A System for the Automatic Assembly of Test Questions Using a No-SQL Database
ERIC Educational Resources Information Center
Shin, Sanggyu; Hashimoto, Hiroshi
2014-01-01
We describe a system that automatically assembles test questions from a set of examples. Our system can create test questions appropriate for each user's level at low cost. In particular, when a user review their lesson, our system provides new test questions which are assembled based on their previous test results and past mistakes, rather than a…
SSME component assembly and life management expert system
NASA Technical Reports Server (NTRS)
Ali, M.; Dietz, W. E.; Ferber, H. J.
1989-01-01
The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Roger William; Oh, Yunje
A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably receivedmore » and clamped within the socket.« less
Berthing mechanism final test report and program assessment
NASA Technical Reports Server (NTRS)
1988-01-01
The purpose is to document the testing performed on both hardware and software developed under the Space Station Berthing Mechanisms Program. Testing of the mechanism occurred at three locations. Several system components, e.g., actuators and computer systems, were functionally tested before assembly. A series of post assembly tests were performed. The post assembly tests, as well as the dynamic testing of the mechanism, are presented.
Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Kenny, R. L.; Casiano, M. J.
2013-01-01
Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional combustion stability analyses of the configurations.
NASA Astrophysics Data System (ADS)
Hoskins, Douglas; Snead, Robert
1988-05-01
This report details the results of an electromagnetic compatibility test on the SCI Systems Data Acquisition and Control Assembly (DACA). This assembly is an electronic processor which controls the central communication link from the Tethered Satellite System (TSS) to the Space Transportation System Orbiter Space Shuttle.
iLIDS Simulations and Videos for Docking TIM
NASA Technical Reports Server (NTRS)
Lewis, James L.
2010-01-01
The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.
An expert system executive for automated assembly of large space truss structures
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1993-01-01
Langley Research Center developed a unique test bed for investigating the practical problems associated with the assembly of large space truss structures using robotic manipulators. The test bed is the result of an interdisciplinary effort that encompasses the full spectrum of assembly problems - from the design of mechanisms to the development of software. The automated structures assembly test bed and its operation are described, the expert system executive and its development are detailed, and the planned system evolution is discussed. Emphasis is on the expert system implementation of the program executive. The executive program must direct and reliably perform complex assembly tasks with the flexibility to recover from realistic system errors. The employment of an expert system permits information that pertains to the operation of the system to be encapsulated concisely within a knowledge base. This consolidation substantially reduced code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.
Thermodynamic performance testing of the orbiter flash evaporator system
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Melgares, M. A.; Frahm, J. P.
1980-01-01
System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.
Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system
NASA Technical Reports Server (NTRS)
Gabacz, L. E.
1973-01-01
The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.
Verification Test of Automated Robotic Assembly of Space Truss Structures
NASA Technical Reports Server (NTRS)
Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.
1995-01-01
A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.
ERIC Educational Resources Information Center
Belov, Dmitry I.
2008-01-01
In educational practice, a test assembly problem is formulated as a system of inequalities induced by test specifications. Each solution to the system is a test, represented by a 0-1 vector, where each element corresponds to an item included (1) or not included (0) into the test. Therefore, the size of a 0-1 vector equals the number of items "n"…
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W.S.
Progress during the period includes completion of the SNAP 7C system tests, completion of safety analysis for the SNAP 7A and C systems, assembly and initial testing of SNAP 7A, assembly of a modified reliability model, and assembly of a 10-W generator. Other activities include completion of thermal and safety analyses for SNAP 7B and D generators and fuel processing for these generators. (J.R.D.)
The advanced receiver 2: Telemetry test results in CTA 21
NASA Technical Reports Server (NTRS)
Hinedi, S.; Bevan, R.; Marina, M.
1991-01-01
Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.
James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2008-01-01
JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.
Base excitation testing system using spring elements to pivotally mount wind turbine blades
Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott
2013-12-10
A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.
Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David
2014-07-08
An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.
Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David
2015-01-27
An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.
Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David
2015-02-24
An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.
Baseline tests of an autonomous telerobotic system for assembly of space truss structures
NASA Technical Reports Server (NTRS)
Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung
1994-01-01
Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
Development and verification testing of automation and robotics for assembly of space structures
NASA Technical Reports Server (NTRS)
Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.
1993-01-01
A program was initiated within the past several years to develop operational procedures for automated assembly of truss structures suitable for large-aperture antennas. The assembly operations require the use of a robotic manipulator and are based on the principle of supervised autonomy to minimize crew resources. A hardware testbed was established to support development and evaluation testing. A brute-force automation approach was used to develop the baseline assembly hardware and software techniques. As the system matured and an operation was proven, upgrades were incorprated and assessed against the baseline test results. This paper summarizes the developmental phases of the program, the results of several assembly tests, the current status, and a series of proposed developments for additional hardware and software control capability. No problems that would preclude automated in-space assembly of truss structures have been encountered. The current system was developed at a breadboard level and continued development at an enhanced level is warranted.
Software design for automated assembly of truss structures
NASA Technical Reports Server (NTRS)
Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.
1992-01-01
Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.
Infrared detectors and test technology of cryogenic camera
NASA Astrophysics Data System (ADS)
Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long
2016-10-01
Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.
Lifetime predictions for dimmable two-channel drivers for color tuning luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Smith, Aaron; Clark, Terry
Two-channel tunable white lighting (TWL) systems represent the next wave of solid-state lighting (SSL) systems and promise flexibility in light environment while maintaining the high reliability and luminous efficacy expected with SSL devices. TWL systems utilize LED assemblies consisting of two different LED spectra (i.e., often a warm white assembly and a cool white assembly) that are integrated into modules. While these systems provide the ability to adjust the lighting spectrum to match the physiology needs of the task at hand, they also are a potentially more complex lighting system from a performance and reliability perspective. We report an initialmore » study on the reliability performance of such lighting systems including an examination of the lumen maintenance and chromaticity stability of warm white and cool white LED assemblies and the multi-channel driver that provides power to the assemblies. Accelerated stress tests including operational bake tests conducted at 75°C and 95°C were used to age the LED modules, while more aggressive temperature and humidity tests were used for the drivers in this study. Small differences in the performance between the two LED assemblies were found and can be attributed to the different phosphor chemistries. The lumen maintenances of both LED assemblies were excellent. The warm white LED assemblies were found to shift slightly in the green color direction over time while the cool white LED assemblies shifted slightly in the yellow color direction. The net result of these chromaticity shifts is a small, barely perceptible reduction in the tuning range after 6,000 hours of exposure to an accelerating elevated temperature of 75°C.« less
Multiparameter vision testing apparatus
NASA Technical Reports Server (NTRS)
Hunt, S. R., Jr.; Homkes, R. J.; Poteate, W. B.; Sturgis, A. C. (Inventor)
1975-01-01
Compact vision testing apparatus is described for testing a large number of physiological characteristics of the eyes and visual system of a human subject. The head of the subject is inserted into a viewing port at one end of a light-tight housing containing various optical assemblies. Visual acuity and other refractive characteristics and ocular muscle balance characteristics of the eyes of the subject are tested by means of a retractable phoroptor assembly carried near the viewing port and a film cassette unit carried in the rearward portion of the housing (the latter selectively providing a variety of different visual targets which are viewed through the optical system of the phoroptor assembly). The visual dark adaptation characteristics and absolute brightness threshold of the subject are tested by means of a projector assembly which selectively projects one or both of a variable intensity fixation target and a variable intensity adaptation test field onto a viewing screen located near the top of the housing.
Adapter assembly prevents damage to tubing during high pressure tests
NASA Technical Reports Server (NTRS)
Stinett, L. L.
1965-01-01
Portable adapter assembly prevents damage to tubing and injury to personnel when pressurizing a system or during high pressure tests. The assembly is capable of withstanding high pressure. It is securely attached to the tubing stub end and may be removed without brazing, cutting or cleaning the tube.
NASA Technical Reports Server (NTRS)
Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-01-01
Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.
NASA Astrophysics Data System (ADS)
Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-09-01
Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat- 2); and others will be included.
The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test
NASA Technical Reports Server (NTRS)
Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank
1999-01-01
The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.
NASA Technical Reports Server (NTRS)
1972-01-01
The assembly drawings of the receiver unit are presented for the data compression/error correction digital test system. Equipment specifications are given for the various receiver parts, including the TV input buffer register, delta demodulator, TV sync generator, memory devices, and data storage devices.
Test systems of the STS-XYTER2 ASIC: from wafer-level to in-system verification
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Zubrzycka, Weronika
2016-09-01
The STS/MUCH-XYTER2 ASIC is a full-size prototype chip for the Silicon Tracking System (STS) and Muon Chamber (MUCH) detectors in the new fixed-target experiment Compressed Baryonic Matter (CBM) at FAIR-center, Darmstadt, Germany. The STS assembly includes more than 14000 ASICs. The complicated, time-consuming, multi-step assembly process of the detector building blocks and tight quality assurance requirements impose several intermediate testing to be performed for verifying crucial assembly steps (e.g. custom microcable tab-bonding before wire-bonding to the PCB) and - if necessary - identifying channels or modules for rework. The chip supports the multi-level testing with different probing / contact methods (wafer probe-card, pogo-probes, in-system tests). A huge number of ASICs to be tested restricts the number and kind of tests possible to be performed within a reasonable time. The proposed architectures of test stand equipment and a brief summary of methodologies are presented in this paper.
Centroid Detector Assembly for the AXAF-I Alignment Test System
NASA Technical Reports Server (NTRS)
Glenn, Paul
1995-01-01
The High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility (imaging) (AXAF-I) consists of four nested paraboloids and four nested hyperboloids, all of meter-class size, and all of which are to be assembled and aligned in a special 15 meter tower at Eastman Kodak Company in Rochester, NY. The goals of the alignment are (1) to make the images of the four telescopes coincident; (2) to remove coma from each image individually; and (3) to control and determine the final position of the composite focus. This will be accomplished by the HRMA Aligment Test System (HATS) which is essentially a scanning Hartmann test system. The scanning laser source and the focal plane of the HATS are part of the Centroid Detector Assembly (CDA) which also includes processing electronics and software. In this paper we discuss the design and the measured performance of the CDA.
Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.
1997-01-01
A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.
Adhesives for assembly of lightweight wood containers
R. S. Kurtenacker
1964-01-01
This report discusses the screening of various adhesive and mastic systems for possible use in assembling lightweight wood containers. Results showed that dynamic tests of simulated box corners correlated reasonably well with rough handling evaluations of eight selected systems when used to assemble lightweight wood boxes made from a Group I container wood....
Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.
A Gimbal sizing analysis for an IPACS rotating assembly
NASA Technical Reports Server (NTRS)
Burke, P. R.; Coronato, P. A.
1985-01-01
All major components of an integrated power/attitude control system (IPACS) assembly were analyzed for testing, launch, and operational stresses. The conceptual design for the outer gimbal and mounting ring structures were developed and analyzed along with preliminary designs of the pivot and torquer assemblies. Results from the system response analysis and the thermal analysis are also presented. Gimballing of this rotating assembly should present few difficulties as the maximum gimballing rate is quite low. However, the inner gimbal assembly in its current configuration must be modified to develop the system from a laboratory concept to a realistic flight hardware status.
ERIC Educational Resources Information Center
Veldkamp, Bernard P.; Verschoor, Angela J.; Eggen, Theo J. H. M.
2010-01-01
Overexposure and underexposure of items in the bank are serious problems in operational computerized adaptive testing (CAT) systems. These exposure problems might result in item compromise, or point at a waste of investments. The exposure control problem can be viewed as a test assembly problem with multiple objectives. Information in the test has…
Computer Assisted Assembly of Tests at Educational Testing Service.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
Two basic requirements for the successful initiation of a program for test assembly are the development of detailed item content classification systems and the delineation of the professional judgements made in building a test from a pool of items to detailed content, ability, and statistical specifications in terms precise enough to be translated…
NASA Technical Reports Server (NTRS)
1992-01-01
A non-destructive testing system, originally developed for Langley Research Center, is sold commercially. The DyLASP Profilometer locates defects in composite and metallic materials and assemblies. It operates in real time and displays results as a contour map of the assembly with defects indicated by size and location. Applications are in non-destructive testing and evaluation, and the company will customize to user requirements.
Food System Trade Study for a Near-Term Mars Mission
NASA Technical Reports Server (NTRS)
Levri, Julie; Luna, Bernadette (Technical Monitor)
2000-01-01
This paper evaluates several food system options for a near-term Mars mission, based on plans for the 120-day BIO-Plex test. Food systems considered in the study are based on the International Space Station (ISS) Assembly Phase and Assembly Complete food systems. The four systems considered are: 1) ISS assembly phase food system (US portion) with individual packaging without salad production; 2) ISS assembly phase food system (US portion) with individual packaging, with salad production; 3) ISS assembly phase food system (US portion) with bulk packaging, with salad production; 4) ISS assembly complete food system (US portion) with bulk packaging with salad and refrigeration/freezing. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements that are associated with each food system option. However, since ESM is unable to elucidate the differences in psychological benefits between the food systems, a qualitative evaluation of each option is also presented.
Functional Testing of the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.
1995-01-01
A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.
Pressure activated interconnection of micro transfer printed components
NASA Astrophysics Data System (ADS)
Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.
2016-05-01
Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
Visit from JAXA to NASA MSFC: The Engines Element & Ideas for Collaboration
NASA Technical Reports Server (NTRS)
Greene, William D.
2013-01-01
System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.
Backward assembly planning with DFA analysis
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1992-01-01
An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies is presented. The planning system analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc., that must occur during the assembly. Additionally, the planning handles nonreversible, as well as reversible, assembly tasks through backward assembly planning. In order to decrease the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.
Cascade Distiller System Performance Testing Interim Results
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.
2014-01-01
The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.2 Definitions. As used in this part... designs, manufactures, or assembles and that seeks certification or preliminary testing of a methane-monitoring system or component. (c) Methane-monitoring system means a complete assembly of one or more...
Backward assembly planning with DFA analysis
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1995-01-01
An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies, and analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans is presented. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc. that must occur during the assembly, and handles nonreversible as well as reversible assembly tasks through backward assembly planning. In order to increase the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.
2009-07-15
CAPE CANAVERAL, Fla. – A crane is attached to the Ares I-X forward center assembly in NASA Kennedy Space Center's Vehicle Assembly Building. It will be mated with the aft center assembly. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I, which is the essential core of a space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system . The Ares I-X flight test is targeted for no earlier than Aug. 30. Photo credit: NASA/Troy Cryder
A simulation facility for testing Space Station assembly procedures
NASA Technical Reports Server (NTRS)
Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.
1994-01-01
NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.
Alignment of optical system components using an ADM beam through a null assembly
NASA Technical Reports Server (NTRS)
Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)
2010-01-01
A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.
2015-09-09
guidance and procedures for testing the performance characteristics of runflat tires as equipped on ground vehicles. 15. SUBJECT TERMS runflat... tire assembly tread life combat flat central tire inflation system (CTIS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...3 3.4 Tire Assemblies ..................................................................... 3 3.5 Environmental
Development of a machine vision system for automated structural assembly
NASA Technical Reports Server (NTRS)
Sydow, P. Daniel; Cooper, Eric G.
1992-01-01
Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.
EVA assembly of large space structure element
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.
1981-01-01
The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.
Test rig and particulate deposit and cleaning evaluation processes using the same
Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank
2002-01-01
A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.
Transfer orbit stage mechanisms thermal vacuum test
NASA Technical Reports Server (NTRS)
Oleary, Scott T.
1990-01-01
A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases.
Inventorying national forest resources...for planning-programing-budgeting system
Miles R. Hill; Elliot L. Amidon
1968-01-01
New systems for analyzing resource management problems, such as Planning-Programing-Budgeting, will require automated procedures to collect and assemble resource inventory data. A computer - oriented system called Map Information Assembly and Display System developed for this purpose was tested on a National Forest in California. It provided information on eight forest...
Capability 9.3 Assembly and Deployment
NASA Technical Reports Server (NTRS)
Dorsey, John
2005-01-01
Large space systems are required for a range of operational, commercial and scientific missions objectives however, current launch vehicle capacities substantially limit the size of space systems (on-orbit or planetary). Assembly and Deployment is the process of constructing a spacecraft or system from modules which may in turn have been constructed from sub-modules in a hierarchical fashion. In-situ assembly of space exploration vehicles and systems will require a broad range of operational capabilities, including: Component transfer and storage, fluid handling, construction and assembly, test and verification. Efficient execution of these functions will require supporting infrastructure, that can: Receive, store and protect (materials, components, etc.); hold and secure; position, align and control; deploy; connect/disconnect; construct; join; assemble/disassemble; dock/undock; and mate/demate.
Brayton cycle heat exchanger and duct assembly (HXDA, preliminary design and technology tests
NASA Technical Reports Server (NTRS)
Coombs, M. G.; Morse, C. J.; Graves, R. F.; Gibson, J. C.
1972-01-01
A preliminary design of the heat exchanger and duct assembly (HXDA) for a 60 kwe, closed loop, Brayton cycle space power system is presented. This system is weight optimized within the constraints imposed by the defined structural and operational requirements. Also presented are the results of several small scale tests, directed to obtaining specific design data and/or the resolution of a design approach for long life Brayton cycle heat exchanger systems.
Earth Sensor Assembly for the Tropical Rainfall Measuring Mission Observatory
NASA Technical Reports Server (NTRS)
Prince, Steven S.; Hoover, James M.
1995-01-01
EDO Corporation/Barnes Engineering Division (BED) has provided the Tropical Rainfall Measurement Mission (TRMM) Earth Sensor Assembly (ESA), a key element in the TRMM spacecraft's attitude control system. This report documents the history, design, fabrication, assembly, and test of the ESA.
Robotic Assembly of Truss Structures for Space Systems and Future Research Plans
NASA Technical Reports Server (NTRS)
Doggett, William
2002-01-01
Many initiatives under study by both the space science and earth science communities require large space systems, i.e. with apertures greater than 15 m or dimensions greater than 20 m. This paper reviews the effort in NASA Langley Research Center's Automated Structural Assembly Laboratory which laid the foundations for robotic construction of these systems. In the Automated Structural Assembly Laboratory reliable autonomous assembly and disassembly of an 8 meter planar structure composed of 102 truss elements covered by 12 panels was demonstrated. The paper reviews the hardware and software design philosophy which led to reliable operation during weeks of near continuous testing. Special attention is given to highlight the features enhancing assembly reliability.
Electrical production testing of the D0 Silicon microstrip tracker detector modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
D0, SMT Production Testing Group; /Fermilab
The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
NASA Technical Reports Server (NTRS)
Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny
2013-01-01
State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny
2013-01-01
State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported
ERIC Educational Resources Information Center
Cor, Ken; Alves, Cecilia; Gierl, Mark J.
2008-01-01
This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn L.
