-9, conducting tests on all three stands in the E Test Complex at John C. Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 photo is from an early October test and is provided courtesy of Blue Origin. Other photos are from tests conducted the week of Nov. 5.
An Experimental Evaluation of a Field Sobriety Test Battery in the Marine Environment
1990-06-01
Turn, Horizontal Gaze Nystagmus , Finger to Nose, Finger Count, and Tracing. Of these six tests, Walk and Turn, One-Leg Stand, and Horizontal Gaze ...served as the lead officer, administering the tests while the other two officers observed. All officers administered the Horizontal Gaze Nystagmus ...administered the Horizontal Gaze Nystagmus (HGN) individually. After giving a tes’ or pair of tests (as designated) each officer on the team gave a
A-2 Test Stand modification work
2010-10-27
John C. Stennis Space Center employees install a new master interface tool on the A-2 Test Stand on Oct. 27, 2010. Until July 2009, the stand had been used for testing space shuttle main engines. With that test series complete, employees are preparing the stand for testing the next-generation J-2X rocket engine being developed. Testing of the new engine is scheduled to begin in 2011.
Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac
NASA Astrophysics Data System (ADS)
Mondal, J.; Chandan, Shiv; Parashar, S.; Bhattacharjee, D.; Tillu, A. R.; Tiwari, R.; Jayapraksh, D.; Yadav, V.; Banerjee, S.; Choudhury, N.; Ghodke, S. R.; Dixit, K. P.; Nimje, V. T.
2015-09-01
S-Band standing wave (SW) linacs in the range of 1-10 MeV have many potential industrial applications world wide. In order to mitigate the industrial requirement it is required to reduce the overall size and weight of the system. On this context a 2856 M Hz, 1 Me V, bi-periodic on axis coupled self transverse focused SW linac has been designed and tested. The RF phase focusing is achieved by introducing an asymmetric field distribution in the first cell of the 1 MeV linac. The pulsed electron beam of 40 keV, 650 mA and 5 μs duration is injected from a LaB6 thermionic gun. This paper presents the structure design, beam dynamics simulation, fabrication and experimental results of the 1 MeV auto-focusing SW linac.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Singnoi, W. N.
1985-01-01
A two axis thrust measuring system was analyzed by using a finite a element computer program to determine the sensitivities of the thrust vectoring nozzle system to misalignment of the load cells and applied loads, and the stiffness of the structural members. Three models were evaluated: (1) the basic measuring element and its internal calibration load cells; (2) the basic measuring element and its external load calibration equipment; and (3) the basic measuring element, external calibration load frame and the altitude facility support structure. Alignment of calibration loads was the greatest source of error for multiaxis thrust measuring systems. Uniform increases or decreases in stiffness of the members, which might be caused by the selection of the materials, have little effect on the accuracy of the measurements. It is found that the POLO-FINITE program is a viable tool for designing and analyzing multiaxis thrust measurement systems. The response of the test stand to step inputs that might be encountered with thrust vectoring tests was determined. The dynamic analysis show a potential problem for measuring the dynamic response characteristics of thrust vectoring systems because of the inherently light damping of the test stand.
A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND ...
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND AND ROCKET DURING TEST FIRING NUMBER 10. NOTE THE NUMBER ALONG THE TOP RAIL OF THE STAND JUST TO THE RIGHT OF THE ROCKET, THIS NUMBER INDICATES WHAT NUMBER TEST IS BEING CONDUCTED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-06-01
Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-01-01
Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141
Stratford, Paul W.
2011-01-01
Background Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. Objective The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. Design A cross-sectional design was used. Methods Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Results Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from −.36 (95% confidence interval=−.41, −.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. Limitations The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Conclusions Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing. PMID:21835892
Code of Federal Regulations, 2010 CFR
2010-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2012 CFR
2012-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2011 CFR
2011-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
A primer on stand and forest inventory designs
H. Gyde Lund; Charles E. Thomas
1989-01-01
Covers designs for the inventory of stands and forests in detail and with worked-out examples. For stands, random sampling, line transects, ricochet plot, systematic sampling, single plot, cluster, subjective sampling and complete enumeration are discussed. For forests inventory, the main categories are subjective sampling, inventories without prior stand mapping,...
NASA Technical Reports Server (NTRS)
2010-01-01
Employees at NASA's John C. Stennis Space Center work to maneuver a structural steam beam into place on the A-1 Test Stand on Jan. 13. The beam was one of several needed to form the thrust takeout structure that will support a new thrust measurement system being installed on the stand for future rocket engine testing. Once lifted onto the stand, the beams had to be hoisted into place through the center of the test stand, with only two inches of clearance on each side. The new thrust measurement system represents a state-of-the-art upgrade from the equipment installed more than 40 years ago when the test stand was first constructed.
2012-08-16
Two large-engine tests were conducted simultaneously for the first time at Stennis Space Center on Aug. 16. A plume on the left indicates a test on the facility's E-1 Test Stand. On the right, a finger of fire indicates a test under way on the A-1 Test Stand. In another first, both tests were conducted by female engineers. The image was taken from atop the facility's A-2 Test Stand, offering a panoramic view that includes the new A-3 Test Stand under construction to the left.
24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...
24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Laney, C. C., Jr.
1974-01-01
A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.
Health-related physical fitness assessment in a community-based cancer rehabilitation setting.
Kirkham, Amy A; Neil-Sztramko, Sarah E; Morgan, Joanne; Hodson, Sara; Weller, Sarah; McRae, Tasha; Campbell, Kristin L
2015-09-01
Assessment of physical fitness is important in order to set goals, appropriately prescribe exercise, and monitor change over time. This study aimed to determine the utility of a standardized physical fitness assessment for use in cancer-specific, community-based exercise programs. Tests anticipated to be feasible and suitable for a community setting and a wide range of ages and physical function were chosen to measure body composition, aerobic fitness, strength, flexibility, and balance. Cancer Exercise Trainers/Specialists at cancer-specific, community-based exercise programs assessed new clients (n = 60) at enrollment, designed individualized exercise programs, and then performed a re-assessment 3-6 months later (n = 34). Resting heart rate, blood pressure, body mass index, waist circumference, handgrip strength, chair stands, sit-and-reach, back scratch, single-leg standing, and timed up-and-go tests were considered suitable and feasible tests/measures, as they were performed in most (≥88 %) participants. The ability to capture change was also noted for resting blood pressure (-7/-5 mmHg, p = 0.02), chair stands (+4, p < 0.01), handgrip strength (+2 kg, p < 0.01), and sit-and-reach (+3 cm, p = 0.03). While the submaximal treadmill test captured a meaningful improvement in aerobic fitness (+62 s, p = 0.17), it was not completed in 33 % of participants. Change in mobility, using the timed up-and-go was nominal and was not performed in 27 %. Submaximal treadmill testing, handgrip dynamometry, chair stands, and sit-and-reach tests were feasible, suitable, and provided meaningful physical fitness information in a cancer-specific, community-based, exercise program setting. However, a shorter treadmill protocol and more sensitive balance and upper body flexibility tests should be investigated.
Prototyping high-gradient mm-wave accelerating structures
Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...
2017-01-01
We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less
Surface plasma source with saddle antenna radio frequency plasma generator.
Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R
2012-02-01
A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.
Preprototype nitrogen supply subsystem development
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Fort, J. H.; Schubert, F. H.
1982-01-01
The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size.
Anatomical Calibration through Post-Processing of Standard Motion Tests Data.
Kong, Weisheng; Sessa, Salvatore; Zecca, Massimiliano; Takanishi, Atsuo
2016-11-28
The inertial measurement unit is popularly used as a wearable and flexible tool for human motion tracking. Sensor-to-body alignment, or anatomical calibration (AC), is fundamental to improve accuracy and reliability. Current AC methods either require extra movements or are limited to specific joints. In this research, the authors propose a novel method to achieve AC from standard motion tests (such as walking, or sit-to-stand), and compare the results with the AC obtained from specially designed movements. The proposed method uses the limited acceleration range on medial-lateral direction, and applies principal component analysis to estimate the sagittal plane, while the vertical direction is estimated from acceleration during quiet stance. The results show a good correlation between the two sets of IMUs placed on frontal/back and lateral sides of head, trunk and lower limbs. Moreover, repeatability and convergence were verified. The AC obtained from sit-to-stand and walking achieved similar results as the movements specifically designed for upper and lower body AC, respectively, except for the feet. Therefore, the experiments without AC performed can be recovered through post-processing on the walking and sit-to-stand data. Moreover, extra movements for AC can be avoided during the experiment and instead achieved through the proposed method.
View east northeast at Test Stand 'A' complex from road, ...
View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
2011-07-29
Stennis Space Center employees have installed liquid oxygen and liquid hydrogen tanks atop the A-3 Test Stand, raising the structure to its full 300-foot height. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space. The A-3 Test Stand is scheduled for completion and activation in 2013.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Photographic copy of photograph, aerial view looking north and showing ...
Photographic copy of photograph, aerial view looking north and showing Test Stand 'A' (at bottom), Test Stand 'B' (upper right), and a portion of Test Stand 'C' (top of view). Compare HAER CA-163-1 and 2 and note addition of liquid nitrogen storage tank (Building 4262/E-63) to west of Test Stand 'C' as well as various ancillary facilities located behind earth barriers near Test Stand 'C.' (JPL negative no. 384-3006-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Chen, Chih-Chen
2016-01-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people’ physiological function and standing stability. PMID:27190480
Chen, Chih-Chen
2016-04-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people' physiological function and standing stability.
Lee, Jang Won; Han, A-Reum; Kim, Kihong
2014-02-01
The purpose of this study was to investigate the balance abilities of the adolescent girl with brain lesions by Sit-to-Stand (STS) action analysis before and after the rehabilitative horse riding of 16 week program. The subject aged 16 yr old who had the disabilities of spasticity and hemiplegia was recruited with the consent approval. The equilibrium abilities of the subject were tested by Sit-to-Stand examination with Weight Transfer Time (WTT), Mean Rising Index (MRI), Mean Weight Asymmetry (MWA), Max Trunk Flexion Velocity (MTFV), and Max Trunk Extension Velocity (MTEV). Research was designed by AB single subject study with baseline of 3 times of measurement and rehabilitative horse riding treatments. In the results, the enhancement of the subject's equilibrium ability was shown from the comparisons between baseline and treatment by the STS test that WTT was 2.37 sec faster, MRI was 6.64 N/kg higher, and MWA was 8.12% lower, and MTFV was 0.57°/sec larger than all those means of baseline. It suggested that the subject showed her enhanced balance ability while in sitting and standing after the rehabilitative horse riding treatments.
Experimental testing of prototype face gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Handschuh, R.; Lewicki, D.; Bossler, R.
