Identification of fecal contamination sources in water using host-associated markers.
Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith
2013-03-01
In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.
Chen, Connie; Gribble, Matthew O; Bartroff, Jay; Bay, Steven M; Goldstein, Larry
2017-05-01
The United States's Clean Water Act stipulates in section 303(d) that states must identify impaired water bodies for which total maximum daily loads (TMDLs) of pollution inputs into water bodies are developed. Decision-making procedures about how to list, or delist, water bodies as impaired, or not, per Clean Water Act 303(d) differ across states. In states such as California, whether or not a particular monitoring sample suggests that water quality is impaired can be regarded as a binary outcome variable, and California's current regulatory framework invokes a version of the exact binomial test to consolidate evidence across samples and assess whether the overall water body complies with the Clean Water Act. Here, we contrast the performance of California's exact binomial test with one potential alternative, the Sequential Probability Ratio Test (SPRT). The SPRT uses a sequential testing framework, testing samples as they become available and evaluating evidence as it emerges, rather than measuring all the samples and calculating a test statistic at the end of the data collection process. Through simulations and theoretical derivations, we demonstrate that the SPRT on average requires fewer samples to be measured to have comparable Type I and Type II error rates as the current fixed-sample binomial test. Policymakers might consider efficient alternatives such as SPRT to current procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington
Biedenbach, James M.
2011-01-01
The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS) in conjunction with each test. * Determine which samples caused a significant decrease in percent fertilization success relative to the negative control.
De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo
2014-03-01
In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.
Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar
2016-02-09
Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.
Echols, B S; Smith, A J; Gardinali, P R; Rand, G M
2015-02-01
The potential for the Deepwater Horizon MC-252 oil incident to affect ecosystems in the Gulf of Mexico (GOM) was evaluated using Americamysis bahia, Menidia beryllina and Vibrio fischeri (Microtox® assay). Organisms were exposed to GOM water samples collected in May-December 2010. Samples were collected where oil was visibly present on the water surface or the presence of hydrocarbons at depth was indicated by fluorescence data or reduced dissolved oxygen. Toxicity tests were conducted using water-accommodated fractions (WAFs), and oil-in-water dispersions (OWDs). Water samples collected from May to June 2010 were used for screening tests, with OWD samples slightly more acutely toxic than WAFs. Water samples collected in July through December 2010 were subjected to definitive acute testing with both species. In A. bahia tests, total PAH concentrations for OWD exposures ranged from non-detect to 23.0 μg L(-1), while WAF exposures ranged from non-detect to 1.88 μg L(-1). Mortality was >20% in five OWD exposures with A. bahia and three of the WAF definitive tests. Total PAH concentrations were lower for M. beryllina tests, ranging from non-detect to 0.64 μg L(-1) and non-detect to 0.17 μg L(-1) for OWD and WAF exposures, respectively. Only tests from two water samples in both the WAFs and OWDs exhibited >20% mortality to M. beryllina. Microtox® assays showed stimulatory and inhibitory responses with no relationship with PAH exposure concentrations. Most mortality in A. bahia and M. beryllina occurred in water samples collected before the well was capped in July 2010 with a clear decline in mortality associated with a decline in total PAH water concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hooten, Russell L.; Carr, R. Scott
1998-01-01
An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciatazoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciatazoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.
Machtiger, N A; Fischler, G E; Adams, M C; Spielmaker, R; Graf, J F
2001-01-01
A collaborative study was conducted to test a method developed to distinguish between adequately and inadequately preserved cosmetic formulations. Nineteen laboratories participated in the study. Samples tested included shampoos, hair conditioners, oil-in-water emulsions, and water-in-oil-emulsions. Triplicate samples of 4 adequately preserved and 4 inadequately preserved cosmetic products were tested by each collaborative laboratory. Results showed that all inadequately preserved shampoo and conditioner samples failed to meet the acceptance criteria for adequately preserved formulations. Of the 51 preserved samples, 49 shampoos and 48 conditioners met the criteria for adequate preservation. All samples of inadequately preserved water-in-oil emulsions and oil-in-water emulsions failed to meet the acceptance criteria, whereas all adequately preserved emulsion formulations met the acceptance criteria.
Dennehy, Kevin F.
1982-01-01
Hydrologic testing was conducted at 3 test wells in the northwestern part of the proposed Waste Isolation Pilot Plant site in southeastern New Mexico to define hydraulic properties of three water-bearing zones. The zones tested were the Magenta and Culebra Dolomite Members of the Rustler Formation and the Rustler Formation-Salado contact. The Rustler Formation and the contact yield water to wells at rates less than 0.5 gallon per minute as determined from shut-in and slug tests. These test methods were not applicable for the Culebra Dolomite Member of the Rustler Formation at well H-6B. A transmissivity value for the Culebra Dolomite Member was obtained by conducting a conventional pumping test. Well H-6B was pumped at a rate of approximately 11 gallons per minute. Throughout the testing of the Magenta Dolomite Member and the Rustler Salado contact, water-pressure response in the test zones were monitored by a pressure transducer system. Water samples from the Magenta Dolomite Member had a dissolved solids concentration of 5,760 milligrams per liter. The major chemical constituents of water samples from this zone were sulfate, sodium, and chloride. Water samples from the Culebra Dolomite Member and the Rustler-Salado contact had dissolved-solids concentrations of 52,600 and 316 ,000 milligrams per liter, respectively; chloride and sodium were the major constituents in the water samples. Radium-266, a naturally occurring radioactive element, was present in samples from all three zones. (USGS)
Measuring Water Quality in Hong Kong using an Underwater Remotely Operated Vehicle
NASA Astrophysics Data System (ADS)
Evans, J. W.
2017-12-01
Clean water is a vital necessity in our day to day lives, with all living organisms depending on it for survival and countless others relying on it as their habitat. The waters surrounding Hong Kong are home to a wide diversity of marine animals and organisms but are polluted for a variety of reasons. This pollution includes marine debris, industrial and construction waste, a high concentration of organic material, and other pollutants. This research project will focus on collecting water and soil samples from various locations around the Hong Kong ocean waters for analytical chemical sampling. A Remote Operated Vehicle (ROV) will be designed, built and used for collecting the water and soil samples. ROVs are used around the world in oceans and other deep water applications. ThisROV will be tethered with a control system and equipped with a camera, mechanical arms for collections water and soil samples and sensors for testing basic water parameters. Using a ROV will allow for long term sampling in the same location to occur as required. The collected samples will be tested in the lab to determine overall water and soil quality, allowing conclusions to be drawn about the conditions of the tested area.
Sensor node for remote monitoring of waterborne disease-causing bacteria.
Kim, Kyukwang; Myung, Hyun
2015-05-05
A sensor node for sampling water and checking for the presence of harmful bacteria such as E. coli in water sources was developed in this research. A chromogenic enzyme substrate assay method was used to easily detect coliform bacteria by monitoring the color change of the sampled water mixed with a reagent. Live webcam image streaming to the web browser of the end user with a Wi-Fi connected sensor node shows the water color changes in real time. The liquid can be manipulated on the web-based user interface, and also can be observed by webcam feeds. Image streaming and web console servers run on an embedded processor with an expansion board. The UART channel of the expansion board is connected to an external Arduino board and a motor driver to control self-priming water pumps to sample the water, mix the reagent, and remove the water sample after the test is completed. The sensor node can repeat water testing until the test reagent is depleted. The authors anticipate that the use of the sensor node developed in this research can decrease the cost and required labor for testing samples in a factory environment and checking the water quality of local water sources in developing countries.
McMahan, Lanakila; Grunden, Amy M; Devine, Anthony A; Sobsey, Mark D
2012-04-15
The sensitivity and specificity of the H(2)S test to detect fecal bacteria in water has been variable and uncertain in previous studies, partly due to its presence-absence results. Furthermore, in groundwater samples false-positive results have been reported, with H(2)S-positive samples containing no fecal coliforms or Escherichia coli. False-negative results also have been reported in other studies, with H(2)S-negative samples found to contain E. coli. Using biochemical and molecular methods and a novel quantitative test format, this research identified the types and numbers of microbial community members present in natural water samples, including fecal indicators and pathogens as well as other bacteria. Representative water sources tested in this study included cistern rainwater, a protected lake, and wells in agricultural and forest settings. Samples from quantitative H(2)S tests of water were further cultured for fecal bacteria by spread plating onto the selective media for detection and isolation of Aeromonas spp., E. coli, Clostridium spp., H(2)S-producers, and species of Salmonella and Shigella. Isolates were then tested for H(2)S production, and identified to the genus and species level using biochemical methods. Terminal Restriction Fragment Length Polymorphisms (TRFLP) was the molecular method employed to quantitatively characterize microbial community diversity. Overall, it was shown that water samples testing positive for H(2)S bacteria also had bacteria of likely fecal origin and waters containing fecal pathogens also were positive for H(2)S bacteria. Of the microorganisms isolated from natural water, greater than 70 percent were identified using TRFLP analysis to reveal a relatively stable group of organisms whose community composition differed with water source and over time. These results further document the validity of the H(2)S test for detecting and quantifying fecal contamination of water. Copyright © 2011 Elsevier Ltd. All rights reserved.
DipTest: A litmus test for E. coli detection in water.
Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb; Mitra, Sushanta K
2017-01-01
We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source.
DipTest: A litmus test for E. coli detection in water
Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb
2017-01-01
We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source. PMID:28877199
ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES
Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbes...
ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES
Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbest...
Diaz-Baez, M C; Sánchez, W A; Dutka, B J; Ronco, A; Castillo, G; Pica-Granados, Y; Castillo, L E; Ridal, J; Arkhipchuk, V; Srivastava, R C
2002-01-01
Because of rapid population growth, industrial development, and intensified agricultural production increasing amounts of chemicals are being released into the environment, polluting receiving water bodies around the world. Given the potential health risk associated with the presence of toxicants in water sources used for drinking yet the scarcity of available data, there is a need to evaluate these waters and develop strategies to reduce and prevent their contamination. The present study examined the applicability of a battery of simple, inexpensive bioassays in environmental management and the relevance of the test results in establishing the toxicological quality of water sources and drinking water within the framework of the eight-country WaterTox Network, sponsored by the International Development Research Centre, Ottawa, Canada. Seventy-six samples were collected from surface and groundwater sources and seven samples from drinking water treatment plants. Each sample was tested with a core battery of bioassays (Daphnia magna, Hydra attenuata, and Lactuca sativa root inhibition tests) and a limited set of physical and chemical parameters. In addition, three labs included the Selenastrum capricornutum test. When no toxic effects were found with the battery, samples were concentrated 10x using a solid-phase extraction (SPE) procedure. Nonconcentrated natural water samples produced a toxic response in 24% of cases with all three core bioassays. When all bioassays are considered, the percentage of raw samples showing toxicity with at least one bioassay increased to 60%. Of seven treated drinkingwater samples, four showed toxicity with at least one bioassay, raising the possibility that treatment processes in these instances were unable to remove toxic contaminants. The Daphnia magna and Hydra attenuata tests indicated a high level of sensitivity overall. Although only three of the eight countries used S. capricornutum, it proved to be an efficient and reliable bioassay for toxicity assessment. Copyright 2002 Wiley Periodicals, Inc.
McBride, W. Scott; Wacker, Michael A.
2015-01-01
A test well was drilled by the City of Tallahassee to assess the suitability of the site for the installation of a new well for public water supply. The test well is in Leon County in north-central Florida. The U.S. Geological Survey delineated high-permeability zones in the Upper Floridan aquifer, using borehole-geophysical data collected from the open interval of the test well. A composite water sample was collected from the open interval during high-flow conditions, and three discrete water samples were collected from specified depth intervals within the test well during low-flow conditions. Water-quality, source tracer, and age-dating results indicate that the open interval of the test well produces water of consistently high quality throughout its length. The cavernous nature of the open interval makes it likely that the highly permeable zones are interconnected in the aquifer by secondary porosity features.
Pipes, W O; Minnigh, H A; Moyer, B; Troy, M A
1986-01-01
A total of 2,601 water samples from six different water systems were tested for coliform bacteria by Clark's presence-absence (P-A) test and by the membrane filter (MF) method. There was no significant difference in the fraction of samples positive for coliform bacteria for any of the systems tested. It was concluded that the two tests are equivalent for monitoring purposes. However, 152 samples were positive for coliform bacteria by the MF method but negative by the P-A test, and 132 samples were positive by the P-A test but negative by the MF method. Many of these differences for individual samples can be explained by random dispersion of bacteria in subsamples when the coliform density is low. However, 15 samples had MF counts greater than 3 and gave negative P-A results. The only apparent explanation for most of these results is that coliform bacteria were present in the P-A test bottles but did not produce acid and gas. Two other studies have reported more samples positive by Clark's P-A test than by the MF method. PMID:3532953
Matuszewska, Renata; Szczotko, Maciej; Krogulska, Bozena
2012-01-01
The presence of parasitic protozoa in drinking water is mostly a result of improperly maintened the water treatment process. Currently, in Poland the testing of Cryptosporidium and Giardia in water as a part of routine monitoring of water is not perform. The aim of this study was the optimization of the method of Cryptosporidium and Giardia detection in water according to the main principles of standard ISO 15553:2006 and using Filta-Max xpress automatic elution station. Preliminary tests were performed on the samples contaminated with oocysts and cysts of reference strains of both parasitic protozoa. Further studies were carried out on environmental samples of surface water sampled directly from the intakes of water (21 samples from Vistula River and 8 samples from Zegrzynski Lake). Filtration process and samples volume reducing were performed using an automatic elution system Filta-Max xpress. Next, samples were purified during immunomagnetic separation process (IMS). Isolated cysts and oocysts were stained with FITC and DAPI and than the microscopic observation using an epifluorescence microscope was carried out. Recovery of parasite protozoa in all contaminated water samples after 9-cycles elution process applied was mean 60.6% for Cryptosporidium oocysts and 36.1% for Giardia cysts. Studies on the environmental surface water samples showed the presence of both parasitic protozoa. Number of detected Giardia cysts ranged from 1.0/10 L up to 4.5/10 L in samples from Zegrzynski Lake and from 1.0/10 L up to 38.9/10 L in samples from Vistula River. Cryptosporidium oocysts were present in 50% of samples from the Zegrzynski Lake and in 47.6% of samples from the Vistula River, and their number in both cases was similar and ranged from 0.5 up to 2.5 oocyst/10 L. The results show that applied procedure is appropriate for detection the presence of parasitic protosoan in water, but when water contains much amount of inorganic matter and suspended solids test method have to be modified like subsamples preparation and filtration process speed reduction. The applied method with the modification using Filta-Max xpress system can be useful for the routine monitoring of water. Detection of Cryptosporidium and Giardia in all samples of water taken from the intakes of surface water shows the possibility oftransfering of the protozoan cysts into the water intended for the consumption, therefore the testing of Cryptosporidium and Giardia should be included into the monitoring of water.
Akinboro, Akeem; Mohammed, Kamaruzaman; Rathnasamy, Selestin; Muniandy, Vijay Raj
2011-01-01
Unwanted side effects from a polluted water body may not be limited to the flora and fauna, they may also be transferred to the organisms along the food chain. Four water samples collected immediately and five days after rainfall from two locations inside the polluted Sungai Dua River (SGD) were tested for toxicity using the Allium cepa assay. The samples were analysed for metal content and were both macroscopically and microscopically evaluated. The water samples contained more sodium (Na+) and calcium (Ca2+) than the control tap water, and they showed root growth and mitotic inhibitions (MI) in A. cepa. However, the inhibitory effects were not dose-dependent. No chromosomal aberration (CA) was induced at 100.00% (undiluted water sample). These results suggest the water samples from SGD had weak mitodepressive and genotoxic effects on the A. cepa cells. PMID:24575215
Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers
NASA Technical Reports Server (NTRS)
MacAskill, John A.; Tsikata, Edem
2014-01-01
We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.
NASA Astrophysics Data System (ADS)
Haramoto, E.
2018-03-01
In this study, the prevalence of various waterborne pathogens in water samples collected in the Kathmandu Valley, Nepal, and the applicability of Escherichia coli as an indicator of pathogen contamination in groundwater were assessed. Fifty-three water samples, including shallow groundwater and river water, were analyzed to examine the presence of protozoan (oo)cysts via fluorescence microscopy and that of viral and bacterial genomes via quantitative PCR. At least one of the seven types of pathogens tested (i.e., Cryptosporidium, Giardia, human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, and Vibrio cholerae) was detected in 68% (15/22) of the shallow dug well water samples; groundwater in the shallow dug wells was more contaminated compared with that in shallow tube wells (8/15, 53%). River water and sewage samples were contaminated with extremely high concentrations of multiple pathogens, whereas a tap water sample supplied by a water tanker tested positive for human adenoviruses and V. cholerae. The detection of host-specific Bacteroidales genetic markers revealed the effects of human and animal feces on groundwater contamination. The tested pathogens were sometimes detected even in E. coli-negative groundwater samples, indicative of the limitations of using E. coli as an indicator for waterborne pathogens in groundwater.
Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja
2011-09-01
Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks. Copyright © 2011 Elsevier GmbH. All rights reserved.
43 CFR 11.64 - Injury determination phase-testing and sampling methods.
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraphs (b), (c), (d), (e), and (f) of this section. (b) Surface water resources. (1) Testing and sampling for injury to surface water resources shall be performed using methodologies described in the... for surface water resources shall be conducted in accordance with methods that are generally accepted...
43 CFR 11.64 - Injury determination phase-testing and sampling methods.
Code of Federal Regulations, 2011 CFR
2011-10-01
... paragraphs (b), (c), (d), (e), and (f) of this section. (b) Surface water resources. (1) Testing and sampling for injury to surface water resources shall be performed using methodologies described in the... for surface water resources shall be conducted in accordance with methods that are generally accepted...
Schlottmann, Jamie L.; Funkhouser, Ron A.
1991-01-01
Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances.Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium and zinc). Radionuclide activities and stable isotope (5 values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample.Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance. Logs for test-hole NOTS 7 do not include long- and short-normal resistivity, spontaneous-potential, or single-point resistivity. Logs for test-hole NOTS 7A include only caliper and natural-gamma logs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Analysis and Sampling... for use as an alternative oil and grease method. Some comments were specific to the sampling...-side comparison using the specific procedures (e.g. sampling frequency, number of samples, QA/QC, and...
Evaluation of dredged material proposed for ocean disposal from Hudson River, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.
1996-09-01
The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less
Regolith Volatile Recovery at Simulated Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale
2016-01-01
Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.
Hsu, Bing-Mu; Wu, Shu-Fen; Huang, Shih-Wei; Tseng, Yu-Jung; Ji, Dar-Der; Chen, Jung-Sheng; Shih, Feng-Cheng
2010-02-01
Both Shigella spp. and enteroinvasive Escherichia coli (EIEC) are important human pathogens that are responsible for the majority of cases of endemic bacillary dysentery. However, they are difficult to identify and differentiate by biochemical tests or molecular methods alone. In this study, we developed a procedure to detect Shigella spp. and EIEC from environmental water samples using membrane filtration followed by nutrient broth enrichment, isolation using selective culture plates, and identification of the invasion plasmid antigen H (ipaH) gene by PCR amplification and DNA sequencing. Finally, we used a biochemical test and a serological assay to differentiate between Shigella and EIEC. Among the 93 water samples from nine reservoirs and one watershed, 76 (81.7%) water samples of culture plates had candidate colonies of Shigella and EIEC and 5 water samples were positive (5.4%) for a Shigella- and EIEC-specific polymerase chain reaction targeting the ipaH gene. Guided by the molecular method, the biochemical test, and the serological assay, 11 ipaH gene-positive isolates from 5 water samples were all identified as EIEC. (c) 2009 Elsevier Ltd. All rights reserved.
Al-Khatib, Issam A; Orabi, Moammar
2004-05-01
We studied the biological characteristics of drinking-water in three villages in Ramallah and al-Bireh district, by testing the total coliforms. Water samples were collected from rain-fed cisterns between October and November 2001. The results show that 87% of tested samples of drinking-water were highly contaminated and in need of coagulation, filtration and disinfection based on the World Health Organization guidelines for drinking-water, and 10.5% had low contamination and were in need of treatment by disinfection only. Only 2.5% of the tested samples were not contaminated and were suitable for drinking without treatment. The main cause of drinking-water con tamination was the presence of cesspits, wastewater and solid waste dumping sites near the cisterns.
Preliminary post-tsunami water quality survey in Phang-Nga province, southern Thailand.
Tharnpoophasiam, Prapin; Suthisarnsuntorn, Usanee; Worakhunpiset, Suwalee; Charoenjai, Prasasana; Tunyong, Witawat; Phrom-In, Suvannee; Chattanadee, Siriporn
2006-01-01
This preliminary water quality survey was performed eight weeks after the tsunami hit Phang-Nga Province on 26 December 2004. Water samples collected from the affected area, 10 km parallel to the seaside, were compared with water samples from the control area approximately 4 km from the seaside, which the tsunami waves could not reach. These samples included 18 surface-water samples, 37 well-water samples, and 8 drinking-water samples, which were examined for microbiology and physical-chemical properties. The microbiological examinations focused on enteric bacteria, which were isolated by culture method, while physical-chemical properties comprised on-site testing for pH, salinity, dissolved oxygen (DO), conductivity and total dissolved solids (TDS) by portable electrochemical meter (Sens Ion 156). The results of the microbiological examinations showed that water samples in the affected areas were more contaminated with enteric bacteria than the control area: 45.4% of surface-water samples in the affected area, and 40.0% in the control; 19.0% of well-water samples in the affected area, and 7.7% in the control. All eight drinking-water samples were clear of enteric bacteria. Tests for physical-chemical properties showed that the salinity, pH, conductivity, and TDS of surface-water samples from the affected area were significantly higher than the control. The salinity, conductivity, and TDS of the well-water samples from the affected areas were also significantly greater than those from the control area. The surface and well water in the tsunami-affected area have been changed greatly and need improvement.
Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Brinker, David
2010-01-01
The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.
Jonczyk, E; Gilron, G; Zajdlik, B
2001-04-01
Most industrial effluents discharged into the marine coastal environment are freshwater in nature and therefore require manipulation prior to testing with marine organisms. The sea urchin fertilization test is a common marine bioassay used for routine environmental monitoring, investigative evaluations, and/or regulatory testing of effluents and sediment pore waters. The existing Canadian and U.S. Environmental Protection Agencies test procedures using sea urchin (and sand dollar) gametes allow for sample salinity adjustment using either brine or dry salts. Moreover, these procedures also allow for the use of either natural or synthetic marine water for culturing/holding test organisms and for full-scale testing. At present, it is unclear to what extent these variables affect test results for whole effluents. The test methods simply state that there are no data available and that the use of artificial dry sea salts should be considered provisional. We conducted a series of concurrent experiments aimed at comparing the two different treatments of sample salinity adjustment and the use of natural versus synthetic seawater in order to test these assumptions and evaluate effects on the estimated end points generated by the sea urchin fertilization sublethal toxicity test. Results from these experiments indicated that there is no significant difference in test end points when dry salts or brine are used for sample salinity adjustment. Similarly, results obtained from parallel (split-sample) industrial effluent tests with natural and artificial seawater suggest that both dilution waters produce similar test results. However, data obtained from concurrent tests with the reference toxicant, copper sulfate, showed higher variability and greater sensitivity when using natural seawater as control/dilution water.
Brooks, Myron H.; Schroder, LeRoy J.; Willoughby, Timothy C.
1987-01-01
Four laboratories involved in the routine analysis of wet-deposition samples participated in an interlaboratory comparison program managed by the U.S. Geological Survey. The four participants were: Illinois State Water Survey central analytical laboratory in Champaign, Illinois; U.S. Geological Survey national water-quality laboratories in Atlanta, Georgia, and Denver, Colorado; and Inland Waters Directorate national water-quality laboratory in Burlington, Ontario, Canada. Analyses of interlaboratory samples performed by the four laboratories from October 1983 through December 1984 were compared.Participating laboratories analyzed three types of interlaboratory samples--natural wet deposition, simulated wet deposition, and deionized water--for pH and specific conductance, and for dissolved calcium, magnesium, sodium, sodium, potassium, chloride, sulfate, nitrate, ammonium, and orthophosphate. Natural wet-deposition samples were aliquots of actual wet-deposition samples. Analyses of these samples by the four laboratories were compared using analysis of variance. Test results indicated that pH, calcium, nitrate, and ammonium results were not directly comparable among the four laboratories. Statistically significant differences between laboratory results probably only were meaningful for analyses of dissolved calcium. Simulated wet-deposition samples with known analyte concentrations were used to test each laboratory for analyte bias. Laboratory analyses of calcium, magnesium, sodium, potassium, chloride, sulfate, and nitrate were not significantly different from the known concentrations of these analytes when tested using analysis of variance. Deionized-water samples were used to test each laboratory for reporting of false positive values. The Illinois State Water Survey Laboratory reported the smallest percentage of false positive values for most analytes. Analyte precision was estimated for each laboratory from results of replicate measurements. In general, the Illinois State Water Survey laboratory achieved the greatest precision, whereas the U.S. Geological Survey laboratories achieved the least precision.
Biedenbach, James M.; Carr, Robert S.
2011-01-01
Pore water from coastal beach and marsh sediments from the northern Gulf of Mexico, pre- and post-landfall of the Deepwater Horizon oil release, were collected and evaluated for toxicity with the sea urchin fertilization and embryological development assays. There were 17 pre-landfall samples and 49 post-landfall samples tested using both assays. Toxicity was determined in four pre-landfall sites and in seven post-landfall sites in one or both assays as compared to a known reference sediment pore-water sample collected in Aransas Bay, Texas. Further analysis and testing of five of the post-landfall toxic samples utilizing Toxicity Identification Evaluation techniques indicated that ammonia, and to a lesser extent metals, contributed to most, if not all, of the observed toxicity in four of the five samples. Results of one sample (MS-39) indicated evidence that ammonia, metals, and non-ionic organics were contributing to the observed toxicity.