2003-01-01
NASA s Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the lnternational Space Station s (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems lnternational (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are currently in the manufacturing and test phase and are to be completed and integrated into flight racks this year. This paper gives an overview of the technologies and system designs, technical challenges encountered and solved, and the current status.
Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2015-01-01
NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.
Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators
NASA Technical Reports Server (NTRS)
Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)
2002-01-01
Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
ERIC Educational Resources Information Center
Steinke, Elisabeth
An approach to using the computer to assemble German tests is described. The purposes of the system would be: (1) an expansion of the bilingual lexical memory bank to list and store idioms of all degrees of difficulty, with frequency data and with complete and sophisticated retrieval possibility for assembly; (2) the creation of an…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... systems; duct temperature limiters; air/oil heat exchangers; oil cooler fans; fuel filter assemblies... assemblies; filter extractors; de- coupler/disassembly wrenches; torque wrench adaptors; test benches; drills...; filter assemblies; oil filter install kits; cartridge screens; filter housings; trim balance weights...
NASA Astrophysics Data System (ADS)
Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron
2010-08-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Campbell, Colin
2017-01-01
The FSA with Integrated Aux FSA Specification establishes the requirements for design, performance, and testing of the FSA-431/FSA-531 assembly in compliance with CTSD-ADV-780, Development Specification for the Advanced EMU (AEMU) Portable Life Support System (PLSS). This section contains the technical design and performance requirements for the integrated assembly of the Feedwater Supply Assembly and Auxiliary Feedwater Supply Assembly for the Advanced EVA Development Portable Life Support Subsystem (PLSS).
"Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.
Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin
2011-06-01
In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.
Environmental Control and Life Support Systems Testing Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the Urine Processor Assembly (UPA) which utilizes the Vapor Compression Distillation (VCD) technology. The VCD is used for integrated testing of the entire Water Recovery System (WRS) and development testing of the Urine Processor Assembly. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.
Overview of the International Space Station System Level Trace Contaminant Injection Test
NASA Technical Reports Server (NTRS)
Tatara, James D.; Perry, Jay L.; Franks, Gerald D.
1997-01-01
Trace contaminant control onboard the International Space Station will be accomplished not only by the Trace Contaminant Control Subassembly but also by other Environmental Control and Life Support System subassemblies. These additional removal routes include absorption by humidity condensate in the Temperature and Humidity Control Condensing Heat Exchanger and adsorption by the Carbon Dioxide Removal Assembly. The Trace Contaminant Injection Test, which was performed at NASA's Marshall Space Flight Center, investigated the system-level removal of trace contaminants by the International Space Station Atmosphere Revitalization, and Temperature/Humidity Control Subsystems, (November-December 1997). It is a follow-on to the Integrated Atmosphere Revitalization Test conducted in 1996. An estimate for the magnitude of the assisting role provided by the Carbon Dioxide Removal Assembly and the Temperature and Humidity Control unit was obtained. In addition, data on the purity of Carbon Dioxide Removal Assembly carbon dioxide product were obtained to support Environmental Control and Life Support System Air Revitalization Subsystem loop closure.
NASA Technical Reports Server (NTRS)
Sullivan, J. L.
1975-01-01
The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.
Assembly and Testing of a Compact, Lightweight Homopolar Generator Power Supply
1983-06-01
ASSEMBLY AND TESTING OF A COMPACT, LIGHTWEIGHT HOMOPOLAR GENERATOR POWER SUPPLY J. H. Gully Center for Electromechanics The University of Texas...portable systems. The initial step in developing the power supply was to design, fabricate and test a prototype homopolar generator, attempting to...levels. SUPPORT STRUCTURE HYDRAULIC Fig. 1. Section through compact homopolar generator ~1 l-oot!:__ __ 63.80 ----~ (25. 12) ~------ 85.88
OSIRIS-REx Visible And Infrared Spectrometer - OVIRS
NASA Technical Reports Server (NTRS)
Hair, Jason
2016-01-01
Goddard Space Flight Center: Overall Instrument Responsibility; Instrument Scientist and Deputy Instrument Scientist; Management Systems Engineering; Mechanical Hardware; Harness Assemblies; SIDECAR Assembly Code; OVIRS Integration and Environmental Qualification; OVIRS Performance Testing, Calibration and Characterization.
Thermal/vacuum vs. thermal atmospheric testing of space flight electronic assemblies
NASA Technical Reports Server (NTRS)
Gibbel, Mark
1990-01-01
For space flight hardware, the thermal vacuum environmental test is the best test of a system's flight worthiness. Substituting an atmospheric pressure thermal test for a thermal/vacuum test can effectively reduce piece part temperatures by 20 C or more, even for low power density designs. Similar reductions in test effectiveness can also result from improper assembly level T/V test boundary conditions. The net result of these changes may reduce the effective test temperatures to the point where there is zero or negative margin over the flight thermal environment.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.; Cloud, Dale
2005-01-01
NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... gearbox (MGB) filter bowl assembly with a two-piece MGB filter bowl assembly and replacing the existing mounting studs. The AD also requires inspecting the MGB lube system filters, the housing, the housing... prompted by tests indicating that an existing MGB filter bowl assembly can fail under certain loading...
Dexterity and Bench Assembly Work Productivity in Adults with Mild Mental Retardation.
ERIC Educational Resources Information Center
Serr, Russell; And Others
1994-01-01
This study compared dexterity scores using the Vocational Transit Test System and bench assembly work productivity in 30 adults with mild mental retardation. Moderately high correlations were found between work output and motor coordination, manual dexterity, finger dexterity (with and without assembly), and total dexterity score. Finger dexterity…
Full System Modeling and Validation of the Carbon Dioxide Removal Assembly
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, James; Gauto, Hernando; Gomez, Carlos
2014-01-01
The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of various subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development. The development of the CO2 removal and associated air-drying subsystem hardware under the ARREM project is discussed in a companion paper.
Electrical characterization of a Space Station Freedom alpha utility transfer assembly
NASA Technical Reports Server (NTRS)
Yenni, Edward J.
1994-01-01
Electrical power, command signals and data are transferred across the Space Station Freedom solar alpha rotary joint by roll rings, which are incorporated within the Utility Transfer Assembly (UTA) designed and manufactured by Honeywell Space Systems Operations. A developmental Model of the UTA was tested at the NASA Lewis Research Center using the Power Management and Distribution DC test bed. The objectives of these tests were to obtain data for calibrating system models and to support final design of qualification and flight units. This testing marked the first time the UTA was operated at high power levels and exposed to electrical conditions similar to that which it will encounter on the actual Space Station. Satisfactory UTA system performance was demonstrated within the scope of this testing.
Field testing of a lightweight relocatable structure in a desert environment
NASA Astrophysics Data System (ADS)
Kao, A.; Lane, S.; Carr, J. S.; Wahlgren, L.; Klause, P.
1984-09-01
This report describes the field tests of a commercially available, off-the-shelf lightweight relocatable structure (LRS) systems selected for possible military application in a theater or operations. The structural system selected for the field tests was a panelized system manufactured by Kelly Klosure, Inc. The purpose of the tests was to determine the constructibility and habitability of the building system. The tests are being conducted in two stages: Stage 1 tests were conducted in a desert environment, and Stage 2 tests are being conducted in a temperate environment. This report documents the results of the Stage 1 tests. The test results showed that the 20-ft-wide and 8-ft-high building can be erected manually by unskilled troop labor using only hand tools. However, for a 12-ft-high building assembled using 4- x 8-ft panels, a crane is needed to help lift assembled components for the erection. Based on overall constructibility and environmental performance, the fiberboard panel system is the better choice. Several modifications were made to the system during the field tests. It is recommended that these modifications be incorporated into system design and further field tests conducted before making a final evaluation.
NASA Technical Reports Server (NTRS)
1994-01-01
Lockheed Space Operations Company workers in the Extended Duration Orbiter (EDO) Facility, located inside the Vehicle Assembly Building (VAB), carefully hoist the Orbiter Docking System (ODS) from its shipping container into a test stand. The ODS was ship
Acceleration of boundary element method for linear elasticity
NASA Astrophysics Data System (ADS)
Zapletal, Jan; Merta, Michal; Čermák, Martin
2017-07-01
In this work we describe the accelerated assembly of system matrices for the boundary element method using the Intel Xeon Phi coprocessors. We present a model problem, provide a brief overview of its discretization and acceleration of the system matrices assembly using the coprocessors, and test the accelerated version using a numerical benchmark.
The space station assembly phase: System design trade-offs for the flight telerobotic servicer
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.
NASA Technical Reports Server (NTRS)
Caplin, R. S.; Royer, E. R.
1978-01-01
Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.
NASA Technical Reports Server (NTRS)
Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.
2001-01-01
Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.
Mars Science Laboratory Spacecraft Assembled for Testing
NASA Technical Reports Server (NTRS)
2008-01-01
The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions. These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Bunker, S.
1981-01-01
A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.
A custom-tailored FAMOS burn-up meter for VVER 440 fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, G.G.; Golochtchapov, S.; Glazov, A.G.
1995-12-31
The FAMOS fuel assembly monitoring system had been originally developed for monitoring irradiated fuel assemblies of the Karlsruhe Nuclear Research Center concentrating on neutron detection systems for special applications.The measurements in the past had demonstrated that FAMOS can perform precise measurements to control or measure with accuracy the main physical parameters of spent fuel. The FAMOS 3 system is specialized for burn-up determination of fuel assemblies. Thus it is possible to take into account the burn-up for the purposes of storage and transportation. The Kola NPP VVER 440 requirements necessitated developing an especially adopted FAMOS 3 system. In addition tomore » the passive neutron measurement, a gross gamma detection and a boron concentration monitoring system are implemented. The new system was constructed as well as tested in laboratory experiments. The monitoring system has been delivered to the customer and is ready for use.« less
NASA Technical Reports Server (NTRS)
Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.;
2012-01-01
The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.
RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Sanders, Timothy M.
1990-01-01
This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.
RFTA (Recycle Filter Tank Assembly) test fill
2009-06-02
ISS020-E-005984 (2 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Water Recovery System Recycle Filter Tank Assembly (RFTA) in the Destiny laboratory of the International Space Station.
Dual-axis resonance testing of wind turbine blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Scott; Musial, Walter; White, Darris
An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies ofmore » the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.« less
NASA Astrophysics Data System (ADS)
Moore, Peter K.
2003-07-01
Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.
Precision lens assembly with alignment turning system
NASA Astrophysics Data System (ADS)
Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-10-01
The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.
Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.
2014-09-01
In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.
Orbiter fire rescue and crew escape training for EVA crew systems support
1993-01-28
Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).
Airfoil flutter model suspension system
NASA Technical Reports Server (NTRS)
Reed, Wilmer H. (Inventor)
1987-01-01
A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.
NASA Technical Reports Server (NTRS)
Clark, T. B.
1985-01-01
The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.
Design verification test matrix development for the STME thrust chamber assembly
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.
1993-01-01
This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.
Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control
NASA Technical Reports Server (NTRS)
1974-01-01
Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.
Automatic assembly of micro-optical components
NASA Astrophysics Data System (ADS)
Gengenbach, Ulrich K.
1996-12-01
Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.
A proposed holistic approach to on-chip, off-chip, test, and package interconnections
NASA Astrophysics Data System (ADS)
Bartelink, Dirk J.
1998-11-01
The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must recognize—test is also performed using IC's. A system interconnection is proposed using multiple chips fabricated with conventional silicon processes, including MEMS technology. The system resembles an MCM that can be joined without committing to final assembly to perform at-speed testing. 50-Ohm test probes never load the circuit; only intended neighboring chips are ever connected. A `back-plane' chip provides the connection layers for both inter- and intra-chip signals and also serves as the probe card, in analogy with membrane probes now used for single-chip testing. Intra-chip connections, which require complicated connections during test that exactly match the product, are then properly made and all waveforms and loading conditions under test will be identical to those of the product. The major benefit is that all front-end chip technologies can be merged—logic, memory, RF, even passives. ESD protection is required only on external system connections. Manufacturing test information will accurately characterize process faults and thus avoid the Known-Good-Die problem that has slowed the arrival of conventional MCM's.
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Lafuse, Sharon; Smith, Frederick D.; Lu, Sao-Dung; Knox, James C.; Campbell, Mellssa L.; Scull, Timothy D.; Green Steve
2010-01-01
A tool has been developed by the Sabatier Team for analyzing/optimizing CO2 removal assembly, CO2 compressor size, its operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and Hz from oxygen generation assembly. Tests had been conducted using CDRA/Simulation compressor set-up at MSFC in 2003. Analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in CDRA desorption. Optimizing the compressor size and compressor operation logic for an integrated closed air revitalization system Is being conducted by the Sabatier Team.
Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects
NASA Technical Reports Server (NTRS)
Ott, Melanie N.
1998-01-01
Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Practice J944, “Steering Wheel Assembly Laboratory Test Procedure,” December 1965, or an approved.... 208 (49 CFR 571.208) by means of other than seat belt assemblies. It also does not apply to walk-in... trim hardware, including any portion of a steering column assembly that provides energy absorption upon...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Practice J944, “Steering Wheel Assembly Laboratory Test Procedure,” December 1965, or an approved.... 208 (49 CFR 571.208) by means of other than seat belt assemblies. It also does not apply to walk-in... trim hardware, including any portion of a steering column assembly that provides energy absorption upon...
The Alignment Test System for AXAF-I's High Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Waldman, Mark
1995-01-01
The AXAF-1 High Resolution Mirror Assembly (HRMA) consists of four nested mirror pairs of Wolter Type-1 grazing incidence optics. The HRMA assembly and alignment will take place in a vibration-isolated, cleanliness class 100, 18 meter high tower at an Eastman Kodak Company facility in Rochester, NY. Each mirror pair must be aligned such that its image is coma-free, and the four pairs must be aligned such that their images are coincident. In addition, both the HRMA optical axis and focal point must be precisely known with respect to physical references on the HRMA. The alignment of the HRMA mirrors is measured by the HRMA Alignment Test System (HATS), which is an integral part of the tower facility. The HATS is configured as a double-pass, autocollimating Hartmann test where each mirror aperture is scanned to determine the state of alignment. This paper will describe the design and operation of the HATS.
Water system microbial check valve development
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Greenley, D. R.; Putnam, D. F.
1978-01-01
A residual iodine microbial check valve (RIMCV) assembly was developed and tested. The assembly is designed to be used in the space shuttle potable water system. The RIMCV is based on an anion exchange resin that is supersaturated with an iodine solution. This system causes a residual to be present in the effluent water which provides continuing bactericidal action. A flight prototype design was finalized and five units were manufactured and delivered.
A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, Jim
2015-01-01
Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).
NASA Technical Reports Server (NTRS)
1982-01-01
Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.
Solar Stirling power generation - Systems analysis and preliminary tests
NASA Technical Reports Server (NTRS)
Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III
1977-01-01
The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.
Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules
NASA Astrophysics Data System (ADS)
Miesner, Jörn; Timmermann, Andre; Meinschien, Jens; Neumann, Bernhard; Wright, Steve; Tekin, Tolga; Schröder, Henning; Westphalen, Thomas; Frischkorn, Felix
2009-02-01
Laser diodes and diode laser bars are key components in high power semiconductor lasers and solid state laser systems. During manufacture, the assembly of the fast axis collimation (FAC) lens is a crucial step. The goal of our activities is to design an automated assembly system for high volume production. In this paper the results of an intermediate milestone will be reported: a demonstration system was designed, realized and tested to prove the feasibility of all of the system components and process features. The demonstration system consists of a high precision handling system, metrology for process feedback, a powerful digital image processing system and tooling for glue dispensing, UV curing and laser operation. The system components as well as their interaction with each other were tested in an experimental system in order to glean design knowledge for the fully automated assembly system. The adjustment of the FAC lens is performed by a series of predefined steps monitored by two cameras concurrently imaging the far field and the near field intensity distributions. Feedback from these cameras processed by a powerful and efficient image processing algorithm control a five axis precision motion system to optimize the fast axis collimation of the laser beam. Automated cementing of the FAC to the diode bar completes the process. The presentation will show the system concept, the algorithm of the adjustment as well as experimental results. A critical discussion of the results will close the talk.
NAC Off-Vehicle Brake Testing Project
2007-05-01
disc pads/rotors and drum shoe assemblies/ drums - Must use vehicle “OEM” brake /hub-end hardware, or ESA... brake component comparison analysis (primary)* - brake system design analysis - brake system component failure analysis - (*) limited to disc pads...e.g. disc pads/rotors, drum shoe assemblies/ drums . - Not limited to “OEM” brake /hub-end hardware as there is none ! - Weight transfer, plumbing,
Experimental system for the control of surgically induced infections
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.
1971-01-01
The development tests to be performed on the experimental system are described in detail. The test equipment, conditions, and procedures are given. The portable clean room tests include assembly, collapsability, portability, and storage; laminar flow rate; static pressure; air flow pattern; and electrostatic buildup. The other tests are on the ventilation system, human factors evaluation, electrical subsystem, and material compatibility.
Recommended design and fabrication sequence of AMTEC test assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Kumar, V.; Noravian, H.
1998-01-01
A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE{close_quote}s Oak Ridge and Mound Laboratories, and the Air Force Phillips Laboratory (AFPL) will test the performance of the assembly over a range of input thermal powers and output voltages. The experimentally measured performance will be compared with the results of OSC analyses of the same insulated test assembly over the same range of operating parameters. {copyright} {ital 1998 American Institute of Physics.}« less
CPAS Parachute Testing, Model Development, & Verification
NASA Technical Reports Server (NTRS)
Romero, Leah M.
2013-01-01
Capsule Parachute Assembly System (CPAS) is the human rated parachute system for the Orion vehicle used during re-entry. Similar to Apollo parachute design. Human rating requires additional system redundancy. A Government Furnished Equipment (GFE) project responsible for: Design; Development testing; Performance modeling; Fabrication; Qualification; Delivery
Code of Federal Regulations, 2014 CFR
2014-01-01
... research and experimental and analytical laboratory activities, electron microscopes, and X-ray machines... research, test, and power reactors, and critical and pulsed assemblies and any assembly that is designed to... covering a topic such as: quality assurance; maintenance of safety systems; personnel training; conduct of...
Webb Telescope Passes Important Optical Test on This Week @NASA – May 5, 2017
2017-05-05
NASA’s James Webb Space Telescope (JWST) has successfully passed the center of curvature test at Goddard Space Flight Center, in Greenbelt, Md. This important optical measurement of Webb’s fully assembled primary mirror was the final test held at Goddard before the telescope is shipped off for end-to-end cryogenic testing at Johnson Space Center in Houston. When that’s complete, the world’s most advanced observatory goes to Northrop Grumman Aerospace Systems in Redondo Beach, California, for final assembly and testing. Webb is targeted for launch in 2018 on a mission to help unravel some of the greatest mysteries of the universe. Also, Cassini Update, NASA Visits Midwest Company Helping Build Orion, Orion’s Launch Abort System Motor Tested, Wind Tunnel Tests Continue with SLS, and Community College Aerospace Scholars!