1992-01-01
An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2017-01-01
The Mechanical Waves Conceptual Survey (MWCS), presented in 2009, is the most important test to date that has been designed to evaluate university students' understanding of four main topics: propagation, superposition, reflection, and standing waves. In a literature review, we detected a significant need for a study that uses this test as an…
Pieper, Barbara; Templin, Thomas N; Goldberg, Allon
2014-02-01
To provide information on the Five-Times-Sit-to-Stand (FTSTS) and Timed-Up-and-Go (TUG) tests in persons with injection-related venous ulcers (VU+) and persons without venous ulcers (VU-). This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to: To examine functional mobility using Five-Times-Sit-to-Stand (FTSTS) and Timed-Up-and-Go (TUG) tests in persons with injection-related venous ulcers (VU+) and compare these findings to persons without venous ulcers (VU-). Cross-sectional, comparative design. Outpatient clinic.PARTICPANTS: Participants (n = 61) were 31 persons VU+ and 30 persons VU-; 57.4% men; mean age, 54 years; 93% African American. Five-Times-Sit-to-Stand, TUG, physical activity, quality of life, comorbidities, falls, and body mass index. Participants VU+ were 36.8% slower on completion of the TUG test (P = .012) and 26.5% slower on completion of the FTSTS test (P = .081). Five-Times-Sit-to-Stand and TUG were strongly correlated with each other, r = 0.93, 0.87, P < .001 for VU- and VU+, respectively. Test-retest reliabilities for the FTSTS and TUG tests were high (intraclass correlation coefficient = 0.89-0.94) for the VU+ and VU-. Within each group, correlations of FTSTS and TUG were similar for each of the variables examined. Across groups, correlations showed that the time to complete FTSTS and TUG increased as a function of comorbidities in the VU+ group; the correlations in the VU- group were not significantly different from zero. The VU+ group exhibited poorer physical performance than the VU- group. The high correlation between FTSTS and TUG and the similarity of correlations with other variables suggest that these physical performance measures may be interchangeable in their ability to predict physical functioning in these clinical groups despite differences in test demands. Clinicians need easy-to-perform reliable clinical tests such as FTSTS and TUG to assess mobility of aging injection users with venous ulcers.
Modelling the effect of autotoxicity on density-dependent phytotoxicity.
Sinkkonen, A
2007-01-21
An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in many density-response bioassays that are made with even-aged plants, and that measure plant growth or germination.
23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON ...
23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON TEST STAND 1-A, 27 MARCH 1959, PUTTING THAT TEST STAND OUT-OF-COMMISSION. STAND WAS NOT REPAIRED FOR THE ATLAS PROGRAM BUT TRANSFERRED TO ROCKETDYNE AND MODIFIED FOR THE F-l ENGINE PROGRAM." - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Pegasus delivers SLS engine section
2017-03-03
NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.
Pegasus delivers SLS engine section
2017-05-18
NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.
Effect of rubber flooring on dairy cattle stepping behavior and muscle activity.
Rajapaksha, Eranda; Winkler, Christoph; Tucker, Cassandra B
2015-04-01
Use of compressible flooring, such as rubber, has increased on dairy farms. Rubber improves locomotion and is well used by cattle in preference experiments that combine walking and standing. Previous work has found that rubber is particularly beneficial for lame animals, perhaps because a softer material is particularly useful when a single hoof is compromised. The goal of this work was to evaluate the effect of flooring while standing, because cattle in freestall housing spend 40 to 50% of their time engaged in this behavior. In a 2 × 2 design, cows (n = 16) were evaluated on 4 standing surfaces that varied in terms of both floor type (concrete or rubber) and presentation [same floor under all 4 legs (all 4 legs on either concrete or rubber) or a rough surface under only one hind leg and the other 3 legs on concrete or rubber] in a crossover design. Surface electromyograms were used to evaluate muscle fatigue, total activity, and movement of muscle activity between legs during 1 h of standing. Muscle fatigue was evaluated in 2 contexts: (1) static contractions when cows continuously transferred weight to each hind leg, before and after 1 h of standing, and (2) dynamic contractions associated with steps during 1 h on treatment surfaces. In addition, stepping rate, time between each consecutive step, and the latency to lie down after testing were measured. No interaction between floor type and presentation was found. Presentation had a significant effect; when one hind leg was on a rough surface, cattle took 1.7 times more steps with this leg and the non-rough hind leg had 1.2 times more muscle activity, compared with when all 4 legs were on the same surface. These changes are consistent with movement away from concrete with protrusions. When standing on rubber, muscle-activity movements among legs remained stable (0.6-0.7 movements per min) over 1 h but increased on concrete (0.6-0.9 movements per min), indicating that, like humans, cattle may sway to counteract effects of standing. However, additional work, including measurements of blood flow in the leg, is needed to fully understand the biological implications of these changes. Overall, the rubber flooring tested had little effect on standing behavior. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
8. TEST STAND 15, INVERTED ENGINE FIRING TEST, CIRCA 1963. ...
8. TEST STAND 1-5, INVERTED ENGINE FIRING TEST, CIRCA 1963. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
The Ares Launch Vehicles: Critical for America's Continued Leadership in Space
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2009-01-01
This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.
2011-04-22
Stennis Space Center employees continue work on the A-3 Test Stand test cell. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space.
9. COLD CALIBRATION TEST STAND (H1) FROM LEFT TO RIGHT ...
9. COLD CALIBRATION TEST STAND (H-1) FROM LEFT TO RIGHT - WORK BENCH, CONTROL PANEL, CHEMICAL TANK. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE ...
PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE SERVICE AND SUPPORT BUILDINGS TO THE LEFT AND RIGHT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...
CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH ...
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH A REDSTONE ROCKET BEING FUELED AND PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
The mechanical design and simulation of a scaled H⁻ Penning ion source.
Rutter, T; Faircloth, D; Turner, D; Lawrie, S
2016-02-01
The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.
The mechanical design and simulation of a scaled H- Penning ion source
NASA Astrophysics Data System (ADS)
Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.
2016-02-01
The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1991-01-01
Plasma sprayed composite coating of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on desk bench tests from room temperature to 900 C. An early coating formulation of this type, designated as PS-200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760 C in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650 C. A subsequent optimization program has shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS-212. The same powder formulation was used to make free-standing powder metallurgy (PM-212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed.
Design of an EBIS charge breeder system for rare-isotope beams
NASA Astrophysics Data System (ADS)
Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon
2016-09-01
Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.
NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities
NASA Technical Reports Server (NTRS)
Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.
2015-01-01
Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The
A 3D stand generator for central Appalachian hardwood forests
Jingxin Wang; Yaoxiang Li; Gary W. Miller
2002-01-01
A 3-dimensional (3D) stand generator was developed for central Appalachian hardwood forests. It was designed for a harvesting simulator to examine the interactions of stand, harvest, and machine. The Component Object Model (COM) was used to design and implement the program. Input to the generator includes species composition, stand density, and spatial pattern. Output...
Mazzà, Claudia; Zok, Mounir; Della Croce, Ugo
2005-06-01
The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.
1. CAPTIVE TEST STAND D1 FROM THE FERROCEMENT APRON, VIEW ...
1. CAPTIVE TEST STAND D-1 FROM THE FERROCEMENT APRON, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
2. CLOSE UP OF CAPTIVE TEST STAND D4, VIEW TOWARDS ...
2. CLOSE UP OF CAPTIVE TEST STAND D-4, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
1. CAPTIVE TEST STAND D4, CONNECTING TUNNELS AT RIGHT, VIEW ...
1. CAPTIVE TEST STAND D-4, CONNECTING TUNNELS AT RIGHT, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND ...
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND WITH THE MERCURY REDSTONE ROCKET FULLY ASSEMBLED AND BEING PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Credit BG. Test Stand "D" tower as seen looking northeast ...
Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Inertial Sensor Based Analysis of Lie-to-Stand Transfers in Younger and Older Adults
Schwickert, Lars; Boos, Ronald; Klenk, Jochen; Bourke, Alan; Becker, Clemens; Zijlstra, Wiebren
2016-01-01
Many older adults lack the capacity to stand up again after a fall. Therefore, to analyse falls it is relevant to understand recovery patterns, including successful and failed attempts to get up from the floor in general. This study analysed different kinematic features of standing up from the floor. We used inertial sensors to describe the kinematics of lie-to-stand transfer patterns of younger and healthy older adults. Fourteen younger (20–50 years of age, 50% men) and 10 healthy older community dwellers (≥60 years; 50% men) conducted four lie-to-stand transfers from different initial lying postures. The analysed temporal, kinematic, and elliptic fitting complexity measures of transfer performance were significantly different between younger and older subjects (i.e., transfer duration, angular velocity (RMS), maximum vertical acceleration, maximum vertical velocity, smoothness, fluency, ellipse width, angle between ellipses). These results show the feasibility and potential of analysing kinematic features to describe the lie-to-stand transfer performance, to help design interventions and detection approaches to prevent long lies after falls. It is possible to describe age-related differences in lie-to-stand transfer performance using inertial sensors. The kinematic analysis remains to be tested on patterns after real-world falls. PMID:27529249
Pilot Field Test: Performance of a Sit-to-Stand Test After Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Phillips, T. R.; Rukavishnikov, I. V.; Kitov, V. V.; Lysova, N. Yu; Lee, S. M. C.; Stenger, M. B.;
2016-01-01
BACKGROUND: Astronauts returning from the International Space Station are met by a team of recovery personnel typically providing physical assistance and medical support immediately upon landing. That is because long-duration spaceflight impacts astronauts' functional abilities. Future expeditions to planets or asteroids beyond the low Earth orbit, however, may require crewmembers to egress the vehicle and perform other types of physical tasks unassisted. It is therefore important to characterize the extent and longevity of functional deficits experienced by astronauts in order to design safe exploration class missions. Pilot Field Test (PFT) experiment conducted with participation of ISS crewmembers traveling on Soyuz expeditions 34S - 41S comprised several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond. METHODS: The first test in the PFT battery sequence, and also the least demanding one from the sensorimotor perspective, was a Sit-to-Stand test. Test subjects were seated in the chair and had to stand up on command and remain standing for ten seconds. The subjects were instructed to stand up unassisted as quickly as they were able to, while maintaining postural control. Synchronized wireless inertial sensors mounted on the head, chest, lower back, wrists, and ankles were used to continuously log body kinematics. Crewmembers' blood pressure and heart rate were monitored and recorded with the Portapres and Polar systems. Each session was recorded with a digital video camera. During data collections occurring within the 24-hour postflight period, crewmembers were also asked to (1) evaluate their perceived motion sickness symptoms on a 20-point scale before and after completion of the test and (2) estimate how heavy they felt compared to their normal (preflight) body weight. Consent to participate in PFT was obtained from 18 crewmembers (11 US Orbital Segment [USOS] astronauts and 7 Russian cosmonauts). For 10 subjects, the first set of data was collected in the medical tent in Soyuz landing zone (1-2 hours after landing); the other 8 subjects were tested at the Kazakhstan deployment airport (4-5 hours after landing). 8 of the 11 astronauts were tested twice more within the first 24 hours postflight, at a refueling stop on the way to Houston (approximately 13 hours after landing) and at the Johnson Space Center (approximately 24 hours after landing). Later postflight data were collected in the first two weeks on some crewmembers. Finally, 6 astronauts were tested 60+ days after landing to establish a delayed baseline. RESULTS/DISCUSSION: Two of the 18 PFT participants felt too ill to attempt any tests in Kazakhstan (at either the landing zone or deployment airport). The remaining test subjects completed the Sit-to-Stand test and their reported motion sickness scores were unaffected by this task. The task completion times and body kinematics data analysis are currently underway. Preliminary analysis of astronaut data shows a steep improvement in the time to complete the task on the second data take, and in some cases, the trend continues through day six postflight. Head and trunk pitch angles and pitch rates were also examined and increases in all measures are evident throughout the observed recovery period (60+ days postflight). Interesting patterns of head and trunk pitch coordination have also emerged. One of the data analysis objectives is comparison of initial postflight performance and recovery of experienced crewmembers and first-time fliers. Another one - possible differences in performance between USOS and Russian crewmembers.