Wang, Alice; McMahan, Lanakila; Rutstein, Shea; Stauber, Christine; Reyes, Jorge; Sobsey, Mark D
2017-04-01
AbstractThe Joint Monitoring Program relies on household surveys to classify access to improved water sources instead of measuring microbiological quality. The aim of this research was to pilot a novel test for Escherichia coli quantification of household drinking water in the 2011 Demographic and Health Survey (DHS) in Peru. In the Compartment Bag Test (CBT), a 100-mL water sample is supplemented with chromogenic medium to support the growth of E. coli , poured into a bag with compartments, and incubated. A color change indicates E. coli growth, and the concentration of E. coli /100 mL is estimated as a most probable number. Triplicate water samples from 704 households were collected; one sample was analyzed in the field using the CBT, another replicate sample using the CBT was analyzed by reference laboratories, and one sample using membrane filtration (MF) was analyzed by reference laboratories. There were no statistically significant differences in E. coli concentrations between the field and laboratory CBT results, or when compared with MF results. These results suggest that the CBT for E. coli is an effective method to quantify fecal bacteria in household drinking water. The CBT can be incorporated into DHS and other national household surveys as a direct measure of drinking water safety based on microbial quality to better document access to safe drinking water.
Wang, Alice; McMahan, Lanakila; Rutstein, Shea; Stauber, Christine; Reyes, Jorge; Sobsey, Mark D.
2017-01-01
The Joint Monitoring Program relies on household surveys to classify access to improved water sources instead of measuring microbiological quality. The aim of this research was to pilot a novel test for Escherichia coli quantification of household drinking water in the 2011 Demographic and Health Survey (DHS) in Peru. In the Compartment Bag Test (CBT), a 100-mL water sample is supplemented with chromogenic medium to support the growth of E. coli, poured into a bag with compartments, and incubated. A color change indicates E. coli growth, and the concentration of E. coli/100 mL is estimated as a most probable number. Triplicate water samples from 704 households were collected; one sample was analyzed in the field using the CBT, another replicate sample using the CBT was analyzed by reference laboratories, and one sample using membrane filtration (MF) was analyzed by reference laboratories. There were no statistically significant differences in E. coli concentrations between the field and laboratory CBT results, or when compared with MF results. These results suggest that the CBT for E. coli is an effective method to quantify fecal bacteria in household drinking water. The CBT can be incorporated into DHS and other national household surveys as a direct measure of drinking water safety based on microbial quality to better document access to safe drinking water. PMID:28500818
The presence-absence coliform test for monitoring drinking water quality.
Rice, E W; Geldreich, E E; Read, E J
1989-01-01
The concern for improved monitoring of the sanitary quality of drinking water has prompted interest in alternative methods for the detection of total coliform bacteria. A simplified qualitative presence-absence test has been proposed as an alternate procedure for detecting coliform bacteria in potable water. In this paper data from four comparative studies were analyzed to compare the recovery of total coliform bacteria from drinking water using the presence-absence test, the multiple fermentation tube procedure, and the membrane filter technique. The four studies were of water samples taken from four different geographic areas of the United States: Hawaii, New England (Vermont and New Hampshire), Oregon, and Pennsylvania. Analysis of the results of these studies were compared, based upon the number of positive samples detected by each method. Combined recoveries showed the presence-absence test detected significantly higher numbers of samples with coliforms than either the fermentation tube or membrane filter methods, P less than 0.01. The fermentation tube procedure detected significantly more positive samples than the membrane filter technique, P less than 0.01. Based upon the analysis of the combined data base, it is clear that the presence-absence test is as sensitive as the current coliform methods for the examination of potable water. The presence-absence test offers a viable alternative to water utility companies that elect to use the frequency-of-occurrence approach for compliance monitoring. PMID:2493663
Drinking water test methods in crisis-afflicted areas: comparison of methods under field conditions.
Merle, Roswitha; Bleul, Ingo; Schulenburg, Jörg; Kreienbrock, Lothar; Klein, Günter
2011-11-01
To simplify the testing of drinking water in crisis-afflicted areas (as in Kosovo in 2007), rapid test methods were compared with the standard test. For Escherichia coli and coliform pathogens, rapid tests were made available: Colilert(®)-18, P/A test with 4-methylumbelliferyl-β-D-glucoronid, and m-Endo Broth. Biochemical differentiation was carried out by Enterotube™ II. Enterococci were determined following the standard ISO test and by means of Enterolert™. Four hundred ninety-nine water samples were tested for E. coli and coliforms using four methods. Following the standard method, 20.8% (n=104) of the samples contained E. coli, whereas the rapid tests detected between 19.6% (m-Endo Broth, 92.0% concordance) and 20.0% (concordance: 93.6% Colilert-18 and 94.8% P/A-test) positive samples. Regarding coliforms, the percentage of concordant results ranged from 98.4% (P/A-test) to 99.0% (Colilert-18). Colilert-18 and m-Endo Broth detected even more positive samples than the standard method did. Enterococci were detected in 93 of 573 samples by the standard method, but in 92 samples by Enterolert (concordance: 99.5%). Considering the high-quality equipment and time requirements of the standard method, the use of rapid tests in crisis-afflicted areas is sufficiently reliable.
Epidemiological investigation of an outbreak of typhoid fever in Jorhat town of Assam, India.
Roy, Jashbeer Singh; Saikia, Lahari; Medhi, Mithu; Tassa, Dipak
2016-10-01
Typhoid fever is a global health problem and is also endemic in India. An outbreak of fever occurred in January 2014 in Jorhat Town in Assam, India. Here we report the results of an investigation done to find out the aetiology and source of the outbreak. The affected areas were visited on January 23, 2014 by a team of Jorhat district Integrated Disease Surveillance Project personnel. A total of 13 blood samples from patients with fever as first symptom and six water samples were collected from the affected areas. The blood samples were cultured and isolates were identified using standard biochemical tests. Isolates were also tested for antimicrobial sensitivity. Widal test was performed on 10 of the 13 blood samples collected. Sanitary survey was carried out to find any leakage in the water supply and also the sewage system of the Jorhat town. Blood culture yielded Salmonella enterica serovar Typhi in six (46.15%) patients whereas Widal test was positive in 10 (76.9%) of 13 patients. Water culture showed presumptive coliform count of >180/100 ml in two out of the six samples tested. Salmonella Typhi was also isolated from water culture of these two samples. Sanitary survey carried out in the affected places showed that the water supply pipes of urban water supply were in close proximity to the sewage drainage system and there were few leakages. The outbreak occurred due to S. Typhi contaminating the water supply. Sanitation and immunization are the two most important components to be stressed to prevent such outbreaks.
Epidemiological investigation of an outbreak of typhoid fever in Jorhat town of Assam, India
Roy, Jashbeer Singh; Saikia, Lahari; Medhi, Mithu; Tassa, Dipak
2016-01-01
Background & objectives: Typhoid fever is a global health problem and is also endemic in India. An outbreak of fever occurred in January 2014 in Jorhat Town in Assam, India. Here we report the results of an investigation done to find out the aetiology and source of the outbreak. Methods: The affected areas were visited on January 23, 2014 by a team of Jorhat district Integrated Disease Surveillance Project personnel. A total of 13 blood samples from patients with fever as first symptom and six water samples were collected from the affected areas. The blood samples were cultured and isolates were identified using standard biochemical tests. Isolates were also tested for antimicrobial sensitivity. Widal test was performed on 10 of the 13 blood samples collected. Sanitary survey was carried out to find any leakage in the water supply and also the sewage system of the Jorhat town. Results: Blood culture yielded Salmonella enterica serovar Typhi in six (46.15%) patients whereas Widal test was positive in 10 (76.9%) of 13 patients. Water culture showed presumptive coliform count of >180/100 ml in two out of the six samples tested. Salmonella Typhi was also isolated from water culture of these two samples. Sanitary survey carried out in the affected places showed that the water supply pipes of urban water supply were in close proximity to the sewage drainage system and there were few leakages. Interpretation & conclusions: The outbreak occurred due to S. Typhi contaminating the water supply. Sanitation and immunization are the two most important components to be stressed to prevent such outbreaks. PMID:28256469
Brennan, Linda M.; Widder, Mark W.; McAleer, Michael K.; Mayo, Michael W.; Greis, Alex P.; van der Schalie, William H.
2016-01-01
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147
Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H
2016-03-07
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.
Holloway, Owen G.; Waddell, Jonathan P.
2008-01-01
A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted to assess differences between three water-sampling methods - collecting samples from the well by pumping a packer-isolated zone using a submersible pump, by using a grab sampler, and by using a passive diffusion sampler. Concentrations of tetrachloroethylene, trichloroethylene and 1,2-dichloropropane were greatest for samples collected using the submersible pump in the packed-isolated interval, suggesting that the straddle packer yielded the least dilute sample.
Total Water Content Measurements with an Isokinetic Sampling Probe
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.
2010-01-01
The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.
Identification of Naegleria fowleri in warm ground water aquifers.
Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B
2010-01-01
The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.
Guertal, William R.; Stewart, Marie; Barbaro, Jeffrey R.; McHale, Timthoy J.
2004-01-01
A joint study by the Dover National Test Site and the U.S. Geological Survey was conducted from June 27 through July 18, 2001 to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site at Dover Air Force Base, Delaware. The study was conducted to support a planned enhanced bio-remediation demonstration and to assist the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. This report presents the analytical results from ground-water samples collected during the direct-push ground-water sampling study. A direct-push drill rig was used to quickly collect 115 ground-water samples over a large area at varying depths. The ground-water samples and associated quality-control samples were analyzed for volatile organic compounds and methyl tert-butyl ether by the Dover National Test Site analytical laboratory. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloroethene, 1.14 micrograms per liter of trichloroethene, 2.65 micrograms per liter of tetrachloroethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest methyl tert-butyl ether concentrations were found in the surficial aquifer from -4.6 to 6.4 feet mean sea level, however, methyl tert-butyl ether was detected as deep as -9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations were found in samples that contained methyl tert-butyl ether.
Can Sanitary Surveys Replace Water Quality Testing? Evidence from Kisii, Kenya.
Misati, Aaron Gichaba; Ogendi, George; Peletz, Rachel; Khush, Ranjiv; Kumpel, Emily
2017-02-07
Information about the quality of rural drinking water sources can be used to manage their safety and mitigate risks to health. Sanitary surveys, which are observational checklists to assess hazards present at water sources, are simpler to conduct than microbial tests. We assessed whether sanitary survey results were associated with measured indicator bacteria levels in rural drinking water sources in Kisii Central, Kenya. Overall, thermotolerant coliform (TTC) levels were high: all of the samples from the 20 tested dug wells, almost all (95%) of the samples from the 25 tested springs, and 61% of the samples from the 16 tested rainwater harvesting systems were contaminated with TTC. There were no significant associations between TTC levels and overall sanitary survey scores or their individual components. Contamination by TTC was associated with source type (dug wells and springs were more contaminated than rainwater systems). While sanitary surveys cannot be substituted for microbial water quality results in this context, they could be used to identify potential hazards and contribute to a comprehensive risk management approach.
ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING
Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...
Phase II test plan for the evaluation of the performance of container filling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOGER, R.M.
The PHMC will provide tank wastes for final treatment by BNFL from Hanford's waste tanks. Concerns about the ability for ''grab'' sampling to provide large volumes of representative waste samples has led to the development of a nested, fixed-depth sampling system. Preferred concepts for filling sample containers that meet RCRA organic sample criteria were identified by a PHMC Decision Board. These systems will replace the needle based sampling ''T'' that is currently on the sampling system. This test plan document identifies cold tests with simulants that will demonstrate the preferred bottle filling concepts abilities to provide representative waste samples andmore » will meet RCRA criteria. Additional tests are identified that evaluate the potential for cross-contamination between samples and the ability for the system to decontaminate surfaces which have contacted tank wastes. These tests will be performed with kaolid/water and sand/water slurry simulants in the test rig that was used by AEAT to complete Phase 1 tests in FY 1999.« less
Leeth, David C.
2002-01-01
In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two samples from Site 16. Hypothesis testing, using the Wilcoxon rank-sum test (also known as the Mann-Whitney test), indicates no statistical difference between ground-water constituent concentrations from Sites 5 and 16, and background concentrations. Hypothesis testing, however, indicates the concentration of barium in background ground-water samples is greater than in ground-water samples collected at Site 16.
Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water
Harte, Philip T.; Brayton, Michael J.; Ives, Wayne
2000-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
Buffer substitution in malaria rapid diagnostic tests causes false-positive results
2010-01-01
Background Malaria rapid diagnostic tests (RDTs) are kits that generally include 20 to 25 test strips or cassettes, but only a single buffer vial. In field settings, laboratory staff occasionally uses saline, distilled water (liquids for parenteral drugs dilution) or tap water as substitutes for the RDT kit's buffer to compensate for the loss of a diluent bottle. The present study assessed the effect of buffer substitution on the RDT results. Methods Twenty-seven RDT brands were run with EDTA-blood samples of five malaria-free subjects, who were negative for rheumatoid factor and antinuclear antibodies. Saline, distilled water and tap water were used as substitute liquids. RDTs were also run with distilled water, without adding blood. Results were compared to those obtained with the RDT kit's buffer and Plasmodium positive samples. Results Only eight cassettes (in four RDT brands) showed no control line and were considered invalid. Visible test lines occurred for at least one malaria-free sample and one of the substitutes in 20/27 (74%) RDT brands (saline: n = 16; distilled water: n = 17; and tap water: n = 20), and in 15 RDTs which were run with distilled water only. They occurred for all Plasmodium antigens and RDT formats (two-, three- and four-band RDTs). Clearance of the background of the strip was excellent except for saline. The aspects (colour, intensity and crispness) of the control and the false-positive test lines were similar to those obtained with the RDT kits' buffer and Plasmodium positive samples. Conclusion Replacement of the RDT kit's dedicated buffer by saline, distilled water and tap water can cause false-positive test results. PMID:20650003
Revelations of an overt water contamination.
Singh, Gurpreet; Kaushik, S K; Mukherji, S
2017-07-01
Contaminated water sources are major cause of water borne diseases of public health importance. Usually, contamination is suspected after an increase in patient load. Two health teams investigated the episode. First team conducted sanitary survey, and second team undertook water safety and morbidity survey. On-site testing was carried out from source till consumer end. Investigation was also undertaken to identify factors which masked the situation. Prevention and control measures included super chlorination, provision of alternate drinking water sources, awareness campaign, layout of new water pipeline bypassing place of contamination, repair of sewers, flushing and cleaning of water pipelines, and repeated water sampling and testing. Multiple sources of drinking water supply were detected. Water samples from consumer end showed 18 coliforms per 100 ml. Sewer cross connection with active leakage in water pipeline was found and this was confirmed by earth excavation. Water safety and morbidity survey found majority of households receiving contaminated water supply. This survey found no significant difference among households receiving contaminated water supply and those receiving clean water. Average proportion of household members with episode of loose motions, pain abdomen, vomiting, fever, and eye conditions was significantly more among households receiving contaminated water. The present study documents detailed methodology of investigation and control measures to be instituted on receipt of contaminated water samples. Effective surveillance mechanisms for drinking water supplies such as routine testing of water samples can identify water contamination at an early stage and prevent an impending outbreak.
Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei
2015-03-31
A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.
Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei
2015-01-01
A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837
Haugh, C.J.
1996-01-01
Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.
40 CFR 133.104 - Sampling and test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Sampling and test procedures. 133.104 Section 133.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.104 Sampling and test procedures. (a) Sampling and test procedures for...
40 CFR 133.104 - Sampling and test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Sampling and test procedures. 133.104 Section 133.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.104 Sampling and test procedures. (a) Sampling and test procedures for...
40 CFR 133.104 - Sampling and test procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Sampling and test procedures. 133.104 Section 133.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.104 Sampling and test procedures. (a) Sampling and test procedures for...
Manning, T.K.; Smith, K.E.; Wood, C.D.; Williams, J.B.
1994-01-01
Water-quality samples were collected from Chicod Creek in the Coastal Plain Province of North Carolina during the summer of 1992 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Chicod Creek is in the Albemarle-Pamlico drainage area, one of four study units designated to test equipment and procedures for collecting and processing samples for the solid-phase extraction of selected pesticides, The equipment and procedures were used to isolate 47 pesticides, including organonitrogen, carbamate, organochlorine, organophosphate, and other compounds, targeted to be analyzed by gas chromatography/mass spectrometry. Sample-collection and processing equipment equipment cleaning and set-up procedures, methods pertaining to collecting, splitting, and solid-phase extraction of samples, and water-quality data resulting from the field test are presented in this report Most problems encountered during this intensive sampling exercise were operational difficulties relating to equipment used to process samples.
Air and water quality monitor assessment of life support subsystems
NASA Technical Reports Server (NTRS)
Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.
1988-01-01
Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.
Dennehy, Kevin F.; Mercer, Jerry W.
1982-01-01
Data were collected during hydrologic testing at wells H-5A, H-5B, and H-5C in the northeastern part of the proposed Waste Isolation Pilot Plant site in southeastern New Mexico. The three water-bearing zones tested, the Magenta and Culebra Dolomite Members of the Rustler Formation and the Rustler Formation-Salado Formation contact, yield water to wells at rates less than 0.6 gallon per minute. Throughout the testing, water-pressure response in the tested zone was monitored by a pressure-transducer system. Shut-in and slug tests were conducted to acquire data. Water samples from the Magenta Dolomite Member, Culebra Dolomite Member, and Rustler Formation-Salado Formation contact had dissolved-solids concentrations of 6,090, 144,000, and 412,000 milligrams per liter, respectively. The major chemical constituents of water samples from the Magenta Dolomite Member were sodium and sulfate; from the Culebra Dolomite Member, sodium and chloride; and from the Rustler Formation-Salado Formation contact, magnesium, and chloride. Radium-226, a naturally occurring radioactive element, was present in samples from all three zones. (USGS)
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fecal coliform or E. coli are present in the water distribution system (as specified in § 141.63(b)), or when the water system fails to test for fecal coliforms or E. coli when any repeat sample tests...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fecal coliform or E. coli are present in the water distribution system (as specified in § 141.63(b)), or when the water system fails to test for fecal coliforms or E. coli when any repeat sample tests...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and...
Schulze, P.A.; Capel, P.D.; Squillace, P.J.; Helsel, D.R.
1993-01-01
The usefulness and sensitivity, of a portable immunoassay test for the semiquantitative field screening of water samples was evaluated by means of laboratory and field studies. Laboratory results indicated that the tests were useful for the determination of atrazine concentrations of 0.1 to 1.5 μg/L. At a concentration of 1 μg/L, the relative standard deviation in the difference between the regression line and the actual result was about 40 percent. The immunoassay was less sensitive and produced similar errors for other triazine herbicides. After standardization, the test results were relatively insensitive to ionic content and variations in pH (range, 4 to 10), mildly sensitive to temperature changes, and quite sensitive to the timing of the final incubation step, variances in timing can be a significant source of error. Almost all of the immunoassays predicted a higher atrazine concentration in water samples when compared to results of gas chromatography. If these tests are used as a semiquantitative screening tool, this tendency for overprediction does not diminish the tests' usefulness. Generally, the tests seem to be a valuable method for screening water samples for triazine herbicides.
Alipour, Vali; Dindarloo, Kavoos; Mahvi, Amir Hossein; Rezaei, Leila
2015-03-01
Corrosion and scaling is a major problem in water distribution systems, thus evaluation of water corrosivity properties is a routine test in water networks. To evaluate water stability in the Bandar Abbas water distribution system, the network was divided into 15 clusters and 45 samples were taken. Langelier, Ryznar, Puckorius, Larson-Skold (LS) and Aggressive indices were determined and compared to the marble test. The mean parameters included were pH (7.8 ± 0.1), electrical conductivity (1,083.9 ± 108.7 μS/cm), total dissolved solids (595.7 ± 54.7 mg/L), Cl (203.5 ± 18.7 mg/L), SO₄(174.7 ± 16.0 mg/L), alkalinity (134.5 ± 9.7 mg/L), total hardness (156.5 ± 9.3 mg/L), HCO₃(137.4 ± 13.0 mg/L) and calcium hardness (71.8 ± 4.3 mg/L). According to the Ryznar, Puckorius and Aggressive Indices, all samples were stable; based on the Langelier Index, 73% of samples were slightly corrosive and the rest were scale forming; according to the LS index, all samples were corrosive. Marble test results showed tested water of all 15 clusters tended to scale formation. Water in Bandar Abbas is slightly scale forming. The most appropriate indices for the network conditions are the Aggressive, Puckorius and Ryznar indices that were consistent with the marble test.
Eid, Neveen H; Al Doghaither, Huda A; Kumosani, Taha A; Gull, Munazza
2017-01-01
To evaluate the indigenous bacterial strains of drinking water from the most commercial water types including bottled and filtered water that are currently used in Saudi Arabia. Thirty randomly selected commercial brands of bottled water were purchased from Saudi local markets. Moreover, samples from tap water and filtered water were collected in sterilized glass bottles and stored at 4°C. Biochemical analyses including pH, temperature, lactose fermentation test (LAC), indole test (IND), methyl red test (MR), Voges-Proskauer test (VP), urease test (URE), catalase test (CAT), aerobic and anaerobic test (Ae/An) were measured. Molecular identification and comparative sequence analyses were done by full length 16S rRNA gene sequences using gene bank databases and phylogenetic trees were constructed to see the closely related similarity index between bacterial strains. Among 30 water samples tested, 18 were found positive for bacterial growth. Molecular identification of four selected bacterial strains indicated the alarming presence of pathogenic bacteria Bacillus spp . in most common commercial types of drinking water used in Saudi Arabia. The lack of awareness about good sanitation, poor personal hygienic practices and failure of safe water management and supply are the important factors for poor drinking water quality in these sources, need to be addressed.
FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE BOTTLED DRINKING WATER IN BANGKOK, THAILAND.
Rirattanapong, Praphasri; Rirattanapong, Opas
2016-09-01
The use of bottled drinking water may be a source of fluoride and could be a risk factor for fluorosis among infants and young children. The aim of this study was to evaluate the fluoride content of commercially available bottled drinking water in Bangkok, Thailand. Forty-five water samples (15 samples of plain water and 30 samples of mineral water) were purchased from several supermarkets in Bangkok, Thailand. Three bottles of each water sample were purchased, and the fluoride content of each sample was measured twice using a combination fluoride-ion selective electrode. The average reading for each sample was then calculated. Data were analyzed by descriptive statistics. Differences between mineral and plain water samples were determined by Student’s t-test. The mean (±SD) fluoride content for all the water samples was 0.17 (±0.17) mg F/l (range: 0.01-0.89 mg F/l). Six brands (13%) tested stated the fluoride content on the label. The actual fluoride content in each of their brands varied little from the label. Eight samples (18%) had a fluoride content >0.3 mg F/l and two samples (4%) had a fluoride content >0.6 mg F/l. The mean mineral water fluoride concentration was significantly higher than the mean fluoride concentration of plain water (p=0.001). We found commercially sold bottled drinking water in Bangkok, Thailand contained varying concentrations of fluoride; some with high concentrations of fluoride. Health professions need to be aware this varying fluoride content of bottled drinking water and educate the parents of infants and small children about this when prescribing fluoride supplements. Consideration should be made to have fluoride content put on the label of bottled water especially among brands with a content >0.3 mg F/l.
Hill, Vincent R; Narayanan, Jothikumar; Gallen, Rachel R; Ferdinand, Karen L; Cromeans, Theresa; Vinjé, Jan
2015-05-26
Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters.
Hill, Vincent R.; Narayanan, Jothikumar; Gallen, Rachel R.; Ferdinand, Karen L.; Cromeans, Theresa; Vinjé, Jan
2015-01-01
Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters. PMID:26016775
New procedure for sampling infiltration to assess post-fire soil water repellency
P. R. Robichaud; S. A. Lewis; L. E. Ashmun
2008-01-01
The Mini-disk Infiltrometer has been adapted for use as a field test of post-fire infiltration and soil water repellency. Although the Water Drop Penetration Time (WDPT) test is the common field test for soil water repellency, the Mini-disk Infiltrometer (MDI) test takes less time, is less subjective, and provides a relative infiltration rate. For each test, the porous...
Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada
Scofield, K.M.
2006-01-01
Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.
Dataset of producing and curing concrete using domestic treated wastewater
Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid
2015-01-01
We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577
Dataset of producing and curing concrete using domestic treated wastewater.
Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid
2016-03-01
We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.
Smith, Tamara; Krometis, Leigh-Anne H; Hagedorn, Charles; Lawrence, Annie H; Benham, Brian; Ling, Erin; Ziegler, Peter; Marmagas, Susan West
2014-12-01
Over 1.7 million Virginians rely on private water sources to provide household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved with respect to available financial resources and access to environmental health education. This study aimed to identify potential associations between concentrations of fecal indicator bacteria (FIB) (coliforms, Escherichia coli) in over 800 samples collected at the point-of-use from homes with private water supply systems and homeowner-provided demographic data (household income and education). Of the 828 samples tested, 349 (42%) of samples tested positive for total coliform and 55 (6.6%) tested positive for E. coli. Source tracking efforts targeting optical brightener concentrations via fluorometry and the presence of a human-specific Bacteroides marker via quantitative real-time polymerase chain reaction (qPCR) suggest possible contamination from human septage in over 20 samples. Statistical methods implied that household income has an association with the proportion of samples positive for total coliform, though the relationship between education level and FIB is less clear. Further exploration of links between demographic data and private water quality will be helpful in building effective strategies to improve rural drinking water quality.