Target Assembly to Check Boresight Alignment of Active Sensors
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael
2011-01-01
A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.
Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis
NASA Technical Reports Server (NTRS)
1973-01-01
System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.
Additively Manufactured Main Fuel Valve Housing
NASA Technical Reports Server (NTRS)
Eddleman, David; Richard, Jim
2015-01-01
Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.
Single Day Construction of Multigene Circuits with 3G Assembly.
Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M
2018-05-18
The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.
Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test
NASA Astrophysics Data System (ADS)
Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.
2004-02-01
One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.
Fuel assembly shaker and truck test simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.
2014-09-30
This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revisedmore » model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when traveling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.« less
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
FUEL ASSEMBLY SHAKER TEST SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.
This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refinedmore » to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.« less
30 CFR 250.617 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...
30 CFR 250.616 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...
30 CFR 250.617 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...
Solar central receiver heliostat reflector assembly
Horton, Richard H.; Zdeb, John J.
1980-01-01
A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.
NASA Astrophysics Data System (ADS)
Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.
2001-05-01
The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.
Special test equipment and fixturing for MSAT reflector assembly alignment
NASA Technical Reports Server (NTRS)
Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.
1994-01-01
The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.
DETAIL VIEW OF TESTING EQUIPMENT, REMOTE MANIPULATOR SYSTEM LAB, ROOM ...
DETAIL VIEW OF TESTING EQUIPMENT, REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
An automated system for chromosome analysis. Volume 1: Goals, system design, and performance
NASA Technical Reports Server (NTRS)
Castleman, K. R.; Melnyk, J. H.
1975-01-01
The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and a basis for statistical analysis of quantitative chromosome measurement data is described. The prototype was assembled, tested, and evaluated on clinical material and thoroughly documented.
NASA Technical Reports Server (NTRS)
1979-01-01
A plan for the production of two PEP flight systems is defined. The task's milestones are described. Provisions for the development and assembly of new ground support equipment required for both testing and launch operations are included.
The ERDA/LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Forestieri, A. F.
1977-01-01
A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.
Measurements by a Vector Network Analyzer at 325 to 508 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony
2008-01-01
Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
Method and apparatus for deflection measurements using eddy current effects
NASA Astrophysics Data System (ADS)
Chern, Engmin J.
1993-05-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Method and apparatus for deflection measurements using eddy current effects
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor)
1993-01-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
An assembly system based on industrial robot with binocular stereo vision
NASA Astrophysics Data System (ADS)
Tang, Hong; Xiao, Nanfeng
2017-01-01
This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.
NASA Technical Reports Server (NTRS)
Korzeniowski, E. S.
1983-01-01
This paper describes the requirements, design development, and qualification of the mounting and jettison assembly (MJA) which serves as the base structure for the advanced gimbal system (AGS) developed for NASA, Marshall Space Flight Center, for use during shuttle missions. An engineering model of the MJA has been built and subjected to the following testing: stiffness and modal characterization, sine and random vibration, and a jettison function and energy release. A qualitative summary of the results and the problems encountered during testing, together with the design solutions, is presented.
Satellite Servicing Capabilities Office Testing
NASA Technical Reports Server (NTRS)
Sanders, Sean
2015-01-01
While at the KSC, I was given the opportunity of assisting the Satellite Servicing Capabilities Office (SSCO) specifically the Propellant Transfer System (PTS) lead by my mentor, Brian Nufer. While waiting to test different components in the PTS, I was able to assist with testing for the Hose Management Assembly (HMA) and was able to work on a simulation in Labview. For the HMA, I was able to help with testing of a coating as well as to help test the durability of the pinch rollers in space. In Labview, I experimented with building a simulation for the PTS, to show where fluids and gases were flowing depending on which valves in the PTS were opened. Not all of the integrated parts required assembly level testing, which allowed me to test these parts individually by myself and document the results. I was also able to volunteer to assist project NEO, allowing me to gain some knowledge of cryogenic fluid systems.
AP-102/104 Retrieval control system qualification test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
RIECK, C.A.
1999-05-18
This Qualification Test Procedure documents the results of the qualification testing that was performed on the Project W-211, ''Initial Tank Retrieval Systems,'' retrieval control system (RCS) for tanks 241-AP-102 and 241-AP-104. The results confirm that the RCS has been programmed correctly and that the two related hardware enclosures have been assembled in accordance with the design documents.
Toyota's inspection system for vehicular emissions at assembly lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T.; Nakano, H.; Usami, I.
1976-01-01
In order that all Toyota production vehicles may satisfy the emission requirements and be free from possible defects such as catalytic converter damage, a system called ECAS, which allows us to assure satisfactory basic emission performance levels has been developed and put into actual use at assembly lines. This system consists of the following four tests: Idle Test, Functional Test, Short Cycle Test and Steady State Inspection Test. By using this system, all operations from vehicle setup, on a chassis dynamometer to statistical analysis of the data, measurement, judgement of the obtained data, type-out of the results, indication for actionmore » to be taken, data filing and statistical treatment of the data, are processed automatically and controlled by the computer. In the Short Cycle Test the up-stream emissions of the vehicle, tracing Toyota's unique short cyclic mode on a chassis dynamometer, are continuously measured. Based on the emission levels during each mode and the total emission level obtained from the above test we can diagnose, not only the emission control systems of a vehicle and its engine conditions such as valve clearance maladjustment and carburetor defects, but also the emission characteristics of this vehicle.« less
Electronic test and calibration circuits, a compilation
NASA Technical Reports Server (NTRS)
1972-01-01
A wide variety of simple test calibration circuits are compiled for the engineer and laboratory technician. The majority of circuits were found inexpensive to assemble. Testing electronic devices and components, instrument and system test, calibration and reference circuits, and simple test procedures are presented.
Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.
Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik
2012-06-27
While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.
High-power fused assemblies enabled by advances in fiber-processing technologies
NASA Astrophysics Data System (ADS)
Wiley, Robert; Clark, Brett
2011-02-01
The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.
Membrane electrode gasket assembly (MEGA) technology for polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Pozio, A.; Giorgi, L.; De Francesco, M.; Silva, R. F.; Lo Presti, R.; Danzi, A.
A new technology for the production of a membrane electrode gasket assembly (MEGA) for polymer electrolyte fuel cells (PEFCs) is defined. The MEGA system was prepared by sealing a previously prepared membrane electrode assembly (MEA) in a moulded gasket. For this aim, a proprietary silicone based liquid mixture was injected directly into the MEA borders. Gaskets obtained in different shapes and hardness grades are stable in a wide temperature range. The MEGA technology shows several advantages with respect to traditional PEFCs stack assembling systems: effective membrane saving, reduced fabrication time, possibility of quality control and failed elements substitution. This technology was successfully tested at the ENEA laboratories and the results were acquired in laboratory scale, but industrial production appears to be simple and cheap.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andrew M.; Greene, William D.
2017-01-01
The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete fabrication and assembly soon and continue testing through late 2019. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, Rebecca A.
Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.
NASA Technical Reports Server (NTRS)
Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo
1990-01-01
Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.
Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less
Thermal Vacuum Testing of a Novel Loop Heat Pipe Design for the Swift BAT Instrument
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; Ku, Jentung; Feenan, David
2003-01-01
An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.
Interim status report on lead-cooled fast reactor (LFR) research and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.
2008-03-31
This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigationmore » of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup 15} (n/cm{sup 2}-s) and the initially 563 MWt PHENIX reactor attained 2.0 x 10{sup 15} (n/cm{sup 2}-s) before one of three intermediate cooling loops was shut down due to concerns about potential steam generator tube failures. The calculations do not assume a test assembly location for advanced fuels and materials irradiation in place of a fuel assembly (e.g., at the center of the core); the calculations have not examined whether it would be feasible to replace the central assembly by a test assembly location. However, having only fifteen driver assemblies implies a significant effect due to perturbations introduced by the test assembly. The peak neutron fast flux is low compared with the fast fluxes previously achieved in FFTF and PHENIX. Furthermore, the peak neutron fluence is only about half of the limiting value (4 x 10{sup 23} n/cm{sup 2}) typically used for ferritic steels. The results thus suggest that a larger power level (e.g., 400 MWt) and a larger core would be better for a TPP based upon the ELSY fuel assembly design and which can also perform irradiation testing of advanced fuels and materials. In particular, a core having a higher power level and larger dimensions would achieve a suitable average discharge burnup, peak fast flux, peak fluence, and would support the inclusion of one or more test assembly locations. Participation in the Generation IV International Forum Provisional System Steering Committee for the LFR is being maintained throughout FY 2008. Results from the analysis of samples previously exposed to flowing lead-bismuth eutectic (LBE) in the DELTA loop are summarized and a model for the oxidation/corrosion kinetics of steels in heavy liquid metal coolants was applied to systematically compare the calculated long-term (i.e., following several years of growth) oxide layer thicknesses of several steels.« less
Description of the PMAD DC test bed architecture and integration sequence
NASA Technical Reports Server (NTRS)
Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.
1991-01-01
NASA-LEWIS is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power systems, the SSF EPS will grow and be maintained on orbit and must be flexible to meet challenging user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. A description is provided of the Power Management and Distribution DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.
Naval Remote Ocean Sensing System (NROSS) study
NASA Technical Reports Server (NTRS)
1983-01-01
A set of hardware similar to the SEASAT A configuration requirement, suitable for installation and operation aboard a NOAA-D bus and a budgetary cost for one (1) protoflight model was provided. The scatterometer sensor is conceived as one of several sensors for the Navy Remote Ocean Sensing System (NROSS) Satellite Program. Deliverables requested were to include a final report with appropriate sketches and block diagrams showing the scatterometer design/configuration and a budgetary cost for all labor and materials to design, fabricate, test, and integrate this hardware into a NOAA-D satellite bus. This configuration consists of two (2) hardware assembles - a transmitter/receiver (T/R) assembly and an integrated electronics assembly (IEA). The T/R assembly as conceived is best located at the extreme opposite end of the satellite away from the solar array assembly and oriented in position to enable one surface of the assembly to have unobstructed exposure to space. The IEA is planned to be located at the bottom (Earth viewing) side of the satellite and requires a radiating plate.
Interset: A natural language interface for teleoperated robotic assembly of the EASE space structure
NASA Technical Reports Server (NTRS)
Boorsma, Daniel K.
1989-01-01
A teleoperated robot was used to assemble the Experimental Assembly of Structures in Extra-vehicular activity (EASE) space structure under neutral buoyancy conditions, simulating a telerobot performing structural assembly in the zero gravity of space. This previous work used a manually controlled teleoperator as a test bed for system performance evaluations. From these results several Artificial Intelligence options were proposed. One of these was further developed into a real time assembly planner. The interface for this system is effective in assembling EASE structures using windowed graphics and a set of networked menus. As the problem space becomes more complex and hence the set of control options increases, a natural language interface may prove to be beneficial to supplement the menu based control strategy. This strategy can be beneficial in situations such as: describing the local environment, maintaining a data base of task event histories, modifying a plan or a heuristic dynamically, summarizing a task in English, or operating in a novel situation.
Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon
NASA Technical Reports Server (NTRS)
Wood, J. J.; Middlemas, M. R.
2012-01-01
The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.
SP-100 design, safety, and testing
NASA Technical Reports Server (NTRS)
Cox, Carl. M.; Mahaffey, Michael M.; Smith, Gary L.
1991-01-01
The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly.
NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project
NASA Technical Reports Server (NTRS)
Pensinger, Stuart
2014-01-01
The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.
Upgrades to the ISS Water Recovery System
NASA Technical Reports Server (NTRS)
Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.
2016-01-01
The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.
NASA Astrophysics Data System (ADS)
Beer, Franziska; Passow, Harald
2008-02-01
The aim of the study is the construction of a test assembly, which facilitates objective, comparative studies on the cutting performance of lasers in hard tissue. To ensure the applicability of our own construction for the reproducible performance of laser incisions in hard tissue, eleven freshly extracted blocks (2×1.5cm2) of human bone were prepared with a Er,Cr:YSGG laser by using a handheld handpiece, respectively, using the constructed device for a standardized cutting. A total of 44 cuts were executed. The specimen were then histologically evaluated. The standard test assembly met the requirements concerning the provision of objective results. The findings of the histological evaluation prove the reproducibility of the results. The standard test assembly presented in this paper facilitates comparative studies of different laser systems by reducing subjective influence on the preparation to a minimum. The results of this preliminary study show that the precision of the guiding instrument for laser cutting reduces the error of cut width by 50-fold, from 50to1μm.
Core Stage Forward Skirt Umbilical Installation onto Mobile Launcher
2017-06-29
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-06-30
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-06-30
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane lifts the core stage forward skirt umbilical for installation onto the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-06-30
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies
NASA Astrophysics Data System (ADS)
MacLeod, Katrina; Laurent, Gilles
1996-11-01
Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.
Optimal Assembly of Psychological and Educational Tests.
ERIC Educational Resources Information Center
van der Linden, Wim J.
1998-01-01
Reviews optimal test-assembly literature and introduces the contributions to this special issue. Discusses four approaches to computerized test assembly: (1) heuristic-based test assembly; (2) 0-1 linear programming; (3) network-flow programming; and (4) an optimal design approach. Contains a bibliography of 90 sources on test assembly.…
Technical Evaluation Motor no. 5 (TEM-5)
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)
2014-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)
2016-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 2 testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, G.A.
1995-02-06
This document summarizes the results of the Phase 2 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the test mixer pump currently installed in Tank 241-SY-101. The purpose of this acceptance test is to verify the strength of the containment bag and bag bottom cinching mechanism. It is postulated that 68 gallons of waste could be trapped inside the pump internals. The bag must be capable of supporting this waste if it shakes loose and drains tomore » the bottom of the bag after the bag bottom has been cinched closed. This acceptance test was performed at the Maintenance and Storage Facility (MASF) Facility in the 400 area on January 23, 1995. The bag assembly supported the weight of 920 kg (2,020 lbs) of water with no leakage or damage to the bag. This value meets the acceptance criteria of 910 kg of water and therefore the results were found to be acceptable. The maximum volume of liquid expected to be held up in the pump internals is 258 L (68 gallons), which corresponds to 410 kg. This test weight gives just over a safety factor of 2. The bag also supported a small shock load while it was filled with water when the crane hoisted the bag assembly up and down. Based on the strength rating of the bag components, the bag assembly should support 2--3 times the test weight of 910 kg.« less
Programs for Testing an SSME-Monitoring System
NASA Technical Reports Server (NTRS)
Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary;
2007-01-01
A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.
Mars Science Laboratory Spacecraft Assembled for Testing
2008-11-19
The major components of NASA Mars Science Laboratory spacecraft -- cruise stage atop the aeroshell, which has the descent stage and rover inside -- were connected together in October 2008 for several weeks of system testing.
40 CFR 205.171-2 - Test exhaust system sample selection and preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... be used for testing of exhaust systems must be of the subject class which has been assembled using...'s prescribed manufacturing and inspection procedures, and are documented in the manufacturer's... other motorcycles of that class which will be distributed in commerce, unless such procedures are...
Clients' Preferences for Small Groups vs. Individual Testing.
ERIC Educational Resources Information Center
Backman, Margaret E.; And Others
Test takers' preferences for group versus individual administration of the Micro-TOWER System of Vocational Evaluation are reported. The system was administered to 211 clients at a vocational rehabilitation center, and consisted of work samples measuring the following job skills: record checking, filing, lamp assembly, message-taking, zip coding,…
Design and testing of the Space Station Freedom Propellant Tank Assembly
NASA Technical Reports Server (NTRS)
Dudley, D. D.; Thonet, T. A.; Goforth, A. M.
1992-01-01
Propellant storage and management functions for the Propulsion Module of the U.S. Space Station Freedom are provided by the Propellant Tank Assembly (PTA). The PTA consists of a surface-tension type propellant acquisition device contained within a welded titanium pressure vessel. The PTA design concept was selected with high reliability and low program risk as primary goals in order to meet stringent NASA structural, expulsion, fracture control and reliability requirements. The PTA design makes use of Shuttle Orbital Maneuvering System and Peacekeeper Propellant Storage Assembly design and analysis techniques. This paper summarizes the PTA design solution and discusses the underlying detailed analyses. In addition, design verification and qualification test activities are discussed.
Macromolecular assemblies in reduced gravity environments
NASA Technical Reports Server (NTRS)
Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.
1990-01-01
The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.
49 CFR 572.162 - Head assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly and test procedure. 572.162 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.162 Head assembly and test procedure. The head assembly is assembled and tested as specified in 49 CFR 572.122 (Subpart N). ...
49 CFR 572.162 - Head assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly and test procedure. 572.162 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.162 Head assembly and test procedure. The head assembly is assembled and tested as specified in 49 CFR 572.122 (Subpart N). ...
49 CFR 572.162 - Head assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly and test procedure. 572.162 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.162 Head assembly and test procedure. The head assembly is assembled and tested as specified in 49 CFR 572.122 (Subpart N). ...
49 CFR 572.163 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Neck assembly and test procedure. 572.163 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.163 Neck assembly and test procedure. The neck assembly is assembled and tested as specified in 49 CFR 572.123 (Subpart N). ...
49 CFR 572.163 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Neck assembly and test procedure. 572.163 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.163 Neck assembly and test procedure. The neck assembly is assembled and tested as specified in 49 CFR 572.123 (Subpart N). ...
49 CFR 572.162 - Head assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly and test procedure. 572.162 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.162 Head assembly and test procedure. The head assembly is assembled and tested as specified in 49 CFR 572.122 (Subpart N). ...
49 CFR 572.163 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Neck assembly and test procedure. 572.163 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.163 Neck assembly and test procedure. The neck assembly is assembled and tested as specified in 49 CFR 572.123 (Subpart N). ...
49 CFR 572.162 - Head assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly and test procedure. 572.162 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.162 Head assembly and test procedure. The head assembly is assembled and tested as specified in 49 CFR 572.122 (Subpart N). ...
49 CFR 572.163 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Neck assembly and test procedure. 572.163 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.163 Neck assembly and test procedure. The neck assembly is assembled and tested as specified in 49 CFR 572.123 (Subpart N). ...
49 CFR 572.163 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Neck assembly and test procedure. 572.163 Section... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.163 Neck assembly and test procedure. The neck assembly is assembled and tested as specified in 49 CFR 572.123 (Subpart N). ...
Noncooperative rendezvous radar system
NASA Technical Reports Server (NTRS)
1974-01-01
A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.
Design, fabrication and test of the RL10 derivative II chamber/primary nozzle
NASA Technical Reports Server (NTRS)
Marable, R. W.