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
ROBERT BOBO AND MIKE NICHOLS AT TEST STAND 4693
2016-12-14
ROBERT BOBO, LEFT, AND MIKE NICHOLS TALK BENEATH THE 221-FOOT-TALL TEST STAND 4693, THE LARGEST OF TWO NEW SPACE LAUNCH SYSTEM TEST STANDS AT MSFC. BOBO MANAGES SLS STRUCTURAL STRENGTH TESTING, AND NICHOLS IS LEAD TEST ENGINEER FOR THE SLS LIQUID HYDROGEN TANK.
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND ...
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development
NASA Astrophysics Data System (ADS)
Hamilton, Hannah; Phenix Collaboration
2015-10-01
Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.
Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser
NASA Astrophysics Data System (ADS)
Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro
2011-09-01
To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.
Verification of the test stand for microbolometer camera in accredited laboratory
NASA Astrophysics Data System (ADS)
Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz
2017-10-01
Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described in literature.
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
ERIC Educational Resources Information Center
Ruiz-Primo, Maria Araceli; Li, Min
2015-01-01
Background: A long-standing premise in test design is that contextualizing test items makes them concrete, less demanding, and more conducive to determining whether students can apply or transfer their knowledge. Purpose: We assert that despite decades of study and experience, much remains to be learned about how to construct effective and fair…
1997-06-04
A close-up view of Bantam duration testing of the 40K Fastrac II Engine for X-34 at Marshall Space Flight Center's (MSFC) test stand 116. The Bantam test refers to the super lightweight engines of the Fastrac program. The engines were designed as part of the low cost X-34 Reusable Launch Vehicle (RLV). The testing of these engines at MSFC allowed the engineers to determine the capabilities of these engines and the metal alloys that were used in their construction. The Fastrac and X-34 programs were cancelled in 2001.
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND ...
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.
Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T
2009-05-01
Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
2. Credit JPL. Photographic copy of photograph, looking northeast at ...
2. Credit JPL. Photographic copy of photograph, looking northeast at unfinished original Test Stand 'C' construction. A portion of the corrugated steel tunnel tube connecting Test Stand 'C' to the first phase of JPL tunnel system construction is visible in the foreground. The steel frame used to support propellant tanks and engine equipment has been erected. The open trap door leads to a chamber inside the Test Stand 'C' base where gaseous nitrogen is distributed via manifolds to Test Stand 'C' control valves. (JPL negative no. 384-1568-A, 19 March 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Silva, Paula F. S.; Quintino, Ludmylla F.; Franco, Juliane; Faria, Christina D. C. M.
2014-01-01
Background Subjects with neurological disease (ND) usually show impaired performance during sit-to-stand and stand-to-sit tasks, with a consequent reduction in their mobility levels. Objective To determine the measurement properties and feasibility previously investigated for clinical tests that evaluate sit-to-stand and stand-to-sit in subjects with ND. Method A systematic literature review following the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) protocol was performed. Systematic literature searches of databases (MEDLINE/SCIELO/LILACS/PEDro) were performed to identify relevant studies. In all studies, the following inclusion criteria were assessed: investigation of any measurement property or the feasibility of clinical tests that evaluate sit-to-stand and stand-to-sit tasks in subjects with ND published in any language through December 2012. The COSMIN checklist was used to evaluate the methodological quality of the included studies. Results Eleven studies were included. The measurement properties/feasibility were most commonly investigated for the five-repetition sit-to-stand test, which showed good test-retest reliability (Intraclass Correlation Coefficient:ICC=0.94-0.99) for subjects with stroke, cerebral palsy and dementia. The ICC values were higher for this test than for the number of repetitions in the 30-s test. The five-repetition sit-to-stand test also showed good inter/intra-rater reliabilities (ICC=0.97-0.99) for stroke and inter-rater reliability (ICC=0.99) for subjects with Parkinson disease and incomplete spinal cord injury. For this test, the criterion-related validity for subjects with stroke, cerebral palsy and incomplete spinal cord injury was, in general, moderate (correlation=0.40-0.77), and the feasibility and safety were good for subjects with Alzheimer's disease. Conclusions The five-repetition sit-to-stand test was used more often in subjects with ND, and most of the measurement properties were investigated and showed adequate results. PMID:24839043
2006-09-29
The Stennis Space Center conducted the final space shuttle main engine test on its A-1 Test Stand Friday. The A-1 Test Stand was the site of the first test on a shuttle main engine in 1975. Stennis will continue testing shuttle main engines on its A-2 Test Stand through the end of the Space Shuttle Program in 2010. The A-1 stand begins a new chapter in its operational history in October. It will be temporarily decommissioned to convert it for testing the J-2X engine, which will power the upper stage of NASA's new crew launch vehicle, the Ares I. Although this ends the stand's work on the Space Shuttle Program, it will soon be used for the rocket that will carry America's next generation human spacecraft, Orion.
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND ...
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND AND THE SURROUNDING ELECTRONICS AND EQUIPMENT TRAILERS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1967-07-28
This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes
1965-05-01
This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes.
A-3 Test Stand construction moves forward
2010-07-13
Work on the A-3 Test Stand at Stennis Space Center took a step forward in July with delivery of the first-stage steam ejector July 13. Stennis employees are shown preparing the ejector to be lifted into place on the test stand. When activated in 2012, the A-3 Test Stand will allow operators to test rocket engines at simulated altitudes of 100,000 feet, a critical feature for next-generation engines that will take humans beyond low-Earth orbit once more.
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
21. Building 202, underside of test stand A, detail of ...
21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ...
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ROCKET DURING TEST FIRING NUMBER 2. NOTE THE FLAME BEING EMITTED FROM THE BOTTOM OF THE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...
8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...
10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand
2018-05-04
Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.
SSC Test Operations Contract Overview
NASA Technical Reports Server (NTRS)
Kleim, Kerry D.
2010-01-01
This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).
The mechanical design and simulation of a scaled H{sup −} Penning ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.
2016-02-15
The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.
2011-07-29
Rocket engine propellant tanks and cell dome top the A-3 Test Stand under construction at Stennis Space Center. The stand will test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space once more.
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
Low-noise, high-strength, spiral-bevel gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.
1993-01-01
Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.
1964-10-01
Test firing of the Saturn I S-I Stage (S-1-10) at the Marshall Space Flight Center. This test stand was originally constructed in 1951 and sometimes called the Redstone or T tower. In l961, the test stand was modified to permit static firing of the S-I/S-IB stages, which produced a total thrust of 1,600,000 pounds. The name of the stand was then changed to the S-IB Static Test Stand.
Murata, Koichi; Sugitani, Shigeki; Yoshioka, Hiroki; Noguchi, Takashi; Aoto, Toshiyuki; Nakamura, Takashi
2010-01-01
The aim of this study was to predict the ambulation reacquisition time after hip fracture in elderly people using the unipedal standing test during the early postoperative stage. Patients with an intertrochanteric fracture treated with internal fixation (n = 35) and patients with a femoral neck fracture treated with hemiarthroplasty (n = 22) were included. A unipedal standing test using the nonoperated leg was performed on days 3 and 7 after the operation. Among the patients with an intertrochanteric fracture, those with a positive result on the unipedal standing test on postoperative day (POD) 3 attained gait with parallel guide bars (BG) and walker-assisted gait (WG) significantly earlier than did patients with a negative result on the unipedal standing test. Patients with a positive result on the unipedal standing test on POD 7 attained BG, WG, and cane-assisted gait (CG) significantly earlier than did patients with a negative test. Among patients with a femoral neck fracture, those with a positive unipedal standing test result on POD 3 attained BG, WG, and CG significantly earlier than did patients with a negative test. Those with a positive test result on POD 7 attained BG, WG, and CG significantly earlier than did patients with a negative test. The unipedal standing test given during the early postoperative stage is a good test for predicting the ambulation reacquisition time. Moreover, it gives information that can help determine the need for subacute rehabilitation and about discharge planning and health service provision.
NASA Johnson Space Center: White Sands Test Facility
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Kowalski, Robert R.
2011-01-01
This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
3. COMPLETE X15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ ...
3. COMPLETE X-15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ OF X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is hoisted into place at the E-2 Test Stand at John C. Stennis Space Center on Oct. 24, 2010. The unit was installed at the E-2 stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
Electromagnetic pulse-induced current measurement device
NASA Astrophysics Data System (ADS)
Gandhi, Om P.; Chen, Jin Y.
1991-08-01
To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. FLAME DEFLECTOR, COMPLETE X15 VEHICLE TEST STAND. Looking east. ...
5. FLAME DEFLECTOR, COMPLETE X-15 VEHICLE TEST STAND. Looking east. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
NASA's Space Launch Transitions: From Design to Production
NASA Technical Reports Server (NTRS)
Askins, Bruce; Robinson, Kimberly
2016-01-01
NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
Nondestructive analysis of three-dimensional objects using a fluid displacement method
USDA-ARS?s Scientific Manuscript database
Quantification of three-dimensional (3-D) objects has been a real challenge in agricultural, hydrological and environmental studies. We designed and tested a method that is capable of quantifying 3-D objects using measurements of fluid displacement. The device consists of a stand that supports a mov...