NASA Astrophysics Data System (ADS)
Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.
2015-12-01
We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.
Reducing soluble phosphorus in dairy effluents through application of mine drainage residuals
Sibrell, Philip L.; Penn, Chad J.; Hedin, Robert S.
2015-01-01
Three different dairy manure wastewater effluent samples were amended with mine drainage residuals (MDR) to evaluate the suitability of MDR for sequestration of phosphorus (P). Geochemical modeling of the manure wastewater compositions indicated that partially soluble P-bearing minerals including hydroxyapatite, octacalcium phosphate, and vivianite were all oversaturated in each of the manure wastewater samples. Initial MDR amendment test results indicated that these partially soluble P minerals suspended in the wastewater replenished P in the water phase as it was sorbed by the MDR samples. Further investigations revealed that the MDR samples were effective in decreasing soluble P when the amended manure was tested using the water-extractable P procedure. Under these conditions, up to 90 percent of the soluble P in the manure was converted to a sorbed, water-insoluble state. Water contamination and large-scale validation tests of the process were also conducted.
Moscow Test Well, INEL Oversight Program: Aqueous geochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurry, M.; Fromm, J.; Welhan, J.
1992-09-29
This report presents a summary and interpretation of data gathered during sampling of the Moscow Test Well at Moscow, Idaho during April and May of 1992. The principal objectives of this chemical survey were to validate sampling procedures with a new straddle packer sampling tool in a previously hydrologically well characterized and simple sampling environment, and to compare analytical results from two independent labs for reproducibility of analytical results. Analytes included a wide range of metals, anions, nutrients, BNA`s, and VOC`s. Secondary objectives included analyzing of waters from a large distilled water tank (utilized for all field laboratory purposes asmore » ``pure`` stock water), of water which passed through a steamer used to clean the packer, and of rinsates from the packer tool itself before it was lowered into the test well. Analyses were also obtained of blanks and spikes for data validation purposes.« less
Knasmüller, S; Helma, C; Eckl, P M; Gottmann, E; Steinkellner, H; Kassie, F; Haider, T; Parzefall, W; Schulte-Hermann, R
1998-12-11
This report describes the first study on genotoxic effects of Austrian ground- and drinking waters. Samples from the Mitterndorfer Senke (MS) and the vicinity of Wiener Neustadt were tested over a three years period. The MS is the largest aquifer in Austria. Due to deposition of industrial and community wastes, chemicals have polluted the groundwater in this area. Aim of the present study was to elucidate if consumption of these waters might pose a carcinogenic risk to humans. 43 Water samples were tested in a test battery which consisted of bacterial gene mutation assays (Salmonella strains TA100 and TA98), micronucleus (MN) assays with cultures of primary rat hepatocytes and plant bioassays (MN tests with Tradescantia and Vicia faba). For the bacterial assays, the water samples were extracted with XAD resins. In total, 27.9% of the samples caused positive effects; 8 samples were active in Salmonella microsome assays, Strain TA100 was particularly sensitive upon addition of metabolic activation mix (6 positive samples). Four samples were positive exclusively in MN assays with cultures of primary rat hepatocytes; one sample gave positive results in all three bioassays. Finished waters from waterworks were consistently devoid of mutagenic activity under all experimental conditions. Overall, only a small fraction of the groundwaters caused mutagenic effects and in all cases the activities were moderate. Comparison of the results of the present study with data obtained in other investigations under similar experimental conditions shows that the genotoxicity of groundwaters of the MS area are lower than the effects caused by ground- and drinking waters from other countries. The fact that no genotoxic activity was detected in any of the finished drinking waters can be taken as an indication that consumption of these waters does not pose a health hazard arising from contamination with genotoxic carcinogens to humans.
Presence of enteric viruses in source waters for drinking water production in The Netherlands.
Lodder, W J; van den Berg, H H J L; Rutjes, S A; de Roda Husman, A M
2010-09-01
The quality of drinking water in The Netherlands has to comply with the Dutch Drinking Water Directive: less than one infection in 10,000 persons per year may occur due to consumption of unboiled drinking water. Since virus concentrations in drinking waters may be below the detection limit but entail a public health risk, the infection risk from drinking water consumption requires the assessment of the virus concentrations in source waters and of the removal efficiency of treatment processes. In this study, samples of source waters were taken during 4 years of regular sampling (1999 to 2002), and enteroviruses, reoviruses, somatic phages, and F-specific phages were detected in 75% (range, 0.0033 to 5.2 PFU/liter), 83% (0.0030 to 5.9 PFU/liter), 100% (1.1 to 114,156 PFU/liter), and 97% (0.12 to 14,403 PFU/liter), respectively, of 75 tested source water samples originating from 10 locations for drinking water production. By endpoint dilution reverse transcription-PCR (RT-PCR), 45% of the tested source water samples were positive for norovirus RNA (0.22 to 177 PCR-detectable units [PDU]/liter), and 48% were positive for rotavirus RNA (0.65 to 2,249 PDU/liter). Multiple viruses were regularly detected in the source water samples. A significant correlation between the concentrations of the two phages and those of the enteroviruses could be demonstrated. The virus concentrations varied greatly between 10 tested locations, and a seasonal effect was observed. Peak concentrations of pathogenic viruses occur in source waters used for drinking water production. If seasonal and short-term fluctuations coincide with less efficient or failing treatment, an unacceptable public health risk from exposure to this drinking water may occur.
Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G
2017-03-01
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012
Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.
2014-01-01
During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum Contaminant Level for nitrate. Analysis of isotopes of oxygen and nitrogen in nitrate indicated that the source of nitrate is most likely soil nitrogen and fertilizer, with some denitrification and (or) mixing with some manure and septic waste derived from upstream wastewater-treatment facilities.
Hongping, Wang; Jilun, Zhang; Ting, Jiang; Yixi, Bao; Xiaoming, Zhou
2011-01-01
We evaluated the Kanagawa hemolytic test and tdh gene test for accuracy in identifying pathogenic Vibrio parahaemolyticus isolates in Shanghai. One hundred and seventy-two V. parahaemolyticus isolates were collected from diarrhea patients, freshly harvested sea fish, or fresh water samples. Statistical data for the Kanagawa hemolytic test and tdh gene test were compared. There were 83.51% isolates (81/97) from patients and 22.22% isolates (10/45) from sea-fish positive for the tdh gene. However, none of 30 isolates from fresh water samples were tdh-positive. Positive Kanagawa hemolytic tests were obtained in 88.66%, 46.67%, and 76.67% of isolates, which were from patients, sea fish, and fresh water samples, respectively. Positive rates of the Kanagawa hemolytic tests and the tdh gene tests were significantly different in isolates from those 3 sources (P < 0.001). The tdh gene test showed higher specificity than the Kanagawa hemolytic test on identifying pathogenic V. parahaemolyticus isolates in Shanghai, China. Copyright © 2011 Elsevier Inc. All rights reserved.
Haider, Thomas; Sommer, Regina; Knasmüller, Siefried; Eckl, Peter; Pribil, Walter; Cabaj, Alexander; Kundi, Michael
2002-01-01
Ground water samples from different geographic areas in Austria, with different amounts of natural and anthropogenic organic compounds were treated with a standardized low pressure UV (254 nm)-irradiation laboratory flow-through system (UV fluence: 800 J/m2). The genotoxic activities of the water samples before and after the UV disinfection were investigated using a combination of three different bioassays which complement each other with regard to their sensitivity detecting different genotoxins. The test battery comprises the Salmonella/microsome assay (Ames test with TA98. TA 100 and TA 102, with and without S9 mix) and two micronucleus tests with the plant Tradescantia (clone #4430) and with primary rat hepatocytes. Overall, the tested Austrian groundwater samples used for human consumption caused only weak genotoxic activities compared to drinking water samples reported from other countries under similar experimental conditions. With the exception of one weak positive result in the Ames test (only in strain TA98 without S9 mix) with an induction factor of 1.9) all samples after UV disinfection were devoid of additional mutagenic and clastogenic activities compared to the samples before UV disinfection.
Kuhn, Ryan C; Oshima, Kevin H
2002-06-01
An optimized hollow-fiber ultrafiltration system (50 000 MWCO) was developed to concentrate Cryptosporidium oocysts from 10-L samples of environmental water. Seeded experiments were conducted using a number of surface-water samples from the southwestern U.S.A. and source water from four water districts with histories of poor oocyst recovery. Ultrafiltration produced a mean recovery of 47.9% from 19 water samples (55.3% from 39 individual tests). We also compared oocyst recoveries using the hollow-fiber ultrafiltration system with those using the Envirochek filter. In limited comparison tests, the hollow-fiber ultrafiltration system produced recoveries similar to those of the Envirochek filter (hollow fiber, 74.1% (SD = 2.8); Envirochek, 71.9% (SD = 5.2)) in low-turbidity (3.9 NTU) samples and performed better than the Envirochek filter in high-turbidity (159.0 NTU) samples (hollow fiber, 27.5%; Envirochek, 0.4%). These results indicate that hollow-fiber ultrafiltration can efficiently recover oocysts from a wide variety of surface waters and may be a cost-effective alternative for concentrating Cryptosporidium from water, given the reusable nature of the filter.
"Know Your Well" A Groundwater Quality Project to Inform Students and Well-Owners
NASA Astrophysics Data System (ADS)
Olson, C.; Snow, D.; Samal, A.; Ray, C.; Kreifels, M.
2017-12-01
Over 15 million U.S. households rely on private, household wells for drinking water, and these sources are not protected under the Safe Drinking Water Act. Data on private well water quality is slowly being collected and evaluated from a number of different agencies, sources and projects. A new project is designed both for training high school students and to help assess the quality of water from rural domestic wells in Nebraska. This "crowd sourced" program engaging high school agricultural education programs, FFA chapters, and science classes with students sampling and testing water sampling from rural domestic wells from 12 districts across the state. Students and teachers from selected school were trained through multiple school visits, both in the classroom and in the field. Classroom visits were used to introduce topics such as water quality and groundwater, and testing methods for specific analytes. During the field visit, students were exposed to field techniques, the importance of accuracy in data collection, and what factors might influence the water in sampled wells. High school students learn to sample and test water independently. Leadership and initiative is developed through the program, and many experience the enlightenment that comes with citizen science. A customized mobile app was developed for ease of data entry and visualization, and data uploaded to a secure website where information was stored and compared to laboratory tests of the same measurements. General water quality parameters, including pH, electrical conductivity, major anions are tested in the field and laboratory, as well as environmental contaminants such as arsenic, uranium, pesticides, bacteria. Test kits provided to each class were used by the students to measure selected parameters, and then duplicate water samples were analyzed at a university laboratory. Five high schools are involved in the project during its first year. Nitrate, bacteria and pesticides represent major concerns for private well owners across the U.S. and preliminary results indicate that nitrate concentrations can range up to 70 mg/L, while detections of bacteria and traces of pesticide residues are consistent with other studies. This project will help both high school students and private well owner become better-informed about water quality in Nebraska.
Can Sanitary Surveys Replace Water Quality Testing? Evidence from Kisii, Kenya
Misati, Aaron Gichaba; Ogendi, George; Peletz, Rachel; Khush, Ranjiv; Kumpel, Emily
2017-01-01
Information about the quality of rural drinking water sources can be used to manage their safety and mitigate risks to health. Sanitary surveys, which are observational checklists to assess hazards present at water sources, are simpler to conduct than microbial tests. We assessed whether sanitary survey results were associated with measured indicator bacteria levels in rural drinking water sources in Kisii Central, Kenya. Overall, thermotolerant coliform (TTC) levels were high: all of the samples from the 20 tested dug wells, almost all (95%) of the samples from the 25 tested springs, and 61% of the samples from the 16 tested rainwater harvesting systems were contaminated with TTC. There were no significant associations between TTC levels and overall sanitary survey scores or their individual components. Contamination by TTC was associated with source type (dug wells and springs were more contaminated than rainwater systems). While sanitary surveys cannot be substituted for microbial water quality results in this context, they could be used to identify potential hazards and contribute to a comprehensive risk management approach. PMID:28178226
Effect of the extent of well purging on laboratory parameters of groundwater samples
NASA Astrophysics Data System (ADS)
Reka Mathe, Agnes; Kohler, Artur; Kovacs, Jozsef
2017-04-01
Chemicals reaching groundwater cause water quality deterioration. Reconnaissance and remediation demands high financial and human resources. Groundwater samples are important sources of information. Representativity of these samples is fundamental to decision making. According to relevant literature the way of sampling and the sampling equipment can affect laboratory concentrations measured in samples. Detailed and systematic research on this field is missing from even international literature. Groundwater sampling procedures are regulated worldwide. Regulations describe how to sample a groundwater monitoring well. The most common element in these regulations is well purging prior to sampling. The aim of purging the well is to avoid taking the sample from the stagnant water instead of from formation water. The stagnant water forms inside and around the well because the well casing provides direct contact with the atmosphere, changing the physico-chemical composition of the well water. Sample from the stagnant water is not representative of the formation water. Regulations regarding the extent of the purging are different. Purging is mostly defined as multiply (3-5) well volumes, and/or reaching stabilization of some purged water parameters (pH, specific conductivity, etc.). There are hints for sampling without purging. To define the necessary extent of the purging repeated pumping is conducted, triplicate samples are taken at the beginning of purging, at one, two and three times well volumes and at parameter stabilization. Triplicate samples are the means to account for laboratory errors. The subsurface is not static, the test is repeated 10 times. Up to now three tests were completed.
NASA Astrophysics Data System (ADS)
Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.
2017-10-01
Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.
Laboratory investigation of drinking water sources of Kangra, Himachal Pradesh.
Thakur, S D; Panda, A K
2012-06-01
A total of 70 drinking water sources including piped water supply (n = 36), ground water sources (n = 24, hand pumps and bore wells) and natural water sources (n = 10, springs/step-wells) from various parts of district Kangra, Himachal Pradesh were investigated for their suitability for drinking purpose by presumptive coliform test. Three samples were collected from each source during different parts of the year. Piped water sources (91.7%) were most contaminated followed by natural water sources (90%) and ground water sources (62.5%). 70.5% of the total water samples (n = 210) were positive for coliforms. All the three samples from 8.3% (n = 3), 37.5% (n = 9) and 10% (n = 1) piped water, ground water and natural sources respectively, were negative for coliform organisms. A variety of organisms including Proteus, Klebsiella, Citrobacter, Escherichia coli (E. coli), Pasteurella, Enterobacter and Serratia liquefaciens were isolated from water samples positive for coliforms in presumptive coliform test. Thermo-tolerant coliform organisms; Escherichia coli, Citrobacter, Klebsiella and Enterobacter were 71.2% (n = 52) of the total bacterial isolations. These findings suggest absence of adequate treatment and disinfection of the water sources supplying drinking water in district Kangra.
Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.
2002-01-01
Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. The investigations were performed at NIROP, Fridley, Minn. (fig. 1) and at NAS Fort Worth JRB, Texas (fig. 2). Two types of samplers were tested. One type was a nylon-screen sampler, which consisted of a 30-mL jar filled with deionized water, with its opening covered by a nylon screen. The second type was a dialysis sampler that consisted of a tube of dialysis membrane filled with deionized water. The nylon-screen samplers were deployed in wells at NIROP Fridley and NAS Fort Worth JRB and beneath the ground-water/surface water interface of a stream at NAS Fort Worth JRB. The dialysis samplers were deployed only in wells at NAS Fort Worth JRB.
Rural drinking water at supply and household levels: quality and management.
Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad
2006-09-01
Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational programs in order to ensure the safety of drinking water supplies.
Shrestha, Akina; Sharma, Subodh; Gerold, Jana; Erismann, Séverine; Sagar, Sanjay; Koju, Rajendra; Schindler, Christian; Odermatt, Peter; Utzinger, Jürg; Cissé, Guéladio
2017-01-18
This study assessed drinking water quality, sanitation, and hygiene (WASH) conditions among 708 schoolchildren and 562 households in Dolakha and Ramechhap districts of Nepal. Cross-sectional surveys were carried out in March and June 2015. A Delagua water quality testing kit was employed on 634 water samples obtained from 16 purposively selected schools, 40 community water sources, and 562 households to examine water quality. A flame atomic absorption spectrophotometer was used to test lead and arsenic content of the same samples. Additionally, a questionnaire survey was conducted to obtain WASH predictors. A total of 75% of school drinking water source samples and 76.9% point-of-use samples (water bottles) at schools, 39.5% water source samples in the community, and 27.4% point-of-use samples at household levels were contaminated with thermo-tolerant coliforms. The values of water samples for pH (6.8-7.6), free and total residual chlorine (0.1-0.5 mg/L), mean lead concentration (0.01 mg/L), and mean arsenic concentration (0.05 mg/L) were within national drinking water quality standards. The presence of domestic animals roaming inside schoolchildren's homes was significantly associated with drinking water contamination (adjusted odds ratio: 1.64; 95% confidence interval: 1.08-2.50; p = 0.02). Our findings call for an improvement of WASH conditions at the unit of school, households, and communities.
Shrestha, Akina; Sharma, Subodh; Gerold, Jana; Erismann, Séverine; Sagar, Sanjay; Koju, Rajendra; Schindler, Christian; Odermatt, Peter; Utzinger, Jürg; Cissé, Guéladio
2017-01-01
This study assessed drinking water quality, sanitation, and hygiene (WASH) conditions among 708 schoolchildren and 562 households in Dolakha and Ramechhap districts of Nepal. Cross-sectional surveys were carried out in March and June 2015. A Delagua water quality testing kit was employed on 634 water samples obtained from 16 purposively selected schools, 40 community water sources, and 562 households to examine water quality. A flame atomic absorption spectrophotometer was used to test lead and arsenic content of the same samples. Additionally, a questionnaire survey was conducted to obtain WASH predictors. A total of 75% of school drinking water source samples and 76.9% point-of-use samples (water bottles) at schools, 39.5% water source samples in the community, and 27.4% point-of-use samples at household levels were contaminated with thermo-tolerant coliforms. The values of water samples for pH (6.8–7.6), free and total residual chlorine (0.1–0.5 mg/L), mean lead concentration (0.01 mg/L), and mean arsenic concentration (0.05 mg/L) were within national drinking water quality standards. The presence of domestic animals roaming inside schoolchildren’s homes was significantly associated with drinking water contamination (adjusted odds ratio: 1.64; 95% confidence interval: 1.08–2.50; p = 0.02). Our findings call for an improvement of WASH conditions at the unit of school, households, and communities. PMID:28106779
Breault, Robert F.; Cooke, Matthew G.; Merrill, Michael
2004-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Executive Office of Environmental Affairs Department of Fish and Game Riverways Program, and the U.S. Environmental Protection Agency, studied sediment and water quality in the lower Neponset River, which is a tributary to Boston Harbor. Grab and core samples of sediment were tested for elements and organic compounds including polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. Physical properties of sediment samples, including grain size, were also measured. Selected sediment-core samples were tested for reactive sulfides and metals by means of the toxicity characteristic leaching procedure, which are sediment-disposal-related tests. Water quality, with respect to polychlorinated biphenyl contamination, was determined by testing samples collected by PISCES passive-water-column samplers for polychlorinated biphenyl congeners. Total concentrations of polychlorinated biphenyls were calculated by congener and by Aroclor.
Berger, Philip; Messner, Michael J; Crosby, Jake; Vacs Renwick, Deborah; Heinrich, Austin
2018-05-01
Spore reduction can be used as a surrogate measure of Cryptosporidium natural filtration efficiency. Estimates of log10 (log) reduction were derived from spore measurements in paired surface and well water samples in Casper Wyoming and Kearney Nebraska. We found that these data were suitable for testing the hypothesis (H 0 ) that the average reduction at each site was 2 log or less, using a one-sided Student's t-test. After establishing data quality objectives for the test (expressed as tolerable Type I and Type II error rates), we evaluated the test's performance as a function of the (a) true log reduction, (b) number of paired samples assayed and (c) variance of observed log reductions. We found that 36 paired spore samples are sufficient to achieve the objectives over a wide range of variance, including the variances observed in the two data sets. We also explored the feasibility of using smaller numbers of paired spore samples to supplement bioparticle counts for screening purposes in alluvial aquifers, to differentiate wells with large volume surface water induced recharge from wells with negligible surface water induced recharge. With key assumptions, we propose a normal statistical test of the same hypothesis (H 0 ), but with different performance objectives. As few as six paired spore samples appear adequate as a screening metric to supplement bioparticle counts to differentiate wells in alluvial aquifers with large volume surface water induced recharge. For the case when all available information (including failure to reject H 0 based on the limited paired spore data) leads to the conclusion that wells have large surface water induced recharge, we recommend further evaluation using additional paired biweekly spore samples. Published by Elsevier GmbH.
Development and evaluation of a water level proportional water sampler
NASA Astrophysics Data System (ADS)
Schneider, P.; Lange, A.; Doppler, T.
2013-12-01
We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.
An assessment of the potential toxicity of runoff from an urban roadscape during rain events.
Waara, Sylvia; Färm, Carina
2008-05-01
The potential negative impact of urban storm water on aquatic freshwater ecosystems has been demonstrated in various studies with different types of biological methods. There are a number of factors that influence the amount and bioavailability of contaminants in storm water even if it is derived from an area with a fairly homogenous land use such as a roadscape where a variation in toxicity during rain events might be expected. There are only a few previous investigations on the toxicity of highway runoff and they have not explored these issues extensively. The main objective of this study is therefore to characterize the potential toxicity of highway runoff during several rain events before it enters a detention pond in Västerås, Sweden, using laboratory bioassays with test organisms representing various functional groups in an aquatic ecosystem. The results are to be used for developing a monitoring program, including biological methods. The storm water was sampled before the entrance to a detention pond, which receives run-off from a highway with approximately 20,000 vehicles a day. The drainage area, including the roadscape and vegetated areas, is 4.3 ha in size. Samples for toxicity tests were taken with an automatic sampler or manually during storm events. In total, the potential toxicity of 65 samples representing 15 different storm events was determined. The toxicity was assessed with 4 different test organisms; Vibrio fischeri using the Microtox comparison test, Daphnia magna using Daphtoxkit-F agna, Thamnocephalus platyurus using the ThamnotoxkitF and Lemna minor, duckweed using SS 028313. Of the 65 samples, 58 samples were tested with DaphniatoxkitF agna, 57 samples with the Microtox comparison test, 48 samples with ThamnotoxkitF and 20 samples with Lemna minor, duckweed. None of the storm water samples were toxic. No toxicity was detected with the Lemna minor test, but in 5 of the 23 samples tested in comparison to the control a growth stimulation of 22-46% was observed. This is in accordance with the chemical analysis of the storm water, which indicated rather large concentrations of tot-N and tot-P. In addition to the growth stimulation, morphological changes were observed in all the 5 samples from the winter event that was sampled. The lack of toxicity observed in our study might be due to a lower traffic intensity (20,000 vehicles/day) at the site and the trapping of pollutants in the vegetated areas of the roadscape, resulting in much smaller loads of pollutants in the storm water than in some previous studies. Ecotoxicological evaluations of storm water including run off from rain events from urban roadscape studies clearly reveal that toxicity may or may not be detected depending upon site, storm condition and the test organism chosen. However, storm water might not be as polluted as previously reported nor may the first flush be such a widespread phenomenon as we originally expected. In this study, there was also a good correlation between pollutant load measured and the lack of toxicity. The test organisms chosen in this study are commonly used in effluent control programs in Sweden and other countries, which makes it possible to compare the results with those from other effluents. In this study, only acute toxicity tests were used and further studies using chronic toxicity tests, assays for genotoxic compounds or in situ bioassays might reveal biological effects at this site. Furthermore, most of the samples were taken in spring, summer or fall and it is possible that winter conditions might alter the constituents in the storm water and, thus, the toxicity of the samples. Considering the complex nature of run off from urban roadscapes, it will be virtually impossible to evaluate properly the potential hazard of particular storm water and the efficiency of a particular treatment strategy from only physical and chemical characterizations of the effluent. Therefore, despite the lack of toxicity detected in this study, it is recommended that toxicity tests or other biological methods should be included in evaluations of the effects of runoff from roadscapes.
Impact of Drilling Operations on Lunar Volatiles Capture: Thermal Vacuum Tests
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Paulsen, Gale; Zacny, Kris; Smith, Jim
2015-01-01
In Situ Resource Utilization (ISRU) enables future planetary exploration by using local resources to supply mission consumables. This idea of 'living off the land' has the potential to reduce mission cost and risk. On the moon, water has been identified as a potential resource (for life support or propellant) at the lunar poles, where it exists as ice in the subsurface. However, the depth and content of this resource has yet to be confirmed on the ground; only remote detection data exists. The upcoming Resource Prospector mission (RP) will 'ground-truth' the water using a rover, drill, and the RESOLVE science package. As the 2020 planned mission date nears, component level hardware is being tested in relevant lunar conditions (thermal vacuum). In August 2014 a series of drilling tests were performed using the Honeybee Robotics Lunar Prospecting Drill inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The drill used a unique auger design to capture and retain the lunar regolith simulant. The goal of these tests was to investigate volatiles (water) loss during drilling and sample transfer to a sample crucible in order to validate this regolith sampling method. Twelve soil samples were captured over the course of two tests at pressures of 10(exp-5) Torr and ambient temperatures between -80C to -20C. Each sample was obtained from a depth of 40 cm to 50 cm within a cryogenically frozen bed of NU-LHT-3M lunar regolith simulant doped with 5 wt% water. Upon acquisition, each sample was transferred and hermetically sealed inside a crucible. The samples were later baked out to determine water wt% and in turn volatile loss by following ASTM standard practices. Of the twelve tests, four sealed properly and lost an average of 30% of their available water during drilling and transfer. The variability in the results correlated well with ambient temperature (lower the temperature lower volatiles loss) and the trend agreed with the sublimation rates for the same temperature. Moisture retention also correlated with quantity of sample: a larger amount of material resulted in less water loss. The drilling process took an average of 10 minutes to capture and transfer each sample. The drilling power was approximately 20 Watt with a Weight on Bit of approximately 30 N. The bit temperature indicated little heat input into formation during the drilling process.