1989-01-01
The design, fabrication and test of the RL10-II chamber/primary nozzle was accomplished as part of the RL10 Product Improvement Program (PIP). The overall goal of the RL10 PIP was to gain the knowledge and experience necessary to develop new cryogenic upper stage engines to fulfill future NASA requirements. The goal would be reached by producing an RL10 engine designed to be reusable, operate at several thrust levels, and have increased performance. The goals for the chamber/primary nozzle task were: (1) to design a reusable assembly capable of operation at increased mixture ratio and low thrust; (2) to fabricate three assemblies using new or updated techniques where possible; and (3) to test one assembly to verify the design and construction. The design and fabrication phases produced an assembly having improved features such as single piece reinforcing band segments (i.e., Mae West segments) and relocated tube exit braze joints (i.e., hooked tube exit). In addition, a computer program was developed to design the chamber tubes to meet both performance and heat transfer requirements. The test phase showed the specific impulse of the test bed engine system to be as predicted. These results, along with the heat transfer data obtained, sufficiently proved the overall design of the RL10-II recontoured and shortened chamber/primary nozzle assembly.
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.
1992-01-01
The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.
1992-01-01
The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.
Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies
NASA Astrophysics Data System (ADS)
Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.
Centaur Standard Shroud (CSS) static limit load structural tests
NASA Technical Reports Server (NTRS)
Eastwood, C.
1975-01-01
The structural capabilities of the jettisonable metal shroud were tested and the interaction of the shroud with the Centaur stage was evaluated. A flight-configured shroud and the assemblies of the associated Centaur stage were tested for applied axial and shear loads to flight limit values. The tests included various thermal, pressure, and load conditions to verify localized strength capabilities, to evaluate subsystem performance, and to determine the aging effect on insulation system properties. The tests series verified the strength capabilities of the shroud and of all associated flight assembles. Shroud deflections were shown to remain within allowable limits so long as load sharing members were connected between the shroud and the Centaur stage.
2017-06-29
This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, all four ogive panels have been installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Orion ground test vehicle is being prepared for installation of the ogive panels in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians attach the fourth ogive panel on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
Low temperature growth and electrical characterization of insulators for GaAs MISFETS
NASA Technical Reports Server (NTRS)
Borrego, J. M.; Ghandhi, S. K.
1981-01-01
Progress in the low temperature growth of oxides and layers on GaAs and the detailed electrical characterization of these oxides is reported. A plasma anodization system was designed, assembled, and put into operation. A measurement system was assembled for determining capacitance and conductance as a function of gate voltage for frequencies in the range from 1 Hz to 1 MHz. Initial measurements were carried out in Si-SiO2 capacitors in order to test the system and in GaAs MIS capacitors abricated using liquid anodization.
Advanced space engine powerhead breadboard assembly system study
NASA Technical Reports Server (NTRS)
Campbell, R. G.
1978-01-01
The objective of this study was to establish a preliminary design of a Powerhead Breadboard Assembly (PBA) for an 88 964-Newton (20,000-pound) thrust oxygen/hydrogen staged combustion cycle engine for use in orbital transfer vehicle propulsion. Existing turbopump, preburner, and thrust chamber components were integrated with interconnecting ducting, a heat exchanger, and a control system to complete the PBA design. Cycle studies were conducted to define starting transients and steady-state balances for the completed design. Specifications were developed for all valve applications and the conditions required for the control system integration with the facility for system test were defined.
Advanced Computer Simulations of Military Incinerators
2004-12-01
Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the fourth ogive panel is lifted by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. Three of the panels have already been installed on the test vehicle. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the fourth ogive panel is lifted by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. Three of the panels have already been installed on the test vehicle. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the fourth ogive panel is lifted by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. Three of the panels have already been installed on the test vehicle. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
Testing methods and techniques: Testing electrical and electronic devices: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
The methods, techniques, and devices used in testing various electrical and electronic apparatus are presented. The items described range from semiconductor package leak detectors to automatic circuit analyzer and antenna simulators for system checkout. In many cases the approaches can result in considerable cost savings and improved quality control. The testing of various electronic components, assemblies, and systems; the testing of various electrical devices; and the testing of cables and connectors are explained.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)
1982-01-01
Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)
1982-01-01
Activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, and computer code development are summarized.
An automated pressure data acquisition system for evaluation of pressure sensitive paint chemistries
NASA Technical Reports Server (NTRS)
Sealey, Bradley S.; Mitchell, Michael; Burkett, Cecil G.; Oglesby, Donald M.
1993-01-01
An automated pressure data acquisition system for testing of pressure sensitive phosphorescent paints was designed, assembled, and tested. The purpose of the calibration system is the evaluation and selection of pressure sensitive paint chemistries that could be used to obtain global aerodynamic pressure distribution measurements. The test apparatus and setup used for pressure sensitive paint characterizations is described. The pressure calibrations, thermal sensitivity effects, and photodegradation properties are discussed.
Hollow fiber membrane systems for advanced life support systems
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1976-01-01
The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.
Flight Hydrogen Sensor for use in the ISS Oxygen Generation Assembly
NASA Technical Reports Server (NTRS)
MSadoques, George, Jr.; Makel, Darby B.
2005-01-01
This paper provides a description of the hydrogen sensor Orbital Replacement Unit (ORU) used on the Oxygen Generation Assembly (OGA), to be operated on the International Space Station (ISS). The hydrogen sensor ORU is being provided by Makel Engineering, Inc. (MEI) to monitor the oxygen outlet for the presence of hydrogen. The hydrogen sensor ORU is a triple redundant design where each sensor converts raw measurements to actual hydrogen partial pressure that is reported to the OGA system controller. The signal outputs are utilized for system shutdown in the event that the hydrogen concentration in the oxygen outlet line exceeds the specified shutdown limit. Improvements have been made to the Micro-Electro-Mechanical Systems (MEMS) based sensing element, screening, and calibration process to meet OGA operating requirements. Two flight hydrogen sensor ORUs have successfully completed the acceptance test phase. This paper also describes the sensor s performance during acceptance testing, additional tests planned to extend the operational performance calibration cycle, and integration with the OGA system.
Development of the CLAES instrument aperture door system
NASA Technical Reports Server (NTRS)
Stubbs, D. M.
1990-01-01
The design, assembly, and test processes followed in developing a space-qualified aperture door system are described. A blackbody calibration source is mounted inside the door, requiring the assembly to open and close a minimum of 150 cycles for instrument recalibration. Within the door system are four separate mechanisms, three of which are redundant; a pyro launch latch, a hinge bearing assembly, and a pair of pivot mechanisms. Decoupling devices within the pivot mechanisms allow an active drive unit to automatically overdrive a failed drive unit. The door is also stowable for possible Shuttle retrieval and re-entry. Illustrations and photographs of the flight hardware help acquaint the reader with the design. The aim is to pass on lessons learned in all phases of developing this spaceflight mechanism.
Fabrication and assembly of a superconducting undulator for the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasse, Quentin; Fuerst, J. D.; Ivanyushenkov, Y.
2014-01-29
A prototype superconducting undulator magnet (SCU0) has been built at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) and has successfully completed both cryogenic performance and magnetic measurement test programs. The SCU0 closed loop, zero-boil-off cryogenic system incorporates high temperature superconducting (HTS) current leads, cryocoolers, a LHe reservoir supplying dual magnetic cores, and an integrated cooled beam chamber. This system presented numerous challenges in the design, fabrication, and assembly of the device. Aspects of this R and D relating to both the cryogenic and overall assembly of the device are presented here. The SCU0 magnet has been installedmore » in the APS storage ring.« less
An innovative platform for quick and flexible joining of assorted DNA fragments
De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan
2016-01-13
Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less
NASA Technical Reports Server (NTRS)
Roy, Robert J.
1995-01-01
The SPE Oxygen Generator Assembly (OGA) has been modified to correct operational deficiencies present in the original system, and to effect changes to the system hardware and software such that its operating conditions are consistent with the latest configuration requirements for the International Space Station Alpha (ISSA). The effectiveness of these changes has recently been verified through a comprehensive test program which saw the SPE OGA operate for over 740 hours at various test conditions, including over 690 hours, or approximately 460 cycles, simulating the orbit of the space station. This report documents the changes made to the SPE OGA, presents and discusses the test results from the acceptance test program, and provides recommendations for additional development activities pertinent to evolution of the SPE OGA to a flight configuration. Copies of the test data from the acceptance test program are provided with this report on 3.5 inch diskettes in self-extracting archive files.
NASA's Space Launch System Takes Shape
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Robinson, Kimberly F.
2017-01-01
Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.
Heuristics for Multiobjective Optimization of Two-Sided Assembly Line Systems
Jawahar, N.; Ponnambalam, S. G.; Sivakumar, K.; Thangadurai, V.
2014-01-01
Products such as cars, trucks, and heavy machinery are assembled by two-sided assembly line. Assembly line balancing has significant impacts on the performance and productivity of flow line manufacturing systems and is an active research area for several decades. This paper addresses the line balancing problem of a two-sided assembly line in which the tasks are to be assigned at L side or R side or any one side (addressed as E). Two objectives, minimum number of workstations and minimum unbalance time among workstations, have been considered for balancing the assembly line. There are two approaches to solve multiobjective optimization problem: first approach combines all the objectives into a single composite function or moves all but one objective to the constraint set; second approach determines the Pareto optimal solution set. This paper proposes two heuristics to evolve optimal Pareto front for the TALBP under consideration: Enumerative Heuristic Algorithm (EHA) to handle problems of small and medium size and Simulated Annealing Algorithm (SAA) for large-sized problems. The proposed approaches are illustrated with example problems and their performances are compared with a set of test problems. PMID:24790568
2009-06-15
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X fifth segment simulator assembly is lowered through a work platform in High Bay 4. Ares I-X is the flight test vehicle for the Ares I, the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in August 2009. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS.
Test fixture design for boron-aluminum and beryllium test panels
NASA Technical Reports Server (NTRS)
Breaux, C. G.
1973-01-01
A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.
Distributed Space System Technology Demonstrations with the Emerald Nanosatellite
NASA Technical Reports Server (NTRS)
Twiggs, Robert
2002-01-01
A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmell, T.; Folga, S., Frey, G.; Molberg, J.
2001-05-04
This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001g) pertains to the destruction of assembled chemical weapons (ACW) stored at Anniston Army Depot (ANAD), located outside Anniston, Alabama. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at ANAD. The destruction technologies described are those that have been demonstrated as part of the Assembled Chemical Weapons Assessmentmore » (ACWA) selection process (see Volume 1).« less
49 CFR 572.152 - Head assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly and test procedure. 572.152 Section... 12-Month-Old Infant, Alpha Version § 572.152 Head assembly and test procedure. (a) The head assembly (refer to § 572.150(a)(1)(i)) for this test consists of the assembly (drawing 921022-001), triaxial mount...
49 CFR 572.152 - Head assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly and test procedure. 572.152 Section... 12-Month-Old Infant, Alpha Version § 572.152 Head assembly and test procedure. (a) The head assembly (refer to § 572.150(a)(1)(i)) for this test consists of the assembly (drawing 921022-001), triaxial mount...
49 CFR 572.152 - Head assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly and test procedure. 572.152 Section... 12-Month-Old Infant, Alpha Version § 572.152 Head assembly and test procedure. (a) The head assembly (refer to § 572.150(a)(1)(i)) for this test consists of the assembly (drawing 921022-001), triaxial mount...
49 CFR 572.152 - Head assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly and test procedure. 572.152 Section... 12-Month-Old Infant, Alpha Version § 572.152 Head assembly and test procedure. (a) The head assembly (refer to § 572.150(a)(1)(i)) for this test consists of the assembly (drawing 921022-001), triaxial mount...
Characterization testing of MEASAT GaAs/Ge solar cell assemblies
NASA Technical Reports Server (NTRS)
Brown, Mike R.; Garcia, Curtis A.; Goodelle, George S.; Powe, Joseph S.; Schwartz, Joel A.
1995-01-01
The first commercial communications satellite with gallium-arsenide on germanium (GaAs/Ge) solar arrays is scheduled for launch in December 1995. The spacecraft, named MEASAT, was built by hughes Space and Telecommunications company for Binariang Satellite Systems of Malaysia. The solar cell assemblies consisted of large area GaAs/Ge cells supplied by Spectrolab Inc. with infrared reflecting (IRR) coverglass supplied by Pilkington Space Technology. A comprehensive characterization program was performed on the GaAs/Ge solar cell assemblies used on the MEASAT array. This program served two functions; first to establish the database needed to accurately predict on-orbit performance under a variety of conditions; and second, to demonstrate the ability of the solar cell assemblies to withstand all mission environments while still providing the required power at end-of-life. characterization testing included measurement of electrical performance parameters as a function of radiation exposure, temperature, and angle of incident light; reverse bias stability; optical and thermal properties; mechanical strength tests, panel fabrication, humidity and thermal cycling environmental tests. The results provided a complete database enabling the design of the MEASAT solar array, and demonstrated that the GaAs/Ge cells meet the spacecraft requirements at end-of-life.
Integrated testing system FiTest for diagnosis of PCBA
NASA Astrophysics Data System (ADS)
Bogdan, Arkadiusz; Lesniak, Adam
2016-12-01
This article presents the innovative integrated testing system FiTest for automatic, quick inspection of printed circuit board assemblies (PCBA) manufactured in Surface Mount Technology (SMT). Integration of Automatic Optical Inspection (AOI), In-Circuit Tests (ICT) and Functional Circuit Tests (FCT) resulted in universal hardware platform for testing variety of electronic circuits. The platform provides increased test coverage, decreased level of false calls and optimization of test duration. The platform is equipped with powerful algorithms performing tests in a stable and repetitive way and providing effective management of diagnosis.
Test Program of the "Combined Data and Power Management Infrastructure"
NASA Astrophysics Data System (ADS)
Eickhoff, Jens; Fritz, Michael; Witt, Rouven; Bucher, Nico; Roser, Hans-Peter
2013-08-01
As already published in previous DASIA papers, the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques and Onboard Software design. This satellite furthermore features an innovative hybrid architecture of Onboard Computer and Power Control and Distribution Unit. One of the main challenges was the development of an ultra-compact and performing Onboard Computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based Onboard Software (OBSW) and CCSDS standard based ground/space communication. The developed architecture (see [1, 2, 3]) is called a “Combined Onboard Data and Power Management Infrastructure” - CDPI. It features: The OBC processor boards based on a LEON3FT architecture - from Aeroflex Inc., USA The I/O Boards for all OBC digital interfaces to S/C equipment (digital RIU) - from 4Links Ltd. UK CCSDS TC/TM decoder/encoder boards - with same HW design as I/O boards - just with limited number of interfaces. HW from 4Links Ltd, UK, driver SW and IP-Core from Aeroflex Gaisler, SE Analog RIU functions via enhanced PCDU from Vectronic Aerospace, D OBC reconfiguration unit functions via Common Controller - here in PCDU [4] The CDPI overall assembly is meanwhile complete and a exhaustive description can be found in [5]. The EM test campaign including the HW/SW compatibility testing is finalized. This comprises all OBC EM units, OBC EM assembly and the EM PCDU. The unit test program for the FM Processor-Boards and Power-Boards of the OBC are completed and the unit tests of FM I/O-Boards and CCSDS-Boards have been completed by 4Links at the assembly house. The subsystem tests of the assembled OBC also are completed and the overall System tests of the CDPI with system reconfiguration in diverse possible FDIR cases also reach the last steps. Still ongoing is the subsequent integration of the CDPI with the satellite's avionics components encompassing TTC, AOCS, Power and Payload Control. This paper provides a full picture of the test campaign. Further details can be taken from
Energy Absorbing Seat System for an Agricultural Aircraft
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)
2002-01-01
A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1978-01-01
The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.
Chappuy, L; Charroin, C; Vételé, F; Durand, T; Quessada, T; Klotz, M-C; Bréant, V; Aulagner, G
2014-01-01
The parenteral nutrition admixtures are manufactured with an automated compounding BAXA(®) Exacta-Mix 2400. A 48-hour assembly has been validated. To optimize time and cost, a weekly assembly was tested. Assembly was made on the first day. Ten identical parenteral nutrition admixtures (different volumes and compositions) were produced each day. A macroscopic examination was done at D0, D7 and D14. Physicochemical controls (electrolytes determinations by atomic absorption spectrophotometry, osmolalities measurements) were performed. Microbiological tests included a filtration membrane sterility test (Steritest(®)) and a plate count agar environmental monitoring. All mixtures were considered stable. The 12 Steritest(®) (H24, H48, D7 and D14) did not show any bacterial or fungal contamination. No microorganism has been detected on the plate count agar at D4 and D7. Concerning the physicochemical parameters of each parental nutrition admixture, no significant difference (Wilcoxon test) with the first day was found. The automated filling system BAXA(®) Exacta-Mix 2400 improves the quality and safety of production. According to these results, the weekly assembly is validated and permit to save time (80hours/year) and cost (40 000 euros on consumable/year). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
King, H. J.
1974-01-01
The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.
Chemical contamination remote sensing
NASA Technical Reports Server (NTRS)
Carrico, J. P.; Phelps, K. R.; Webb, E. N.; Mackay, R. A.; Murray, E. R.
1986-01-01
A ground mobile laser test bed system was assembled to assess the feasibility of detection of various types of chemical contamination using Differential Scattering (DISC) and Differential Absorption (DIAL) Lidar techniques. Field experiments with the test bed system using chemical simulants were performed. Topographic reflection and range resolved DIAL detection of vapors as well as DISC detection of aerosols and surface contamination were achieved. Review of detection principles, design of the test bed system, and results of the experiments are discussed.
NASA Technical Reports Server (NTRS)
Knox, James C.; Stanley, Christine M.
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.
Leadership Development Program Final Project
NASA Technical Reports Server (NTRS)
Parrish, Teresa C.
2016-01-01
TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.
A low-cost machine vision system for the recognition and sorting of small parts
NASA Astrophysics Data System (ADS)
Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.
2018-04-01
An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.
The space station assembly phase: Flight telerobotic servicer feasibility, volume 1
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.
1987-01-01
The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.
Noncontaminating technique for making holes in existing process systems
NASA Technical Reports Server (NTRS)
Hecker, T. P.; Czapor, H. P.; Giordano, S. M.
1972-01-01
Technique is developed for making cleanly-contoured holes in assembled process systems without introducing chips or other contaminants into system. Technique uses portable equipment and does not require dismantling of system. Method was tested on Inconel, stainless steel, ASTMA-53, and Hastelloy X in all positions.
49 CFR 572.122 - Head assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly and test procedure. 572.122 Section...-year-old Child Test Dummy, Beta Version § 572.122 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 127-1000), a six-axis neck transducer...
49 CFR 572.122 - Head assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly and test procedure. 572.122 Section...-year-old Child Test Dummy, Beta Version § 572.122 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 127-1000), a six-axis neck transducer...
49 CFR 572.122 - Head assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly and test procedure. 572.122 Section...-year-old Child Test Dummy, Beta Version § 572.122 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 127-1000), a six-axis neck transducer...
49 CFR 572.122 - Head assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly and test procedure. 572.122 Section...-year-old Child Test Dummy, Beta Version § 572.122 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 127-1000), a six-axis neck transducer...