Challenges and Innovations in a Community-Based Participatory Randomized Controlled Trial
ERIC Educational Resources Information Center
Goodkind, Jessica R.; Amer, Suha; Christian, Charlisa; Hess, Julia Meredith; Bybee, Deborah; Isakson, Brian L.; Baca, Brandon; Ndayisenga, Martin; Greene, R. Neil; Shantzek, Cece
2017-01-01
Randomized controlled trials (RCTs) are a long-standing and important design for conducting rigorous tests of the effectiveness of health interventions. However, many questions have been raised about the external validity of RCTs, their utility in explicating mechanisms of intervention and participants' intervention experiences, and their…
Xie, Yi; Mun, Sungyong; Kim, Jinhyun; Wang, Nien-Hwa Linda
2002-01-01
A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.
Credit WCT. Photographic copy of photograph, view looking south down ...
Credit WCT. Photographic copy of photograph, view looking south down easternmost tunnel axis during second phase of JPL tunnel construction in 1959. Reinforced concrete formwork for Test Stand "D" foundation appears in left foreground. Formwork for Building 4222/E-23 (Test Stand "D" Workshop) is in place in right foreground with disturbed earth for western leg of tunnel system evident in background. Test Stand "C" is in center background, where first phase of tunnel construction ended. Test Stand "A" appears as tower in right background. (JPL negative no. 384-1838-C, 9 March 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1A. ...
10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1-A. SOUTH SIDE AND EAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Detail of north side of Test Stand 'A' base, showing ...
Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking south from north wall of terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...
7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
KEITH HIGGINBOTHAM AT TEST STAND 4699
2016-10-17
KEITH HIGGINBOTHAM, STRUCTURAL TEST LEAD FOR THE SLS SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, IS SHOWN BESIDE TEST STAND 4699 AT THE MARSHALL SPACE FLIGHT CENTER’S WEST TEST AREA. HIGGINBOTHAM WILL BE LEADING STRUCTURAL LOADS TESTING AT TEST STAND 4699 FOR THE CORE STAGE SIMULATER AND THE LAUNCH VEHICLE STAGE ADAPTER. THE TEST SERIES WILL ENSURE EACH STRUCTURE CAN WITHSTAND THE INCREDIBLE STRESSES OF LAUNCH.
2011-06-08
Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.
Cesari, Matteo; Kritchevsky, Stephen B; Newman, Anne B; Simonsick, Eleanor M; Harris, Tamara B; Penninx, Brenda W; Brach, Jennifer S; Tylavsky, Frances A; Satterfield, Suzanne; Bauer, Doug C; Rubin, Susan M; Visser, Marjolein; Pahor, Marco
2009-01-01
Objectives To determine how three different physical performance measures (PPM) combine for added utility in predicting adverse health events in elders. Design Prospective cohort study. Setting Health, Aging, and Body Composition Study. Participants 3,024 well-functioning older persons (mean age 73.6 years). Measurements Timed gait, repeated chair stands and balance (semi- and full-tandem, and single leg stands each held for 30 seconds) tests were administered at baseline. Usual gait speed was categorized to distinguish high and low risk participants using the previously established 1 m/sec cut-point. The same population-percentile (21.3%) was used to identify cut-points for repeated chair stands (17.05 sec) and balance (53 sec) tests. Cox proportional hazard analyses were performed to evaluate the added value of PPM in predicting mortality, hospitalization, and (severe) mobility limitation events over 6.9 years of follow-up. Results Risk estimates for developing adverse health-related events were similarly large for each of the three high risk groups considered separately. A greater number of PPM scores at the high risk level was associated with a greater risk of developing adverse health-related events. When all three PPMs were considered, having only one poor performance was sufficient to indicate a highly significant higher risk of (severe) lower extremity and mortality events. Conclusion Although gait speed is considered the most important predictor of adverse health events, these findings demonstrate that poor performance on other tests of lower extremity function are equally prognostic. This suggests that chair stand and standing balance performance may be adequate substitutes when gait speed is unavailable. PMID:19207142
2015-03-26
Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.
Optimized design for sling of stand up lift
NASA Astrophysics Data System (ADS)
Xu, Dongfang; Wang, Yue; Cui, Tengfei; Bao, Xuelian; Duan, Xingguang
2017-04-01
Stand up lift is a kind of equipment that assists those with dyskinesia of legs to stand up or move. As an important part of stand up lift, sling concerns the realization of the equipment's function and the safety of users. On the basis of ergonomics theory, this thesis will design and optimize the sling to make it safer and more comfortable and meet demands of different people.
ERIC Educational Resources Information Center
Lym, C. LaVor; Rick, Pamela J.
A study of the effects of a resource room enrichment program was field tested on academically gifted fourth, fifth, and sixth grade students in 65 elementary schools. The Ss were pre- and posttested on the Cognitive Abilities Test. A norm referenced research design was used to control for normal development. Findings indicated that participation…
B-1 and B-3 Test Stands at NASA’s Plum Brook Station
1966-09-21
Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.
Vestibular ataxia and its measurement in man
NASA Technical Reports Server (NTRS)
Fregly, A. R.
1974-01-01
Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.
Impact of Fibromyalgia in the Sit-to-Stand-to-Sit Performance Compared With Healthy Controls.
Collado-Mateo, Daniel; Adsuar, Jose C; Dominguez-Muñoz, Francisco J; Olivares, Pedro R; Gusi, Narcis
2017-06-01
Fibromyalgia is associated with a reduction in the ability to perform activities of daily living. Sit-to-stand-to-sit performance is one of the most common activities of daily living and often is evaluated by counting the number of repetitions of the 30-second chair-stand test. No study, however, has examined the performance over the 30 seconds of this test of female patients with fibromyalgia on a phase-by-phase basis. To evaluate the impact of fibromyalgia on performance of the 30-second chair-stand test and to analyze how the kinematic performance changed over the 30-second test period. A cross-sectional study. Local association of fibromyalgia. Fifteen females with fibromyalgia and nine healthy female controls. Participants performed the 30-second chair-stand test while wearing a motion capture device. Duration of each sit-to-stand-to-sit phase within the 30-second time limit was compared between groups using repeated measures analysis of variance. The association between duration of phases and scores from the revised version of the Fibromyalgia Impact Questionnaire was tested using bivariate correlations. The duration of impulse and sit-to-stand phases were gradually increased over the 30 seconds of the chair-stand test for women with fibromyalgia compared with healthy controls (P = .04 and P = .02, respectively). The mean duration of these 2 phases was associated with symptom duration and the function domain of the revised version of the Fibromyalgia Impact Questionnaire (P < .05). Also, stiffness was directly associated with the duration of the stand-up phase (P = .04). Kinematic performance during the 30-second chair-stand test differed between women with fibromyalgia and healthy controls. Since sit-to-stand from a chair is a common daily activity, women with fibromyalgia may require specific exercises to improve performance of this task. Not applicable. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
NASA's Space Launch System Program Update
NASA Technical Reports Server (NTRS)
May, Todd; Lyles, Garry
2015-01-01
Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in 2014 with more planned for 2015, including firing tests of both main propulsion elements and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will still deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 metric tons to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware. An RS-25 liquid propellant engine was hotfire-tested at NASA's Stennis Space Center, Miss. for the first time since 2009 exercising and validating the new engine controller, the renovated A-1 test stand, and the test teams. Four RS-25s will power the SLS core stage. A qualification five-segment solid rocket motor incorporating several design, material, and process changes was scheduled to be test-fired in March at the prime contractor's facility in Utah. The booster also successfully completed its Critical Design Review (CDR) validating the planned design. All six major manufacturing tools for the core stage are in place at the Michoud Assembly Facility in Louisiana, and have been used to build numerous pieces of confidence, qualification, and even flight hardware, including barrel sections, domes and rings used to assemble the world's largest rocket stage. SLS Systems Engineering accomplished several key tasks including vehicle avionics software and hardware build and testing, scale model acoustic and base heating tests. Construction of the Interim Cryogenic Propulsion Stage (ICPS) began. Advanced development provided a look into the future of SLS. Shell buckling knockdown factor testing refined decades-old design margins that added thousands of pounds to rocket payloads. Adaptive manufacturing and structured light scanning development promised to cut the cost and time associated with manufacturing and testing. This paper will provide an overview of the progress made over the past year and provide a glimpse of 2015 milestones and beyond on the way to the first launch in 2018.
Isopropyl alcohol tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
2009-08-13
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
2009-09-18
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Isopropyl alcohol tank installed at A-3 Test Stand
2009-09-18
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator
NASA Astrophysics Data System (ADS)
Park, Sae-Hoon; Kim, Yu-Seok
2015-10-01
The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.
RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...
RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
4. COMPLETE X15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING ...
4. COMPLETE X-15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING STRUCTURE AT ENGINE END OF PLANE. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Hooshyar, Dina; Surís, Alina M; Czarnogorski, Maggie; Lepage, James P; Bedimo, Roger; North, Carol S
2014-01-01
In the USA, 21% of the estimated 1.1 million people living with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) are unaware they are HIV-infected. In 2011, Veterans Health Administration (VHA)'s Office of Public Health in conjunction with VHA's Health Care for Homeless Veterans Program funded grants to support rapid HIV testing at homeless outreach events because homeless populations are more likely to obtain emergent rather than preventive care and have a higher HIV seroprevalence as compared to the general population. Because of a Veterans Affairs North Texas Health Care System (VANTHCS)'s laboratory testing requirement, VANTHCS partnered with community agencies to offer rapid HIV testing for the first time at VANTHCS' 2011 Homeless Stand Downs in Dallas, Fort Worth, and Texoma, Texas. Homeless Stand Downs are outreach events that connect Veterans with services. Veterans who declined testing were asked their reasons for declining. Comparisons by Homeless Stand Down site used Pearson χ², substituting Fisher's Exact tests for expected cell sizes <5. Of the 910 Veterans attending the Homeless Stand Downs, 261 Veterans reported reasons for declining HIV testing, and 133 Veterans were tested, where 92% of the tested Veterans obtained their test results at the events - all tested negative. Veterans' reported reasons for declining HIV testing included previous negative result (n=168), no time to test (n=49), no risk factors (n=36), testing is not a priority (n=11), uninterested in knowing serostatus (n=6), and HIV-infected (n=3). Only "no time to test" differed significantly by Homeless Stand Down site. Nonresponse rate was 54%. Offering rapid HIV testing at Homeless Stand Downs is a promising testing venue since 15% of Veterans attending VANTHCS' Homeless Stand Downs were tested for HIV, and majority obtained their HIV test results at point-of-care while further research is needed to determine how to improve these rates.