Rukmini, J. N.; Manasa, Sunkari; Rohini, Chenna; Sireesha, Lavanya Putchla; Ritu, Sachan; Umashankar, G. K.
2017-01-01
Objective: The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the antimicrobial efficacy of tender coconut water in its natural state on Streptococcus mutans. Materials and Methods: Fresh tender coconut water and pasteurized tender coconut water were taken as test samples, dimethyl formamide was used as the negative control, and 0.2% chlorhexidine was used as the positive control. Pure strain of S. mutans (MTCC 890) was used for determining the antibacterial effects. The test samples along with the controls were subjected to antimicrobial sensitivity test procedure and the zone of inhibition was examined. Kruskal–Wallis test was used to check for any significant differences in the antibacterial efficacy between the samples. Result: There was no zone of inhibition with the tender coconut water, fresh and pasteurised, and negative control (dimethyl formamide). Zone of inhibition was seen in positive control (0.2% Chlorhexidine). Conclusion: No antimicrobial activity was demonstrated with tender coconut water in its normal state (in vitro). PMID:28462183
Rukmini, J N; Manasa, Sunkari; Rohini, Chenna; Sireesha, Lavanya Putchla; Ritu, Sachan; Umashankar, G K
2017-01-01
The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the antimicrobial efficacy of tender coconut water in its natural state on Streptococcus mutans . Fresh tender coconut water and pasteurized tender coconut water were taken as test samples, dimethyl formamide was used as the negative control, and 0.2% chlorhexidine was used as the positive control. Pure strain of S. mutans (MTCC 890) was used for determining the antibacterial effects. The test samples along with the controls were subjected to antimicrobial sensitivity test procedure and the zone of inhibition was examined. Kruskal-Wallis test was used to check for any significant differences in the antibacterial efficacy between the samples. There was no zone of inhibition with the tender coconut water, fresh and pasteurised, and negative control (dimethyl formamide). Zone of inhibition was seen in positive control (0.2% Chlorhexidine). No antimicrobial activity was demonstrated with tender coconut water in its normal state ( in vitro ).
Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S
2012-01-01
In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal contamination of rainwater tanks.
Hodgers, L.; Sidhu, J. P. S.; Toze, S.
2012-01-01
In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal contamination of rainwater tanks. PMID:22020514
Habash, Marc; Johns, Robert
2009-10-01
This study compared an automated Escherichia coli and coliform detection system with the membrane filtration direct count technique for water testing. The automated instrument performed equal to or better than the membrane filtration test in analyzing E. coli-spiked samples and blind samples with interference from Proteus vulgaris or Aeromonas hydrophila.
Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.
2015-01-01
Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074
USGS GeoData Digital Raster Graphics
,
2001-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC?s) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC?s in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: ? Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. ? Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. ? Reduction in sampling time by as much as 80 percent of that required for ?purge type? sampling methods. ? An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
Disinfection of contaminated water by using solar irradiation.
Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad
2004-02-01
Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.
Comparing microbial water quality in an intermittent and continuous piped water supply.
Kumpel, Emily; Nelson, Kara L
2013-09-15
Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p < 0.01). Detection of E. coli was rare in continuous supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.
Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak
Kahler, A. M.; Nansubuga, I.; Nanyunja, E. M.; Kaplan, B.; Jothikumar, N.; Routh, J.; Gómez, G. A.; Mintz, E. D.; Hill, V. R.
2017-01-01
ABSTRACT In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli, free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli. Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli. While S. Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. PMID:28970225
Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S
2016-01-01
Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Xiao, Sanhua; Luo, Lan; Qiao, Qian; Lü, Xuemin; Wang, Yanhui; Feng, Lin; Tang, Fei; Wang, Haiyong; Bie, Nana; Wang, Yuehong
2017-05-01
To understand the occurrence and change of mutagencity of water samples in the process of drinking water treatment and distribution in a waterworks taking Yangtze River as its water source in Jiangsu Province. Large volume of inlet water, finished water and tap water samples were extracted by XAD-2 resin. Mutagencities were assessed by Ames test and a mutation ratio( MR) of 2 or greater was judged as a positive result. Compared with the samples with S9, samples without S9 presented more positive results( P = 0. 005). That water treatment elevated MR values( P = 0. 007) while the pipe transport made MR values down( P = 0. 038) was observed in samples without S9. The tap water showed weaker mutagenicities than the raw water in samples with S9( P = 0. 008). Compared to the raw water samples, the finished water samples showed more positive results(-S9) and lower MR values( + S9, P =0. 002). Significant mutagenicities of water samples from the Yangtze Riverand its processed water were presented, and frame shit and direct mutagens deserved special concern.
Tenbus, F.J.; Phillips, S.W.
1996-01-01
Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.
Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, William S.
Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less
Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian
2016-01-05
Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow.
Biadglegne, Fantahun; Tessema, Belay; Kibret, Mulugeta; Abera, Bayeh; Huruy, Kahsay; Anagaw, Belay; Mulu, Andargachew
2009-10-01
The consumption of bottled drinking water is becoming increasing in Ethiopia. As a result there has been a growing concern about the chemical, physical and bacteriological quality of this product. Studies on the chemical, physical and bacteriological quality of bottled water is quite scarce in Ethiopia. This study was therefore aimed to assess the physicochemical and bacteriological qualities of three factories of bottled drinking water products produced in Amhara region. A Laboratory based comparative study was conducted to evaluate the physicochemical and bacteriological quality of three factories of bottled drinking water produced in Amhara region. Analysis on the quality of bottled drinking water from the sources, wholesalers and retailers were made with World Health Organization and Quality and Standards Authority of Ethiopia recommendations. Triplicate samples from three types of bottled drinking water were randomly collected and analyzed from June, 2006 to December, 2006. A total of 108 commercial bottled drinking water samples were analyzed. The result showed that except pH of factory A all the physicochemical parameters analyzed were with in the recommended limits. The pH value of factory A tested from sources is 5.3 and from wholesalers and retailers is 5.5 and 5.3, respectively, which is below the normal value set by World Health Organization (6.5-8.0) and Quality and Standards Authority of Ethiopia (6.0-8.5). Our analyses also demonstrated that 2 (16.7%) of the samples tested from sources and 1 (8.3%) from wholesalers of factory B were contaminated with total coliforms, where as 2 (16.7%) samples from retailers were also contaminated with total coliforms. On the other hand, 1 (8.3%) of the samples tested from wholesalers and 2 (16.7%) of the samples tested from retailers of factory A were also contaminated with total coliforms. Total coliforms were not detected from all samples of factory C, fecal coliforms were not also isolated from all samples. Percent of coefficient of variation showed that variations in total coliforms counts were significant with in the samples of both factory A and B (CV > 10%). Based on the recommended limit of World Health Organization and Quality and Standards Authority of Ethiopia, 7.4% of bottled drinking water sold commercially could be considered unfit for human consumption. Consumers of bottled water should be aware of this.
Gonthier, Gerard
2013-01-01
The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer system averages about 2×10-6 per foot. Water quality of the Dublin and Midville aquifer systems was characterized during the aquifer test on the basis of water samples collected from composite well flow originating from five depths in the completed production well during the aquifer test. Samples were analyzed for total dissolved solids, specific conductance, pH, alkalinity, and major ions. Water-quality results from composite samples, known flow contribution from individual screens, and a mixing equation were used to calculate water-quality values for sample intervals between sample depths or below the bottom sample depth. With the exception of iron and manganese, constituent concentrations of water from each of the sampled intervals and total flow from the well were within U.S. Environmental Protection Agency primary and secondary drinking-water standards. Water from the bottommost sample interval in the lower part of the lower Midville aquifer (900 to 930 feet) contained manganese and iron concentrations of 59.1 and 1,160 micrograms per liter, respectively, which exceeded secondary drinking-water standards. Because this interval contributed only 0.1 percent of the total flow to the well, water quality of this interval had little effect on the composite well water quality. Two other sample intervals from the Midville aquifer system and the total flow from both aquifer systems contained iron concentrations that slightly exceeded the secondary drinking-water standard of 300 micrograms per liter.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 136 [EPA-HQ-OW-2010-0192; FRL-9504-2] Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Analysis and Sampling... waste constituent. Similarly, if EPA has established sampling requirements, measurements taken under an...
Water monitor system: Phase 1 test report
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.
1976-01-01
Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.
Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water
Kirshtein, Julie D.; Anderson, Chauncey W.; Wood, J.S.; Longcore, Joyce E.; Voytek, Mary A.
2007-01-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.
Esralew, Rachel A.; Tortorelli, Robert L.
2010-01-01
The city of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw Basin in northwestern Arkansas and northeastern Oklahoma for public water supply. The city has spent millions of dollars over the last decade to eliminate taste and odor problems in the drinking water from the Eucha-Spavinaw system, which may be attributable to blue-green algae. Increases in the algal biomass in the lakes may be attributable to increases in nutrient concentrations in the lakes and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized total nitrogen and total phosphorus concentrations in water samples and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations during base flow and runoff for two streams discharging to Lake Eucha for the period January 2002 through December 2009. This report updates a previous report that used data from water-quality samples collected from January 2002 through December 2006. Based on the results from the Mann-Whitney statistical test, unfiltered total nitrogen concentrations were significantly greater in runoff water samples than in base-flow water samples collected from Spavinaw Creek near Maysville and near Cherokee City, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Nitrogen concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Nitrogen concentrations in base-flow and runoff water samples collected in Spavinaw Creek significantly increased from the station furthest upstream (near Maysville) to the Sycamore station and then significantly decreased from the Sycamore station to the station furthest downstream (near Colcord). Nitrogen concentrations in base-flow and runoff water samples collected from Beaty Creek were significantly less than base-flow and runoff water samples collected from Spavinaw Creek. Based on the results from the Mann-Whitney statistical test, unfiltered total phosphorus concentrations were significantly greater in runoff water samples than in base-flow water samples for the entire period for most stations, except in water samples collected from Spavinaw Creek near Cherokee City, in which no significant difference was detected for the entire period nor for any season. Phosphorus concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Based on results from a multi-stage Kruskal-Wallis statistical test, phosphorus concentrations in base-flow water samples collected from Spavinaw Creek significantly increased from the Maysville station to the Cherokee City station, probably because of discharge from a municipal wastewater-treatment plant between those stations. Phosphorus concentrations significantly decreased downstream from the Cherokee City station to the Colcord station. Phosphorus concentrations in base-flow water samples collected from Beaty Creek were significantly less than phosphorus in base-flow water samples collected from Spavinaw Creek downstream from the Maysville station. View report for unabridged abstract.
The Resazurin-Agar Method - a Quick Test to Determine Water Quality
NASA Astrophysics Data System (ADS)
Huckfeldt, J.; Westphal, B.; Claußen, L.
2015-12-01
Rezasurin has been used as a smart tracer in stream ecosystems to indicate metabolic activity, specifically aerobic respiration by heterotrophic bacteria. Resazurin is a blue compound which is irreversibly reduced to the pink resorufin in the presence of aerobic bacteria. The degree and speed of colour change from blue to pink is a measure of the degree of oxygen consumption and thus an indirect indication of the concentration of aerobic bacteria in a given medium. A high concentration of bacteria in water indicates a bad water quality. In our work a method was developed using resazurin agar plates to find a quick and easy way for testing water quality and comparing concentrations of bacteria in freshwater and seawater samples. The theory was to concentrate bacteria from a defined volume of water sample onto polycarbonate filters (0.2 μm), which are then placed onto the resazurin agar plate. The presence of aerobic bacteria on the filter will reduce the resazurin in the agar and the compound changes its colour. First tests conducted with different dilutions of a pure culture of yoghurt bacteria showed promising results and confirmed the feasibility of the method. In a further assay, we used water samples from different water layers and different temperatures and were also able to observe differences in the concentration of bacteria, depending on these different environmental conditions.The assay was also successfully used with seawater samples, collected from 2 different stations at 3 different depths in the Baltic Sea (salinity=15). The discolouration of the plates showed good correlation with the oxygen concentrations in the water. The resazurin-agar plate method is economical and fast. Several samples could be investigated at the same time without sacrificing the reliability of the results. Thus it is a good pre-screening test for a quantitative evaluation of bacteria in a water sample.
Hemachandra, Chamini K; Pathiratne, Asoka
2017-01-01
Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fong, T.-T.; Griffin, Dale W.; Lipp, E.K.
2005-01-01
Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-?? concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.
Code of Federal Regulations, 2010 CFR
2010-04-01
... examination and by a water leak test method, using 1,000 milliliters (ml) of water. (i) Units examined. Each... inches up the fill tube.) (iii) Leak test examination. Immediately after adding the water, examine the glove for water leaks. Do not squeeze the glove; use only minimum manipulation to spread the fingers to...
ECM for Aldicarb & Degradates in Water - MRID 49515901
aboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with A as the first character.
Verheyen, Jens; Timmen-Wego, Monika; Laudien, Rainer; Boussaad, Ibrahim; Sen, Sibel; Koc, Aynur; Uesbeck, Alexandra; Mazou, Farouk; Pfister, Herbert
2009-05-01
Diseases associated with viruses also found in environmental samples cause major health problems in developing countries. Little is known about the frequency and pattern of viral contamination of drinking water sources in these resource-poor settings. We established a method to analyze 10 liters of water from drinking water sources in a rural area of Benin for the presence of adenoviruses and rotaviruses. Overall, 541 samples from 287 drinking water sources were tested. A total of 12.9% of the sources were positive for adenoviruses and 2.1% of the sources were positive for rotaviruses at least once. Due to the temporary nature of viral contamination in drinking water sources, the probability of virus detection increased with the number of samples taken at one test site over time. No seasonal pattern for viral contaminations was found after samples obtained during the dry and wet seasons were compared. Overall, 3 of 15 surface water samples (20%) and 35 of 247 wells (14.2%) but also 2 of 25 pumps (8%) tested positive for adenoviruses or rotaviruses. The presence of latrines within a radius of 50 m in the vicinity of pumps or wells was identified as being a risk factor for virus detection. In summary, viral contamination was correlated with the presence of latrines in the vicinity of drinking water sources, indicating the importance of appropriate decision support systems in these socioeconomic prospering regions.
NASA Technical Reports Server (NTRS)
Obenhuber, D. C.; Huff, T. L.; Rodgers, E. B.
1991-01-01
Analysis of biofilm accumulation, studies of iodine disinfection of biofilm, and the potential for microbially influenced corrosion in the water recovery test (WRT) are presented. The analysis of WRT components showed the presence of biofilms and organic deposits in selected tubing. Water samples from the WRT contained sulfate-reducing and acid-producing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples, but stainless steel corrosion rates were not accelerated.
Trend of Legionella colonization in hospital water supply.
D'Alessandro, D; Fabiani, M; Cerquetani, F; Orsi, G B
2015-01-01
In many nosocomial Legionella outbreaks water distribution systems are the most frequent source of infection. Considering the hospital waterline old age, an investigation on colonization by Legionella spp was carried out in order to evaluate the pipeline system weaknesses and to implement environmental preventive measures. From 2004 to 2010, overall 97 samples from the water line were collected. The samples were analyzed according to the italian Legionella spp standard methods; water temperature, pH and residual free chlorine were determined at the time of collection. X2 test, exact-test and t-test were used to compare proportions and means. Overall 28 samples (23.7%) were positive for Legionella spp, and five of them (17.9%) exceeded the threshold level >104 cfu/L. The number of positive samples varied along the years, showing a significant increasing trend (X2 for trend = 11.5; p<0.01), but most occurred in 2008 (53,6%), when the hospital underwent major building reconstruction. Samples positive for Legionella spp by comparison to negative ones showed a lower free chlorine concentration (0.08 mg/L vs 0.15 mg/L) and a higher water temperature (46.1° vs 42.7°). Actually the percentage of positive samples decreased significantly with the increasing in free chlorine in the water (X2 for trend = 8.53; p<0.01). The samples collected at the connection between public water line with the hospital supply network were always free from Legionella. All hospital buildings were colonized by Legionella spp, although 80% of samples >104 cfu/L occurred in the C-building. No cases of nosocomial legionellosis were reported during the study period. Hospital water system showed a diffuse colonization by Legionella spp, although the degree of contamination reached the threshold level (>104 cfu/L) only in a small percentage of samples, showing a substantial effectiveness of the control measures applied.
Evaluation of Polymerase Chain Reaction for Detecting Coliform Bacteria in Drinking Water Sources.
Isfahani, Bahram Nasr; Fazeli, Hossein; Babaie, Zeinab; Poursina, Farkhondeh; Moghim, Sharareh; Rouzbahani, Meisam
2017-01-01
Coliform bacteria are used as indicator organisms for detecting fecal pollution in water. Traditional methods including microbial culture tests in lactose-containing media and enzyme-based tests for the detection of β-galactosidase; however, these methods are time-consuming and less specific. The aim of this study was to evaluate polymerase chain reaction (PCR) for detecting coliform. Totally, 100 of water samples from Isfahan drinking water source were collected. Coliform bacteria and Escherichia coli were detected in drinking water using LacZ and LamB genes in PCR method performed in comparison with biochemical tests for all samples. Using phenotyping, 80 coliform isolates were found. The results of the biochemical tests illustrated 78.7% coliform bacteria and 21.2% E. coli . PCR results for LacZ and LamB genes were 67.5% and 17.5%, respectively. The PCR method was shown to be an effective, sensitive, and rapid method for detecting coliform and E. coli in drinking water from the Isfahan drinking water sources.
IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES
The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...
Olaoye, O A; Onilude, A A
2009-11-01
To assess the microbiological quality of sachet-packaged drinking water in Western Nigeria and its impact on public health. Cross-sectional microbiological testing. Ninety-two sachet-packaged water samples were analysed for microbiological and metal qualities. Total bacterial and coliform counts were determined, and the presence of Escherichia coli, an important water quality indicator, was tested. The level of conformity of the water processors with the guidelines of Nigeria's quality regulatory agency was also determined. Varying levels of microbial contamination were recorded in samples from the different sampling locations. The total bacteria count ranged between 2.86 and 3.45log colony-forming units (cfu)/ml. The highest coliform count recorded was 1.62log cfu/ml. Faecal coliform E. coli was detected in one sample from Oke-Iho and one sample from Okaka, representing 2.2% of total samples. Lead and manganese were not found in any of the samples. However, iron was detected and the highest iron concentration (0.10mg/l) was detected in samples from Ikorodu. The bacteria that were identified from the water samples included E. coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella sp., Proteus vulgaris, Alcaligenes faecalis, Bacillus cereus, Staphylococcus aureus, Streptococcus lactis, Aeromonas sp. and Micrococcus luteum. Many of the water processors did not comply with the guidelines of the quality regulatory agency. Some of the sachet-packaged samples of drinking water were of poor quality. The results indicate a need for Nigeria's quality regulatory agency to take appropriate measures in safeguarding public health.
NASA Astrophysics Data System (ADS)
David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.
2014-12-01
Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was injected. The most remarkable difference is that water injection induces mechanical instability and failure, whereas oil injection does not. This was confirmed by the analysis of acoustic emissions activity and post-mortem sample imaging using CT scan. Contrasting evolutions of the P wave velocity during the fluid front propagation were also observed in both experiments.
Investigation of the prevalence of Legionella species in domestic hot water systems.
Bates, M N; Maas, E; Martin, T; Harte, D; Grubner, M; Margolin, T
2000-06-09
To investigate the prevalence of Legionella spp. in the hot water systems of a representative sample of Wellington domestic residences with electrically heated hot water systems, and to investigate risk factors (eg water temperature, plumbing materials) for such contamination. 100 households with electrically heated hot water systems in the Wellington area were investigated. Samples of hot water from several hot water outlets were collected, and characteristics of the plumbing system were recorded. Water samples and swabs were cultured and further examined by polymerase chain reaction (PCR) and direct fluorescence antibody (DFA) testing to identify Legionella spp. and serogroups. No Legionella spp. were isolated by culture. PCR tested positive for Legionella in specimens from twelve residences. Six of these were also positive by DFA testing. The only environmental factor found to be associated with the presence of Legionella was recent plumbing work on the hot water system. Five of the twelve PCR-positive residences, and four of the six DFA-confirmed residences had hot water delivery temperatures in excess of 60 degrees C. The results suggest that either Legionellae colonise domestic hot water reticulation systems and/or that the organisms are killed during passage through the hot water tank. Both possibilities may be correct. Further work to characterise the microbial ecology of Legionella-positive hot water distribution systems would be useful, as would the development of improved methods for culturing the organisms from potable water.
Recommendations for representative ballast water sampling
NASA Astrophysics Data System (ADS)
Gollasch, Stephan; David, Matej
2017-05-01
Until now, the purpose of ballast water sampling studies was predominantly limited to general scientific interest to determine the variety of species arriving in ballast water in a recipient port. Knowing the variety of species arriving in ballast water also contributes to the assessment of relative species introduction vector importance. Further, some sampling campaigns addressed awareness raising or the determination of organism numbers per water volume to evaluate the species introduction risk by analysing the propagule pressure of species. A new aspect of ballast water sampling, which this contribution addresses, is compliance monitoring and enforcement of ballast water management standards as set by, e.g., the IMO Ballast Water Management Convention. To achieve this, sampling methods which result in representative ballast water samples are essential. We recommend such methods based on practical tests conducted on two commercial vessels also considering results from our previous studies. The results show that different sampling approaches influence the results regarding viable organism concentrations in ballast water samples. It was observed that the sampling duration (i.e., length of the sampling process), timing (i.e., in which point in time of the discharge the sample is taken), the number of samples and the sampled water quantity are the main factors influencing the concentrations of viable organisms in a ballast water sample. Based on our findings we provide recommendations for representative ballast water sampling.
CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Reboul, S.
2012-06-19
The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.« less
Bacteriological quality of drinking water from dispensers (coolers) and possible control measures.
Baumgartner, Andreas; Grand, Marius
2006-12-01
Three water dispensers (coolers) were bacteriologically monitored over a period of 3 months to evaluate their hygienic status. For this purpose, 174 samples of chilled and unchilled water were analyzed for levels of mesophilic aerobic bacteria and the presence of Escherichia coli and enterococci in 100-ml samples, and the presence of Pseudomonas aeruginosa in 10- and 100-ml samples. Additionally, 12 samples from 20-liter plastic bottles of spring water used to supply the coolers and 36 samples of 12 different brands of noncarbonated bottled mineral water were similarly analyzed. Water from the coolers yielded aerobic plate counts of 3 to 5 log CFU/ml with a geometric mean of 3.86 log CFU/ml, whereas water from the 20-liter bottles had a mean aerobic plate count of 3.3 log CFU/ml. Aerobic plate counts for noncarbonated mineral waters were generally lower (13 samples, < 10 CFU/ml; 6 samples, 10 to 10(2) CFU/ml; 13 samples, 10(2) to 10(3) CFU/ml; 3 samples, 10(3) to 10(4) CFU/ ml; 1 sample, 2 x 10(4) CFU/ml). Although occasional professional cleaning of the coolers did not affect the aerobic plate count, P. aeruginosa was successfully eliminated 2 weeks after cleaning, with only one cooler becoming recolonized. Neither E. coli nor enterococci was found in any of the water samples tested. However, P. aeruginosa was identified in three (25%) of twelve 100-ml samples from 20-liter bottles of spring water; a similar frequency of 24.1% was seen for water samples from coolers. Overall, 35 (21.6%) of 162 water samples (10 ml) from coolers also yielded P. aeruginosa, suggesting potential growth of P. aeruginosa in the dispensers. Pulsed-field gel electrophoresis typing and antibiotic susceptibility testing found 19 P. aeruginosa isolates from the coolers and bottles to be identical, indicating that a single strain originated from the bottled water rather than the surroundings of the coolers. Because P. aeruginosa can cause serious nosocomial infections, its spread should be strictly controlled in institutions caring for vulnerable people such as hospitals and nursing homes. Consequently, in keeping with legal requirement for bottled spring and mineral water in Switzerland, it is also advisable that P. aeruginosa be absent in 100-ml samples of cooler water.
Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.
1994-01-01
The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.
Aidarkhanova, A K; Lukashenko, S N; Larionova, N V; Polevik, V V
2018-04-01
This paper provides research data on levels and character of radionuclide contamination distribution in the «sediments- water - plants » system of objects of the Semipalatinsk test site (STS). As the research objects there were chosen water bodies of man-made origin which located at the territory of "Experimental Field", "Balapan", "Telkem" and "Sary-Uzen" testing sites. For research the sampling of bottom sediments, water, lakeside and water plants was taken. Collected samples were used to determine concentration of anthropogenic radionuclides 90 Sr, 239+240 Pu, 241 Am, 137 Cs. The distribution coefficient (K d ) was calculated as the ratio of the content of radionuclides in the sediments to the content in water, and the concentration ratio (F V ) was calculated as the ratio of radionuclide content in plants to the content in sediments or soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enteric Pathogen Survival Varies Substantially in Irrigation Water from Belgian Lettuce Producers
Van Der Linden, Inge; Cottyn, Bart; Uyttendaele, Mieke; Berkvens, Nick; Vlaemynck, Geertrui; Heyndrickx, Marc; Maes, Martine
2014-01-01
It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen’s survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and an important impact on the fitness of the pathogens to sustain and even grow on the leaf surface. PMID:25268508
Grützmacher, G; Bartel, H; Althoff, H W; Clemen, S
2007-03-01
A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.