Saturn V First Stage (S-1C) Ready for Assembly AT KSC
NASA Technical Reports Server (NTRS)
1968-01-01
This photograph shows the Saturn V first stage (S-1C) in the Vehicle Assembly Building at Kennedy Space Center ready to be mated with the second and third stages to complete the assembly of a Saturn V launch vehicle. This particular Saturn V was used for Apollo 6, which was a systems test flight. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
NASA Technical Reports Server (NTRS)
1973-01-01
The manufacturing tasks for the program included the fabrication and assembly of an epoxy fiberglass purge bag to encapsulate an insulated cryogenic propellant tank. Purge, repressurization and venting hardware were procured and installed on the purge bag assembly in preparation for performance testing. The fabrication and installation of the superfloc multilayer insulation (MLI) on the cryogenic tank was accomplished as part of a continuing program. An abstraction of the results of the MLI fabrication task is included to describe the complete fabrication requirements for a reusable cryogenic propellant space storage system.
CHP Integrated with Burners for Packaged Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, Carlo; Darby, Eric
2013-09-30
The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was dividedmore » into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.« less
Planning and Control for Microassembly of Structures Composed of Stress-Engineered MEMS Microrobots
Donald, Bruce R.; Levey, Christopher G.; Paprotny, Igor; Rus, Daniela
2013-01-01
We present control strategies that implement planar microassembly using groups of stress-engineered MEMS microrobots (MicroStressBots) controlled through a single global control signal. The global control signal couples the motion of the devices, causing the system to be highly underactuated. In order for the robots to assemble into arbitrary planar shapes despite the high degree of underactuation, it is desirable that each robot be independently maneuverable (independently controllable). To achieve independent control, we fabricated robots that behave (move) differently from one another in response to the same global control signal. We harnessed this differentiation to develop assembly control strategies, where the assembly goal is a desired geometric shape that can be obtained by connecting the chassis of individual robots. We derived and experimentally tested assembly plans that command some of the robots to make progress toward the goal, while other robots are constrained to remain in small circular trajectories (closed-loop orbits) until it is their turn to move into the goal shape. Our control strategies were tested on systems of fabricated MicroStressBots. The robots are 240–280 μm × 60 μm × 7–20 μm in size and move simultaneously within a single operating environment. We demonstrated the feasibility of our control scheme by accurately assembling five different types of planar microstructures. PMID:23580796
Corrosion inhibitors for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Humphries, T. S.
1978-01-01
Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.
Surface cleanliness of fluid systems, specification for
NASA Technical Reports Server (NTRS)
1995-01-01
This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.
Developments in the Tools and Methodologies of Synthetic Biology
Kelwick, Richard; MacDonald, James T.; Webb, Alexander J.; Freemont, Paul
2014-01-01
Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community. PMID:25505788
Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report
NASA Technical Reports Server (NTRS)
Wieland, P. O.; Hawk, H. D.
2001-01-01
During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.
2012-04-20
NASA Administrator Charles Bolden (r) discusses the upcoming testing of Blue Origin's BE-3 engine thrust chamber assembly with Steve Knowles, Blue Origin project manager, at the E-1 Test Stand during an April 20, 2012, visit to Stennis Space Center. Blue Origin is one of NASA's partners developing innovative systems to reach low-Earth orbit.
46 CFR 56.50-105 - Low-temperature piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ASTM E 23 (incorporated by reference, see § 56.01-2), “Notched Bar Impact Testing of Metallic Materials”, Type A, Figure 4. The toughness testing requirements of subpart 54.05 of this subchapter shall be... testing of production weldments for low temperature piping systems and assemblies is not required. (3...
Experience using individually supplied heater rods in critical power testing of advanced BWR fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majed, M.; Morback, G.; Wiman, P.
1995-09-01
The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give largemore » advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.« less
DKIST enclosure modeling and verification during factory assembly and testing
NASA Astrophysics Data System (ADS)
Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka
2014-08-01
The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.
NASA Astrophysics Data System (ADS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-07-01
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.
NASA Astrophysics Data System (ADS)
Mansour, C.; Pavageau, E. M.; Faucher, A.; Inada, F.; Yoneda, K.; Miller, C.; Bretelle, J.-L.
Flow Accelerated Corrosion (FAC) of carbon steel is a phenomenon that has been studied for many years. However, to date, the specific behavior of welds and weld assemblies of carbon steel towards this phenomenon has been scarcely examined. An experimental program of FAC of welds and weld assemblies is being conducted by EDF and CRIEPI. This paper describes the results obtained on the behavior of weld metal independently of its behavior in a weld assembly as well as the sensitivity to FAC of various weld assembly configurations. Tests are performed, at EDF, in the CIROCO loop which permits to follow the FAC rate by gammametry measurements, and at CRIEPI, in the PRINTEMPS loop where FAC is measured by laser displacement sensor. Welds are performed by two different methods: Submerged Arc Welding (SAW) and Gas Tungsten Arc Welding (GTAW). The influence of several parameters on FAC of welds is examined: welding method, chromium content and temperature. For weld assemblies, only the impact of chromium content is studied. All the tests are conducted in ammonia medium at pH 9.0 and oxygen concentration lower then 1 ppb. Chemical parameters, as the pH, the conductivity and oxygen concentration, are measured in situ during the test and surface characterizations are performed after the test. The results show that, with more than 0.15% chromium, no FAC is detected on the weld metal, which is similar to the base metal behaviour. For the same and lower chromium content, the two types of metal have the same FAC rate. Concerning the temperature effect, for both metals FAC rate decreases with temperature increase above 150°C. Below 150 °C, their behaviour seems to be different. For weld assemblies, the study of different configurations shows that the chromium content is the main parameter affecting the behaviour of the specimens. Additional tests and modeling studies will be conducted in order to complete the results.
49 CFR 572.172 - Head assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly and test procedure. 572.172 Section... Hybrid III 10-Year-Old Child Test Dummy (HIII-10C) § 572.172 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 420-1000), a six-axis neck...
49 CFR 572.142 - Head assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly and test procedure. 572.142 Section...-year-Old Child Crash Test Dummy, Alpha Version § 572.142 Head assembly and test procedure. (a) The head assembly (refer to § 572.140(a)(1)(i)) for this test consists of the head (drawing 210-1000), adapter plate...
49 CFR 572.172 - Head assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly and test procedure. 572.172 Section... Hybrid III 10-Year-Old Child Test Dummy (HIII-10C) § 572.172 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 420-1000), a six-axis neck...
49 CFR 572.172 - Head assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly and test procedure. 572.172 Section... Hybrid III 10-Year-Old Child Test Dummy (HIII-10C) § 572.172 Head assembly and test procedure. (a) The head assembly for this test consists of the complete head (drawing 420-1000), a six-axis neck...
49 CFR 572.132 - Head assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly and test procedure. 572.132 Section... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.132 Head assembly and test procedure. (a) The head assembly (refer to § 572.130(a)(1)(i)) for this test consists of the complete head (drawing...
49 CFR 572.142 - Head assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly and test procedure. 572.142 Section...-year-Old Child Crash Test Dummy, Alpha Version § 572.142 Head assembly and test procedure. (a) The head assembly (refer to § 572.140(a)(1)(i)) for this test consists of the head (drawing 210-1000), adapter plate...
49 CFR 572.132 - Head assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly and test procedure. 572.132 Section... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.132 Head assembly and test procedure. (a) The head assembly (refer to § 572.130(a)(1)(i)) for this test consists of the complete head (drawing...
49 CFR 572.142 - Head assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly and test procedure. 572.142 Section...-year-Old Child Crash Test Dummy, Alpha Version § 572.142 Head assembly and test procedure. (a) The head assembly (refer to § 572.140(a)(1)(i)) for this test consists of the head (drawing 210-1000), adapter plate...
49 CFR 572.132 - Head assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly and test procedure. 572.132 Section... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.132 Head assembly and test procedure. (a) The head assembly (refer to § 572.130(a)(1)(i)) for this test consists of the complete head (drawing...
49 CFR 572.132 - Head assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly and test procedure. 572.132 Section... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.132 Head assembly and test procedure. (a) The head assembly (refer to § 572.130(a)(1)(i)) for this test consists of the complete head (drawing...
49 CFR 572.142 - Head assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly and test procedure. 572.142 Section...-year-Old Child Crash Test Dummy, Alpha Version § 572.142 Head assembly and test procedure. (a) The head assembly (refer to § 572.140(a)(1)(i)) for this test consists of the head (drawing 210-1000), adapter plate...
49 CFR 572.132 - Head assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly and test procedure. 572.132 Section... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.132 Head assembly and test procedure. (a) The head assembly (refer to § 572.130(a)(1)(i)) for this test consists of the complete head (drawing...
49 CFR 572.135 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Upper and lower torso assemblies and torso flexion... torso assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is... (drawing 880105-434), on resistance to articulation between the upper torso assembly (drawing 880105-300...
49 CFR 572.135 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Upper and lower torso assemblies and torso flexion... torso assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is... (drawing 880105-434), on resistance to articulation between the upper torso assembly (drawing 880105-300...
49 CFR 572.125 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to...), and abdominal insert (drawing 127-8210), on resistance to articulation between upper torso assembly...
49 CFR 572.135 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Upper and lower torso assemblies and torso flexion... torso assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is... (drawing 880105-434), on resistance to articulation between the upper torso assembly (drawing 880105-300...
49 CFR 572.125 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to...), and abdominal insert (drawing 127-8210), on resistance to articulation between upper torso assembly...
49 CFR 572.125 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to...), and abdominal insert (drawing 127-8210), on resistance to articulation between upper torso assembly...
49 CFR 572.135 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Upper and lower torso assemblies and torso flexion... torso assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is... (drawing 880105-434), on resistance to articulation between the upper torso assembly (drawing 880105-300...
49 CFR 572.125 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to...), and abdominal insert (drawing 127-8210), on resistance to articulation between upper torso assembly...
Redesigning Accountability Systems for Education. CPRE Policy Briefs. RB-38
ERIC Educational Resources Information Center
Fuhrman, Susan H.
2003-01-01
To assist in the redesign of accountability systems, the Consortium for Policy Research in Education (CPRE) and the Center for Research on Evaluation, Student Standards, and Testing (CRESST) sought to assemble knowledge from new research on emerging accountability systems. A book, "Redesigning Accountability Systems for Education," edited by Susan…
Testing and integrating the laser system of ARGOS: the ground layer adaptive optics for LBT
NASA Astrophysics Data System (ADS)
Loose, C.; Rabien, S.; Barl, L.; Borelli, J.; Deysenroth, M.; Gaessler, W.; Gemperlein, H.; Honsberg, M.; Kulas, M.; Lederer, R.; Raab, W.; Rahmer, G.; Ziegleder, J.
2012-07-01
The Laser Guide Star facility ARGOS will provide Ground Layer Adaptive Optics to the Large Binocular Telescope (LBT). The system operates three pulsed laser beacons above each of the two primary mirrors, which are Rayleigh scattered in 12km height. This enables correction over a wide field of view, using the adaptive secondary mirror of the LBT. The ARGOS laser system is designed around commercially available, pulsed Nd:YAG lasers working at 532 nm. In preparation for a successful commissioning, it is important to ascertain that the specifications are met for every component of the laser system. The testing of assembled, optical subsystems is likewise necessary. In particular it is required to confirm a high output power, beam quality and pulse stability of the beacons. In a second step, the integrated laser system along with its electronic cabinets are installed on a telescope simulator. This unit is capable of carrying the whole assembly and can be tilted to imitate working conditions at the LBT. It allows alignment and functionality testing of the entire system, ensuring that flexure compensation and system diagnosis work properly in different orientations.
Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.
Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall
2014-01-01
The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric Richard
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmell, T.; Folga, S., Frey, G.; Molberg, J.
2001-04-30
This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001c) pertains to the destruction of assembled chemical weapons (ACW) stored at Pueblo Chemical Depot (PCD), located outside Pueblo, Colorado. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at PCD. The destruction technologies described are those that have been demonstrated during Phase I of the Assembled Chemical Weaponsmore » Assessment (ACWA) demonstration process (see Volume 1).« less
Design, fabrication, and bench testing of a solar chemical receiver
NASA Technical Reports Server (NTRS)
Summers, W. A.; Pierre, J. F.
1981-01-01
Solar thermal energy can be effectively collected, transported, stored, and utilized by means of a chemical storage and transport system employing the reversible SO2 oxidation reaction. A solar chemical receiver for SO3 thermal decomposition to SO2 and oxygen was analyzed. Bench tests of a ten foot section of a receiver module were conducted with dissociated sulfuric acid (SO3 and H2O) in an electrical furnace. Measured percent conversion of SO3 was 85% of the equilibrium value. Methods were developed to fabricate and assemble a complete receiver module. These methods included applying an aluminide coating to certain exposed surfaces, assembling concentric tubes with a wire spacer, applying a platinum catalyst to the tubing wall, and coiling the entire assembly into the desired configuration.
An update on the Deep Space 1 power system: SCARLET integration and test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Murphy, D.M.
1998-07-01
The Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET) system for the Deep Space 1 (DS1) spacecraft have been completed and delivered to JPL for integration with the spacecraft. This paper describes the array assembly, the qualification test program, and the results of the qualification tests. The array will provide power to the DS1 spacecraft and its NSTAR ion electric propulsion system. Launch is scheduled for October, 1998 from Kennedy Space Center, FL.
Design manual: Oxygen Thermal Test Article (OTTA)
NASA Technical Reports Server (NTRS)
Chronic, W. L.; Baese, C. L.; Conder, R. L.
1974-01-01
The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.
Xenon Feed System Progress (Postprint)
2006-06-13
development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed
Feature-based component model for design of embedded systems
NASA Astrophysics Data System (ADS)
Zha, Xuan Fang; Sriram, Ram D.
2004-11-01
An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, three ogive panels have been installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The fourth ogive panel is being lifted by crane for installation. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as a crane is used to move one of four ogive panels closer for installation on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane is used to move one of four ogive panels closer for installation on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians prepare the four ogive panels for lifting by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as a crane is used to move one of four ogive panels closer for installation on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as a crane is used to move one of four ogive panels closer for installation on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane is used to move one of four ogive panels closer for installation on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
Contactless system of excitation current measurement in the windings with high inductance
NASA Astrophysics Data System (ADS)
Chubraeva, L.; Evseev, E.; Timofeev, S.
2018-02-01
The results of development, manufacturing and testing of a special contactless maintenance-free excitation current measurement system intended for the windings with high inductance, typical for superconductive alternators, are presented. The system was assembled on the brushless exciter is intended for 1 MVA wind-power generator with the winding, manufactured of high-temperature superconductors (HTSC). The alternator with brushless exciter were manufactured and successfully tested.
Modular, Reconfigurable, High-Energy Technology Development
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe
2006-01-01
The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.
49 CFR 572.165 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to... (specified in 49 CFR 572.125(a)), on resistance to articulation between the upper torso assembly (drawing 167...
49 CFR 572.165 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to... (specified in 49 CFR 572.125(a)), on resistance to articulation between the upper torso assembly (drawing 167...
49 CFR 572.165 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to... (specified in 49 CFR 572.125(a)), on resistance to articulation between the upper torso assembly (drawing 167...
49 CFR 572.165 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to... (specified in 49 CFR 572.125(a)), on resistance to articulation between the upper torso assembly (drawing 167...
49 CFR 572.165 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) Upper/lower torso assembly. The test objective is to... (specified in 49 CFR 572.125(a)), on resistance to articulation between the upper torso assembly (drawing 167...
NASA Technical Reports Server (NTRS)
Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank
2005-01-01
Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheryl Morton; Carl Baily; Tom Hill
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
NASA Astrophysics Data System (ADS)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.
2006-01-01
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.
Temporary Urine and Brine Stowage System (TUBSS) Materials Selection and Testing
NASA Technical Reports Server (NTRS)
Carrigan, Caitlin; Dries, Kevin; Pensinger, Stuart
2011-01-01
Storing wastewater in the event of a system anomaly is a necessity for closed loop water recovery systems. The temporary urine and brine stowage system (TUBSS) is an assembly used to store and transfer pre-treated urine (PTU) and brine for processing or disposal at a later date. This paper describes the selection and testing of several candidate materials from both a chemical and material strength standpoint. In addition, this paper will provide results of testing as well as lessons learned from the project, culminating in the successful launch of the hardware.
Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1994-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.
EMC system test performance on Spacelab
NASA Astrophysics Data System (ADS)
Schwan, F.
1982-07-01
Electromagnetic compatibility testing of the Spacelab engineering model is discussed. Documentation, test procedures (including data monitoring and test configuration set up) and performance assessment approach are described. Equipment was assembled into selected representative flight configurations. The physical and functional interfaces between the subsystems were demonstrated within the integration and test sequence which culminated in the flyable configuration Long Module plus one Pallet.
2014-09-25
CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 pass the Vehicle Assembly Building in Launch Complex 39 at NASA’s Kennedy Space Center in Florida on their way to NASA's Locomotive Maintenance Facility. Kennedy's Center Planning and Development Directorate has enlisted the locomotives to support a Rail Vibration Test for the Canaveral Port Authority. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
NASA Technical Reports Server (NTRS)
Jaffe, Leonard D.
1988-01-01
This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.
Electric power system test and verification program
NASA Technical Reports Server (NTRS)
Rylicki, Daniel S.; Robinson, Frank, Jr.
1994-01-01
Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.
LOX/LH2 propulsion system for launch vehicle upper stage, test results
NASA Technical Reports Server (NTRS)
Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.
1984-01-01
The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.
Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2003-01-01
A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick-film metalization-based wirebond electrical interconnection system was also tested in an extremely dynamic thermal environment to assess thermal reliability. The I-V curve1 of a SiC high-temperature diode was measured in oxidizing air at 500 C for 1000 hr to electrically test the Au thick-film material-based die-attach assembly.
Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests
2016-05-19
and main rotor blades. A bifilar pendulum -type vibration absorber system was mounted on top of the hub to reduce 3/rev rotating in-plane loads. Main... pendulum weights were not attached (no 3/rev in-plane load absorption). The rotor assembly was mounted on a large test stand with its own fixed system
Reliability of CGA/LGA/HDI Package Board/Assembly (Revision A)
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2013-01-01
This follow-up report presents reliability test results conducted by thermal cycling of five CGA assemblies evaluated under two extreme cycle profiles, representative of use for high-reliability applications. The thermal cycles ranged from a low temperature of 55 C to maximum temperatures of either 100 C or 125 C with slow ramp-up rate (3 C/min) and dwell times of about 15 minutes at the two extremes. Optical photomicrographs that illustrate key inspection findings of up to 200 thermal cycles are presented. Other information presented include an evaluation of the integrity of capacitors on CGA substrate after thermal cycling as well as process evaluation for direct assembly of an LGA onto PCB. The qualification guidelines, which are based on the test results for CGA/LGA/HDI packages and board assemblies, will facilitate NASA projects' use of very dense and newly available FPGA area array packages with known reliably and mitigation risks, allowing greater processing power in a smaller board footprint and lower system weight.