7. BUILDING 604F, INTERIOR OF BULL PEN SHOWING TESTING STAND ...
7. BUILDING 604-F, INTERIOR OF BULL PEN SHOWING TESTING STAND AND HEAVY WOOD LINING ON CONCRETE WALLS. STEEL PLATE ABOVE TEST STAND DEFLECTS SHRAPNEL, SCREEN FURTHER HELPS TO CONTAIN PARTICLES. ONLY SMALL EXPLOSIVES WERE TESTED HERE (GRENADES, MINES, BOMB FUZES, ETC.). - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Large area soft x-ray collimator to facilitate x-ray optics testing
NASA Technical Reports Server (NTRS)
Espy, Samuel L.
1994-01-01
The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.
Development of the PEFP's beam line BPM
NASA Astrophysics Data System (ADS)
Ryu, Jin-Yeong; Kwon, Hyeok-Jung; Jang, Ji-Ho; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub
2013-01-01
The Proton Engineering Frontier Project (PEFP) has 20-MeV and 100-MeV beam lines to supply proton beams to users. A stripline-type Beam Position Monitor (BPM) was designed and fabricated in order to measure the beam's position in the beam line. The RF properties of the BPM were measured and compared with the simulation. After the sensitivity of the BPM at a test stand had been obtained, we performed a beam test in a test beam line of the PEFP 20-MeV proton linac.
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
Ito, Shinya; Hashimoto, Mari; Aduma, Saori; Yasumura, Seiji
2015-11-01
Locomotion training in a home visit-type preventive-care program has been reported elsewhere. However, continuation of appropriate exercises in a home setting is difficult, and few reports are available on locomotion training in a home setting. The objective of this study was to evaluate the effectiveness of locomotion training over 3 months in a home visit-type preventive-care program for improvement of motor function among elderly people. Nine hundred and fifty-eight elderly people in Tendo City in Japan who were not currently attending any preventive-care program were invited to participate in the study, and 87 were enrolled. In the pre-intervention and post-intervention assessments, we administered an interview survey (the Kihon Checklist), the timed one-leg standing test with eyes open and the sit-to-stand test, at the participants' homes. The intervention involved one set of training exercises with the participants standing on each leg for 1 min and squatting five or six times. The participants were asked to repeat one set of the exercises three times a day at home. In addition, the participants were regularly asked over the telephone about their performance of the exercises. Physical strength, cognitive function, and total scores of the Kihon Checklist were significantly lower after the intervention than before. In addition, the one-leg standing test time was significantly longer after the intervention (mean ± SD, 23.9 ± 35.4) than before (15.7 ± 20.5), and the sit-to-stand test time was significantly shorter after the intervention (13.0 ± 6.2) than before (14.8 ± 8.3). Locomotion training in a home-visit preventive-care program with telephone support effectively improved the motor function of elderly people who were not currently attending any preventive-care program organized by the long-term care insurance system.
Marshall Space Flight Center Autumn 2005
NASA Technical Reports Server (NTRS)
Allen, Mike; Clar, Harry E.
2006-01-01
The East Test Area at Marshall Space Flight Center has five major test stands, each of which has two or more test positions, not counting the SSME and RD-180 engine test facilities in the West Test Area. These research and development facilities are capable of testing high pressure pumps, both fuel and oxidizer, injectors, chambers and sea-level engine assemblies, as well as simulating deep space environments in the 12, 15 and 20 foot vacuum chambers. Liquid propellant capabilities are high pressure hydrogen (liquid and gas), methane (liquid and gas), and RP-1 and high pressure LOX. Solid propellant capability includes thrust measurement and firing capability up to 1/6 scale Shuttle SRB segment. In the past six months MSFC supported multiple space access and exploration programs in the previous six months. Major programs were Space Exploration, Shuttle External Tank research, Reusable Solid Rocket Motor (RSRM) development, as well as research programs for NASA and other customers. At Test Stand 115 monopropellant ignition testing was conducted on one position. At the second position multiple ignition/variable burn time cycles were conducted on Vacuum Plasma Spatter (VPS) coated injectors. Each injector received fifty cycles; the propellants were LOX Hydrogen and the ignition source was TEA. Following completion of the monopropellant test series the stand was reconfigured to support ignition testing on a LOX Methane injector system. At TS 116 a thrust stand used to test Booster Separation Motors from the Shuttle SRB system was disassembled and moved from Chemical Systems Division s Coyote Canyon plant to MSFC. The stand was reassembled and readied for BSM testing. Also, a series of tests was run on a Pratt & Whitney Rocketdyne Low Element Density (LED) injector engine. The propellants for this engine are LOX and LH2. At TS 300 the 20 foot vacuum chamber was configured to support hydrogen testing in the Multipurpose Hydrogen Test Bed (MHTB) test article. This testing, which went 24/7 for fourteen consecutive days, demonstrated long duration storage methods intended to minimize losses of propellant in support of the Space Exploration Initiative. The facility is being converted to support similar research using liquid methane. The 12 foot chamber at TS 300 was used to create ascent profiles (both heat and altitude effects) for foam panel testing in support of the Shuttle External Tank program. At TS 500, one position was in build-up to support ATK Thiokol research into the gas dynamics associated with high pressure flow across the propellant joint in segmented solid rocket motors. The testing involves flowing high pressure gas through a 24 motor case. Initial tests will be conducted with simulated aluminum grain, followed by tests using actual propellant. The second position at TS 500 has been in build-up for testing a LOX methane thruster manufactured by KT Engineering. At the Solid Propulsion Test Area (SPTA), the first dual segment 24 solid rocket motor was fired for ATK Thiokol in support of the RSRM program. A new axial thrust measurement stand was designed and fabricated for this testing. Real Time Radiography (RTR) will be deployed to examine nozzle erosion on the next dual segment motor.
NEARING THE END OF CONSTRUCTION ON THE LOX TEST STAND AT MSFC.
2015-01-08
AS THE END OF CONSTRUCTION ON TEST STAND 4697, THE LIQUID OXYGEN TANK TEST STAND AT MARSHALL SPACE FLIGHT CENTER, PROJECT ENGINEERS PHIL HENDRIX, FROM MSFC, AND CURTNEY WALTERS FROM THE U.S. CORP OF ENGINEERS, STUDY PLANS AND PROGRESS.
Intelligent Software for System Design and Documentation
NASA Technical Reports Server (NTRS)
2002-01-01
In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.
Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images
NASA Astrophysics Data System (ADS)
Sohrabi, H.
2012-07-01
In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.
2014-01-10
CAPE CANAVERAL, Fla. - A Hennessey Venom GT stands on the 3.5-mile long runway between test runs at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett
2014-01-01
Background Sitting, particularly in prolonged, unbroken bouts, is widespread within the office workplace, yet few interventions have addressed this newly-identified health risk behaviour. This paper describes the iterative development process and resulting intervention procedures for the Stand Up Australia research program focusing on a multi-component workplace intervention to reduce sitting time. Methods The development of Stand Up Australia followed three phases. 1) Conceptualisation: Stand Up Australia was based on social cognitive theory and social ecological model components. These were operationalised via a taxonomy of intervention strategies and designed to target multiple levels of influence including: organisational structures (e.g. via management consultation), the physical work environment (via provision of height-adjustable workstations), and individual employees (e.g. via face-to-face coaching). 2) Formative research: Intervention components were separately tested for their feasibility and acceptability. 3) Pilot studies: Stand Up Comcare tested the integrated intervention elements in a controlled pilot study examining efficacy, feasibility and acceptability. Stand Up UQ examined the additional value of the organisational- and individual-level components over height-adjustable workstations only in a three-arm controlled trial. In both pilot studies, office workers’ sitting time was measured objectively using activPAL3 devices and the intervention was refined based on qualitative feedback from managers and employees. Results Results and feedback from participants and managers involved in the intervention development phases suggest high efficacy, acceptance, and feasibility of all intervention components. The final version of the Stand Up Australia intervention includes strategies at the organisational (senior management consultation, representatives consultation workshop, team champions, staff information and brainstorming session with information booklet, and supportive emails from managers to staff), environmental (height-adjustable workstations), and individual level (face-to-face coaching session and telephone support). Stand Up Australia is currently being evaluated in the context of a cluster-randomised controlled trial at the Department of Human Services (DHS) in Melbourne, Australia. Conclusions Stand Up Australia is an evidence-guided and systematically developed workplace intervention targeting reductions in office workers’ sitting time. PMID:24559162
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ...
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ROCKET BEING PREPARED FOR TESTING. NOTE THE LOAD CELL APPARATUS ABOVE THE ROCKET AND THE EQUIPMENT PLATFORM TO THE LEFT OF THE LOAD CELL HAVE BEEN ENCLOSED FOR PROTECTION FROM THE CLIMATE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH ...
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH AT THE TEST STAND. NOTE THE MOTORIZED LIFT TO THE LEFT OF THE TEST STAND, USED TO ACCESS THE INSTRUMENTATION PLATFORM ('BIRDCAGE') MOUNTED ON TOP OF THE ROCKET DURING TEST FIRINGS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1967-01-01
This photograph is a view of the Saturn V S-IC (first) test stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. This stage was used to prove the operational readiness of the stand. Begirning operations in 1966, the MTF has two test stands; a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from the Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Testing the "Learning Journey" of MSW Students in a Rural Program
ERIC Educational Resources Information Center
Wall, Misty L.; Rainford, Will
2013-01-01
Using a quasi-experimental one-group, pretest-posttest design with non-random convenience sampling, the researchers assessed 61 advanced standing MSW students who matriculated at a rural intermountain Northwest school of social work. Changes in students' knowledge and attitudes toward lesbian, gay, and bisexual (LGB) people were measured using…
ERIC Educational Resources Information Center
Wiggins, Grant
2014-01-01
Education has a long-standing practice of turning worthwhile learning goals into lists of bits. One might even say that this practice is the original sin in curriculum design: take a complex whole, divide it into small pieces, string those together in a rigid sequence of instruction and testing, and call completion of this sequence…
What's Wrong with Architecture?