Evaluation of water-quality data and monitoring program for Lake Travis, near Austin, Texas
Rast, Walter; Slade, Raymond M.
1998-01-01
The multiple-comparison tests indicate that, for some constituents, a single sampling site for a constituent or property might adequately characterize the water quality of Lake Travis for that constituent or property. However, multiple sampling sites are required to provide information of sufficient temporal and spatial resolution to accurately evaluate other water-quality constituents for the reservoir. For example, the water-quality data from surface samples and from bottom samples indicate that nutrients (nitrogen, phosphorus) might require additional sampling sites for a more accurate characterization of their in-lake dynamics.
Milker, Yvonne; Weinkauf, Manuel F G; Titschack, Jürgen; Freiwald, Andre; Krüger, Stefan; Jorissen, Frans J; Schmiedl, Gerhard
2017-01-01
We present paleo-water depth reconstructions for the Pefka E section deposited on the island of Rhodes (Greece) during the early Pleistocene. For these reconstructions, a transfer function (TF) using modern benthic foraminifera surface samples from the Adriatic and Western Mediterranean Seas has been developed. The TF model gives an overall predictive accuracy of ~50 m over a water depth range of ~1200 m. Two separate TF models for shallower and deeper water depth ranges indicate a good predictive accuracy of 9 m for shallower water depths (0-200 m) but far less accuracy of 130 m for deeper water depths (200-1200 m) due to uneven sampling along the water depth gradient. To test the robustness of the TF, we randomly selected modern samples to develop random TFs, showing that the model is robust for water depths between 20 and 850 m while greater water depths are underestimated. We applied the TF to the Pefka E fossil data set. The goodness-of-fit statistics showed that most fossil samples have a poor to extremely poor fit to water depth. We interpret this as a consequence of a lack of modern analogues for the fossil samples and removed all samples with extremely poor fit. To test the robustness and significance of the reconstructions, we compared them to reconstructions from an alternative TF model based on the modern analogue technique and applied the randomization TF test. We found our estimates to be robust and significant at the 95% confidence level, but we also observed that our estimates are strongly overprinted by orbital, precession-driven changes in paleo-productivity and corrected our estimates by filtering out the precession-related component. We compared our corrected record to reconstructions based on a modified plankton/benthos (P/B) ratio, excluding infaunal species, and to stable oxygen isotope data from the same section, as well as to paleo-water depth estimates for the Lindos Bay Formation of other sediment sections of Rhodes. These comparisons indicate that our orbital-corrected reconstructions are reasonable and reflect major tectonic movements of Rhodes during the early Pleistocene.
NASA Astrophysics Data System (ADS)
Boateng, S.
2006-05-01
The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the upstream site. The benthic macroinvertebrates sampled indicate worse water quality downstream of the sediment retention pond. Overall, landuse and the channelization have some effect on the water quality in the two creeks.
Weinkauf, Manuel F. G.; Titschack, Jürgen; Freiwald, Andre; Krüger, Stefan; Jorissen, Frans J.; Schmiedl, Gerhard
2017-01-01
We present paleo-water depth reconstructions for the Pefka E section deposited on the island of Rhodes (Greece) during the early Pleistocene. For these reconstructions, a transfer function (TF) using modern benthic foraminifera surface samples from the Adriatic and Western Mediterranean Seas has been developed. The TF model gives an overall predictive accuracy of ~50 m over a water depth range of ~1200 m. Two separate TF models for shallower and deeper water depth ranges indicate a good predictive accuracy of 9 m for shallower water depths (0–200 m) but far less accuracy of 130 m for deeper water depths (200–1200 m) due to uneven sampling along the water depth gradient. To test the robustness of the TF, we randomly selected modern samples to develop random TFs, showing that the model is robust for water depths between 20 and 850 m while greater water depths are underestimated. We applied the TF to the Pefka E fossil data set. The goodness-of-fit statistics showed that most fossil samples have a poor to extremely poor fit to water depth. We interpret this as a consequence of a lack of modern analogues for the fossil samples and removed all samples with extremely poor fit. To test the robustness and significance of the reconstructions, we compared them to reconstructions from an alternative TF model based on the modern analogue technique and applied the randomization TF test. We found our estimates to be robust and significant at the 95% confidence level, but we also observed that our estimates are strongly overprinted by orbital, precession-driven changes in paleo-productivity and corrected our estimates by filtering out the precession-related component. We compared our corrected record to reconstructions based on a modified plankton/benthos (P/B) ratio, excluding infaunal species, and to stable oxygen isotope data from the same section, as well as to paleo-water depth estimates for the Lindos Bay Formation of other sediment sections of Rhodes. These comparisons indicate that our orbital-corrected reconstructions are reasonable and reflect major tectonic movements of Rhodes during the early Pleistocene. PMID:29166653
PCR detection of Burkholderia multivorans in water and soil samples.
Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter
2016-08-12
Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).
Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira
2017-06-22
Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.
Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira
2017-01-01
Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202
Hepatitis A and E Viruses in Wastewaters, in River Waters, and in Bivalve Molluscs in Italy.
Iaconelli, M; Purpari, G; Della Libera, S; Petricca, S; Guercio, A; Ciccaglione, A R; Bruni, R; Taffon, S; Equestre, M; Fratini, M; Muscillo, M; La Rosa, Giuseppina
2015-12-01
Several studies have reported the detection of hepatitis A (HAV) and E (HEV) virus in sewage waters, indicating a possibility of contamination of aquatic environments. The objective of the present study was to assess the occurrence of HAV and HEV in different water environments, following the route of contamination from raw sewage through treated effluent to the surface waters receiving wastewater discharges . Bivalve molluscan shellfish samples were also analyzed, as sentinel of marine pollution. Samples were tested by RT-PCR nested type in the VP1/2A junction for HAV, and in the ORF1 and ORF2 regions for HEV. Hepatitis A RNA was detected in 12 water samples: 7/21 (33.3%) raw sewage samples, 3/21 (14.3%) treated sewage samples, and 2/27 (7.4%) river water samples. Five sequences were classified as genotype IA, while the remaining 7 sequences belonged to genotype IB. In bivalves, HAV was detected in 13/56 samples (23.2%), 12 genotype IB and one genotype IA. Whether the presence of HAV in the matrices tested indicates the potential for waterborne and foodborne transmission is unknown, since infectivity of the virus was not demonstrated. HEV was detected in one raw sewage sample and in one river sample, both belonging to genotype 3. Sequences were similar to sequences detected previously in Italy in patients with autochthonous HEV (no travel history) and in animals (swine). To our knowledge, this is the first detection of HEV in river waters in Italy, suggesting that surface water can be a potential source for exposure .
Disinfection of Contaminated Water by Using Solar Irradiation
Caslake, Laurie F.; Connolly, Daniel J.; Menon, Vilas; Duncanson, Catriona M.; Rojas, Ricardo; Tavakoli, Javad
2004-01-01
Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min. PMID:14766599
Assessment of drinking water quality using indicator bacteria and bacteriophages.
Méndez, Javier; Audicana, Ana; Cancer, Mercedes; Isern, Anna; Llaneza, Julian; Moreno, Belén; Navarro, Mercedes; Tarancón, M Lluisa; Valero, Fernando; Ribas, Ferran; Jofre, Juan; Lucena, Francisco
2004-09-01
Bacterial indicators and bacteriophages suggested as potential indicators of water quality were determined by public laboratories in water from springs, household water wells, and rural and metropolitan water supplies in north-eastern Spain. Indicator bacteria were detected more frequently than bacteriophages in springs, household water wells and rural water supplies. In contrast, positive bacteriophage detections were more numerous than those of bacteria in metropolitan water supplies. Most of the metropolitan water supply samples containing indicators had concentrations of chlorine below 0.1 mg l(-1), their indicator loads resembling more closely those of rural water supplies than any other samples taken from metropolitan water supplies. The number of samples from metropolitan water supplies containing more than 0.1 mg l(-1) of chlorine that contained phages clearly outnumbered those containing indicator bacteria. Some association was observed between rainfall and the presence of indicators. Sediments from service reservoirs and water from dead ends in the distribution network of one of the metropolitan water supplies were also tested. Bacterial indicators and phages were detected in a higher percentage than in samples of tap water from the same network. Additionally, indicator bacteria were detected more frequently than bacteriophages in sediments of service reservoirs and water from dead end samples. We conclude that naturally occurring indicator bacteria and bacteriophages respond differently to chlorination and behave differently in drinking water distribution networks. Moreover, this study has shown that testing for the three groups of phages in routine laboratories is easy to implement and feasible without the requirement for additional material resources for the laboratories.
Molecular method for detection of total coliforms in drinking water samples.
Maheux, Andrée F; Boudreau, Dominique K; Bisson, Marc-Antoine; Dion-Dupont, Vanessa; Bouchard, Sébastien; Nkuranga, Martine; Bergeron, Michel G; Rodriguez, Manuel J
2014-07-01
This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the lacZ, wecG, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of Enterobacteriaceae encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the lacZ, wecG, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an Escherichia coli molecular assay to assess drinking water quality. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Molecular Method for Detection of Total Coliforms in Drinking Water Samples
Boudreau, Dominique K.; Bisson, Marc-Antoine; Dion-Dupont, Vanessa; Bouchard, Sébastien; Nkuranga, Martine; Bergeron, Michel G.; Rodriguez, Manuel J.
2014-01-01
This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the lacZ, wecG, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of Enterobacteriaceae encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the lacZ, wecG, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an Escherichia coli molecular assay to assess drinking water quality. PMID:24771030
Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C
2015-12-01
Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.
Sample Dimensionality Effects on d' and Proportion of Correct Responses in Discrimination Testing.
Bloom, David J; Lee, Soo-Yeun
2016-09-01
Products in the food and beverage industry have varying levels of dimensionality ranging from pure water to multicomponent food products, which can modify sensory perception and possibly influence discrimination testing results. The objectives of the study were to determine the impact of (1) sample dimensionality and (2) complex formulation changes on the d' and proportion of correct response of the 3-AFC and triangle methods. Two experiments were conducted using 47 prescreened subjects who performed either triangle or 3-AFC test procedures. In Experiment I, subjects performed 3-AFC and triangle tests using model solutions with different levels of dimensionality. Samples increased in dimensionality from 1-dimensional sucrose in water solution to 3-dimensional sucrose, citric acid, and flavor in water solution. In Experiment II, subjects performed 3-AFC and triangle tests using 3-dimensional solutions. Sample pairs differed in all 3 dimensions simultaneously to represent complex formulation changes. Two forms of complexity were compared: dilution, where all dimensions decreased in the same ratio, and compensation, where a dimension was increased to compensate for a reduction in another. The proportion of correct responses decreased for both methods when the dimensionality was increased from 1- to 2-dimensional samples. No reduction in correct responses was observed from 2- to 3-dimensional samples. No significant differences in d' were demonstrated between the 2 methods when samples with complex formulation changes were tested. Results reveal an impact on proportion of correct responses due to sample dimensionality and should be explored further using a wide range of sample formulations. © 2016 Institute of Food Technologists®
ISOLATION AND DETECTION OF GIARDIA CYSTS FROM WATER USING DIRECT IMMUNOFLUORESCENCE.
Sorenson, Stephen K.; Riggs, John L.; Dileanis, Peter D.; Suk, Thomas J.
1986-01-01
A water-sampling apparatus used for the isolation and detection of Giardia cysts in water has been designed and tested. The sampling apparatus uses one of a variety of pumps or waterline pressure to move water through a filter. Two of the optional pumps are lightweight enough to make the apparatus portable and thus suitable for sampling in remote areas. This technique of sample processing produces good cyst recovery in much less time than is required with previously established methods. Giardia cysts are identified using direct immunofluorescence.
Schreiber, P W; Köhler, N; Cervera, R; Hasse, B; Sax, H; Keller, P M
2018-07-01
A growing number of Mycobacterium chimaera infections after cardiosurgery have been reported by several countries. These potentially fatal infections were traced back to contaminated heater-cooler devices (HCDs), which use water as a heat transfer medium. Aerosolization of water contaminated with M. chimaera from HCDs enables airborne transmission to patients undergoing open chest surgery. Infection control teams test HCD water samples for mycobacterial growth to guide preventive measures. The detection limit of M. chimaera in water samples, however, has not previously been investigated. To determine the detection limit of M. chimaera in water samples using laboratory-based serial dilution tests. An M. chimaera strain representative of the international cardiosurgery-associated M. chimaera outbreak was used to generate a logarithmic dilution series. Two different water volumes, 50 and 1000mL, were inoculated, and, after identical processing (centrifugation, decantation, and decontamination), seeded on mycobacteria growth indicator tube (MGIT) and Middlebrook 7H11 solid media. MGIT consistently showed a lower detection limit than 7H11 solid media, corresponding to a detection limit of ≥1.44 × 10 4 cfu/mL for 50mL and ≥2.4cfu/mL for 1000mL water samples. Solid media failed to detect M. chimaera in 50mL water samples. Depending on water volume and culture method, major differences exist in the detection limit of M. chimaera. In terms of sensitivity, 1000mL water samples in MGIT media performed best. Our results have important implications for infection prevention and control strategies in mitigation of the M. chimaera outbreak and healthcare water safety in general. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
1988-04-01
drainageways collect surface runoff at the plant and channel the water off plant property. These are: the Central Drain- age Ditch, the Magazine Ditch, and...past, this drain- age system collected test area deluge waters , small spills from test- ing areas, and drainage from around the flush and maintenance...Drain- age Ditch Table 4-2 shows the results of the analyses of two water samples and one soil/sediment sample that were obtained from the drainage from
Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick
2011-01-01
This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated Ground Water Basin generally were greater than hydraulic-conductivity values for the Denver Formation sandstone aquifer and less than hydraulic-conductivity values for the alluvial aquifer along the main stem of the South Platte River Basin reported by previous studies. Particle sizes were analyzed for a total of 14 samples of material representative of the screened interval in each of the 14 wells tested in this study. Of the 14 samples collected, 8 samples represent the alluvial aquifer and 6 samples represent the Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. The sampled alluvial aquifer material generally contained a greater percentage of large particles (larger than 0.5 mm) than the sampled sandstone aquifer material. Alternatively, the sampled sandstone aquifer material generally contained a greater percentage of fine particles (smaller than 0.5 mm) than the sampled alluvial aquifer material consistent with the finding that the alluvial aquifer is more conductive than the sandstone aquifer in the vicinity of the Lost Creek Designated Ground Water Basin.
Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak.
Murphy, J L; Kahler, A M; Nansubuga, I; Nanyunja, E M; Kaplan, B; Jothikumar, N; Routh, J; Gómez, G A; Mintz, E D; Hill, V R
2017-12-01
In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli , free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli While S Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. Copyright © 2017 American Society for Microbiology.
The TraceDetect's SafeGuard is designed to automatically measure total arsenic concentrations in drinking water samples (including raw water and treated water) over a range from 1 ppb to over 100 ppb. Once the operator has introduced the sample vial and selected "measure&qu...
West, A G; Goldsmith, G R; Matimati, I; Dawson, T E
2011-08-30
Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be included when reporting stable isotope data from IRIS. Copyright © 2011 John Wiley & Sons, Ltd.
Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacy, Stephen; Allen, Jeffrey
Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudomore » Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.« less
Effects of three phosphate industrial sites on ground-water quality in central Florida, 1979 to 1980
Miller, R.L.; Sutcliffe, Horace
1984-01-01
Geologic, hydrologic, and water quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida are presented. The data were collected from September 1979 to October 1980 at the AMAX Phosphate, Inc. chemical plant, Piney Point; the USS Agri-Chemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximately 5,400 field and laboratory water quality determinations on water samples collected from about 100 test holes and 28 surface-water , 5 rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste disposal operations are tabulated. Maps are included to show sampling sites. (USGS)
Miller, Ronald L.; Sutcliffe, Horace
1982-01-01
This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)
Clastogenecity evaluation of water of Lake Sevan (Armenia) using Tradescantia micronucleus assay.
Aghajanyan, E A; Avalyan, R E; Simonyan, A E; Atoyants, A L; Gabrielyan, B K; Aroutiounian, R M; Khosrovyan, A
2018-05-24
The clastogenic effects of water samples in seven locations of Lake Sevan (Armenia) with the application of Trad-MCN (micronuclei) bioassay using Tradescantia (clone 02) were investigated. A significant increase in the frequency of micronuclei in tetrads of pollen microspores and tetrads with micronuclei exposed to the test samples compared to the control has been revealed. A multivariate analysis indicated linkage between the frequencies of occurrence of micronuclei in the cells and Ni and Co ions. The results were compared with the endpoints of another Tradescantia-based test system (stamen hair mutation test) performed on the same water samples and generation of the plant: occurrences of micronuclei in sporogenic cells coincided with that of non-surviving stamen hair. Copyright © 2018 Elsevier Ltd. All rights reserved.
Braeye, T; DE Schrijver, K; Wollants, E; van Ranst, M; Verhaegen, J
2015-03-01
SUMMARY On 6 December 2010 a fire in Hemiksem, Belgium, was extinguished by the fire brigade with both river water and tap water. Local physicians were asked to report all cases of gastroenteritis. We conducted a retrospective cohort study among 1000 randomly selected households. We performed a statistical and geospatial analysis. Human stool samples, tap water and river water were tested for pathogens. Of the 1185 persons living in the 528 responding households, 222 (18·7%) reported symptoms of gastroenteritis during the time period 6-13 December. Drinking tap water was significantly associated with an increased risk for gastroenteritis (relative risk 3·67, 95% confidence interval 2·86-4·70) as was place of residence. Campylobacter sp. (2/56), norovirus GI and GII (11/56), rotavirus (1/56) and Giardia lamblia (3/56) were detected in stool samples. Tap water samples tested positive for faecal indicator bacteria and protozoa. The results support the hypothesis that a point-source contamination of the tap water with river water was the cause of the multi-pathogen waterborne outbreak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1994-12-31
Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of January 25--February 1, 1994. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected from Clinch River Mile 9.0, Poplar Creek Mile 1.0, and Poplar Creek Mile 2.9 on January 24, 26, and 28. Samples were partitioned and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival or growth) to fathead minnows; however, toxicity to daphnids wasmore » demonstrated in undiluted samples from Poplar Creek Mile 1.0 in testing conducted by TVA based on hypothesis testing of data. Point estimation (IC{sub 25}) analysis of the data, however, showed no toxicity in PCM 1.0 samples. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Meter calibrations; and Reference toxicant test information.« less
Sediment quality assessment studies of Tampa bay, Florida
Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.
1996-01-01
A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.
Lahnsteiner, Franz
2008-07-01
The sensitivity of the zebrafish embryo test, a test proposed for routine waste water control, was compared with the acute fish toxicity test, in the determination of six types of waste water and ten different chemicals. The waste water was sampled from the following industrial processes: paper and cardboard production, hide tanning, metal galvanisation, carcass treatment and utilisation, and sewage treatment. The chemicals tested were: dimethylacetamide, dimethylsulphoxide, cadmium chloride, cyclohexane, hydroquinone, mercuric chloride, nickel chloride, nonylphenol, resmethrin and sodium nitrite. For many of the test substances, the zebrafish embryo test and the acute fish toxicity test results showed high correlations. However, there were certain environmentally-relevant substances for which the results of the zebrafish embryo test and the acute fish toxicity test differed significantly, up to 10,000-fold (Hg(2+) > 150-fold difference; NO(2)(-) > 300-fold; Cd(2+) > 200-fold; resmethrin > 10,000-fold). For the investigated waste water samples and chemicals, the survival rate of the zebrafish embryos showed high variations between different egg samples, within the range of the EC50 concentration. Subsequently, 5-6 parallel assays were deemed to be the appropriate number necessary for the precise evaluation of the toxicity of the test substances. Also, it was found that the sensitivities of different ontogenetic stages to chemical exposure differed greatly. During the first 12 hours after fertilisation (4-cell stage to the 5-somite stage), the embryos reacted most sensitively to test substance exposure, whereas the later ontogenetic stages showed only slight or no response, indicating that the test is most sensitive during the first 24 hours post-fertilisation.
ERIC Educational Resources Information Center
Carnegie, John W.
A brief overview of the basic concepts and philosophies for sampling water and waste water systems is presented in this module. The module is not intended to specify sampling procedures, frequencies, or locations for specific treatment facilities but rather to outline those general procedures which should be followed when sampling under most…
Lead Tap Sampling Approaches: What Do They Tell You
There is no single, universally applicable sampling approach for lead in drinking water. The appropriate type of sampling is dictated by the question being asked. There is no reason when a customer asks to have their home water tested to see if it's "safe" that they s...
Quality assessment of commercially supplied drinking jar water in Chittagong City, Bangladesh
NASA Astrophysics Data System (ADS)
Mina, Sohana Akter; Marzan, Lolo Wal; Sultana, Tasrin; Akter, Yasmin
2018-03-01
Chittagong is the second most populated city in Bangladesh where drinking water is supplied using small jar. Water quality is an important concern for the consumers and, therefore, the present study was done by collecting 38 drinking jar water samples from Chittagong City, Bangladesh to determine the microbial contamination and physiochemical properties. Molecular study was done by the PCR amplification of 16SrDNA, LacZ and uidA gene for the identification of bacteria, coliform and fecal coliform. TVC, MPN and different biochemical test were done for enumeration and identification. TDS, pH, and metals (Fe, As, Pb and Cr) concentration were also measured. No heavy metal (As, Pb and Cr) was found in any of the water samples but Fe was detected in low concentrations (0.02-0.05 mg/l). TDS and pH level were normal in all samples. But microbial contaminations were (60.53 and 50%) recorded in molecular and biochemical test, respectively. The range of total bacterial count was (1.5 × 102-1.6 × 104) cfu/ml. The total coliform count (TCCm) was recorded (14-40) in 100 ml of water samples. The presence of total coliform and fecal coliform was 26.32 and 18.42%, respectively, in PCR analysis but in biochemical test those were 18.42 and 15.78%, respectively. A total of 11 bacterial species: Enterobacter aerogenes, Escherrichia coli, Aeromonas, Bacillus sp., Cardiobacterium, Corynebacterium, Clostridium, Klebsiella sp., Lactobacillus, Micrococcus sp., Pseudomonas sp. were found. This study indicates that some of the drinking jar water samples were of poor quality which may increase the risk of water-borne disease. Hence, the producer of drinking jar water has to implement necessary quality control steps.
Selected papers in the hydrologic sciences 1984; July 1984
Meyer, Eric L.
1984-01-01
The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.
Procedures for Handling and Chemical Analysis of Sediment and Water Samples,
1981-05-01
silts. Particularly suitable for studies of the sediment/ water interface, for studies on depositonal sediment structures. Al pi ne- ravity Cores of 2 m...adverse water quality impacts would occur. Elemental partitioning or sedimentation fractionation studies are the most complex of the tests considered...8217 water %nd blend the core or dredge sample. Place a{js roximalel-i 00 cc of’ the blended sample in an oxygen-free, poly - ca rbor’~ [ ’-l centrifuge bottle
Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Abrecht, David G.; Hayes, James C.
2016-10-31
Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO 2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.
Drivers of microbiological quality of household drinking water - a case study in rural Ethiopia.
Usman, Muhammed A; Gerber, Nicolas; Pangaribowo, Evita H
2018-04-01
This study aims at assessing the determinants of microbiological contamination of household drinking water under multiple-use water systems in rural areas of Ethiopia. For this analysis, a random sample of 454 households was surveyed between February and March 2014, and water samples from community sources and household storage containers were collected and tested for fecal contamination. The number of Escherichia coli (E. coli) colony-forming units per 100 mL water was used as an indicator of fecal contamination. The microbiological tests demonstrated that 58% of household stored water samples and 38% of protected community water sources were contaminated with E. coli. Moreover, most improved water sources often considered to provide safe water showed the presence of E. coli. The result shows that households' stored water collected from unprotected wells/springs had higher levels of E. coli than stored water from alternative sources. Distance to water sources and water collection containers are also strongly associated with stored water quality. To ensure the quality of stored water, the study suggests that there is a need to promote water safety from the point-of-source to point-of-use, with due considerations for the linkages between water and agriculture to advance the Sustainable Development Goal 6 of ensuring access to clean water for everyone.
Evaluation of Polymerase Chain Reaction for Detecting Coliform Bacteria in Drinking Water Sources
Isfahani, Bahram Nasr; Fazeli, Hossein; Babaie, Zeinab; Poursina, Farkhondeh; Moghim, Sharareh; Rouzbahani, Meisam
2017-01-01
Background: Coliform bacteria are used as indicator organisms for detecting fecal pollution in water. Traditional methods including microbial culture tests in lactose-containing media and enzyme-based tests for the detection of β-galactosidase; however, these methods are time-consuming and less specific. The aim of this study was to evaluate polymerase chain reaction (PCR) for detecting coliform. Materials and Methods: Totally, 100 of water samples from Isfahan drinking water source were collected. Coliform bacteria and Escherichia coli were detected in drinking water using LacZ and LamB genes in PCR method performed in comparison with biochemical tests for all samples. Results: Using phenotyping, 80 coliform isolates were found. The results of the biochemical tests illustrated 78.7% coliform bacteria and 21.2% E. coli. PCR results for LacZ and LamB genes were 67.5% and 17.5%, respectively. Conclusion: The PCR method was shown to be an effective, sensitive, and rapid method for detecting coliform and E. coli in drinking water from the Isfahan drinking water sources. PMID:29142893
Heakin, Allen J.