Progreso en la puesta en marcha del espectrógrafo BHROS
NASA Astrophysics Data System (ADS)
Díaz, R.; Levato, H.; Casagrande, A.; Piroddi, D.; Yornet, G.; Eikenberry, S.; Gonzalez, F.; Townsend, A.; Godoy, J.; Marun, A.; Gunella, F.; D'Ambra, A.; Warner, C.; Bosch, G.; Donoso, V.; Grosso, M.; Seifer, E.
2017-10-01
We report the advance on the re-assembly and commissioning of the BHROS spectrograph, its associated instrument laboratory and the planned system of telescopes. This is the largest astronomical spectrograph ever assembled in Argentina and the laboratory is also being used for other instrumentation needs of ICATE. We have installed a half meter telescope in order to test the spectrograph with on-sky sources, and we plan to install a network of telescopes feeding it via a multiple optical fiber system. In these first tests we have obtained spectra of the Sun (R100000) and Jupiter and Achernar (R40000). In 2017-2018 we plan to install and test a network of five small telescopes feeding the spectrograph with the collecting area equivalent to that of a one meter telescope, with a cost 10-25 times less in acquisition, transport, installation and operation respect to a conventional monolithic telescope.
NASA Technical Reports Server (NTRS)
Shelton, D. H.
1975-01-01
A brief functional description of the Apollo lunar module stabilization and control subsystem is presented. Subsystem requirements definition, design, development, test results, and flight experiences are discussed. Detailed discussions are presented of problems encountered and the resulting corrective actions taken during the course of assembly-level testing, integrated vehicle checkout and test, and mission operations. Although the main experiences described are problem oriented, the subsystem has performed satisfactorily in flight.
NASA Technical Reports Server (NTRS)
Pryor, D.; Hyde, E. H.; Escher, W. J. D.
1999-01-01
Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.
NASA Technical Reports Server (NTRS)
Tutt, Ben; Gill, Susannah; Wilson, Aaron; Johnson, Keith
2009-01-01
Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.
Design definition study of the Earth radiation budget satellite system
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Wallschlaeger, W. H.
1978-01-01
Instruments for measuring the radiation budget components are discussed, and the conceptual design of instruments for the Earth Radiation Budget Satellite System (ERBSS) are reported. Scanning and nonscanning assemblies are described. The ERBSS test program is also described.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.
1992-01-01
Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.
Ham, Y.; Kerr, P.; Sitaraman, S.; ...
2016-05-05
Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Y.S.; Kerr, P.; Sitaraman, S.
The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Y.; Kerr, P.; Sitaraman, S.
Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Subsequent to the design review, a series of tests was conducted on simulated modules to demonstrate that all environmental specifications (wind loading, hailstone impact, thermal cycling, and humidity cycling) are satisfied by the design. All tests, except hailstone impact, were successfully completed. The assembly sequence was simplified by virtue of eliminating the frame components and assembly steps. Performance was improved by reducing the module edge border required to accommodate the frame of the preliminary design module. An ultrasonic rolling spot bonding technique was selected for use in the machine to perform the aluminum interconnect to cell metallization electrical joints required in the MEPSDU module configuration. This selection was based on extensive experimental tests and economic analyses.
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
NASA Technical Reports Server (NTRS)
Nevins, J. L.; Defazio, T. L.; Seltzer, D. S.; Whitney, D. E.
1981-01-01
The initial set of requirements for additional studies necessary to implement a space-borne, computer-based work system capable of achieving assembly, disassembly, repair, or maintenance in space were developed. The specific functions required of a work system to perform repair and maintenance were discussed. Tasks and relevant technologies were identified and delineated. The interaction of spacecraft design and technology options, including a consideration of the strategic issues of repair versus retrieval-replacement or destruction by removal were considered along with the design tradeoffs for accomplishing each of the options. A concept system design and its accompanying experiment or test plan were discussed.
Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat
2017-01-01
Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
Multipurpose Thermal Insulation Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2002-01-01
A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.
Gemini 9 configured extravehicular spacesuit assembly
1966-05-01
S66-31019 (May 1966) --- Test subject Fred Spross, Crew Systems Division, wears the Gemini-9 configured extravehicular spacesuit assembly. The legs are covered with Chromel R, which is a cloth woven from stainless steel fibers, used to protect the astronaut and suit from the hot exhaust thrust of the Astronaut Maneuvering Unit (AMU). Astronaut Eugene A. Cernan will wear this spacesuit during his Gemini-9A extravehicular activity (EVA). Photo credit: NASA
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians begin a functional test on the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians prepare to test the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians begin testing the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
Design, fabrication, and test of a trace contaminant control system. Appendixes A and B
NASA Technical Reports Server (NTRS)
1975-01-01
Engineering specifications of a trace contaminant control system designed for the Space Station Prototype (SSP) were given. These were divided into two appendices: (1) a list of nonmetallic materials used, and (2) engineering drawings of the overall system, sub-assemblies, and components.
Solar heating system installed at Telex Communications, Inc., Blue Earth, Minnesota
NASA Technical Reports Server (NTRS)
1977-01-01
The solar heating system for space heating a 97,000 square foot building which houses administrative offices, assembly areas, and warehouse space is summarized. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature, and as-built drawings is presented.
NASA Technical Reports Server (NTRS)
Lubey, Daniel P.; Thiele, Sara R.; Gruseck, Madelyn L.; Evans, Carol T.
2010-01-01
Though getting astronauts safely into orbit and beyond has long been one of NASA?s chief goals, their safe return has always been equally as important. The Crew Exploration Vehicle?s (CEV) Parachute Assembly System (CPAS) is designed to safely return astronauts to Earth on the next-generation manned spacecraft Orion. As one means for validating this system?s requirements and testing its functionality, a test article known as the Parachute Compartment Drop Test Vehicle (PC-DTV) will carry a fully-loaded yet truncated CPAS Parachute Compartment (PC) in a series of drop tests. Two aerodynamic profiles for the PC-DTV currently exist, though both share the same interior structure, and both have an Orion-representative weight of 20,800 lbf. Two extraction methods have been developed as well. The first (Cradle Monorail System 2 - CMS2) uses a sliding rail technique to release the PC-DTV midair, and the second (Modified DTV Sled; MDS) features a much less constrained separation method though slightly more complex. The decision as to which aerodynamic profile and extraction method to use is still not finalized. Additional CFD and stress analysis must be undertaken in order to determine the more desirable options, though at present the "boat tail" profile and the CMS2 extraction method seem to be the favored options in their respective categories. Fabrication of the PC-DTV and the selected extraction sled is set to begin in early October 2010 with an anticipated first drop test in mid-March 2011.
Assembly considerations for large reflectors
NASA Technical Reports Server (NTRS)
Bush, H.
1988-01-01
The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.
An Interactive Method to Solve Infeasibility in Linear Programming Test Assembling Models
ERIC Educational Resources Information Center
Huitzing, Hiddo A.
2004-01-01
In optimal assembly of tests from item banks, linear programming (LP) models have proved to be very useful. Assembly by hand has become nearly impossible, but these LP techniques are able to find the best solutions, given the demands and needs of the test to be assembled and the specifics of the item bank from which it is assembled. However,…
NASA Technical Reports Server (NTRS)
Williams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmell, T.; Folga, S., Frey, G.; Molberg, J.
2001-05-02
This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001g) pertains to the destruction of assembled chemical weapons (ACW) stored in the U.S. Army's unitary chemical stockpile at Blue Grass Army Depot (BGAD), located outside Richmond, Kentucky. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at BGAD. The destruction technologies described are those that have been demonstratedmore » as part of the Assembled Chemical Weapons Assessment (ACWA) selection process (see Volume 1).« less
The development of a solar residential heating and cooling system
NASA Technical Reports Server (NTRS)
1975-01-01
The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.
Dynamic testing for shuttle design verification
NASA Technical Reports Server (NTRS)
Green, C. E.; Leadbetter, S. A.; Rheinfurth, M. H.
1972-01-01
Space shuttle design verification requires dynamic data from full scale structural component and assembly tests. Wind tunnel and other scaled model tests are also required early in the development program to support the analytical models used in design verification. Presented is a design philosophy based on mathematical modeling of the structural system strongly supported by a comprehensive test program; some of the types of required tests are outlined.
The on-board tailpipe emissions measurement system (TOTEMS) : proof\\0x2010 of\\0x2010concept.
DOT National Transportation Integrated Search
2009-06-03
An on-board tailpipe emissions instrumentation system was designed, assembled and tested as proof-of-concept : for the University of Vermonts Transportation Research Center (TRC) Signature Project #2 real-world vehicle : emissions data colle...
An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
Cha, Hyo-Jeong; Yi, Byung-Ju; Won, Jong Yun
2017-01-01
Current vascular intervention inevitably exposes a large amount of X-ray to both an operator and a patient during the procedure. The purpose of this study is to propose a new catheter driving system which assists the operator in aspects of less X-ray exposure and convenient user interface. For this, an assembly-type 4-degree-of-freedom master-slave system was designed and tested to verify the efficiency. First, current vascular intervention procedures are analyzed to develop a new robotic procedure that enables us to use conventional vascular intervention devices such as catheter and guidewire which are commercially available in the market. Some parts of the slave robot which contact the devices were designed to be easily assembled and dissembled from the main body of the slave robot for sterilization. A master robot is compactly designed to conduct insertion and rotational motion and is able to switch from the guidewire driving mode to the catheter driving mode or vice versa. A phantom resembling the human arteries was developed, and the master-slave robotic system is tested using the phantom. The contact force of the guidewire tip according to the shape of the arteries is measured and reflected to the user through the master robot during the phantom experiment. This system can drastically reduce radiation exposure by replacing human effort by a robotic system for high radiation exposure procedures. Also, benefits of the proposed robot system are low cost by employing currently available devices and easy human interface.
High-temperature, high-pressure optical port for rocket engine applications
NASA Technical Reports Server (NTRS)
Delcher, Ray; Nemeth, ED; Powers, W. T.
1993-01-01
This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.
SIRTF primary mirror design, analysis, and testing
NASA Technical Reports Server (NTRS)
Sarver, George L., III; Maa, Scott; Chang, LI
1990-01-01
The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.
A microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1985-02-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
NASA Technical Reports Server (NTRS)
Mansell, J. Matthew; Abney, Morgan B.; Miller, Lee A.
2011-01-01
The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these "oxygenated" compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing
NASA Technical Reports Server (NTRS)
Mansell, J. Matthew; Abney, Morgan B.
2012-01-01
The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.
X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility
NASA Technical Reports Server (NTRS)
O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall
2003-01-01
In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.
Lifetime Estimation of a Time Projection Chamber X-ray Polarimeter
NASA Technical Reports Server (NTRS)
Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; deGarcia, Kristina Montt; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila
2013-01-01
The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.
In situ testing of a satellite or other object prior to development
NASA Technical Reports Server (NTRS)
Eagen, James H. (Inventor); Vujcich, Michael (Inventor); Scharton, Terry D. (Inventor)
2002-01-01
A method and system for testing a test object, such as a satellite, is disclosed. High energy acoustic testing is performed on the object by assembling an acoustical system about the test object rather than transporting the test object to a specially configured acoustic chamber. The acoustic system of the present invention preferably provides and directs acoustic energy directly to the surfaces of the test object rather than providing the test object in a high energy acoustic environment where a substantial amount of the acoustic energy is randomly directed within a chamber having the test object. Additionally, the present invention further provides for mechanical vibration tests concurrently or serially with acoustic testing, wherein the object is not required to be transported.
Modeling of Revitalization of Atmospheric Water
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, Jim
2014-01-01
The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.
Lessons Learned from the Advanced Topographic Laser Altimeter System
NASA Technical Reports Server (NTRS)
Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave
2016-01-01
The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.
An Expert Supervisor For A Robotic Work Cell
NASA Astrophysics Data System (ADS)
Moed, M. C.; Kelley, R. B.
1988-02-01
To increase task flexibility in a robotic assembly environment, a hierarchical planning and execution system is being developed which will map user specified 3D part assembly tasks into various target robotic work cells, and execute these tasks efficiently using manipulators and sensors available in the work cell. One level of this hierarchy, the Supervisor, is responsible for assigning subtasks of a system generated Task Plan to a set of task specific Specialists and on-line coordination of the activity of these Specialists to accomplish the user specified assembly. The design of the Supervisor can be broken down into five major functional blocks: resource management; concurrency detection; task scheduling; error recovery; and interprocess communication. The Supervisor implementation has been completed on a VAX 11/750 under a Unix environment. PC card Pick-Insert experiments were performed to test this implementation. To test the robustness of the architecture, the Supervisor was then transported to a new work cell under a VMS environment. The experiments performed under Supervisor control in both implementations are discussed after a brief explanation of the functional blocks of the Supervisor and the other levels in the hierarchy.
Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS
NASA Astrophysics Data System (ADS)
Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.
2010-07-01
The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.
Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III
2006-01-01
Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.
Offgassing Characterization of the Columbus Laboratory Module
NASA Technical Reports Server (NTRS)
Rampini, riccardo; Lobascio, Cesare; Perry, Jay L.; Hinderer, Stephan
2005-01-01
Trace gaseous contamination in the cabin environment is a major concern for manned spacecraft, especially those designed for long duration missions, such as the International Space Station (ISS). During the design phase, predicting the European-built Columbus laboratory module s contribution to the ISS s overall trace contaminant load relied on "trace gas budgeting" based on material level and assembled article tests data. In support of the Qualification Review, a final offgassing test has been performed on the complete Columbus module to gain cumulative system offgassing data. Comparison between the results of the predicted offgassing load based on the budgeted material/assembled article-level offgassing rates and the module-level offgassing test is presented. The Columbus module offgassing test results are also compared to results from similar tests conducted for Node 1, U.S. Laboratory, and Airlock modules.
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
Hybrid reduced order modeling for assembly calculations
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; ...
2015-08-14
While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the usemore » of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.« less
Carbon Dioxide Reduction Post-Processing Sub-System Development
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine
2012-01-01
The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.
Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT
NASA Astrophysics Data System (ADS)
Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mégevand, D.; Riva, M.; Santin, P.
2016-07-01
ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases.
Description of the PMAD DC test bed architecture and integration sequence
NASA Technical Reports Server (NTRS)
Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.
1991-01-01
NASA-Lewis is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power system the SSF EPS will grow and be maintained on orbit and must be flexible to meet changing user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. Although spacecraft historically have used power converters for regulation they typically involved only a single series regulating element. The SSF EPS involves multiple regulating elements, two or more in series, prior to the load. These unique system features required the construction of a testbed which would allow the development of spacecraft power system technology. A description is provided of the Power Management and Distribution (PMAD) DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.
Underground coal mine instrumentation and test
NASA Technical Reports Server (NTRS)
Burchill, R. F.; Waldron, W. D.
1976-01-01
The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.
NASA Technical Reports Server (NTRS)
Ma, Y.
1995-01-01
The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A1 receiver assembly is further divided into two parts; AMSU-A1-1 (P/N 1356429-1) and AMSU-A1-2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. The receiver assemblies are highlighted and illustrate the functional block diagrams of the AMSU-A1 and AMSU-A2 systems. The AMSU-A receiver subsystem stands in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from isolators to attenuators. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem. This test report presents the test data of the EOS AMSU-A Flight Model No. 1 (FM-1) receiver subsystem. The tests are performed per the Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level tests are conducted at ambient temperature only.
Reusable Solid Rocket Motor Nozzle Joint 5 Redesign
NASA Technical Reports Server (NTRS)
Lui, R. C.; Stratton, T. C.; LaMont, D. T.
2003-01-01
Torque tension testing of a newly designed Reusable Solid Rocket Motor nozzle bolted assembly was successfully completed. Test results showed that the 3-sigma preload variation was as expected at the required input torque level and the preload relaxation were within the engineering limits. A shim installation technique was demonstrated as a simple process to fill a shear lip gap between nozzle housings in the joint region. A new automated torque system was successfully demonstrated in this test. This torque control tool was found to be very precise and accurate. The bolted assembly performance was further evaluated using the Nozzle Structural Test Bed. Both current socket head cap screw and proposed multiphase alloy bolt configurations were tested. Results indicated that joint skip and bolt bending were significantly reduced with the new multiphase alloy bolt design. This paper summarizes all the test results completed to date.
Development of a full-length external-fuel thermionic converter for in-pile testing.
NASA Technical Reports Server (NTRS)
Schock, A.; Raab, B.
1971-01-01
Description of an external-fuel thermionic converter which utilizes a thoriated-tungsten fuel-emitter body. Performance in out-of-pile tests was comparable to that of an arc-cast tungsten emitter body, with 400-eW output power (about 5 W/sq cm) at 10.8% efficiency. Maximum fuel clad temperature averaged from 1650 to 1700 C during the 300-hour test. This converter has been processed for in-pile testing. The various processing steps, including the installation of six emitter thermocouples, encapsulation in the secondary container, and joining to the fission-gas collection system, are described in detail. In addition to the converter assembly, a doubly contained fission gas collection assembly with radiation-hardened differential pressure transducers was fabricated. The experiment support plate required for the in-pile test, containing electrically insulated instrumentation feedthroughs and coolant line feedthroughs to the vacuum test chamber, was also fabricated.
Two-stage optics - High-acuity performance from low-acuity optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.
1992-01-01
The concept of two-stage optics, developed under a program to enhance the performance, lower the cost, and increase the reliability of the 20-m Large Deployable Telescope, is examined. The concept permits the large primary mirror to remain as deployed or as space-assembled, with phasing and subsequent control of the system done by a small fully assembled optical active element placed at an exit pupil. The technique is being applied to correction of the fabrication/testing error in the Hubble Space Telescope primary mirror. The advantages offered by this concept for very large space telescopes are discussed.
Classification Scheme for Items in CAAT.
ERIC Educational Resources Information Center
Epstein, Marion G.
In planning the development of the system for computer assisted assembly of tests, it was agreed at the outset that one of the basic requirements for the successful initiation of any such system would be the development of a detailed item content classification system. The design of the system for classifying item content is a key element in…
Rotating assembly working group summary
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.
1984-01-01
The feasibility of a fail safe flywheel system was demonstrated. Three of the major advantages of flywheel systems are: longer operational life, higher electrical efficiency, and higher system energy density. The use of composite material flywheels is important to realize these advantages. Rotor design and dynamics, rotor materials and fabrication, safety, nondestructive testing, and systems operation loads and environment, are outlined.
Caccese, V.; Ferguson, J.; Lloyd, J.; Edgecomb, M.; Seidi, M.; Hajiaghamemar, M.