ERIC Educational Resources Information Center
Gorrell, Donna
A study examined factors related to the high failure rate of architectural students at the University of Wisconsin-Milwaukee on an essay writing task designed to show proficiency in writing before gaining junior standing. Students become eligible to write the essay by getting a score of 65 or better on the Wisconsin English Placement Test (WEPT)…
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from the south with tower ejector system in operation during a 1972 engine test. Note steam evolving from Z-stage ejectors atop the interstage condenser in the tower. Note also the "Hyprox" steam generator straddling the Dd ejector train to the right. The new Dy horizontal train has not been erected as of this date. In the distance is Test Stand "E." (JPL negative no. 384-9766-AC, 28 November 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2016-01-06
A CRANE MOVES THE FIRST STEEL TIER TO BE BOLTED INTO PLACE ON JAN. 6, FOR WELDING OF A SECOND NEW STRUCTURAL TEST STAND AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA -- CRITICAL TO DEVELOPMENT OF NASA'S SPACE LAUNCH SYSTEM. WHEN COMPLETED THIS SUMMER, THE 85-FOOT-TALL TEST STAND 4697 WILL USE HYDRAULIC CYLINDERS TO SUBJECT THE LIQUID OXYGEN TANK AND HARDWARE OF THE MASSIVE SLS CORE STAGE TO THE SAME LOADS AND STRESSES IT WILL ENDURE DURING A LAUNCH. THE STAND IS RISING IN MARSHALL'S WEST TEST AREA, WHERE WORK IS ALSO UNDERWAY ON THE 215-FOOT-TALL TOWERS OF TEST STAND 4693, WHICH WILL CONDUCT SIMILAR STRUCTURAL TESTS ON THE SLS CORE STAGE'S LIQUID HYDROGEN TANK. SLS, THE MOST POWERFUL ROCKET EVER BUILT, WILL CARRY ASTRONAUTS IN NASA'S ORION SPACECRAFT ON DEEP SPACE MISSIONS, INCLUDING THE JOURNEY TO MARS.
Design Difficulties in Stand Density Studies
Frank A. Bennett
1969-01-01
Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...
TMS delivered for A-3 Test Stand
2010-03-17
A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
1963-12-05
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
1963-12-01
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Peterson, Randall
1994-01-01
A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.
Review of the transmissions of the Soviet helicopters
NASA Technical Reports Server (NTRS)
Chaiko, Lev I.
1990-01-01
A review of the following aspects of Soviet helicopter transmissions is presented: transmitted power, weight, reduction ratio, RPM, design configuration, comparison of different type of manufacturing methods, and a description of the materials and technologies applied to critical transmission components. Included are mechanical diagrams of the gearboxes of the Soviet helicopters and test stands for testing gearbox and main shaft. The quality of Soviet helicopter transmissions and their Western counterparts are assessed and compared.
9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...
9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
2010-10-27
John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is prepared for installation Oct. 24, 2010, at John C. Stennis Space Center. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-22
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand arrived at John. C. Stennis Space Center on Oct. 22, 2010. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
DKIST enclosure modeling and verification during factory assembly and testing
NASA Astrophysics Data System (ADS)
Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka
2014-08-01
The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.
Buman, Matthew P.; Mullane, Sarah L.; Toledo, Meynard J.; Rydell, Sarah A.; Gaesser, Glenn A.; Crespo, Noe C.; Hannan, Peter; Feltes, Linda; Vuong, Brenna; Pereira, Mark A
2016-01-01
Background American workers spend 70–80% of their time at work being sedentary. Traditional approaches to increase moderate-vigorous physical activity (MVPA) may be perceived to be harmful to productivity. Approaches that target reductions in sedentary behavior and/or increases in standing or light-intensity physical activity [LPA] may not interfere with productivity and may be more feasible to achieve through small changes accumulated throughout the workday. Methods/Design This group randomized trial (i.e., cluster randomized trial) will test the relative efficacy of two sedentary behavior focused interventions in 24 worksites across two states (N=720 workers). The MOVE+ intervention is a multilevel individual, social, environmental, and organizational intervention targeting increases in light-intensity physical activity in the workplace. The STAND+ intervention is the MOVE+ intervention with the addition of the installation and use of sit-stand workstations to reduce sedentary behavior and enhance light-intensity physical activity opportunities. Our primary outcome will be objectively-measured changes in sedentary behavior and light-intensity physical activity over 12 months, with additional process measures at 3 months and longer-term sustainability outcomes at 24 months. Our secondary outcomes will be a clustered cardiometabolic risk score (comprised of fasting glucose, insulin, triglycerides, HDL-cholesterol, and blood pressure), workplace productivity, and job satisfaction. Discussion This study will determine the efficacy of a multilevel workplace intervention (including the use of a sit-stand workstation) to reduce sedentary behavior and increase LPA and concomitant impact on cardiometabolic health, workplace productivity, and satisfaction. PMID:27940181
Shih, Ching-Hsiang; Chang, Man-Ling
2012-01-01
The latest researches have adopted software technology, turning the Nintendo Wii Balance Board into a high performance standing location detector with a newly developed standing location detection program (SLDP). This study extended SLDP functionality to assess whether two people with developmental disabilities would be able to actively perform simple occupational activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards and SLDP software. An ABAB design was adopted in this study to perform the tests. The test results showed that, during the intervention phases, both participants significantly increased their target response (i.e. simple occupational activity) to activate the control system to produce environmental stimulation. The practical and developmental implications of the findings are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2012-01-01
Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2013-01-01
POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.
The Association of Glaucomatous Visual Field Loss and Balance
de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.
2017-01-01
Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P < 0.001). Neither superior nor inferior IVF sensitivity consistently predicted balance measures better than measures of overall VF sensitivity. Conclusions Balance was worse in glaucoma patients with greater VF damage under foam surface testing (designed to inhibit proprioceptive contributions to balance) as well as feet-together firm-surface conditions when somatosensory inputs were available. Translational Relevance Good balance is essential to avoid unnecessary falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Credit BG. View looking west down into Test Stand "D" ...
Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Validation of Cardiovascular Parameters During NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, Steven H.
2008-01-01
Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p>0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures in the prone position and stand test were less than 8% for the test sessions. ANOVA results yielded a greater inter-subject variability (p.0.006) than inter-session variability (p>0.05) for HRV in the stand test. CONCLUSION: These studies show that a 3 minute stand delivers repeatable cardiovascular heart rate and BP data in the context of this larger series of tests such as the FTT.
Assessment of Computer Aids in Shipyards
1993-04-01
tank . The same need for an objective basis stands for construction processes. The computer provides an electronic medium which is equivalent to the water...in a towing tank . The virtual yard will serve a role for the industry equivalent to that of the USS Timmerman test bed for future destroyer 27 design...even beyond the contract design phase and spetications . We are taking a look at it as a cascade, which has appeared in a number of our presentations
Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang
2012-02-01
Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440 and 2880 insertion and removal cycles. During the tensile test a cross-head speed of 10 mm/min was applied. Values of absolute force (AF) and relative force (RF) were statistically analyzed by two-way ANOVA and multiple comparison Tukey's tests between groups and cycles periods. The results of fatigue tests showed a 50% reduction in retention force in the subgroups with flexible attachments. A triangular design of overdenture support foundations with O-Ring attachments revealed the lowest value of AF and a relatively high reduction in RF. The four overdenture support designs with flexible acrylic attachments improved the retention force and reduced the fatigue retention. Furthermore, the results of the investigation demonstrate that flexible acrylic attachments for both teeth and implant-supported overdentures offer a wide range of retention forces.
Design and testing of a model CELSS chamber robot
NASA Astrophysics Data System (ADS)
Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth
1994-08-01
A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended.
Design and testing of a model CELSS chamber robot
NASA Technical Reports Server (NTRS)
Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth
1994-01-01
A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended. This proved that it was stable. Another pre-test was the actuator slip test used to determine if there is an adequate coefficient of friction between the actuator drive wheels and drive cable to enable the actuator to fully extend and retract the arm. This pre-test revealed that the coefficient of friction was not large enough to prevent slippage. Sandpaper was glued to the drive wheel and this eliminated the slippage problem. The class preformed a fit test in the CELSS chamber to ensure that the completed robot arm is capable of reaching the entire working envelope. The robot was centered in the chamber and the arm was fully extended to the sides of the chamber. The arm was also able to retract to clear the drain pipes separating the upper and lower plant trays.
Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.
Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.
2016-01-01
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621
Performance of the Anti-Coincidence Detector on the GLAST Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Charles, E.; Hartman, R. C.; Moiseev, A. A.; Ormes, J. F.
2007-01-01
The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meete its design requirements. The performance of the ACD has remained stable thrugh stand-alone environmental testing, shipment across the U.S. installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Stephan, Ryan A.; Hawkins-Reynolds Ebony
2011-01-01
Liquid/Liquid Heat Exchangers (L/L HX) are an integral portion of any spacecraft active thermal control system. For this study the X-38 L/L HX was used as a baseline. As detailed in a previous ICES manuscript, NASA paired with Pacific Northwest National Laboratory to develop a Microchannel L/L HX (MHX). This microchannel HX was designed to meet the same performance characteristics as the aforementioned X-38 HX. The as designed Microchannel HX has a 26% and 60% reduction in mass and volume, respectively. Due to the inherently smaller flow passages the design team was concerned about fouling affecting performance during extended missions. To address this concern, NASA has developed a test stand and is currently performing an 18 month life test on the MHX. This report will detail the up-to-date performance of the MHX during life testing.
Effect of revised high-heeled shoes on foot pressure and static balance during standing.
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-04-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.
Effect of revised high-heeled shoes on foot pressure and static balance during standing
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572
4. Credit BG. View looking northeast at west facade of ...
4. Credit BG. View looking northeast at west facade of Test Stand 'E' 4259/E-60, solid rocket motor test facility. Wooden barricades to north and south of 4259/E-60 protect personnel and other facilities from flying debris in case of inadvertent explosions. Test Stand 'E' is accessed from the tunnel system by the inclined tube shown at the center of the image adjacent to a ladder. Racks running to the north (having the appearance of a low fence) carry electrical cables to Test Stand 'G' (Building 4271/E-72). - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH ...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH THE COLD CALIBRATION TOWER CONSTRUCTED TO THE LEFT OF THE ROCKET AND AN ACCESS PLATFORM BUILT TO REACH THE TOP OF THE ROCKET MORE EASILY. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1. BUILDING 8698, TEST STAND 13, WEST ELEVATION. NOTE TUNNEL ...
1. BUILDING 8698, TEST STAND 1-3, WEST ELEVATION. NOTE TUNNEL BETWEEN BLDG. 8668 AND TEST STAND 1-3. TEST AREA 1-120 IN THE MIDDLE DISTANCE, AND TEST AREA 1-125 ON THE HORIZON. Looking northeast from the roof of Building 8668, Instrumentation and Control Center. Note: Photograph CA-236-F-2 is an 8" x 10" enlargement from a 4" x 5" negative. This view is a photocopy of a recent resin coated print made from a print held at the Main Base History Office, Edwards Air Force Base, California. Photographer unknown. Date and file number unknown. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan
2010-01-01
The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.
Reducing stand densities in immature and mature stands, Applegate Watershed, Southwest Oregon.
Marty L. Main; Michael P. Amaranthus
1996-01-01
Abstract Throughout the Applegate watershed, dense, overstocked, immature stands of mixed conifers and hardwoods and declining stands of mature conifers present significant and complex silvicultural problems. Stand stagnation is common, as is loss of large-diameter conifers from insects and wildfire. Treatments designed to maintain or encourage development of large-...