2000-01-01
This report presents results of a water-quality study for the Pine Ridge Indian Reservation, South Dakota. The study was a cooperative effort between the U.S. Geological Survey and the Water Resources Department of the Oglala Sioux Tribe. Discharge and water-quality data were collected during 1992-97 for 14 contact springs located in the northwestern part of the Reservation. Data were collected to evaluate potential alternative sources of water supply for the village of Red Shirt, which currently obtains water of marginal quality from a well completed in the Inyan Kara aquifer. During 1995-97, water-quality data also were collected for 44 public-supply wells that serve about one-half of the Reservation's population. Quality-assurance sampling was used to evaluate the precision and accuracy of environmental samples. Ten of the springs sampled contact the White River Group, and four contact the Pierre Shale. Springs contacting the White River Group range from calcium bicarbonate to sodium bicarbonate water types. Two springs contacting the Pierre Shale have water types similar to this; however, sulfate is the dominant anion for the other two springs. In general, springs contacting the White River Group are shown to have better potential as alternative sources of water supply for the village of Red Shirt than springs contacting the Pierre Shale. Nine of the springs with better water quality were sampled repeatedly; however, only minor variability in water quality was identified. Six of these nine springs, of which five contact the White River Group, probably have the best potential for use as water supplies. Discharge from any of these six springs probably would provide adequate water supply for Red Shirt during most periods, based on a limited number of discharge measurements collected. Concentrations of lead exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 ?g/L for three of these six springs. Five of these six springs also had arsenic concentrations that exceeded 10 ?g/L, which could be problematic if the current maximum contaminant level (MCL) is lowered. Blending of water from one or more springs with water from the existing Inyan Kara well may be an option to address concerns regarding both quantity and quality of existing and potential sources. All nine springs that were sampled for indicator bacteria had positive detections on one or more occasions during presumptive tests. Although USEPA standards for bacteria apply only to public-water supplies, local residents using spring water for domestic purposes need to be aware of the potential health risks associated with consuming untreated water. One spring contacting the White River Group and two springs contacting the Pierre Shale exceeded 15 pCi/L for gross alpha; these values do not necessarily constitute exceedances of the MCL, which excludes radioactivity contributed by uranium and radon. Additional sampling using different analysis techniques would be needed to conclusively determine if any samples exceeded this MCL. Nine springs were sampled for selected pesticides and tritium. The pesticides atrazine, carbaryl, and 2,4-D were not detected in any of the samples. The nine springs were analyzed for tritium in order to generally assess the age of the water and to determine if concentrations exceeded the MCL established for gross beta-particle activity. Tritium results indicated two springs are composed primarily of water recharged prior to atmospheric testing of nuclear bombs and two other springs have a relatively large percentage of test-era water. The remaining five springs had tritium values that indicated some percentage of test-era water; however, additional sampling would be needed to determine whether water is predominantly pre- or post-bomb age. Of the 44 public-supply wells sampled, 42 are completed in the Arikaree aquifer, one is completed in an alluvial aquifer, and one is completed in the Inyan Kara aquifer. Water
Ging, Patricia B.
1999-01-01
Surface-water sampling protocols of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program specify samples for most properties and constituents to be collected manually in equal-width increments across a stream channel and composited for analysis. Single-point sampling with an automated sampler (autosampler) during storms was proposed in the upper part of the South-Central Texas NAWQA study unit, raising the question of whether property and constituent concentrations from automatically collected samples differ significantly from those in samples collected manually. Statistical (Wilcoxon signed-rank test) analyses of 3 to 16 paired concentrations for each of 26 properties and constituents from water samples collected using both methods at eight sites in the upper part of the study unit indicated that there were no significant differences in concentrations for dissolved constituents, other than calcium and organic carbon.
DEMONSTRATION BULLETIN: HNU-HANBY PCP IMMUNOASSAY TEST KIT - HNU - SYSTEMS, INC.
The HNU-Hanby test kit rapidly analyzes for petroleum hydrocarbons in soil and water samples. The test kit can be used to estimate pentachlorophenol (PCP) concentrations in samples when the carrier solvent is a petroleum hydrocarbon. The test kit estimates PCP concentrations in ...
Rao, Koppula Yadav; Anjum, Mohammad Shakeel; Reddy, Peddireddy Parthasarathi; Monica, Mocherla; Hameed, Irram Abbass; Sagar, Goje Vidya
2016-05-01
Humanity highly depends on water and its proper utilization and management. Water has various uses and its use as thirst quenching fluid is the most significant one. To assess physical, chemical, trace metal and bacterial parameters of various public and packaged drinking water samples collected from villages of Vikarabad mandal. Public and packaged drinking water samples collected were analysed for various parameters using American Public Health Association (APHA 18(th) edition 1992) guidelines and the results obtained were compared with bureau of Indian standards for drinking water. Descriptive statistics and Pearson's correlations were done. Among bottled water samples, magnesium in 1 sample was >30mg/litre, nickel in 2 samples was >0.02mg/litre. Among sachet water samples, copper in 1 sample was >0.05mg/litre, nickel in 2 samples was >0.02mg/litre. Among canned water samples, total hardness in 1 sample was >200mg/litre, magnesium in 3 samples was >30mg/litre. In tap water sample, calcium was >75mg/litre, magnesium was >30mg/litre, nickel was >0.02mg/litre. Among public bore well water samples, pH in 1 sample was >8.5, total dissolved solids in 17 samples was >500mg/litre, total alkalinity in 9 samples was >200mg/litre, total hardness in 20 samples was >200mg/litre, calcium in 14 samples was >75mg/litre, fluoride in 1 sample was >1mg/litre, magnesium in 14 samples was >30mg/litre. Total coliform was absent in bottled water, sachet water, canned water, tap water samples. Total Coliform was present but E. coli was absent in 4 public bore well water samples. The MPN per 100 ml in those 4 samples of public bore well water was 50. Physical, chemical, trace metal and bacterial parameters tested in present study showed values greater than acceptable limit for some samples, which can pose serious threat to consumers of that region.
Field and laboratory arsenic speciation methods and their application to natural-water analysis
Bednar, A.J.; Garbarino, J.R.; Burkhardt, M.R.; Ranville, J.F.; Wildeman, T.R.
2004-01-01
The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8min at detection limits of less than 1??g arsenic per liter (??g AsL-1). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000??g AsL-1 for As(III) and 3700??g AsL-1 for As(V). Methylated arsenic species were less than 100??g AsL-1 and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5??g AsL-1 was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1??g AsL-1 in reagent water was 3-4% (n=3). ?? 2003 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this work was to design, construct, and test the self-propelled aquatic platform for imaging, multi-tier water sampling, water quality sensing, and depth profiling to document microbial content and environmental covariates in the interior of irrigation ponds and reservoirs. The plat...
Olsen, Lisa D.; Tenbus, Frederick J.
2005-01-01
A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times each, from July 1998 through September 1999, to assess background conditions and monitor tracer movement. During the test, 644 samples were analyzed for fluorescein, 617 samples were analyzed for bromide with an ion-selective electrode, 213 samples were analyzed for bromide with colorimetric methods, and 603 samples were analyzed for sulfur hexafluoride, including samples collected prior to tracer injection to determine background concentrations. Additional samples were analyzed for volatile organic compounds (96 samples) and methane (37 samples) to determine the distribution of these contaminants and the extent of methanogenic conditions within the tracer array; however, these data were not used for the analysis of the test. During the tracer test, the fluorescein dye, bromide, and sulfur hexafluoride were transported predominantly in the upward direction, although all three tracers also moved outward in all directions from the injection point, and it is likely that some tracer mass moved beyond the lateral edges of the array. An analysis of the tracer-test data was performed through the use of breakthrough curves and isoconcentration contour plots. Results show that movement of the fluorescein dye, a non-conservative tracer, was retarded compared to the other two tracers, likely as a result of sorption onto the wetland sediments. Suspected loss of tracer mass along the lateral edges of the array prevented a straightforward quantitative analysis of tracer transport and ground-water velocity from the bromide and sulfur-hexafluoride data. In addition, the initial density of the bromide/sulfur hexafluoride solution (calculated to be 1.097 grams per milli2 Ground-Water Tracer Test, West Branch Canal Creek, Aberdeen Proving Ground, MD liter) could have caused the solution to sink below the injection point before undergoing dilution and moving back up into the array. For these reasons, the data analysis in this report was performed largely through qualitative method
Bernalte, E; Marín Sánchez, C; Pinilla Gil, E
2011-03-09
The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL(-1) range (detection limit 1.1 ng mL(-1)), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0-110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5-90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing. Copyright © 2011 Elsevier B.V. All rights reserved.
2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-03-01
Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoringmore » and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good condition at the time of the site inspection. However, it was reported in September 2012 that the USGS-1 well head had been damaged by a water truck in April 2012.« less
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi
2016-11-01
With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore, to identify causative pollutants with harmful biological effects, chemical analyses for the pollutants listed in water quality standards is not sufficient, and single-endpoint bioassays may underestimate adverse effects. Thus, a battery of bioassays based on different MOAs is required for the comprehensive detection of harmful biological effects. In conclusion, for genotoxicity screening of surface waters, the SOS/umu test system by using different strains combined with the CBMN assay was a useful approach. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1993-12-31
Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22--29, 1993, prior to initiation of CR-ERP Phase 2 Sampling and Analysis activities. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in nomore » toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Reference toxicant test information; and Personnel training documentation.« less
Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents.
Waso, Monique; Dobrowsky, Penelope Heather; Hamilton, Kerry Ann; Puzon, Geoffrey; Miller, Haylea; Khan, Wesaal; Ahmed, Warish
2018-02-01
Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 10 2 to 3.6 × 10 4 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 10 1 to 7.8 × 10 4 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing associated public health risks.
Clinch River - Environmental Restoration Program (CR-ERP) study, Ambient water toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1997-06-01
Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of January 25-February 1, 1994, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0, Poplar Creek Mile 1.0, and Poplar Creek Mile 2.9 on January 24, 26, and 28. Samples were partitioned (split) and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms tomore » these samples resulted in no toxicity (survival or growth) to fathead minnows; however, toxicity to daphnids (significantly reduced reproduction) was demonstrated in undiluted samples from Poplar Creek Mile 1.0 in testing conducted by TVA based on hypothesis testing of data. Point estimation (IC{sub 25}) analysis of the data, however, showed no toxicity in PCM 1.0 samples.« less
46 CFR 160.062-4 - Inspections and tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...
46 CFR 160.062-4 - Inspections and tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...
46 CFR 160.062-4 - Inspections and tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...
46 CFR 160.062-4 - Inspections and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg; Gibbs, Shawn G.
Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwestmore » spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray irrigation sites; however, resistance to other antimicrobial classes is more prevalent, particularly among non-E. faecalis isolates. - Highlights: • Enterococci were recovered in 71% of reclaimed water samples. • Vancomycin-resistant enterococci were detected in 4% of reclaimed water samples. • UV radiation at irrigation sites reduced enterococci to undetectable levels. • Storage of reclaimed water in open-air ponds increased levels of enterococci.« less
NASA Astrophysics Data System (ADS)
Roether, Wolfgang; Vogt, Martin; Vogel, Sandra; Sültenfuß, Jürgen
2013-06-01
We present a new method to obtain samples for the measurement of helium isotopes and neon in water, to replace the classical sampling procedure using clamped-off Cu tubing containers that we have been using so far. The new method saves the gas extraction step prior to admission to the mass spectrometer, which the classical method requires. Water is drawn into evacuated glass ampoules with subsequent flame sealing. Approximately 50% headspace is left, from which admission into the mass spectrometer occurs without further treatment. Extensive testing has shown that, with due care and with small corrections applied, the samples represent the gas concentrations in the water within ±0.07% (95% confidence level; ±0.05% with special handling). Fast evacuation is achieved by pumping on a small charge of water placed in the ampoule. The new method was successfully tested at sea in comparison with Cu-tubing sampling. We found that the ampoule samples were superior in data precision and that a lower percentage of samples were lost prior to measurement. Further measurements revealed agreement between the two methods in helium, 3He and neon within ±0.1%. The new method facilitates the dealing with large sample sets and minimizes the delay between sampling and measurement. The method is applicable also for gases other than helium and neon.
Narayan, Sumit; Goel, Sudha
2011-01-01
The objective of this study was to determine optimum coagulant doses for turbidity and Total Organic Carbon (TOC) removal and evaluate the extent to which TOC can be removed by enhanced coagulation. Jar tests were conducted in the laboratory to determine optimum doses of alum for the removal of turbidity and Natural Organic Matter (NOM) from river water. Various other water quality parameters were measured before and after thejar tests and included: UV Absorbance (UVA) at 254 nm, microbial concentrations, TDS, conductivity, hardness, alkalinity, and pH. The optimum alum dose for removal of turbidity and TOC was 20 mg/L for the sample collected in November 2009 and 100 mg/L for the sample collected in March 2010. In both cases, the dose for enhanced coagulation was significantly higher than that for conventional coagulation. The gain in TOC removal was insignificant compared to the increase in coagulant dose required. This is usual for low TOC (< 2 mg/L)--high alkalinity water. Other water samples with higher TOC need to be tested to demonstrate the effectiveness of enhanced coagulation.
Gorski, Lisa; Parker, Craig T.; Liang, Anita; Cooley, Michael B.; Jay-Russell, Michele T.; Gordus, Andrew G.; Atwill, E. Robert; Mandrell, Robert E.
2011-01-01
A survey was initiated to determine the prevalence of Salmonella enterica in the environment in and around Monterey County, CA, a major agriculture region of the United States. Trypticase soy broth enrichment cultures of samples of soil/sediment (n = 617), water (n = 252), wildlife (n = 476), cattle feces (n = 795), and preharvest lettuce and spinach (n = 261) tested originally for the presence of pathogenic Escherichia coli were kept in frozen storage and later used to test for the presence of S. enterica. A multipathogen oligonucleotide microarray was employed to identify a subset of samples that might contain Salmonella in order to test various culture methods to survey a larger number of samples. Fifty-five of 2,401 (2.3%) samples yielded Salmonella, representing samples obtained from 20 different locations in Monterey and San Benito Counties. Water had the highest percentage of positives (7.1%) among sample types. Wildlife yielded 20 positive samples, the highest number among sample types, with positive samples from birds (n = 105), coyotes (n = 40), deer (n = 104), elk (n = 39), wild pig (n = 41), and skunk (n = 13). Only 16 (2.6%) of the soil/sediment samples tested positive, and none of the produce samples had detectable Salmonella. Sixteen different serotypes were identified among the isolates, including S. enterica serotypes Give, Typhimurium, Montevideo, and Infantis. Fifty-four strains were sensitive to 12 tested antibiotics; one S. Montevideo strain was resistant to streptomycin and gentamicin. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed over 40 different pulsotypes. Several strains were isolated from water, wildlife, or soil over a period of several months, suggesting that they were persistent in this environment. PMID:21378057
Gorski, Lisa; Parker, Craig T; Liang, Anita; Cooley, Michael B; Jay-Russell, Michele T; Gordus, Andrew G; Atwill, E Robert; Mandrell, Robert E
2011-04-01
A survey was initiated to determine the prevalence of Salmonella enterica in the environment in and around Monterey County, CA, a major agriculture region of the United States. Trypticase soy broth enrichment cultures of samples of soil/sediment (n = 617), water (n = 252), wildlife (n = 476), cattle feces (n = 795), and preharvest lettuce and spinach (n = 261) tested originally for the presence of pathogenic Escherichia coli were kept in frozen storage and later used to test for the presence of S. enterica. A multipathogen oligonucleotide microarray was employed to identify a subset of samples that might contain Salmonella in order to test various culture methods to survey a larger number of samples. Fifty-five of 2,401 (2.3%) samples yielded Salmonella, representing samples obtained from 20 different locations in Monterey and San Benito Counties. Water had the highest percentage of positives (7.1%) among sample types. Wildlife yielded 20 positive samples, the highest number among sample types, with positive samples from birds (n = 105), coyotes (n = 40), deer (n = 104), elk (n = 39), wild pig (n = 41), and skunk (n = 13). Only 16 (2.6%) of the soil/sediment samples tested positive, and none of the produce samples had detectable Salmonella. Sixteen different serotypes were identified among the isolates, including S. enterica serotypes Give, Typhimurium, Montevideo, and Infantis. Fifty-four strains were sensitive to 12 tested antibiotics; one S. Montevideo strain was resistant to streptomycin and gentamicin. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed over 40 different pulsotypes. Several strains were isolated from water, wildlife, or soil over a period of several months, suggesting that they were persistent in this environment.
NASA Technical Reports Server (NTRS)
Huff, Tim
1993-01-01
Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.
Genotoxicity of the Musi River (Hyderabad, India) investigated with the VITOTOX test.
Vijayashree, B; Ahuja, Y R; Regniers, L; Rao, V; Verschaeve, L
2005-01-01
The bacterial VITOTOX genotoxicity test was used to screen water samples collected from three different stations along the banks of the river Musi, in Hyderabad, India. Water was collected at three stations that differed from each other in the nature of the surrounding industrial and other activities. A number of different pollutants were also measured in water, soil and air samples. The three stations were found highly polluted and different with regard to the genotoxicity and toxicity of their samples. These results demonstrate the need for further biological studies in this area to generate valuable data on genomic instability, risk assessment of cancer, and to provide avenues for risk management.
Clinch River - Environmental Restoration Program (CR-ERP) pilot study, ambient water toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1997-06-01
Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22-29, 1993, prior to initiation of CR-ERP Phase II Sampling and Analysis activities as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories formore » testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA.« less
A Simple Alternative Method for Preservation of 2-Methylisoborneol in Water Samples
Lin, Tsair-Fuh
2018-01-01
2-Methylisoborneol (2-MIB) is one of the most commonly observed taste and odor (T&O) compounds present in drinking water sources. As it is biodegradable, a preservation agent, typically mercury chloride, is needed if the water is not analyzed right after sampling. Since mercury is a toxic metal, an alternative chemical that is cheaper and less toxic is desirable. In this study, two chemicals commonly used in water treatment processes, chlorine (as sodium hypochlorite) and KMnO4 (potassium permanganate), are studied to determine their feasibility as preservation agents for 2-MIB in water. Preservation experiments were first conducted in deionized water spiked with 2-MIB and with chlorine or permanganate at 4 and 25 °C. The results indicate that 2-MIB concentrations in the water samples spiked with both chemicals remained almost constant within 14 days for all the tested conditions, suggesting that oxidation and volatilization did not cause the loss of 2-MIB in the system. The experiments were further conducted for three different reservoir water samples with 30–60 ng/L of indulgent 2-MIB. The experimental results demonstrated that preservation with permanganate may have underestimated the 2-MIB concentration in the samples as a result of the formation of manganese dioxide particles in natural water and adsorption of 2-MIB onto the particles. Chlorine was demonstrated to be a good preservation agent for all three tested natural waters since oxidation of 2-MIB was negligible and biodegradation was inhibited. When the residual chlorine concentrations were controlled to be higher than 0.5 mg/L on the final day (day 14) of the experiments, the concentration reduction of 2-MIB became lower than 13% at both of the tested temperatures. The results demonstrated that sodium hypochlorite can be used as an alternative preservation agent for 2-MIB in water before analysis. PMID:29783625
An assessment of drinking-water quality post-Haiyan.
Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo
2015-01-01
Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.
An assessment of drinking-water quality post-Haiyan
Anarna, Maria Sonabel; Fernando, Arturo
2015-01-01
Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136
Gas-Chromatographic Determination Of Water In Freon PCA
NASA Technical Reports Server (NTRS)
Melton, Donald M.
1994-01-01
Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.
Kim, Kyoo-Tae; Lee, Seung-Hun; Kwak, Dongmi
2015-06-01
Aeromonas spp., Vibrio parahaemolyticus , and Plesiomonas shigelloides are commonly implicated in foodborne and waterborne diarrheal illnesses of humans and other animals. The present study assessed the prevalence, biochemical characteristics, and antibiotic susceptibility of Aeromonas spp., V. parahaemolyticus , and P. shigelloides by analyzing samples from 729 sources at a zoo, including animal feces (n=607), watering facilities (n=104), and pond water samples (n=18). Of the 729 samples collected, 40 (5.5%) contained one of these four species of bacteria: A. hydrophila (n=16; 2.2%), A. sobria (n=12; 1.6%), V. parahaemolyticus (n=10; 1.4%), and P. shigelloides (n=2; 0.3%). The 16 isolates of A. hydrophila came from three fecal samples, eight watering facilities, and five pond water samples. The 12 isolates of A. sobria came from four fecal samples, three watering facilities, and five pond water samples. The 10 isolates of V. parahaemolyticus came from one fecal sample and nine watering facilities. The two isolates of P. shigelloides came from one watering facility and one pond water sample. Of the 40 isolates, 16 (40.0%), 21 (52.5%), and three (7.5%) originated from mammals, birds, and reptiles, respectively. All isolates tested positive for NO3, tryptophan, p-nitrophenyl-β-D-galactopyranoside, glucose assimilation, N-acetyl-glucosamine, maltose, gluconate, malate, and oxidase. Aeromonas spp. and V. parahaemolyticus exhibited similar biochemical characteristics, whereas P. shigelloides exhibited distinct fermentation characteristics. All the isolated strains exhibited hemolytic activity; variable results of DNase, protease, and Congo red uptake tests; and resistance to ampicillin, bacitracin, novobiocin, penicillin, and vancomycin. All the strains were sensitive to amikacin, chloramphenicol, colistin, gentamicin, kanamycin, norfloxacin, and trimethoprim-sulfadimethoxazole. Because of the high proportion of asymptomatic carriers of these potentially pathogenic bacteria and their wide distribution, consistent monitoring of food and water sources is necessary to prevent disease outbreaks.
Environmental Chemistry Methods (ECM) Index - Q
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with Q as the first character.
Environmental Chemistry Methods (ECM) Index - D
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with D as the first character.
Environmental Chemistry Methods (ECM) Index - N
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with N as the first character.
Environmental Chemistry Methods (ECM) Index - P
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with P as the first character.
Environmental Chemistry Methods (ECM) Index - L
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with L as the first character.
Environmental Chemistry Methods (ECM) Index - T
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with T as the first character.
Environmental Chemistry Methods (ECM) Index - A
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with A as the first character.
Environmental Chemistry Methods (ECM) Index - E
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with E as the first character.
Environmental Chemistry Methods (ECM) Index - O
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with O as the first character.
Environmental Chemistry Methods (ECM) Index - Z
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with Z as the first character.
Environmental Chemistry Methods (ECM) Index - I
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with I as the first character.
Environmental Chemistry Methods (ECM) Index - S
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with S as the first character.
Environmental Chemistry Methods (ECM) Index - K
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with K as the first character.
Environmental Chemistry Methods (ECM) Index - R
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with R as the first character.
ECM for Aldicarb in Soil - MRID 49477402
laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with A as the first character.
Environmental Chemistry Methods (ECM) Index - G
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with G as the first character.
Environmental Chemistry Methods (ECM) Index - F
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with F as the first character.
Environmental Chemistry Methods (ECM) Index - B
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with B as the first character.
Environmental Chemistry Methods (ECM) Index - M
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with M as the first character.
Environmental Chemistry Methods (ECM) Index - C
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with C as the first character.
Environmental Chemistry Methods (ECM) Index - H
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with H as the first character.
Clinch River - Environmental Restoration Program (CR-ERP) study, ambient water toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, C.L.
1997-06-01
Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of July 22-29, 1993, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 19.0 and Mile 22.0 on July 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth,more » or reproduction) to either species in testing conducted by TVA.« less
Völker, Sebastian; Kistemann, Thomas
2015-01-01
Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.
McHugh, John B.; Miller, W. Roger
1989-01-01
In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, C.L.
1993-12-31
Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of July 22--29, 1993. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field engineering personnel from Clinch River Mile 19.0 and Mile 22.0 on July 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachmentsmore » to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Reference toxicant test information.« less
Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill U; Gostick, J. T.; Gunterman, H. P.
2010-06-25
X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.
Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.
1994-01-01
Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.
NASA Technical Reports Server (NTRS)
Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.
2014-01-01
Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.
Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.
2012-01-01
In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels.Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt.A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d.Water samples were analyzed for cations, anions, metals, nutrients, total organic carbon, volatile organic compounds, stable isotopes, and radionuclides. Water samples from borehole USGS 136 indicated that concentrations of tritium, sulfate, and chromium were affected by wastewater disposal practices at the Advanced Test Reactor Complex. Depth-discrete groundwater samples were collected in the open borehole USGS 136 near 965, 710, and 573 ft BLS using a thief sampler; on the basis of selected constituents, deeper groundwater samples showed no influence from wastewater disposal at the Advanced Test Reactor Complex.
Melching, C.S.; Coupe, R.H.
1995-01-01
During water years 1985-91, the U.S. Geological Survey (USGS) and the Illinois Environmental Protection Agency (IEPA) cooperated in the collection and analysis of concurrent and split stream-water samples from selected sites in Illinois. Concurrent samples were collected independently by field personnel from each agency at the same time and sent to the IEPA laboratory, whereas the split samples were collected by USGS field personnel and divided into aliquots that were sent to each agency's laboratory for analysis. The water-quality data from these programs were examined by means of the Wilcoxon signed ranks test to identify statistically significant differences between results of the USGS and IEPA analyses. The data sets for constituents and properties identified by the Wilcoxon test as having significant differences were further examined by use of the paired t-test, mean relative percentage difference, and scattergrams to determine if the differences were important. Of the 63 constituents and properties in the concurrent-sample analysis, differences in only 2 (pH and ammonia) were statistically significant and large enough to concern water-quality engineers and planners. Of the 27 constituents and properties in the split-sample analysis, differences in 9 (turbidity, dissolved potassium, ammonia, total phosphorus, dissolved aluminum, dissolved barium, dissolved iron, dissolved manganese, and dissolved nickel) were statistically significant and large enough to con- cern water-quality engineers and planners. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between paris of split samples were compared to the precision of the laboratory method used and the interlaboratory precision of measuring a given concentration or property. Consideration of method precision indicated that differences between concurrent samples were insignificant for all concentrations and properties except pH, and that differences between split samples were significant for all concentrations and properties. Consideration of interlaboratory precision indicated that the differences between the split samples were not unusually large. The results for the split samples illustrate the difficulty in obtaining comparable and accurate water-quality data.
Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan.
Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2017-06-01
Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.
NASA Technical Reports Server (NTRS)
Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.
1998-01-01
Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecain, G.D.; Anna, L.O.; Fahy, M.F.
1998-08-01
Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... Act; Analysis and Sampling Procedures; Extension of Comment Period AGENCY: Environmental Protection..., 2010, EPA proposed changes to analysis and sampling test procedures in wastewater regulations. These...
Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Bidwell; Jonathan Fisher; Naomi Cooper
2008-03-31
This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were alsomore » analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.« less
Herkovits, Jorge; Perez-Coll, Cristina; Herkovits, Francisco D
2002-01-01
The toxicity of 34 environmental samples from potentially polluted and reference stations were evaluated by means of the AMPHITOX test from acute to chronic exposure according to the toxicity found in each sample. The samples were obtained from surface and ground water, leaches, industrial effluents and soils. The data, expressed in acute, short-term chronic and chronic Toxicity Units (TUa, TUstc and TUc) resulted in a maximal value of 1000 TUc, found in a leach, while the lower toxicity value was 1.4 TUa corresponding to two surface water samples. In five samples (four providing from reference places) no toxicity was detected. The results point out the possibility of evaluating the toxicity of a wide diversity of samples by means of AMPHITOX as a customized toxicity test. The fact that almost all samples with suspected toxicity in rivers and streams from the Metropolitan area of Buenos Aires city resulted toxic, indicates the need of enhanced stewardship of chemical substances for environmental and human health protection purposes.
46 CFR 162.050-7 - Approval procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and is tested in accordance with this subpart; (2) The oil content of each sample of separated water effluent taken during approval testing is 15 ppm or less; (3) During Test No. 3A an oily mixture is not observed at the separated water outlet of the separator; (4) During Test No. 5A its operation is continuous...
46 CFR 162.050-7 - Approval procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and is tested in accordance with this subpart; (2) The oil content of each sample of separated water effluent taken during approval testing is 15 ppm or less; (3) During Test No. 3A an oily mixture is not observed at the separated water outlet of the separator; (4) During Test No. 5A its operation is continuous...
Environmental Chemistry Methods (ECM) Index - 0-9
Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with a number as the first character.
Validation of the REA bioassay to detect estrogenic activity in the water cycle.
Nguyen, Mai Thao; van der Oost, Ron; Bovee, Toine F H
2011-12-01
Endocrine disrupting compounds (EDCs) with estrogenic potency contaminate water and might eventually cause adverse effects to the aquatic environment. Many estrogenic compounds are not completely removed by wastewater treatment systems and, together with the run-off from agricultural areas, they enter surface waters. Chemical analytical methods to determine these compounds are usually expensive and laborious. Therefore, screening bioassays which are able to detect compounds based on their effects offer a solution for prior selection of samples that need to be chemically analyzed. In this study, the REA (RIKILT yeast Estrogen bioAssay), which has been developed to detect estrogenic compounds in calf urine and animal feed at RIKILT, is validated at the Water Board Laboratory of Waterproef for water samples. According to EC Decision 2002/657, detection capability CCβ, specificity and stability have to be determined for the internal validation of a qualitative screening test. In addition, surface water and effluent samples were analyzed to further demonstrate the applicability of the validated test procedure. Results demonstrate that the REA assay is reproducible and specific for estrogenic compounds in water and meets the criteria as prescribed in EC Decision 2002/657. The assay was sensitive enough to detect estrogenic activity of pollutants in water with a limit of quantification (LOQ) below 1 ng EEQ/L. This means that samples can be compared with preliminary threshold levels for drinking water and surface waters (7 and 1 ng EEQ/L, respectively). The stability of estrogenic activity in water samples is at least 4 weeks, when stored at 4 °C. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.;
2007-01-01
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.
Kent, Robert; Landon, Matthew K.
2016-01-01
From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.
ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.
2010-01-01
During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.
Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn
2009-01-01
Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.
Meyer, M.T.; Bumgarner, J.E.; Varns, J.L.; Daughtridge, J.V.; Thurman, E.M.; Hostetler, K.A.
2000-01-01
Approximately one-half of the 50 000000 lb of antibiotics produced in the USA are used in agriculture. Because of the intensive use of antibiotics in the management of confined livestock operations, the potential exists for the transport of these compounds and their metabolites into our nation's water resources. A commercially available radioimmunoassay method, developed as a screen for tetracycline antibiotics in serum, urine, milk, and tissue, was adapted to analyze water samples at a detection level of approximately 1.0 ppb and a semiquantitative analytical range of 1-20 ppb. Liquid waste samples were obtained from 13 hog lagoons in three states and 52 surface- and ground-water samples were obtained primarily from areas associated with intensive swine and poultry production in seven states. These samples were screened for the tetracycline antibiotics by using the modified radioimmunoassay screening method. The radioimmunoassay tests yielded positive results for tetracycline antibiotics in samples from all 13 of the hog lagoons. Dilutions of 10-100-fold of the hog lagoon samples indicated that tetracycline antibiotic concentrations ranged from approximately 5 to several hundred parts per billion in liquid hog lagoon waste. Of the 52 surface- and ground-water samples collected all but two tested negative and these two samples contained tetracycline antibiotic concentrations less than 1 ppb. A new liquid chromatography/mass spectrometry method was used to confirm the radioimmunoassay results in 9 samples and also to identify the tetracycline antibiotics to which the radioimmunoassay test was responding. The new liquid chromatography/mass spectrometry method with online solid-phase extraction and a detection level of 0.5 ??g/l confirmed the presence of chlorotetracycline in the hog lagoon samples and in one of the surface-water samples. The concentrations calculated from the radioimmunoassay were a factor of 1-5 times less than those calculated by the liquid chromatography/mass spectrometry concentrations for chlorotetracycline. Copyright (C) 2000 Elsevier Science B.V.
Corrosion inhibitors for water-base slurry in multiblade sawing
NASA Technical Reports Server (NTRS)
Chen, C. P.; Odonnell, T. P.
1982-01-01
The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil.
Collins, S; Stevenson, D; Walker, J; Bennett, A
2017-06-01
To evaluate the usefulness of Legionella qPCR alongside traditional culture for enumeration of Legionella from water samples as part of both routine and public health investigation testing. Routine water samples (n = 2002) and samples from public health investigations (n = 215) were analysed by culture and qPCR for Legionella spp., Legionella pneumophila and L. pneumophila sg-1. A negative qPCR result was highly predictive of a negative culture result for all water systems (negative predictive values, NPV from 97·4 to 100%). Positive predictive values (PPV) were lower (0-50%). Results for qPCR were generally larger than culture with average log 10 differences of 1·1 for Legionella spp. and 1·2 for L. pneumophila. Alert and action levels of 1000 and 10 000 GU per litre, respectively, are proposed for Legionella qPCR for hot and cold water systems (HCWS). The use of qPCR significantly reduced the time to results for public health investigations by rapidly identifying potential sources and ruling out others, thus enabling a more rapid and efficient response. The high NPV of qPCR supports its use to rapidly screen out negative samples without culture. Alert and action levels for Legionella qPCR for HCWS are proposed. Quantitative PCR will be a valuable tool for both routine and public health testing. This study generated comparative data of >2000 water samples by qPCR and culture. Action and alert levels have been recommended that could enable duty holders to interpret qPCR results to facilitate timely Legionella control and public health protection. © 2017 Crown copyright. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology.
Vessel-Generated Ballast Water: Gray Water Investigation
2015-09-01
grams per square meter per day (gm/ m2 /day) than the gray water samples, however, trends for the other types of gray/seawater mixtures differed between...mass loss occurred in total grams; however, the corrosion rate when normalized to g/ m2 /day were actually higher compared to the uncoated samples...based off the known exposed holiday area and converted to mass loss rates in g/ m2 /day. Electrochemical testing requires the sample coupon be in
Carr, Robert Scott; Chapman, Duane C.
1992-01-01
As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.
Exploring the Legionella pneumophila positivity rate in hotel water samples from Antalya, Turkey.
Sepin Özen, Nevgün; Tuğlu Ataman, Şenay; Emek, Mestan
2017-05-01
The genus Legionella is a fastidious Gram-negative bacteria widely distributed in natural waters and man made water supply systems. Legionella pneumophila is the aetiological agent of approximately 90% of reported Legionellosis cases, and serogroup 1 is the most frequent cause of infections. Legionnaires' disease is often associated with travel and continues to be a public health concern at present. The correct water management quality practices and rapid methods for analyzing Legionella species in environmental water is a key point for the prevention of Legionnaires' disease outbreaks. This study aimed to evaluate the positivity rates and serotyping of Legionella species from water samples in the region of Antalya, Turkey, which is an important tourism center. During January-December 2010, a total of 1403 samples of water that were collected from various hotels (n = 56) located in Antalya were investigated for Legionella pneumophila. All samples were screened for L. pneumophila by culture method according to "ISO 11731-2" criteria. The culture positive Legionella strains were serologically identified by latex agglutination test. A total of 142 Legionella pneumophila isolates were recovered from 21 (37.5%) of 56 hotels. The total frequency of L. pneumophila isolation from water samples was found as 10.1%. Serological typing of 142 Legionella isolates by latex agglutination test revealed that strains belonging to L. pneumophila serogroups 2-14 predominated in the examined samples (85%), while strains of L. pneumophila serogroup 1 were less numerous (15%). According to our knowledge, our study with the greatest number of water samples from Turkey demonstrates that L. pneumophila serogroups 2-14 is the most common isolate. Rapid isolation of L. pneumophila from environmental water samples is essential for the investigation of travel related outbreaks and the possible resources. Further studies are needed to have epidemiological data and to determine the types of L. pneumophila isolates from Turkey.
Evaluation of Genotoxic and Mutagenic Activity of Organic Extracts from Drinking Water Sources
Guan, Ying; Wang, Xiaodong; Wong, Minghung; Sun, Guoping; An, Taicheng; Guo, Jun
2017-01-01
An increasing number of industrial, agricultural and commercial chemicals in the aquatic environment lead to various deleterious effects on organisms, which is becoming a serious global health concern. In this study, the Ames test and SOS/umu test were conducted to investigate the potential genotoxicity and mutagenicity caused by organic extracts from drinking water sources. Organic content of source water was extracted with XAD-2 resin column and organic solvents. Four doses of the extract equivalent to 0.25, 0.5, 1 and 2L of source water were tested for toxicity. All the water samples were collected from six different locations in Guangdong province. The results of the Ames test and SOS/umu test showed that all the organic extracts from the water samples could induce different levels of DNA damage and mutagenic potentials at the dose of 2 L in the absence of S9 mix, which demonstrated the existence of genotoxicity and mutagenicity. Additionally, we found that Salmonella typhimurium strain TA98 was more sensitive for the mutagen. Correlation analysis between genotoxicity, Organochlorine Pesticides (OCPs) and Polycyclic Aromatic Hydrocarbons (PAHs) showed that most individual OCPs were frame shift toxicants in drinking water sources, and there was no correlation with total OCPs and PAHs. PMID:28125725
Clinch River - Environmental Restoration Program (CR-ERP) study, ambient water toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1997-06-01
Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of April 14-21, 1994, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Poplar Creek Mile 4.3, Poplar Creek Mile 5.1, and Poplar Creek Mile 6.0 on April 13, 15, and 18. Samples were partitioned (split) and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to thesemore » samples resulted in no toxicity (survival or growth) to daphnids in undiluted samples; however, toxicity to fathead minnows (significantly reduced survival) was demonstrated in undiluted samples from Poplar Creek Miles 4.3 and 6.0 in testing conducted by TVA based on hypothesis testing of data. Daphnid reproduction was significantly less than controls in 50 percent dilutions of samples from Poplar Creek Miles 4.3 and 6.0, while no toxicity to fathead minnows was shown in diluted (50 percent) samples.« less
Rao, Koppula Yadav; Anjum, Mohammad Shakeel; Reddy, Peddireddy Parthasarathi; Monica, Mocherla; Hameed, Irram Abbass
2016-01-01
Introduction Humanity highly depends on water and its proper utilization and management. Water has various uses and its use as thirst quenching fluid is the most significant one. Aim To assess physical, chemical, trace metal and bacterial parameters of various public and packaged drinking water samples collected from villages of Vikarabad mandal. Materials and Methods Public and packaged drinking water samples collected were analysed for various parameters using American Public Health Association (APHA 18th edition 1992) guidelines and the results obtained were compared with bureau of Indian standards for drinking water. Statistical Analysis Descriptive statistics and Pearson’s correlations were done. Results Among bottled water samples, magnesium in 1 sample was >30mg/litre, nickel in 2 samples was >0.02mg/litre. Among sachet water samples, copper in 1 sample was >0.05mg/litre, nickel in 2 samples was >0.02mg/litre. Among canned water samples, total hardness in 1 sample was >200mg/litre, magnesium in 3 samples was >30mg/litre. In tap water sample, calcium was >75mg/litre, magnesium was >30mg/litre, nickel was >0.02mg/litre. Among public bore well water samples, pH in 1 sample was >8.5, total dissolved solids in 17 samples was >500mg/litre, total alkalinity in 9 samples was >200mg/litre, total hardness in 20 samples was >200mg/litre, calcium in 14 samples was >75mg/litre, fluoride in 1 sample was >1mg/litre, magnesium in 14 samples was >30mg/litre. Total coliform was absent in bottled water, sachet water, canned water, tap water samples. Total Coliform was present but E. coli was absent in 4 public bore well water samples. The MPN per 100 ml in those 4 samples of public bore well water was 50. Conclusion Physical, chemical, trace metal and bacterial parameters tested in present study showed values greater than acceptable limit for some samples, which can pose serious threat to consumers of that region. PMID:27437248
The origin of high sulfate concentrations in a coastal plain aquifer, Long Island, New York
Brown, C.J.; Schoonen, M.A.A.
2004-01-01
Ion-exchange batch experiments were run on Cretaceous (Magothy aquifer) clay cores from a nearshore borehole and an inland borehole on Long Island, NY, to determine the origin of high SO42- concentrations in ground water. Desorption batch tests indicate that the amounts of SO 42- released from the core samples are much greater (980-4700 ??g/g of sediment) than the concentrations in ground-water samples. The locally high SO42- concentrations in pore water extracted from cores are consistent with the overall increase in SO 42- concentrations in ground water along Magothy flow paths. Results of the sorption batch tests indicate that SO42- sorption onto clay is small but significant (40-120 ??g/g of sediment) in the low-pH (<5) pore water of clays, and a significant part of the SO42- in Magothy pore water may result from the oxidation of FeS2 by dissolved Fe(III). The acidic conditions that result from FeS2 oxidation in acidic pore water should result in greater sorption of SO42- and other anions onto protonated surfaces than in neutral-pH pore water. Comparison of the amounts of Cl- released from a clay core sample in desorption batch tests (4 ??g/g of sediment) with the amounts of Cl- sorbed to the same clay in sorption tests (3.7-5 ??g/g) indicates that the high concentrations of Cl- in pore water did not originate from connate seawater but were desorbed from sediment that was previously in contact with seawater. Furthermore, a hypothetical seawater transgression in the past is consistent with the observed pattern of sorbed cation complexes in the Magothy cores and could be a significant source of high SO42- concentrations in Magothy ground water.
Evaluation of USEPA method 1622 for detection of Cryptosporidium oocysts in stream waters
Simmons, O. D.; Sobsey, M.D.; Schaefer, F. W.; Francy, D.S.; Nally, R.A.; Heaney, C.D.
2001-01-01
To improve surveillance for Cryptosporidium oocysts in water, the US Environmental Protection Agency developed method 1622, which consists of filtration, concentration, immunomagnetic separation, fluorescent antibody and 4, 6-diamidino-2-phenylindole (DAPI) counter-staining, and microscopic evaluation. Two filters were compared for analysis of 11 stream water samples collected throughout the United States. Replicate 10-L stream water samples (unspiked and spiked with 100-250 oocysts) were tested to evaluate matrix effects. Oocyst recoveries from the stream water samples averaged 22% (standard deviation [SD] = ??17%) with a membrane disk and 12% (SD = ??6%) with a capsule filter. Oocyst recoveries from reagent water precision and recovery samples averaged 39% (SD = ??13%) with a membrane disk and 47% (SD = ??19%) with a capsule filter. These results demonstrate that Cryptosporidium oocysts can be recovered from stream waters using method 1622, but recoveries are lower than those from reagent-grade water. This research also evaluated concentrations of indicator bacteria in the stream water samples. Because few samples were oocyst-positive, relationships between detections of oocysts and concentrations of indicator organisms could not be determined.
Epidemiology of Cyclospora cayetanensis and other intestinal parasites in a community in Haiti.
Lopez, Adriana S; Bendik, Jean M; Alliance, Jean Y; Roberts, Jacquelin M; da Silva, Alexandre J; Moura, Iaci N S; Arrowood, Michael J; Eberhard, Mark L; Herwaldt, Barbara L
2003-05-01
We conducted an exploratory investigation in a community in Haiti to determine the prevalence of Cyclospora cayetanensis infection and to identify potential risk factors for C. cayetanensis infection. In 2001, two cross-sectional stool surveys and a nested case-control study were conducted. In 2002, a follow-up cross-sectional stool survey was conducted among children < or =10 years of age. Stool specimens from study participants and water samples from their wells were examined for Cyclospora and other intestinal parasites. In stools, the prevalence of infection with Cyclospora in persons of all ages decreased from 12% (20 of 167 persons) in February 2001 to 1.1% (4 of 352 persons) in April 2001, a 90.8% decrease. For children < or =10 years of age, the prevalence rates were 22.5% (16 of 71 children) in February 2001, 3.0% (4 of 135 children) in April 2001, and 2.5% (2 of 81 children) in January 2002. Use of the water from the artesian well in the northern region of the community versus the one in the south was the only risk factor associated with Cyclospora infection in multivariate analyses (odds ratio, 18.5; 95% confidence interval, 2.4 to 143.1). The water sample from one of the nine wells or water sources tested (one sample per source) in January 2001, shortly before the investigation began, was positive for Cyclospora by UV fluorescence microscopy and PCR. None of the water samples from the 46 wells or water sources tested during the investigation (one sample per source per testing period, including the artesian wells) were positive for Cyclospora. Further studies are needed to assess the role of water as a possible risk factor for Cyclospora infection in Haiti and other developing countries.
Effects of nutrient management on nitrate levels in ground water near Ephrata Pennsylvania
Hall, David W.
1992-01-01
Effects of the implementation of nutrient management practices on ground-water quality were studied at a 55-acre farm in Lancaster County, Pennsylvania, from 1985-90. After nutrient management practices were implemented at the site in October 1986, statistically significant decreases (Wilcoxon Mann-Whitney test) in median nitrate concentrations in ground-water samples occurred at four of the five wells monitored. The largest decreases in nitrate concentration occurred in samples collected at the wells that had the largest nitrate concentrations prior to nutrient management. The decreases in median nitrate concentrations in ground-water samples ranged from 8 to 32 percent of the median concentrations prior to nutrient management and corresponded to nitrogen application decreases of 39 to 67 percent in contributing areas that were defined upgradient of these wells. Changes in nitrogen applications to the contributing areas of five water wells were correlated (Spearman rank-sum test) with nitrate concentrations of the well water. Changes in ground-water nitrate concentrations lagged behind the changes in applied-nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.
Microbiology of broiler carcasses and chemistry of chiller water as affected by water reuse.
Northcutt, J K; Smith, D; Huezo, R I; Ingram, K D
2008-07-01
A study was conducted to determine the effects of treating and reusing poultry chiller water in a commercial poultry processing facility. Broiler carcasses and chiller water were obtained from a commercial processing facility which had recently installed a TOMCO Pathogen Management System to recycle water in sections 2 and 3 of two 3-compartment chillers. In this system, reused water is blended with fresh water to maintain the chiller volume. Carcasses were sampled prechill and postchill (final exit), and chiller water was sampled from the beginning and end of each of the 3 sections. Carcasses were subjected to a whole carcass rinse (WCR) in 0.1% peptone. Numbers of Escherichia coli (EC), coliforms (CF), and Campylobacter (CPY) were determined from the WCR and chiller water samples. Prevalence of Salmonella (SAL) was also determined on the WCR and chiller water samples. On average, prechill levels of bacteria recovered from rinses were 2.6, 2.9, and 2.6 log10 cfu/mL for EC, CF, and CPY, respectively. Ten out of 40 (25%) prechill carcasses were positive for SAL. After chilling, numbers of EC, CF, and CPY recovered from carcass rinses decreased by 1.5, 1.5, and 2.0 log10 cfu/mL, respectively. However, 9 out of 40 (22%) postchill carcasses were positive for SAL. When the chiller water samples were tested, counts of EC, CF, and CPY were found only in water collected from the first section of the chiller (inlet and outlet). Two of 4 water samples collected from the inlet of the first section tested positive for SAL. This study shows that fresh and reused water can be used to cool poultry in chiller systems to achieve a reduction in numbers of bacteria (EC, CF, and CPY) or equivalent prevalence (SAL) of bacteria recovered from broiler carcasses.
Hladik, Michelle; Smalling, Kelly L.; Kuivila, Kathryn
2009-01-01
A method for the determination of 14 pyrethroid insecticides in environmental water and sediment samples is described. The method was developed by the U.S. Geological Survey in response to increasing concern over the effects of pyrethroids on aquatic organisms. The pyrethroids included in this method are ones that are applied to many agricultural and urban areas. Filtered water samples are extracted for pyrethroids using solid-phase extraction (SPE) with no additional cleanup steps. Sediment and soil samples are extracted using a microwave-assisted extraction system, and the pyrethroids of interest are separated from co-extracted matrix interferences by passing the extracts through stacked graphitized carbon and alumina SPE cartridges, along with the use of high-performance liquid chromatography and gel-permeation chromatography (HPLC/GPC). Quantification of the pyrethroids from the extracted water and sediment samples is done using gas chromatography with mass spectrometry (GC/MS) or gas chromatography with tandem mass spectrometry (GC/MS/MS). Recoveries in test water samples fortified at 10 ng/L ranged from 83 to 107 percent, and recoveries in test sediment samples fortified at 10 ug/kg ranged from 82 to 101 percent; relative standard deviations ranged from 5 to 9 percent in the water samples and 3 to 9 percent in the sediment samples. Method detection limits (MDLs), calculated using U.S. Environmental Protection Agency procedures (40 CFR 136, Appendix B), in water ranged from 2.0 to 6.0 ng/L using GC/MS and 0.5 to 1.0 ng/L using GC/MS/MS. For sediment, the MDLs ranged from 1.0 to 2.6 ug/kg dry weight using GC/MS and 0.2 to 0.5 ug/kg dry weight using GC/MS/MS. The matrix-spike recoveries for each compound, when averaged for 12 environmental water samples, ranged from 84 to 96 percent, and when averaged for 27 environmental sediment samples, ranged from 88 to 100 percent.
NASA Astrophysics Data System (ADS)
Hossain, M. S.; Chowdhury, M. Alamgir Zaman; Pramanik, Md. Kamruzzaman; Rahman, M. A.; Fakhruddin, A. N. M.; Alam, M. Khorshed
2015-06-01
The use of pesticide for crops leads to serious environmental pollution, therefore, it is essential to monitor and develop approaches to remove pesticide from contaminated environment. In this study, water samples were collected to monitor pesticide residues, and degradation of chlorpyrifos was also performed using soil bacteria. Identification of pesticide residues and determination of their levels were performed by high-performance liquid chromatography with photodiode array detector. Among 12 samples, 10 samples were found contaminated with pesticides. Chlorpyrifos was detected in four tested samples and concentrations ranged from 3.27 to 9.31 μg/l whereas fenitrothion ranging from (Below Detection Limit, <0.1 μg/l) to 33.41 μg/l in the tested samples. Parathion was found in two tested samples at the concentration of 0.73 and 6.23 μg/l. None of the tested samples was found contaminated with Methoxychlor, DDT and Ethion. Three soil bacterial isolates, Pseudomonas peli BG1, Burkholderia caryophylli BG4 and Brevundimonas diminuta PD6 degraded chlorpyrifos completely in 8, 10 and 10 days, respectively, when 20 mg/l chlorpyrifos was supplied as sole source of carbon. Whereas, BG1, BG4 and PD6 took 14, 16 and 16 days, respectively, for complete removal of 50 mg/l chlorpyrifos. Chlorpyrifos degradation rates were found maximum by all three isolates at 2nd day of incubation for both tested concentrations. The results of the present study suggest the need for regular monitoring of pesticide residues in water, to protect the aquatic environment. Chlorpyrifos degrading bacterial isolates can be used to clean up environmental samples contaminated with the organophosphate pesticides.