2017-01-01
A test method based upon a Hybrid-III head and neck assembly that includes measurement of both linear and angular acceleration is investigated for potential use in impact testing of protective headgear. The test apparatus is based upon a twin wire drop test system modified with the head/neck assembly and associated flyarm components. This study represents a preliminary assessment of the test apparatus for use in the development of protective headgear designed to prevent injury due to falls. By including angular acceleration in the test protocol it becomes possible to assess and intentionally reduce this component of acceleration. Comparisons of standard and reduced durometer necks, various anvils, front, rear, and side drop orientations, and response data on performance of the apparatus are provided. Injury measures summarized for an unprotected drop include maximum linear and angular acceleration, head injury criteria (HIC), rotational injury criteria (RIC), and power rotational head injury criteria (PRHIC). Coefficient of variation for multiple drops ranged from 0.4 to 6.7% for linear acceleration. Angular acceleration recorded in a side drop orientation resulted in highest coefficient of variation of 16.3%. The drop test apparatus results in a reasonably repeatable test method that has potential to be used in studies of headgear designed to reduce head impact injury. PMID:28216804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.C.; Ober, D.G.; Goodrow, J.T.
1995-09-01
ASTM E 283 ad ASTM E 1424 in conjunction with ASTM C 976 were used to study the effect of airflow on thermal performance of the wall. A typical residential 2 {times} 4 stud wall was constructed and placed on top of a subfloor, making a 2.44 {times} 2.74 m (8 by 9 ft) test specimen. This base wall assembly was then covered with two types of XPS sheathing, various housewraps, a 15{number_sign} felt, and a polyethylene vapor retarder film in 40 different configurations and tested individually per ASTM E 283 and per ASTM C 976. For 24 of themore » 40 C 976 tests, a differential pressure was induced across the test wall as per and ASTM E 1424. Airflows ranged from undetectable airflow at 0 {center_dot} Pa {Delta}P to 1.63 L/s {center_dot} m{sup 2} for the base wall assembly alone. Difference in airflow resistance performance between the ASTM E 283 and ASTM E 1424 test methods were noted. Thermal testing results incorporating both ASTM C 976 and ASTM E 1424 for tests 1--28 produced apparent thermal conductances (C-values) in the range of 0.40 W/m{sup 2} {center_dot} K for a nondetectable airflow level to 1.81 W/m{sup 2} {center_dot} K for an airflow of 1.53 L/s {center_dot} m{sup 2} for the base wall assembly alone with a 20-Pa {Delta}P. The calculated C-value for this base wall assembly was 0.40 W/m{sup 2} {center_dot} K. Test results reveal that airflow rates as low as 0.2 L/s {center_dot} m{sup 2} could produce a 46% increase in apparent C-value. Similar thermal performance differences were revealed when thicker shiplap XPS sheathing was used. Tests were also conducted using an Air-Tight Drywall configuration showing the effect of wind washing on thermal performance. By sealing the gypsum drywall on the base wall assembly tested, the apparent C-value, when exposed to a 12.5 Pa wind pressure, was found to be equivalent to a base wall assembly configuration which allows 0.15 L/s {center_dot} m{sup 2} airflow to penetrate completely through.« less
Vibroacoustic test plan evaluation: Parameter variation study
NASA Technical Reports Server (NTRS)
Stahle, C. V.; Gongloef, H. R.
1976-01-01
Statistical decision models are shown to provide a viable method of evaluating the cost effectiveness of alternate vibroacoustic test plans and the associated test levels. The methodology developed provides a major step toward the development of a realistic tool to quantitatively tailor test programs to specific payloads. Testing is considered at the no test, component, subassembly, or system level of assembly. Component redundancy and partial loss of flight data are considered. Most and probabilistic costs are considered, and incipient failures resulting from ground tests are treated. Optimums defining both component and assembly test levels are indicated for the modified test plans considered. modeling simplifications must be considered in interpreting the results relative to a particular payload. New parameters introduced were a no test option, flight by flight failure probabilities, and a cost to design components for higher vibration requirements. Parameters varied were the shuttle payload bay internal acoustic environment, the STS launch cost, the component retest/repair cost, and the amount of redundancy in the housekeeping section of the payload reliability model.
Mars Reconnaissance Orbiter Taking Shape
2004-08-09
Lockheed Martin Space Systems engineer Terry Kampmann left and lead technician Jack Farmerie work on assembly and test of NASA Mars Reconnaissance Orbiter spacecraft bus in a cleanroom at the company Denver facility.
Evaluating Manufacturing and Assembly Errors in Rotating Machinery to Enhance Component Performance
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Huff, Edward M.; Swanson, Keith (Technical Monitor)
2001-01-01
Manufacturing and assembly phases play a crucial role in providing products that meet the strict functional specifications associated with rotating machinery components. The errors resulting during the manufacturing and assembly of such components are correlated with the vibration and noise emanating from the final system during its operational lifetime. Vibration and noise are especially unacceptable elements in high-risk systems such as helicopters, resulting in premature component degradation and an unsafe flying environment. In such applications, individual components often are subject to 100% inspection prior to assembly, as well as during operation through rigorous maintenance, resulting in increased product development cycles and high production and operation costs. In this work, we focus on providing designers and manufacturing engineers with a technique to evaluate vibration modes and levels for each component or subsystem prior to putting them into operation. This paper presents a preliminary investigation of the correlation between vibrations and manufacturing and assembly errors using an experimental test rig, which simulates a simple bearing and shaft arrangement. A factorial design is used to study the effects of: 1) different manufacturing instances; 2) different assembly instances; and, 3) varying shaft speeds. The results indicate a correlation between manufacturing or assembly errors and vibrations measured from accelerometers. Challenges in developing a tool for DFM are identified, followed by a discussion of future work, including a real-world application to helicopter transmission vibrations.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.
2012-01-01
As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.
Fuzzy control of small servo motors
NASA Technical Reports Server (NTRS)
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...
29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
4BMS-X Design and Test Activation
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.
1. MISSILE TEST AND ASSEMBLY BUILDING, FRONT, LOOKING SOUTH. ...
1. MISSILE TEST AND ASSEMBLY BUILDING, FRONT, LOOKING SOUTH. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
Stepping-Motion Motor-Control Subsystem For Testing Bearings
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1992-01-01
Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).
Swing-arm beam erector (SABER) concept for single astronaut assembly of space structure
NASA Technical Reports Server (NTRS)
Watson, J. J.; Heard, W. L., Jr.; Jensen, J. K.
1985-01-01
Results are presented of tests conducted to evaluate a mobile work station/assembly fixture concept that would mechanically assist an astronaut in the on-orbit manual assembly of erectable truss-beams. The concept eliminates astronaut manual translation by use of a motorized work platform with foot restraints. The tests involved assembly of a tetrahedral truss-beam by a test subject in simulated zero gravity (neutral bouyancy in water). A three-bay truss-beam was assembled from 30 aluminum struts with quick-attachment structural joints. The results show that average on-orbit assembly rates of 2.1 struts per minute can be expected for struts of the size employed in these tests.
Nonlinear seismic analysis of a reactor structure impact between core components
NASA Technical Reports Server (NTRS)
Hill, R. G.
1975-01-01
The seismic analysis of the FFTF-PIOTA (Fast Flux Test Facility-Postirradiation Open Test Assembly), subjected to a horizontal DBE (Design Base Earthquake) is presented. The PIOTA is the first in a set of open test assemblies to be designed for the FFTF. Employing the direct method of transient analysis, the governing differential equations describing the motion of the system are set up directly and are implicitly integrated numerically in time. A simple lumped-nass beam model of the FFTF which includes small clearances between core components is used as a "driver" for a fine mesh model of the PIOTA. The nonlinear forces due to the impact of the core components and their effect on the PIOTA are computed.
2013-10-22
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Orion test vehicle, or GTA, is lifted by crane in the transfer aisle of the Vehicle Assembly Building. The ground test vehicle is being used for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
The laboratory station for tyres grip testing on different surfaces
NASA Astrophysics Data System (ADS)
Kalinowski, K.; Grabowik, C.; Janik, W.; Ćwikła, G.; Skowera, M.
2015-11-01
The paper presents the conception of the device for tyre grip testing in the laboratory conditions. The main purpose is to provide a device working in confined spaces, which enables rapid changes of the tested samples of the road surfaces. Among the key assumptions the minimization of the device dimensions and the relative ease of transportation and mobility - the ability to quick assemble and disassemble were also assumed. The main components of the projected workstation includes: the replaceable platform for mounting samples of a road surface, the roller conveyor, the drive of the platform, the wheel mounting assembly and the axial force measuring system. At the design the station a morphological structure method has been used, particular elements have been optimized individually.
Overview of the Environmental Control and Life Support System (ECLSS) Testing At MSFC
NASA Technical Reports Server (NTRS)
Traweek, Mary S.; Tatara, James D.
1998-01-01
Previously, almost all water used by the crew during space flight has been transported from earth or generated in-flight as a by-product of fuel cells. Additionally, this water has been stored and used for relatively short periods. To achieve the United States' commitment to a permanent manned presence in space, more innovative techniques are demanded. Over 20,000 pounds of water and large quantities of air would have to be transported to the International Space Station (ISS) every 90 days with a corresponding amount of waste returned to earth, for an 8-person crew. This approach results in prohibitive logistics costs, and necessitates near complete recovery and recycling of water. The potential hazards associated with long-term reuse of reclaimed water and revitalized air resulted in the recognition that additional characterization of closed-loop systems and products is essential. Integrated physical/chemical systems have been designed, assembled, and operated to provide air and potable water meeting ISS quality specifications. The purpose of the Environmental Control and Life Support System (ECLSS) test program at NASA's Marshall Space Flight Center is to conduct research related to the performance of the ISS and its Environmental Control components. The ECLSS Test Program encompasses the Water Recovery Test (WRT), the Integrated Air Revitalization Test (IART), and Life Testing, which permits ECLSS design evaluation. These subsystems revitalize air and reclaim waste waters representative of those to be generated on-orbit. This paper provides an overview of MSFC's 1997 ECLSS testing. Specific tests include: the Stage 10 Water Recovery Test; the Contaminant Injection Test; the Performance Enhancement Test and Life Testing of the Four Bed Molecular Sieve; the Oxygen Generator Assembly Life Test; and the ISS Water Distribution Biofilm Life Test.
Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Emily B.; Crump, Alex R.; Resch, Charles T.
Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less
Analysis of the type II robotic mixed-model assembly line balancing problem
NASA Astrophysics Data System (ADS)
Çil, Zeynel Abidin; Mete, Süleyman; Ağpak, Kürşad
2017-06-01
In recent years, there has been an increasing trend towards using robots in production systems. Robots are used in different areas such as packaging, transportation, loading/unloading and especially assembly lines. One important step in taking advantage of robots on the assembly line is considering them while balancing the line. On the other hand, market conditions have increased the importance of mixed-model assembly lines. Therefore, in this article, the robotic mixed-model assembly line balancing problem is studied. The aim of this study is to develop a new efficient heuristic algorithm based on beam search in order to minimize the sum of cycle times over all models. In addition, mathematical models of the problem are presented for comparison. The proposed heuristic is tested on benchmark problems and compared with the optimal solutions. The results show that the algorithm is very competitive and is a promising tool for further research.
Closeup view of the interior of an Aft Skirt being ...
Close-up view of the interior of an Aft Skirt being tested and prepared for mating with sub assemblies in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center. This view is showing the SRB Thrust Vector Control (TVC) System which includes independent auxiliary power units for each actuator to pressurize their respective hydraulic systems. When the Nozzle is mated with the Aft Skirt the two actuators, located on the left and right side of the TVC System in this view, can swivel it up to 3.5 degrees to redirect the thrust to steer and maintain the Shuttle's programmed trajectory. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
46 CFR 56.95-5 - Rights of access of marine inspectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... includes manufacture, fabrication, assembly, erection, and testing of the piping or system components... requirements of § 56.95-1, including certified qualifications for welders, welding operators, and welding...
NASA Technical Reports Server (NTRS)
Norgard, John D.
2012-01-01
For future NASA Manned Space Exploration of the Moon and Mars, a blunt body capsule, called the Orion Crew Exploration Vehicle (CEV), composed of a Crew Module (CM) and a Service Module (SM), with a parachute decent assembly is planned for reentry back to Earth. A Capsule Parachute Assembly System (CPAS) is being developed for preliminary parachute drop tests at the Yuma Proving Ground (YPG) to simulate high-speed reentry to Earth from beyond Low-Earth-Orbit (LEO) and to provide measurements of landing parameters and parachute loads. The avionics systems on CPAS also provide mission critical firing events to deploy, reef, and release the parachutes in three stages (extraction, drogues, mains) using mortars and pressure cartridge assemblies. In addition, a Mid-Air Delivery System (MDS) is used to separate the capsule from the sled that is used to eject the capsule from the back of the drop plane. Also, high-speed and high-definition cameras in a Video Camera System (VCS) are used to film the drop plane extraction and parachute landing events. To verify Electromagnetic Compatibility (EMC) of the CPAS system from unintentional radiation, Electromagnetic Interference (EMI) measurements are being made inside a semi-anechoic chamber at NASA/JSC at 1m from the electronic components of the CPAS system. In addition, EMI measurements of the integrated CPAS system are being made inside a hanger at YPG. These near-field B-Dot probe measurements on the surface of a parachute simulator (DART) are being extrapolated outward to the 1m standard distance for comparison to the MIL-STD radiated emissions limit.
1992-05-27
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), is serviced on the ramp at NASA's Dryden Flight Research Center, Edwards, California, before a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
NASA Technical Reports Server (NTRS)
1994-01-01
A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA). The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
2009-04-14
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers place a crane and straps on the Ares I-X simulated launch abort system to lift and rotate it for assembly with the crew module simulator. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-04-14
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers prepare the crane that will lift and rotate the Ares I-X simulated launch abort system (center) for assembly with the crew module simulator. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-04-14
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers keep close watch on the Ares I-X simulated launch abort system, or LAS, as it is lowered onto the crew module simulator for assembly. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-04-14
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X simulated launch abort system, or LAS, (left of center) is being moved to the crew module simulator (center) for assembly. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
A Coarse Pointing Assembly for Optical Communication
NASA Technical Reports Server (NTRS)
Szekely, G.; Blum, D.; Humphries, M.; Koller, A.; Mussett, D.; Schuler, S.; Vogt, P.
2010-01-01
In the framework of a contract with the European Space Agency, RUAG Space are developing a Coarse Pointing Assembly for an Optical Communication Terminal with the goal to enable high-bandwidth data exchange between GEO and/or LEO satellites as well as to earth-bound ground stations. This paper describes some development and testing aspects of such a high precision opto-mechanical device, with emphasis on the influence of requirements on the final design, the usage of a Bearing Active Preload System, some of the lessons learned on the BAPS implementation, the selection of a flex print design as rotary harness and some aspects of functional and environmental testing.
2009-04-20
CAPE CANAVERAL, Fla. –– In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the yellow framework at left, nicknamed the "birdcage," is lifted high above the floor for a fit check with the Crew Module, or CM, and Launch Abort System, or LAS, assembly nearby for the Ares I-X rocket. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for July 2009. Photo credit: NASA/Jack Pfaller
2009-04-20
CAPE CANAVERAL, Fla. –– In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the yellow framework at left, nicknamed the "birdcage," is lifted for a fit check with the Crew Module, or CM, and Launch Abort System, or LAS, assembly in the foreground for the Ares I-X rocket. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for July 2009. Photo credit: NASA/Jack Pfaller
Dropping in on a Clean Room Webb Test
2017-12-08
A crane in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Md., lowers a test mass simulator (center of frame) onto the Ambient Optical Assembly Stand or AOAS to ensure it can support the James Webb Space Telescope's Optical Telescope Element during its assembly. Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mobile Centers For Secondary Power Distribution
NASA Technical Reports Server (NTRS)
Mears, Robert L.
1990-01-01
Concept for distribution of 60-Hz ac power in large building devoted to assembly and testing of equipment improves safety, reduces number of outlets and lengthy cables, and readily accommodates frequent changes in operations and configuration. Power from floor recess fed via unobtrusive cable to portable power management center. A cart containing variety of outlets and circuit breakers, wheeled to convenient location near equipment to be assembled or tested. Power distribution system presents larger range of operational configurations than fixed location. Meets tighter standards to feed computers and delicate instruments. Industrial-grade power suitable for power tools and other hardware. Three-phase and single-phase outlets available from each.
Construction and In Vivo Testing of Prokaryotic Riboregulators.
Green, Alexander A
2017-01-01
RNAs that are transcribed and self-assemble within living cells are valuable tools for regulating and organizing cellular activities. Riboregulators, in particular, have been widely used for modulating translation and transcription in response to cognate transactivating or trigger RNAs, enabling cells to evaluate logic operations and to respond to environmental cues. Herein we detail a set of methods for the rapid construction and testing of prokaryotic riboregulators in Escherichia coli. These methods enable construction of dozens of riboregulator plasmids at the same time without the use of restriction enzymes. Furthermore, they facilitate rapid screening of devices and can be applied to a variety of other self-assembling in vivo RNA systems.
Del Medico, Luca; Christen, Heinz; Christen, Beat
2017-01-01
Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner. PMID:28531174
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Fatigue Testing of Wing Beam by the Resonance Method
NASA Technical Reports Server (NTRS)
Bleakney, William M
1938-01-01
Preliminary fatigue tests on two aluminum-alloy wing-beam specimens subjected to reversed axial loading are described. The motion used consists in incorporating one or two reciprocating motors in a resonance system of which the specimen is the spring element. A description is given of the reciprocating motors, and of the method of assembling and adjusting the vibrating system. The results indicate that the method is well adapted to fatigue tests of not only uniform wing beams but also wing beams with asymmetrical local reinforcements.
4. MISSILE TEST AND ASSEMBLY BUILDING, LEFT SIDE, LOOKING NORTH. ...
4. MISSILE TEST AND ASSEMBLY BUILDING, LEFT SIDE, LOOKING NORTH. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
2. MISSILE TEST AND ASSEMBLY BUILDING, RIGHT SIDE, LOOKING WEST. ...
2. MISSILE TEST AND ASSEMBLY BUILDING, RIGHT SIDE, LOOKING WEST. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
3. MISSILE TEST AND ASSEMBLY BUILDING, REAR SIDE, LOOKING NORTH. ...
3. MISSILE TEST AND ASSEMBLY BUILDING, REAR SIDE, LOOKING NORTH. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
Orion EFT-1 Heat Shield move from LASF to VAB for Ground Test Article Integration
2017-04-26
The heat shield for Exploration Flight Test-1 is transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations to be integrated with the Ground Test Article to be utilized for future Underway Recovery Testing. After transport from the Launch Abort System Facility (LASF) to the Vehicle Assembly Building (VAB), the heat shield is lifted off of the transport truck and placed onto foam pads (dunnage) for inspection in Highbay 2 of the VAB.
Spacecraft System Integration and Test: SSTI Lewis critical design audit
NASA Technical Reports Server (NTRS)
Brooks, R. P.; Cha, K. K.