NASA Technical Reports Server (NTRS)
2010-01-01
A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.
[Reliability of static posturography in elderly persons].
Bauer, C M; Gröger, I; Rupprecht, R; Tibesku, C O; Gassmann, K G
2010-08-01
Static posturography is used to quantify body sway. It is used to assess the balance of elderly persons who are prone to falls. There is still no general opinion concerning the reliability of force platform measurements. The aim of this study was to test the reliability of force platform parameters when measuring elderly persons. The reliability of 11 force platform parameters was tested measuring 30 elderly persons. The following parameters were calculated: mean speed of center of pressure displacement in mm/s, length of sway in mm, sway area in mm(2), amplitudes of center of pressure movement, the axis of oscillation in degrees and the person's angles of inclination in degrees. Three measurements were taken on the same day, with a resting period of 2 min. Four different test conditions were used: normal standing and narrow stand with eyes open and eyes closed, respectively. Reliability was determined by using intraclass correlation coefficients. Six parameters had excellent reliability with a correlation coefficient of >0.9: mean speed of center of pressure movement during narrow stand, area of sway during narrow stand, length of sway during normal and narrow stand, and the angle of inclination in the sagittal plane during normal stand and narrow stand. The condition "narrow stand eyes closed" proved to be the most reliable test position. Six parameters proved to have excellent reliability and are recommended to be used in further investigations. Narrow stand with eyes closed should be used as the test position. The tested protocol proved to be reliable. Whether these parameters can be used to predict falls in elderly persons remains to be investigated.
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...
7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Design prediction for long term stress rupture service of composite pressure vessels
NASA Technical Reports Server (NTRS)
Robinson, Ernest Y.
1992-01-01
Extensive stress rupture studies on glass composites and Kevlar composites were conducted by the Lawrence Radiation Laboratory beginning in the late 1960's and extending to about 8 years in some cases. Some of the data from these studies published over the years were incomplete or were tainted by spurious failures, such as grip slippage. Updated data sets were defined for both fiberglass and Kevlar composite stand test specimens. These updated data are analyzed in this report by a convenient form of the bivariate Weibull distribution, to establish a consistent set of design prediction charts that may be used as a conservative basis for predicting the stress rupture life of composite pressure vessels. The updated glass composite data exhibit an invariant Weibull modulus with lifetime. The data are analyzed in terms of homologous service load (referenced to the observed median strength). The equations relating life, homologous load, and probability are given, and corresponding design prediction charts are presented. A similar approach is taken for Kevlar composites, where the updated stand data do show a turndown tendency at long life accompanied by a corresponding change (increase) of the Weibull modulus. The turndown characteristic is not present in stress rupture test data of Kevlar pressure vessels. A modification of the stress rupture equations is presented to incorporate a latent, but limited, strength drop, and design prediction charts are presented that incorporate such behavior. The methods presented utilize Cartesian plots of the probability distributions (which are a more natural display for the design engineer), based on median normalized data that are independent of statistical parameters and are readily defined for any set of test data.
2. TEST AREA 1115, A VIEW TO THE SOUTHEAST FROM ...
2. TEST AREA 1-115, A VIEW TO THE SOUTHEAST FROM THE DECK OF TEST STAND 1-5. AT RIGHT IS BUILDING 8642, MACHINE SHOP FOR TEST STAND 1-5. AT LEFT IS BUILDING 8649, AND PART OF BUILDING 8647, TEST STAND 1-4, IS VISIBLE TO LEFT OF BLDG. 8649. (PANORAMA 1/2). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
1978-09-01
Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance
Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.
2017-01-01
Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. Edwards ...
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Sobek, M.; Baier, A.; Grabowski, Ł.
2018-01-01
The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.
8. Credit JPL. Photographic copy of photograph, view west down ...
8. Credit JPL. Photographic copy of photograph, view west down from Test Stand 'A' tower across newly installed tunnel tube to corner of Building 4201/E-2, Test Stand 'A' Workshop (demolished in 1985). Note the wooden retaining structure erected in the foreground to retain earth once the tunnel trench is backfilled (this retaining wall remained in 1994). Note also the propellant control piping on the Test Stand 'A' platform in the immediate foreground. (JPL negative no. 384-1547-C, 6 February 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Effect of information feedback on training standing up following stroke: a pilot feasibility study.
Stanton, Rosalyn; Ada, Louise; Dean, Catherine M; Preston, Elisabeth
2016-12-01
The ability to stand up is reduced following stroke. Traditional biofeedback is effective in improving the performance of lower limb activities. The aim of this study was to investigate the feasibility of and potential for information feedback from a simple inexpensive device to improve the ability to stand up from a chair in people following stroke. A single-group study with pre-post measures design was used. Twenty people with hemiplegic stroke in inpatient rehabilitation received 10 sessions over 2 weeks of information feedback about foot placement during training of standing up. Progression involved increasing repetitions, increasing difficulty and fading feedback. Feasibility was determined by adherence, time taken, acceptability and safety. Clinical outcomes were the time taken to stand up, quality and foot position measured using the 5-Times-Sit-To-Stand-Test and carryover into daily activities measured by covert observation. The study was feasible with 97% of sessions completed, taking 19 (SD 6) to 25 (SD 10) minutes. Participants understood (4.6/5), found useful (4.6/5), challenging (4.4/5) and would recommend (4.7/5) the training. The time to stand up 5 times decreased by 24 (95% CI -48 to -1) s, and the quality of standing improved by 1.0/10.0 (95% CI 0.2 to 1.8). Carryover of the correct foot placement occurred to real life, with the beginning foot position correct 2.1/3.0 (95% CI 1.6 to 2.6) and end foot position correct 1.8/3.0 (95% CI 1.2 to 2.4) occasions. The training is feasible and has the potential to improve the ability to stand up.
Fiber grating systems for traffic monitoring
NASA Astrophysics Data System (ADS)
Udd, Eric; Kunzler, Marley; Laylor, Harold M.; Schulz, Whitten L.; Kreger, Stephen T.; Corones, John C.; McMahon, Robert; Soltesz, Steven M.; Edgar, Robert
2001-08-01
Blue Road Research has designed, built, and installed fiber grating sensor systems onto bridges, and most recently into an asphalt and concrete highway test pad. The sensitivity levels of the fiber grating sensors are sufficiently high to enable detection of people standing on the bridge or highway. This paper briefly overviews the usage of these sensors for traffic monitoring.
A prescription for old-growth-like characteristics in southern pines
Don C. Bragg
2004-01-01
Recent interest in adding old-growth reserves confiicts with a projected increase in the demand for forest commodities. However, managing for old-growthlike characteristics may permit timber production from stands designed to be similar to primeval forests. A silvicultural strategy based on presettlement forest conditions is being tested on 120 ac of mature loblolly (...
ERIC Educational Resources Information Center
Cowley, Kimberly S.; Copley, Lisa; Howley, Caitlin W.; Voelkel, Susan
2004-01-01
The AEL Measure of Academic Supportiveness and Climate (AEL MASC) was developed as part of the MAACK Pilot Schools project currently underway at AEL. MAACK stands for Maximizing Achievement for African American Children in Kanawha. The AEL MASC was designed to determine students' perceptions about themselves as students and about their school…
26 CFR 1.509(a)-3 - Broadly, publicly supported organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-more-than-one-third support test are designed to insure that an organization which is excluded from... from time to time. At all times, the operations of Y were carried out on a small scale, usually being... the general public. At the time of B's death, no person standing in a relationship to B described in...
Michael D. Sweet; John C. Byrne
1990-01-01
Proposes standard data definitions and format to facilitate the sharing of growth and yield permanent plot data for the development, testing, and improvement of tree or stand growth models. The data structure presented provides standards for documenting sampling design, plot location and summary descriptors, measurement dates, treatments, site attributes, and...
First environmental data from the EUV engineering test stand
NASA Astrophysics Data System (ADS)
Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.
2001-08-01
The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.
Photographic copy of photograph, view looking northeast of JPL Edwards ...
Photographic copy of photograph, view looking northeast of JPL Edwards Test Station as it looked in 1945. To the immediate right of the Test Stand 'A' tower stands a concrete monitor building or blockhouse (now Building 4203/E-4) for observation and control of tests. Other frame buildings housed workshop and administrative functions. Long structure behind automobiles was designated 4207/E-8 and was used for instrument repair and storage, a cafeteria, machine and welding shops. To the immediate south of 4207/E-8 were 4200/E-1 (used as an office and photographic laboratory) and 4205/E-6 (guardhouse, with fire extinguisher mounted on it). To the northeast of 4205/E-6 was 4204/E-5 (a propellant storage dock, with shed roof). Buildings 4200/E-1, 4205/E-6 and 4207/E-8 were demolished in 1983. Note the absence of trees. (JPL negative no. 383-1297, July 1946) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
2003-07-29
VANDENBERG AIR FORCE BASE, CALIF.- The covered SciSat-1 spacecraft is lowered onto a test stand at Vandenberg Air Force Base, Calif., for functional testing. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.
Investigation of postural hypotension due to static prolonged standing in female workers.
Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru
2007-07-01
The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension during prolonged standing work.
Ultra-dense magnetoresistive mass memory
NASA Technical Reports Server (NTRS)
Daughton, J. M.; Sinclair, R.; Dupuis, T.; Brown, J.
1992-01-01
This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis.
1. Photographic copy of engineering drawing showing elevations and sections ...
1. Photographic copy of engineering drawing showing elevations and sections of Test Stand 'E' (Building 4259/E-60). California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Solid Propellant Test Stand E-60 - Elevations & Sections,' sheet E60/10, no date. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...
4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
NASA's Space Launch System Transitions From Design To Production
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Robinson, Kimberly F.
2016-01-01
NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block 1, SLS will a minimum of 70 metric tons (t) (154,324 pounds) of payload to low Earth orbit (LEO). It will evolve to a 130 t (286,601 pound) payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test-fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility in New Orleans, Louisiana. Renovations to the B-2 test stand for stage green run testing were completed at NASA's Stennis Space Center (SSC), near Bay St. Louis, Mississippi. Core stage test stands are reaching completion at NASA's Marshall Space Flight Center in Huntsville, Alabama. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered to SSC. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
An Overview of Follow-On Testing Activities of the A-3 Subscale Diffuser Test Project
NASA Technical Reports Server (NTRS)
Ryan, James E.
2009-01-01
An overview of NASA Stennis Space Center's (SSC) A-3 Subscale Diffuser Test (SDT) Project is presented. The original scope of the SDT Project, conducted from April 2007 to January 2008, collected data to support mitigation of risk associated with design and procurement activities of the A-3 Test Stand Project, an effort to construct a simulated altitude test facility at SSC in support of NASA's Constellation Program. Follow-on tests were conducted from May 2008 through August 2009, utilizing the SDT test setup as a testbed for additional risk mitigation activities. Included are descriptions of the Subscale Diffuser (SD) test article, the test facility configuration, and test approaches.
8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ...
8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 22 of 148; file no. 1320/73. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES POWER PLANT TEST STAND AND SATURN V TEST STAND IN THE WEST TEST AREA (FAR BACKGROUND). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
NASA's Space Launch System Takes Shape
NASA Technical Reports Server (NTRS)
Askins, Bruce; Robinson, Kimberly F.
2017-01-01
Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.
Overview of recent studies and design changes for the FNAL magnetron ion source
NASA Astrophysics Data System (ADS)
Bollinger, D. S.; Sosa, A.
2017-08-01
This paper presents several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.
2011-03-01
input spindle from the engine to over tighten and apply an even greater amount of resistance to the engine shaft . Not only was this dangerous to...Mengistu, Todd Rotramel, and Matt Rippl, all of whom worked together with me to design and build the test rig for our dynamometer setup. Countless...hours were spent together planning and executing the design and building the stand itself. The AFIT machine shop crew and ENY lab techs also
2002-10-01
This is a ground level view of Test Stand 500 at the east test area of the Marshall Space Flight Center. Originally constructed in 1966, Test Stand 500 is a multipurpose, dual-position test facility. The stand was utilized to test liquid hydrogen/liquid oxygen turbopumps and combustion devices for the J-2 engine. One test position has a high superstructure with lines and tankage for testing liquid hydrogen and liquid oxygen turbopumps while the other position is adaptable to pressure-fed test programs such as turbo machinery bearings or seals. The facility was modified in 1980 to support Space Shuttle main engine (SSME) bearing testing.
Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW
NASA Technical Reports Server (NTRS)
Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.
1990-01-01
The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
JoAnn M. Hanowski; Gerald J. Niemi
1995-01-01
We established bird monitoring programs in two regions of Minnesota: the Chippewa National Forest and the Superior National Forest. The experimental design defined forest cover types as strata in which samples of forest stands were randomly selected. Subsamples (3 point counts) were placed in each stand to maximize field effort and to assess within-stand and between-...
2. Photographic copy of engineering drawing showing mechanical systems in ...
2. Photographic copy of engineering drawing showing mechanical systems in plan and sections of Test Stand 'E,' including tunnel entrance. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Bldg. E-60 Mechanical, Solid Propellant Test Stand,' sheet E60/13-4, June 20, 1961. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
2. View looking southeast at north and west facades of ...
2. View looking southeast at north and west facades of Test Stand 'D' workshop 4222/E-23, with Test Stand 'D' tower in background and tunnel access shed to the right. Equipment on 4222/E-23 roof is for air conditioning. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
1. View looking northeast at the west and south facades ...
1. View looking northeast at the west and south facades of Test Stand 'D' workshop 4222/E-23. Test Stand 'D' tower nitrogen tanks, television camera platform and access stairs are at right of image. Ductwork atop roof is for air conditioning system. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
New Marshall Center Test Stand 4697 Construction Time-Lapse
2016-09-27
In less than two minutes watch structural Test Stand 4697 rise at NASA's Marshall Space Flight Center from the start of construction in May 2014 to the end of the stand's construction phase in September 2016. The stand will subject the 196,000-gallon liquid oxygen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight. Now, Marshall teams are installing sophisticated fluid transfer and pressurization systems, hydraulic controls, electrical control and data systems, fiber optics cables and special test equipment to prepare for the arrival of the test tank in 2017. (NASA/MSFC/David Olive)
Tveter, Anne Therese; Dagfinrud, Hanne; Moseng, Tuva; Holm, Inger
2014-07-01
To provide reference values and reference equations for frequently used clinical field tests of health-related physical fitness for use in clinical practice. Cross-sectional design. General community. Convenience sample of volunteers (N=370) between 18 and 90 years of age were recruited from a wide range of settings (ie, work sites, schools, community centers for older adults) and different geographic locations (ie, urban, suburban, rural) in southeastern Norway. Not applicable. The participants conducted 5 clinical field tests (6-minute walk test, stair test, 30-second sit-to-stand test, handgrip test, fingertip-to-floor test). The results of the field tests showed that performance remained unchanged until approximately 50 years of age; after that, performance deteriorated with increasing age. Grip strength (79%), meters walked in 6 minutes (60%), and seconds used on the stair test (59%) could be well predicted by age, sex, height, and weight in participants ≥50 years of age, whereas the performance on all tests was less well predicted in participants <50 years of age. The reference values and reference equations provided in this study may increase the applicability and interpretability of the 6-minute walk test, stair test, 30-second sit-to-stand test, handgrip test, and fingertip-to-floor test in clinical practice. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Buman, Matthew P; Mullane, Sarah L; Toledo, Meynard J; Rydell, Sarah A; Gaesser, Glenn A; Crespo, Noe C; Hannan, Peter; Feltes, Linda; Vuong, Brenna; Pereira, Mark A
2017-02-01
American workers spend 70-80% of their time at work being sedentary. Traditional approaches to increase moderate-vigorous physical activity (MVPA) may be perceived to be harmful to productivity. Approaches that target reductions in sedentary behavior and/or increases in standing or light-intensity physical activity [LPA] may not interfere with productivity and may be more feasible to achieve through small changes accumulated throughout the workday METHODS/DESIGN: This group randomized trial (i.e., cluster randomized trial) will test the relative efficacy of two sedentary behavior focused interventions in 24 worksites across two states (N=720 workers). The MOVE+ intervention is a multilevel individual, social, environmental, and organizational intervention targeting increases in light-intensity physical activity in the workplace. The STAND+ intervention is the MOVE+ intervention with the addition of the installation and use of sit-stand workstations to reduce sedentary behavior and enhance light-intensity physical activity opportunities. Our primary outcome will be objectively-measured changes in sedentary behavior and light-intensity physical activity over 12months, with additional process measures at 3months and longer-term sustainability outcomes at 24months. Our secondary outcomes will be a clustered cardiometabolic risk score (comprised of fasting glucose, insulin, triglycerides, HDL-cholesterol, and blood pressure), workplace productivity, and job satisfaction DISCUSSION: This study will determine the efficacy of a multi-level workplace intervention (including the use of a sit-stand workstation) to reduce sedentary behavior and increase LPA and concomitant impact on cardiometabolic health, workplace productivity, and satisfaction. ClinicalTrials.gov Identifier: NCT02566317 (date of registration: 10/1/2015). Copyright © 2016 Elsevier Inc. All rights reserved.
Photographic copy of plan of new Dy horizontal station and ...
Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
"Chair Stand Test" as Simple Tool for Sarcopenia Screening in Elderly Women.
Pinheiro, P A; Carneiro, J A O; Coqueiro, R S; Pereira, R; Fernandes, M H
2016-01-01
To investigate the association between sarcopenia and "chair stand test" performance, and evaluate this test as a screening tool for sarcopenia in community-dwelling elderly women. Cross-sectional Survey. 173 female individuals, aged ≥ 60 years and living in the urban area of the municipality of Lafaiete Coutinho, Bahia's inland, Brazil. The association between sarcopenia (defined by muscle mass, strength and/or performance loss) and performance in the "chair stand test" was tested by binary logistic regression technique. The ROC curve parameters were used to evaluate the diagnostic power of the test in sarcopenia screening. The significance level was set at 5 %. The model showed that the time spent for the "chair stand test" was positively associated (OR = 1.08; 95% CI = 1.01 - 1.16, p = 0.024) to sarcopenia, indicating that, for each 1 second increment in the test performance, the sarcopenia's probability increased by 8% in elderly women. The cut-off point that showed the best balance between sensitivity and specificity was 13 seconds. The performance of "chair stand test" showed predictive ability for sarcopenia, being an effective and simple screening tool for sarcopenia in elderly women. This test could be used for screening sarcopenic elderly women, allowing early interventions.
5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...
5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Photographic copy of photograph, aerial view looking south at Jet ...
Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ...
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ROOM, PLANS AND SECTION." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 106 of 148; file no. 1321/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...
9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Karatas, Nihan; Baltaci, Gul
2012-01-01
Background: Chronic inversion ankle sprains are common in basketball players. The effect of taping on functional performance is disputed in the literature. Kinesiotaping® (KT®) is a new method that is being used as both a therapeutic and performance enhancement tool. To date, it appears that no study has investigated the effect of ankle KT® on functional performance. Purpose: To investigate the effects of different types of taping (KT® using Kinesio Tex®, athletic taping) on functional performance in athletes with chronic inversion sprains of the ankle. Study Design: Crossover Study Design Methods: Fifteen male basketball players with chronic inversion ankle sprains between the ages of 18 and 22 participated in this study. Functional performance tests (Hopping test by Amanda et al, Single Limb Hurdle Test, Standing Heel Rise test, Vertical Jump Test, The Star Excursion Balance Test [SEBT] and Kinesthetic Ability Trainer [KAT] Test) were used to quantify agility, endurance, balance, and coordination. These tests were conducted four times at one week intervals using varied conditions: placebo tape, without tape, standard athletic tape, and KT®. One-way ANOVA tests were used to examine difference in measurements between conditions. Bonferroni correction was applied to correct for repeated testing. Results: There were no significant differences among the results obtained using the four conditions for SEBT (anterior p=0.0699; anteromedial p=0.126; medial p=0.550; posteromedial p=0.587; posterior p=0.754; posterolateral p=0.907; lateral p=0.124; anterolateral p=0.963) and the KAT dynamic measurement (p=0.388). Faster performance times were measured with KT® and athletic tape in single limb hurdle test when compared to placebo and non-taped conditions (Athletic taping- placebo taping: p=0.03; athletic taping- non tape p=0.016;KT®- Placebo taping p=0.042; KT®-Non tape p=0.016). In standing heel rise test and vertical jump test, athletic taping led to decreased performance. (Standing heel rise test: Athletic taping- placebo taping p=0.035; athletic taping- non tape p=0.043; athletic tape- KT® p<0.001) (Vertical jump test: Athletic taping- placebo taping p=0.002: athletic taping- non tape p=0.002; KT®- athletic tape p<0.001) Conclusion: Kinesiotaping® had no negative effects on a battery of functional performance tests and improvements were seen in some functional performance tests. Clinical Relevance: Ankle taping using Kinesio Tex® Tape did not inhibit functional performance. PMID:22530190
Spacecraft design project: High temperature superconducting infrared imaging satellite
NASA Technical Reports Server (NTRS)
1991-01-01
The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.