1995-01-01
The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.
Department of Defense Abstracts of Phase 2 Awards 1991
1991-01-01
the static stiffness of these materials as measured by comprcssiun testing indicated that the materials are too flexible to sustain submergence ...design, analysis and experiment has been iti) procduce a comlplete design’ l’or an improved MBR systems. This objective has been completely met in a...propoised toc fabhricate, assemble, test, deliver, and install a complete MBR system including computer, and sollwaire lfar ciperatimig the mnstrummiicm
NASA Technical Reports Server (NTRS)
Caplin, R. S.; Royer, E. R.
1977-01-01
Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Kiesling, R.
1981-01-01
The major component fabrication program was completed. Assembly and system testing of the pulsed electron beam annealing machine are described. The design program for the transport reached completion, and the detailed drawings were released for fabrication and procurement of the long lead time components.
NASA Technical Reports Server (NTRS)
Bielozer, M.; VanLear, Benjamin S.; Kindred, N.; Monien, G.; Schulte, U.
2014-01-01
A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.
NASA Technical Reports Server (NTRS)
Bielozer, Matthew C.
2014-01-01
A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container transporting part of the new Orbiter Boom Sensor System (OBSS) is delivered by truck to the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot-long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
Transport of LCLS-II 1.3 Ghz cryomodule to SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, M. W.; Arkan, T.; Peterson, T.
2016-06-30
In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These include a prototype built and delivered by each Lab. Another two 3.9 GHz cryomodules will be built, tested and transported by Fermilab to SLAC. Each assembly will be transported over-the-road from Fermilab or Jefferson Lab using specific routes to SLAC. The transport system consists of a base frame, isolation fixture and upper protective truss. The strongback cryomodule lifting fixture is described along with other supportingmore » equipment used for both over-the-road transport and local (on-site) transport at Fermilab. Initially, analysis of fragile components and stability studies will be performed in order to assess the risk associated with over-the-road transport of a fully assembled cryomodule.« less
Preburner of Staged Combustion Rocket Engine
NASA Technical Reports Server (NTRS)
Yost, M. C.
1978-01-01
A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.
Design of plywood and paper flywheel rotors
NASA Astrophysics Data System (ADS)
Hagen, D. L.
Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.
Some assembly required: leveraging Web science to understand and enable team assembly
Contractor, Noshir
2013-01-01
Recent advances on the Web have generated unprecedented opportunities for individuals around the world to assemble into teams. And yet, because of the Web, the nature of teams and how they are assembled has changed radically. Today, many teams are ad hoc, agile, distributed, transient entities that are assembled from a larger primordial network of relationships within virtual communities. These assemblages possess the potential to unleash the high levels of creativity and innovation necessary for productively addressing many of the daunting challenges confronting contemporary society. This article argues that Web science is particularly well suited to help us realize this potential by making a substantial interdisciplinary intellectual investment in (i) advancing theories that explain our socio-technical motivations to form teams, (ii) the development of new analytic methods and models to untangle the unique influences of these motivations on team assembly, (iii) harvesting, curating and leveraging the digital trace data offered by the Web to test our models, and (iv) implementing recommender systems that use insights gleaned from our richer theoretical understanding of the motivations that lead to effective team assembly. PMID:23419854
Some assembly required: leveraging Web science to understand and enable team assembly.
Contractor, Noshir
2013-03-28
Recent advances on the Web have generated unprecedented opportunities for individuals around the world to assemble into teams. And yet, because of the Web, the nature of teams and how they are assembled has changed radically. Today, many teams are ad hoc, agile, distributed, transient entities that are assembled from a larger primordial network of relationships within virtual communities. These assemblages possess the potential to unleash the high levels of creativity and innovation necessary for productively addressing many of the daunting challenges confronting contemporary society. This article argues that Web science is particularly well suited to help us realize this potential by making a substantial interdisciplinary intellectual investment in (i) advancing theories that explain our socio-technical motivations to form teams, (ii) the development of new analytic methods and models to untangle the unique influences of these motivations on team assembly, (iii) harvesting, curating and leveraging the digital trace data offered by the Web to test our models, and (iv) implementing recommender systems that use insights gleaned from our richer theoretical understanding of the motivations that lead to effective team assembly.
Rocket welding tool ready on This Week @NASA - September 12, 2014
2014-09-12
NASA Administrator Charlie Bolden, other NASA officials and representatives from The Boeing Company participated in a September 12 ribbon cutting for the new 170-foot-high Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans. The Vertical Assembly Center is a new tool that will be used to assemble parts of NASA’s Space Launch System rocket that will send humans to an asteroid and Mars. The administrator also visited Stennis Space Center in nearby Bay St. Louis, Mississippi, where engineers plan to test the RS-25 engines that will power the core stage of SLS. Also, Orion moved for fueling, Curiosity to climb Martian mountain, Possible geological activity on Europa, Expedition 40 returns, Earth Science on ISS and Hurricane-hunting aircraft!
49 CFR 572.145 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) The test objective is to determine the resistance of the... upper and lower halves of the torso assembly (refer to § 572.140(a)(1)(iv)). (b)(1) When the upper half...
49 CFR 572.145 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) The test objective is to determine the resistance of the... upper and lower halves of the torso assembly (refer to § 572.140(a)(1)(iv)). (b)(1) When the upper half...
49 CFR 572.145 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) The test objective is to determine the resistance of the... upper and lower halves of the torso assembly (refer to § 572.140(a)(1)(iv)). (b)(1) When the upper half...
49 CFR 572.145 - Upper and lower torso assemblies and torso flexion test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Upper and lower torso assemblies and torso flexion... assemblies and torso flexion test procedure. (a) The test objective is to determine the resistance of the... upper and lower halves of the torso assembly (refer to § 572.140(a)(1)(iv)). (b)(1) When the upper half...
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.
1993-01-01
A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.
Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.
1994-02-15
An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.
Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.
1994-01-01
An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2012-01-01
The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2013-01-01
The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.
5. MISSILE TEST AND ASSEMBLY BUILDING, FRONT AND RIGHT SIDES, ...
5. MISSILE TEST AND ASSEMBLY BUILDING, FRONT AND RIGHT SIDES, LOOKING SOUTHEAST. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
6. MISSILE TEST AND ASSEMBLY BUILDING, REAR AND LEFT SIDES, ...
6. MISSILE TEST AND ASSEMBLY BUILDING, REAR AND LEFT SIDES, LOOKING NORTHWEST. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
Optimal Testlet Pool Assembly for Multistage Testing Designs
ERIC Educational Resources Information Center
Ariel, Adelaide; Veldkamp, Bernard P.; Breithaupt, Krista
2006-01-01
Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the test, such as measurement precision. In an MST…
Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.
Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan
2017-09-26
Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.
Development and Testing of the Orion CEV Parachute Assembly System (CPAS)
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; Taylor, Anthony P.; Sinclair, Robert; Olmstead, Randy; Kelley, Christopher; Johnson, Justin; Melgares, Michael; Morris, Aaron; Bledsoe, Kristin
2009-01-01
The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference.
Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates
2007-01-01
D1 D2 Fig. 3. (a) Setup for testing different arrangements of InGaAs SPAD assemblies; (b) three different InGaAs SPAD assemblies; ( c ) schematic of...presently available, either commercial or prototype, the deadtimes range from ≈50 ns for actively quenched single photon avalanche detectors ( SPADs ...to ≈10 µs for passively quenched SPADs , although even actively quenched SPADs sometimes employ µs deadtimes to avoid excessive afterpulsing rates. In
Dual frequency feed system for the CTS communications link characterization experiment
NASA Technical Reports Server (NTRS)
Gill, G. J.
1976-01-01
The developing, testing and installation of a dual frequency feed assembly were described. The feed has been designed to receive signals in the frequency range 11.7 to 12.2 GHz and transmit signals in the frequency range 14.12 GHz plus or minus 250 MHz. Complete performance data of the feed alone and installed in the 15 foot antenna is included herein. Drawings and descriptive information of the feed assembly are also given.
Component-Level Electronic-Assembly Repair (CLEAR) System Architecture
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.
2011-01-01
This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.
Electrolytic oxide reduction system
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F
2015-04-28
An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).
Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence
NASA Astrophysics Data System (ADS)
Biswal, Debasmita; Kusalik, Peter G.
2017-07-01
Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.
Statistical Aspects of Reliability, Maintainability, and Availability.
1987-10-01
A total of 33 research reports were issued, and 35 papers were published in scientific journals or are in press. Research topics included optimal assembly of systems, multistate system theory , testing whether new is better than used nonparameter survival function estimation measuring information in censored models, generalizations of total positively and
Design, Development and Testing of the GMI Reflector Deployment Assembly
NASA Technical Reports Server (NTRS)
Guy, Larry; Foster, Mike; McEachen, Mike; Pellicciotti, Joseph; Kubitschek, Michael
2011-01-01
The GMI Reflector Deployment Assembly (RDA) is an articulating structure that accurately positions and supports the main reflector of the Global Microwave Imager (GMI) throughout the 3 year mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydrometeorological predictions through more accurate and frequent precipitation measurements1. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard to design, build, and test the GMI instrument. The RDA was designed and manufactured by ATK Aerospace Systems Group to meet a number of challenging packaging and performance requirements. ATK developed a flight-like engineering development unit (EDU) and two flight mechanisms that have been delivered to BATC. This paper will focus on driving GMI instrument system requirements, the RDA design, development, and test activities performed to demonstrate that requirements have been met.
Development of an improved system of wood-frame house construction
L.O. Anderson
1965-01-01
A new system of wood-frame house construction has been developed which combines increased use of low-grade wood, prefinished components, and rapid field assembly methods without much divergence from conventional construction. Laboratory evaluations of the components of the Nu-frame system indicated that; (a) 4-foot spacing of the W-trusses tested provides a safety...
Discovery Channel Telescope active optics system early integration and test
NASA Astrophysics Data System (ADS)
Venetiou, Alexander J.; Bida, Thomas A.
2012-09-01
The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leishear, R.; Thaxton, D.; Minichan, R.
A sampling tool was required to evaluate residual activity ({mu}Curies per square foot) on the inner wall surfaces of underground nuclear waste storage tanks. The tool was required to collect a small sample from the 3/8 inch thick tank walls. This paper documents the design, testing, and deployment of the remotely operated sampling device. The sampler provides material from a known surface area to estimate the overall surface contamination in the tank prior to closure. The sampler consisted of a sampler and mast assembly mast assembly, control system, and the sampler, or end effector, which is defined as the operatingmore » component of a robotic arm. The mast assembly consisted of a vertical 30 feet long, 3 inch by 3 inch, vertical steel mast and a cantilevered arm hinged at the bottom of the mast and lowered by cable to align the attached sampler to the wall. The sampler and mast assembly were raised and lowered through an opening in the tank tops, called a riser. The sampler is constructed of a mounting plate, a drill, springs to provide a drive force to the drill, a removable sampler head to collect the sample, a vacuum pump to draw the sample from the drill to a filter, and controls to operate the system. Once the sampler was positioned near the wall, electromagnets attached it to the wall, and the control system was operated to turn on the drill and vacuum to remove and collect a sample from the wall. Samples were collected on filters in removable sampler heads, which were readily transported for further laboratory testing.« less
Fabrication of the HIAD Large-Scale Demonstration Assembly and Upcoming Mission Applications
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; Dinonno, J. M.; Cheatwood, F M.
2017-01-01
Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale.In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.
Fabrication of the HIAD Large-Scale Demonstration Assembly
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; DiNonno, J. M.; Cheatwood, F. M.
2017-01-01
Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale. In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.
In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration
NASA Astrophysics Data System (ADS)
Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.
2018-04-01
Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.
1994-12-02
S94-47810 (2 Dec. 1994) --- Lockheed Space Operations Company workers in the Extended Duration Orbiter (EDO) Facility, located inside the Vehicle Assembly Building (VAB), carefully hoist the Orbiter Docking System (ODS) from its shipping container into a test stand. The ODS was shipped in a horizontal position to the Kennedy Space Center (KSC) from contractor Rockwell Aerospace's Downey plant. Once the ODS is upright, work can continue to prepare the hardware for the first docking of the United States Space Shuttle and Russian Space Station MIR in 1995. The ODS contains both United States-made and Russian-made hardware. The black band is Russian-made thermal insulation protecting part of the docking mechanism, also Russian-made, called the Androgynous Peripheral Docking System (APDS). A red protective cap covers the APDS itself. Other elements of the ODS, most of it protected by white United States-made thermal insulation, were developed by Rockwell, which also integrated and checked out the assembled Russian-United States system.
General-Purpose Electronic System Tests Aircraft
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1989-01-01
Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.
STS-71 Shuttle/Mir mission report
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
1995-01-01
The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.
Quarter Scale RLV Multi-Lobe LH2 Tank Test Program
NASA Technical Reports Server (NTRS)
Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol
1998-01-01
Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.
CRITICAL EXPERIMENT TANK (CET) REACTOR HAZARDS SUMMARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becar, N.J.; Kunze, J.F.; Pincock, G..D.
1961-03-31
The Critical Experiment Tank (CET) reactor assembly, the associated systems, and the Low Power Test Facility in which the reactor is to be operated are described. An evaluation and summary of the hazards associated with the operation of the CET reactor in the LPTF at the ldsho Test Station are also presented. (auth)
30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...
30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Information Flow Analysis of Level 4 Payload Processing Operations
NASA Technical Reports Server (NTRS)
Danz, Mary E.
1991-01-01
The Level 4 Mission Sequence Test (MST) was studied to develop strategies and recommendations to facilitate information flow. Recommendations developed as a result of this study include revised format of the Test and Assembly Procedure (TAP) document and a conceptualized software based system to assist in the management of information flow during the MST.
The Parachute System Recovery of the Orion Pad Abort Test 1
NASA Technical Reports Server (NTRS)
Machin, Ricardo; Evans, Carol; Madsen, Chris; Morris, Aaron
2011-01-01
The Orion Pad Abort Test 1 was conducted at the US Army White Sands Missile range in May 2010. The capsule was successfully recovered using the original design for the parachute recovery system, referred to as the CEV Parachute Assembly System (CPAS). The CPAS was designed to a set of requirements identified prior to the development of the PA-1 test; these requirements were not entirely consistent with the design of the PA-1 test. This presentation will describe the original CPAS design, how the system was modified to accommodate the PA-1 requirements, and what special analysis had to be performed to demonstrate positive margins for the CPAS. The presentation will also discuss the post test analysis and how it compares to the models that were used to design the system.
Video File - NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
AXAF Alignment Test System Autocollimating Flat Error Correction
NASA Technical Reports Server (NTRS)
Lewis, Timothy S.
1995-01-01
The alignment test system for the advanced x ray astrophysics facility (AXAF) high-resolution mirror assembly (HRMA) determines the misalignment of the HRMA by measuring the displacement of a beam of light reflected by the HRMA mirrors and an autocollimating flat (ACF). This report shows how to calibrate the system to compensate for errors introduced by the ACF, using measurements taken with the ACF in different positions. It also shows what information can be obtained from alignment test data regarding errors in the shapes of the HRMA mirrors. Simulated results based on measured ACF surface data are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard
2016-05-01
This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard
2016-05-12
This report describes the third set of tests (the “DCL a shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
ERIC Educational Resources Information Center
New Jersey State Office of Legislative Services, Trenton. Assembly Education Committee.
The Assembly Education Committee of the New Jersey Office of Legislative Services held a hearing pursuant to Assembly Resolution 113, a proposal directing the Committee to investigate the skills testing program developed and administered to New Jersey children by the State Department of Education. The Committee was interested in the eighth-grade…
Micro electro-mechanical heater
Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee
2016-04-19
A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.
Micro electro-mechanical heater
Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee
2017-09-12
A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.
Test plan : I-40 TTIS tourist intercept survey
DOT National Transportation Integrated Search
1998-06-01
This document assembles best practices and presents practical advice on how to acquire the software components of Intelligent Transportation Systems (ITS). The intended audience is the "customers" - the project leaders, technical contract managers, d...
Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor
NASA Technical Reports Server (NTRS)
1972-01-01
The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.
DESI focal plate mechanical integration and cooling
NASA Astrophysics Data System (ADS)
Lambert, A. R.; Besuner, R. W.; Claybaugh, T. M.; Silber, J. H.
2016-08-01
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique[1]. The spectra of 40 million galaxies over 14000 sq. deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. This paper describes the mechanical integration of the DESI focal plate and the thermal system design. The DESI focal plate is comprised of ten identical petal assemblies. Each petal contains 500 robotic fiber positioners. Each petal is a complete, self-contained unit, independent from the others, with integrated power supply, controllers, fiber routing, and cooling services. The major advantages of this scheme are: (1) supports installation and removal of complete petal assemblies in-situ, without disturbing the others, (2) component production, assembly stations, and test procedures are repeated and parallelizable, (3) a complete, full-scale prototype can be built and tested at an early date, (4) each production petal can be surveyed and tested as a complete unit, prior to integration, from the fiber tip at the focal surface to the fiber slit at the spectrograph. The ten petal assemblies will be installed in a single integration ring, which is mounted to the DESI corrector. The aluminum integration ring attaches to the steel corrector barrel via a flexured steel adapter, isolating the focal plate from differential thermal expansions. The plate scale will be kept stable by conductive cooling of the petal assembly. The guider and wavefront sensors (one per petal) will be convectively cooled by forced flow of air. Heat will be removed from the system at ten liquid-cooled cold plates, one per petal, operating at ambient temperature. The entire focal plate structure is enclosed in an insulating shroud, which serves as a thermal barrier between the heat-generating focal plate components and the ambient air of the Mayall dome, to protect the seeing[2].
Assembly and testing of microparticle and microcapsule smart tattoo materials
NASA Astrophysics Data System (ADS)
McShane, Michael J.
2007-01-01
Microscale biochemical sensors are attractive for in vitro diagnostics and disease management, as well as medical and biological research applications. Fluorescent sensors, coupling specific glucose-binding proteins with fluorescent readout methods, have been developed for this purpose. Our work has focused on the development of assembly and packaging systems for producing micro- and nanoscale sensing components that can be used as implants, intracellular reporters, or as elements in larger systems. Both hybrid organic/inorganic particles and hollow microshells have been developed to physically couple the sensing materials together in biocompatible, semipermeable packages. Fabrication details and sensor characterization are used to demonstrate the potential of these sensor concepts.
Fabrication of capsule assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1973-01-01
Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2003-01-01
A process for testing compaction of a swaged heater for an anode sub-assembly of a Hollow Cathode Assembly (HCA), in which a test sample is cleaned, its mass measured before and after immersion in kerosene for 24 hours, and a compaction percentage calculated. A swaged heater is rejected if the compaction percentage exceeds 84%, plus or minus 4%.
Advanced radial inflow turbine rotor program: Design and dynamic testing
NASA Technical Reports Server (NTRS)
Rodgers, C.
1976-01-01
The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).