Meusburger, Stefan; Reichart, Sandra; Kapfer, Sabine; Schableger, Karl; Fretz, Rainer; Allerberger, Franz
2007-01-01
In August 2006 a physician from a rural village reported an outbreak of acute gastroenteritis. An investigation was undertaken in order to determine the magnitude of the outbreak, the source of infection and to prevent further disease. This is the first published outbreak of acute gastroenteritis caused by contaminated drinking water in Austria. For descriptive epidemiology, the investigators had to rely on voluntary cooperation from physicians and patients, data collected by a police officer and data on sick leave reported by physicians to the health insurance system. Microbiological testing of water samples indicated that this cluster was caused by fecal contamination of untreated drinking water. Age and sex distributions were available for 146 of 160 cases: ages ranged from 5 to 91 years (median 45) and 81 cases (55.5%) were female. Stool samples from 14 patients were sent for microbiological analysis: all tested negative for Salmonella, Campylobacter, Shigella and Yersinia enterocolitica. Specimens were not tested for viruses, parasites or enteropathogenic Escherichia coli. In this outbreak no identification was made of pathogenic microorganisms in stool samples from affected patients, despite the occurrence of fecal indicator organisms in samples of drinking water. In outbreaks of gastroenteritis, medical practitioners should encourage microbiological testing beyond the limited routine program. Public health officers must be made aware that the spectrum of routine laboratory tests on stool specimens does not cover the wide array of pathogens capable of causing waterborne outbreaks. The springs serving the affected village originate in a mountainous area of karst formations, and heavy falls of rain that occurred at the beginning of the outbreak may explain introduction of fecal bacteria. In view of the unsolved problem of possible future contamination of springs in karst areas, the water department of this district authority has issued an order requesting installation of a permanent ultraviolet water-treatment facility.
Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less
Measurements of δ11B in water by use of a mass spectrometer with accelerator
NASA Astrophysics Data System (ADS)
Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Di Rienzo, Brunella; Stellato, Luisa; Ricci, Andreina; Porzio, Giuseppe; D'onofrio, Antonio; Terrasi, Filippo
2017-12-01
This study describes the tests carried out to measure the isotopic composition of Boron (B) in water samples by use of the magnetic spectrometer and accelerator of the Center for Isotopic Research on Cultural and Environmental heritage (CIRCE) of Italy. B was extracted from water samples to obtain Boric acid (B(OH)3), which was then analyzed. We quantified the precision of our experimental system and the variability introduced by the chemical extraction measuring chemically untreated and treated pure B(OH)3 samples. We found an instrumental precision around 10‰ (1σ), but, by increasing the number of replicates (>30), we obtained a standard deviation of the mean (σerr) around 3‰ or lower. We also tested whether the chemical extraction caused isotopic fractionation and found a small fractionation (ε = 5 ± 4‰) of treated samples normalized against untreated ones, compatible with zero at 2σ. In order to avoid δ11B biases, we decided to normalize unknown treated samples with treated standards. Finally, we measured δ11B of seawater and groundwater samples to test the analytical method, and obtained values of 30 ± 6‰ and -4 ± 4‰ respectively. We conclude that our experimental system is only suitable when remarkable (>10‰) δ11B differences exist among water samples, but cannot be used to measure natural differences (<10‰) unless the total uncertainty is significantly decreased.
40 CFR 412.37 - Additional measures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...
40 CFR 412.37 - Additional measures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...
40 CFR 412.37 - Additional measures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...
Preservation of commonly applied fluorescent tracers in complex water samples
NASA Astrophysics Data System (ADS)
Cao, Viet; Schaffer, Mario; Jin, Yulan; Licha, Tobias
2017-06-01
Water sample preservation and pre-treatment are important steps for achieving accurate and reproductive results from tracer tests. However, this is particularly challenging for complex water mixtures prior to fluorescence analysis. In this study, the interference of iron and calcium precipitation with nine commonly applied conservative tracers, uranine, eosin, 1-naphthalene sulfonate, 1,5-naphthalene disulfonate, 2,6-naphthalene disulfonate, 4-amino-1-naphthalene sulfonate, 6-hydroxy-2-naphthalene sulfonate, 1,3,6-naphthalene trisulfonate, and 1,3,6,8-pyrene tetrasulfonate, was investigated in batch experiments. In general, the observed results are influenced by precipitates. A technique consisting of pH adjustment and centrifugation is described for preserving samples and avoiding the impact of these precipitates on the tracer test results.
Groundwater Remediation and Alternate Energy at White Sands Test Facility
NASA Technical Reports Server (NTRS)
Fischer, Holger
2008-01-01
White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.
Mavridou, A; Smeti, E; Mandilara, G; Mandilara, G; Boufa, P; Vagiona-Arvanitidou, M; Vantarakis, A; Vassilandonopoulou, G; Pappa, O; Roussia, V; Tzouanopoulos, A; Livadara, M; Aisopou, I; Maraka, V; Nikolaou, E; Mandilara, G
2010-01-01
In this study ten laboratories in Greece compared the performance of reference method TTC Tergitol 7 Agar (with the additional test of beta-glucuronidase production) with five alternative methods, to detect E. coli in water, in line with European Water Directive recommendations. The samples were prepared by spiking drinking water with sewage effluent following a standard protocol. Chlorinated and non-chlorinated samples were used. The statistical analysis was based on the mean relative difference of confirmed counts and was performed in line with ISO 17994. The results showed that in total, three of the alternative methods (Chromocult Coliform agar, Membrane Lauryl Sulfate agar and Trypton Bilex-glucuronidase medium) were not different from TTC Tergitol 7 agar (TTC Tergitol 7 agar vs Chromocult Coliform agar, 294 samples, mean RD% 5.55; vs MLSA, 302 samples, mean RD% 1; vs TBX, 297 samples, mean RD% -2.78). The other two alternative methods (Membrane Faecal coliform medium and Colilert 18/ Quantitray) gave significantly higher counts than TTC Tergitol 7 agar (TTC Tergitol 7 agar vs MFc, 303 samples, mean RD% 8.81; vs Colilert-18/Quantitray, 76 samples, mean RD% 18.91). In other words, the alternative methods generated performance that was as reliable as, or even better than, the reference method. This study will help laboratories in Greece overcome culture and counting problems deriving from the EU reference method for E. coli counts in water samples.
Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A
2010-05-01
This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.
Buschini, A; Martino, A; Gustavino, B; Monfrinotti, M; Poli, P; Rossi, C; Santoro, M; Dörr, A J M; Rizzoni, M
2004-02-14
The detection of a possible genotoxic effect of surface water treated with disinfectants for potabilization is the aim of the present work. The Comet assay and the micronucleus test were applied in circulating erythrocytes of Cyprinus carpio. Young specimens (20-30 g) were exposed in experimental basins, built within the potabilization plant of Castiglione del Lago (Perugia, Italy). In this plant the water of the Trasimeno Lake is treated and disinfected for potabilization before it is distributed to the people in the net of drinkable water. A continuous flow of water at a constant rate was supplied to basins; the water was continuously treated at a constant concentration with one of the three tested disinfectants (sodium hypochlorite, peracetic acid and chloride dioxide), one control basin being supplied with untreated water. Three sampling campaigns were performed: October 2000, February 2001 and June 2001. Repeated blood samplings through intracardiac punctures allowed to follow the same fish populations after different exposure times: before introduction of the disinfectant, and 10 or 20 days afterwards. An additional blood sampling was performed 3 h after addition of the disinfectant in other, simultaneously exposed, fish populations. Genotoxic damage was shown in fish exposed to water disinfected with sodium hypochlorite and chloride dioxide. The Comet assay showed an immediate response, i.e. DNA damage that was induced directly in circulating erythrocytes, whereas micronuclei reached their highest frequencies at later sampling times, when a genotoxic damage in stem cells of the cephalic kidney is expressed in circulating erythrocytes. The quality of the untreated surface water seems to be the most important parameter for the long-term DNA damage in circulating erythrocytes.
Effect of infiltrated water on rheology of plagioclase feldspar under lower crustal condition
NASA Astrophysics Data System (ADS)
Kido, M.; Muto, J.; Koizumi, S.; Nagahama, H.
2016-12-01
Fluids in the deep crust have an important role in deformation of lithosphere and seismicity. In this study, we performed deformation experiments to reveal rheological properties of plagioclase feldspars as a main constituent of crustal materials with infilitrated water. Axial compression tests on synthetic polycrystalline anorthite (An) were performed in a Griggs-type deformation apparatus at temparature of 900 °C, strain rates of roughly about 10-5 s-1 and various confining pressures of 0.8-1.4 GPa. Distilled water was added on samples before tests. Times for infiltration of water into samples were changed to investigate the variation of strength associated with diffusion of water. Strengths of wet An tended to decrease with infiltration time or strain magnitude. If other conditions such as temperature, time and strain being the same, strengths increase with confining pressures. Recovered samples show that deformation was concentrated in the lower part of samples. Differential stresses were significantly lower than predicted values by a previous flow law for wet An obtained by low pressure gas apparatus ( 0.4 GPa, Rybacki et al., 2006). This implies that the effect of water on mechanical behavior in higher pressure might be larger than those predicted by lower pressure experiments. Ideal water concentration and strength profile of internal of samples were estimated by one-dimensional model of grain boundary diffusion. Estimated strength of internal part of samples was significant higher than measured stresses. There is possibility that cataclastic flow partially occurred in samples. In addition, deformation-enhanced fluid flow probably occurred. In conclusion, strength of wet An depends on water infiltration time, strain magnitude and confining pressure. The results suggest that the strength of fluid-rich regions in the lower crust becomes lower than that predicted by previous studies.
LeBlanc, Denis R.; Vroblesky, Don A.
2008-01-01
Laboratory and field tests were conducted at Camp Edwards on the Massachusetts Military Reservation on Cape Cod to examine the utility of passive diffusion sampling for long-term monitoring of concentrations of perchlorate and explosive compounds in ground water. The diffusion samplers were constructed of 1-inch-diameter rigid, porous polyethylene tubing. The results of laboratory tests in which diffusion samplers were submerged in containers filled with ground water containing perchlorate, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) indicate that concentrations inside the diffusion samplers equilibrated with concentrations in the containers within the 19-day-long test period. Field tests of the diffusion samplers were conducted in 15 wells constructed of 2- or 2.5-inch-diameter polyvinyl chloride pipe with 10-foot-long slotted screens. Concentrations of perchlorate, RDX, and HMX in the diffusion samplers placed in the wells for 42 to 52 days were compared to concentrations in samples collected by low-flow pumped sampling from 53 days before to 109 days after retrieval of the diffusion samples. The results of the field tests indicate generally good agreement between the pumped and diffusion samples for concentrations of perchlorate, RDX, and HMX. The concentration differences indicate no systematic bias related to contaminant type or concentration levels.
Egan, Scott P; Grey, Erin; Olds, Brett; Feder, Jeffery L; Ruggiero, Steven T; Tanner, Carol E; Lodge, David M
2015-04-07
Invasive species introduced via the ballast water of commercial ships cause enormous environmental and economic damage worldwide. Accurate monitoring for these often microscopic and morphologically indistinguishable species is challenging but critical for mitigating damages. We apply eDNA sampling, which involves the filtering and subsequent DNA extraction of microscopic bits of tissue suspended in water, to ballast and harbor water sampled during a commercial ship's 1400 km voyage through the North American Great Lakes. Using a lab-based gel electrophoresis assay and a rapid, field-ready light transmission spectroscopy (LTS) assay, we test for the presence of two invasive species: quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Furthermore, we spiked a set of uninfested ballast and harbor samples with zebra mussel tissue to further test each assay's detection capabilities. In unmanipulated samples, zebra mussel was not detected, while quagga mussel was detected in all samples at a rate of 85% for the gel assay and 100% for the LTS assay. In the spiked experimental samples, both assays detected zebra mussel in 94% of spiked samples and 0% of negative controls. Overall, these results demonstrate that eDNA sampling is effective for monitoring ballast-mediated invasions and that LTS has the potential for rapid, field-based detection.
Harvey, J.B.J.; Hoy, M.S.; Rodriguez, R.J.
2009-01-01
Non-native marine species have been and continue to be introduced into Puget Sound via several vectors including ship's ballast water. Some non-native species become invasive and negatively impact native species or near shore habitats. We present a new methodology for the development and testing of taxon specific PCR primers designed to assess environmental samples of ocean water for the presence of native and non-native bivalves, crustaceans and algae. The intergenic spacer regions (IGS; ITS1, ITS2 and 5.8S) of the ribosomal DNA were sequenced for adult samples of each taxon studied. We used these data along with those available in Genbank to design taxon and group specific primers and tested their stringency against artificial populations of plasmid constructs containing the entire IGS region for each of the 25 taxa in our study, respectively. Taxon and group specific primer sets were then used to detect the presence or absence of native and non-native planktonic life-history stages (propagules) from environmental samples of ballast water and plankton tow net samples collected in Puget Sound. This methodology provides an inexpensive and efficient way to test the discriminatory ability of taxon specific oligonucleotides (PCR primers) before creating molecular probes or beacons for use in molecular ecological applications such as probe hybridizations or microarray analyses. This work addresses the current need to develop molecular tools capable of diagnosing the presence of planktonic life-history stages from non-native marine species (potential invaders) in ballast water and other environmental samples. ?? 2008 Elsevier B.V.
Almeida, Jonatas Campos; Martins, Felippe Danyel Cardoso; Ferreira Neto, José Maurício; Santos, Maíra Moreira Dos; Garcia, João Luis; Navarro, Italmar Teodorico; Kuroda, Emília Kiyomi; Freire, Roberta Lemos
2015-01-01
The purpose of this study was to investigate the occurrence of Cryptosporidium spp. and Giardia spp. in a public water-treatment system. Samples of raw and treated water were collected and concentrated using the membrane filtration technique. Direct Immunofluorescence Test was performed on the samples. DNA extraction using a commercial kit was performed and the DNA extracted was submitted to a nested-PCR reaction (n-PCR) and sequencing. In the immunofluorescence, 2/24 (8.33%) samples of raw water were positive for Giardia spp.. In n-PCR and sequencing, 2/24 (8.33%) samples of raw water were positive for Giardia spp., and 2/24 (8.33%) samples were positive for Cryptosporidium spp.. The sequencing showed Cryptosporidium parvum and Giardia duodenalis DNA. In raw water, there was moderate correlation among turbidity, color and Cryptosporidium spp. and between turbidity and Giardia spp.. The presence of these protozoans in the water indicates the need for monitoring for water-treatment companies.
Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples
NASA Astrophysics Data System (ADS)
Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.
2009-05-01
An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.
Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn
2005-01-01
A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342
Linking social and ecological systems
Wayne Zipperer; Wayde Morse; Cassandra Gaither
2011-01-01
On 16 November 2005 a water sample was taken from an urban stream in a metropolitan area in the southern United States and tested for the presence of E. coli. Although water samples from this and other streams in the metropolitan area frequently registered over 15,000 colonies/100 ml, this particular sample is unique in that it registered a reading of 70,000 colonies/...
1984-08-01
8 3. Water-quality, sediment, and biological parameters, associated units, EPA STORET codes, container type, 0 preservative and methods used for...Section III.B). Water samples were collected and preserved according to * _ approved EPA (1974) or American Public Health Association (APHA) (1975...procedures. Water-quality parameters tested, associated units, EPA STORET codes, test procedures, and preservation tech- niques used throughout the
Khush, Ranjiv S.; Arnold, Benjamin F.; Srikanth, Padma; Sudharsanam, Suchithra; Ramaswamy, Padmavathi; Durairaj, Natesan; London, Alicia G.; Ramaprabha, Prabhakar; Rajkumar, Paramasivan; Balakrishnan, Kalpana; Colford Jr., John M.
2013-01-01
In this large-scale longitudinal study conducted in rural Southern India, we compared a presence/absence hydrogen sulfide (H2S) test with quantitative assays for total coliforms and Escherichia coli as measures of water quality, health risk, and water supply vulnerability to microbial contamination. None of the three indicators showed a significant association with child diarrhea. The presence of H2S in a water sample was associated with higher levels of total coliform species that may have included E. coli but that were not restricted to E. coli. In addition, we observed a strong relationship between the percent positive H2S test results and total coliform levels among water source samples (R2 = 0.87). The consistent relationships between H2S and total coliform levels indicate that presence/absence of H2S tests provide a cost-effective option for assessing both the vulnerability of water supplies to microbial contamination and the results of water quality management and risk mitigation efforts. PMID:23716404
Application of drilling, coring, and sampling techniques to test holes and wells
Shuter, Eugene; Teasdale, Warren E.
1989-01-01
The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.
LeBlanc, Denis R.
2003-01-01
Diffusion samplers and temporary drive points were used to test for ordnance-related compounds in ground water discharging to Snake Pond near Camp Edwards at the Massachusetts Military Reservation, Cape Cod, MA. The contamination resulted from artillery use and weapons testing at various ranges upgradient of the pond.The diffusion samplers were constructed with a high-grade cellulose membrane that allowed diffusion of explosive compounds, such as RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), into deionized water inside the samplers. Laboratory tests confirmed that the cellulose membrane was permeable to RDX and HMX. One transect of 22 diffusion samplers was installed and retrieved in August-September 2001, and 12 transects with a total of 108 samplers were installed and retrieved in September-October 2001. The diffusion samplers were buried about 0.5 feet into the pond-bottom sediments by scuba divers and allowed to equilibrate with the ground water beneath the pond bottom for 13 to 27 days before retrieval. Water samples were collected from temporary well points driven about 2-4 feet into the pond bottom at 21 sites in December 2001 and March 2002 for analysis of explosives and perchlorate to confirm the diffusion-sampling results. The water samples from the diffusion samplers exhibited numerous chromatographic peaks, but evaluation of the photo-diode-array spectra indicated that most of the peaks did not represent the target compounds. The peaks probably are associated with natural organic compounds present in the soft, organically enriched pond-bottom sediments. The presence of four explosive compounds at five widely spaced sites was confirmed by the photo-diode-array analysis, but the compounds are not generally found in contaminated ground water near the ranges. No explosives were detected in water samples obtained from the drive points. Perchlorate was detected at less than 1 microgram per liter in two drive-point samples collected at the same site on two dates about 3 months apart. The source of the perchlorate in the samples could not be related directly to other contamination from Camp Edwards with the available information. The results from the diffusion and drive-point sampling do not indicate an area of ground-water discharge with concentrations of the ordnance-related compounds that are sufficiently elevated to be detected by these sampling methods. The diffusion and drive-point sampling data cannot be interpreted further without additional information concerning the pattern of ground-water flow at Snake Pond and the distributions of RDX, HMX, and perchlorate in ground water in the aquifer near the pond.
Scoglio, M E; Grillo, O C; Munaò, F; Di Pietro, A; Squeri, L
1989-01-01
Most pollution of drinking water is caused by inadequacy of the uptake and distribution systems, by insufficient upkeep of the sewage system and by defects or breaks in the disinfection processes. This may be the cause of waterborne epidemic outbreaks and therefore it is necessary carry out routine controls by simple and rapid tests for the detection of intestinal organisms. In the light of minor hepatitis A epidemics occurred in the town of Messina, we have carried out a study to determine the drinking water quality. To this end, in addition to the traditional tests recommended by CEE and required by the 8/2/1985 DPCM (37 degrees C and 20 degrees C viable count, total and faecal coliforms and faecal streptococci), we have carried out P. aeruginosa, coliphages and gram-negative endotoxins tests, in 74 water samples drawn on way in and way out of the tanks and along the piping system. Only 12.5% of the sixteen water samples drawn on way in (before disinfection system) was in compliance with the law. 75% of these samples showed positivity for faecal streptococci. The water quality was lower in the fourteen water samples drawn on way out of the tanks (7.1% was in compliance with the law). The percent of positivity along the piping system for total and faecal coliforms and for faecal streptococci was 34.1, 15.9 and 59.1 respectively. Coliphages were always absent. P. aeruginosa was almost always present in way in water (93.7%). Moreover this microorganism was recovered in 85.7% of the samples drawn on the way out and in 77.3% along the piping system. In the same drawing places endotoxins were present at high percentage (100%, 85.7% and 90.9%). These values come from high test sensitivity and poor water quality. Finally we have pointed out the importance of all the parameters examined. The significance of coliform bacteria is known, but we consider very important, as organisms indicative of pollution, the enterococci, since they P. aeruginosa may survive long time in fresh water though it is not autoctone, but, in general, of faecal origin. Several soluble antigens of this microorganism as well as enterococci show positive LAL tests (1-5-6). The endotoxin content in fresh water reflects the degree of bacterial contamination. We believe, therefore, it is needed to fix an upper limit to endotoxins in drinking water. Coliphages concentrations could be correlated with enteric virus concentrations but the ratio of coliforms to coliphages is about 100:1. Therefore this indicator of viral pollution is helpful only for highly polluted surface waters.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.
2007-01-01
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.
Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan
Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2017-01-01
ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260
Annual water-resources review, White Sands Missile Range, 1976: a basic-data report
Cruz, R.R.
1977-01-01
Information is presented on the water resources of the White Sands Missile Range, N. Mex., that was collected during the period December 1975 to December 1976 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality and precipitation, and miscellaneous items of interest are summarized. Water-level observations were made in 63 borehole, supply, test, and observation wells on the Range. Water samples were collected and analyzed for chemical quality from 8 test wells. (Woodard-USGS)
Study of the formation of duricrusts on the martian surface and their effect on sampling equipment
NASA Astrophysics Data System (ADS)
Kömle, Norbert; Pitcher, Craig; Gao, Yang; Richter, Lutz
2017-01-01
The Powdered Sample Dosing and Distribution System (PSDDS) of the ExoMars rover will be required to handle and contain samples of Mars regolith for long periods of time. Cementation of the regolith, caused by water and salts in the soil, results in clumpy material and a duricrust layer forming on the surface. It is therefore possible that material residing in the sampling system may cement, and could potentially hinder its operation. There has yet to be an investigation into the formation of duricrusts under simulated Martian conditions, or how this may affect the performance of sample handling mechanisms. Therefore experiments have been performed to create a duricrust and to explore the cementation of Mars analogues, before performing a series of tests on a qualification model of the PSDDS under simulated Martian conditions. It was possible to create a consolidated crust of cemented material several millimetres deep, with the material below remaining powder-like. It was seen that due to the very low permeability of the Montmorillonite component material, diffusion of water through the material was quickly blocked, resulting in a sample with an inhomogeneous water content. Additionally, samples with a water mass content of 10% or higher would cement into a single solid piece. Finally, tests with the PSDDS revealed that samples with a water mass content of just 5% created small clumps with significant internal cohesion, blocking the sample funnels and preventing transportation of the material. These experiments have highlighted that the cementation of regolith in Martian conditions must be taken into consideration in the design of sample handling instruments.
Operational Testing of Satellite based Hydrological Model (SHM)
NASA Astrophysics Data System (ADS)
Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.
2017-04-01
Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow gauging sites as reference, viz., Muri, Jamshedpur and Ghatshila. Individual model set-up has been prepared for these sub-basins and calibration and validation using Split-sample test, first level of operational testing scheme is in progress. Subsequently for geographic transposability, Proxy-basin test will be done using Muri and Jamshedpur as proxy basins. Climatic transposability will be tested for dry and wet years using Differential split-sample test. For incorporating both geographic and climatic transposability Proxy-basin differential split sample test will be used. For quantitative evaluation of SHM, during Split-sample test Nash-Sutcliffe efficiency (NSE), Coefficient of Determination (R R^2)) and Percent BIAS (PBIAS) are being used. However, for transposability, a productive approach involving these performance measures, i.e. NSE*R R^2)*PBIAS will be used to decide the best value of parameters. Keywords: SHM, credibility, operational testing, transposability.
Water quality in Reedy Fork and Buffalo Creek basins in the Greensboro area, North Carolina, 1986-87
Davenport, M.S.
1989-01-01
Water and bottom-sediment samples were collected from April 1986 through September 1987 at 19 sites in Guilford County and the City of Greensboro, North Carolina. Sampling locations included 13 stream sites, two lakes that supply the City of Greensboro with drinking water, two City of Greensboro finished drinking-water filtration plants, and effluent from the two municipal wastewater plants prior to outfall into receiving streams. Water sampling consisted of six surveys during various stages of steady ground-water flow at all sites and high-flow-event sampling during two storms at six sites. Bottom-sediment samples were collected at three sites during two routine sampling surveys. A summary of nearly 22, 000 separate chemical or physical analyses of water samples or bottom sediment is presented and discussed as individual values, ranges of values, or median values with respect to the locations of sampling sites, streamflow conditions, or other information bearing on water-quality conditions under discussion. The results include discussions of general water-quality indicators; major ion, nutrient, and trace-element concentrations; acid and base/neutral extractable organic compounds; volatile organic compounds; and organochlorine and organophosphorus pesticides detected at each sampling site. Loadings of selected constituents are also estimated on a yearly and daily basis. The quality of the raw and finished water, municipal effluents, and streams in the Greensboro area are characterized by using State and Federal water-quality standards. Inorganic constituents most commonly found in excess of standards were iron, copper, zinc, arsenic, phosphorus, manganese, cyanide, and mercury. Relatively few organic compounds were detected; however, those consistently reported were phthalate, thihalomethane, organophosphorus pesticide, benzol, and phenolic compounds. Selected inorganic, physical, and total organic carbon data are used in a Wilcoxon test for two independent variables to statistically compare water-quality characteristics in selected rural, semideveloped and urban basins. During low-flow sampling, the constituents that differed significantly among all sites were calcium, magnesium, and chloride. During low flows, concentrations of orthophosphate, fluoride, sulfate, and TOC differed at the urban site from the rural and semideveloped and urban sites. There were no significant differences among sites in concentrations of sodium, suspended sediment, nickel, zinc, copper, and mercury during low flows. The Wilcoxon test performed on high-flow data indicated that concentrations of TOC, chloride, sulfate, suspended sediment, and nickel were not significantly different among the sites.
MICROBIAL CONTAMINATION OF STREET VENDED FOODS FROM A UNIVERSITY CAMPUS IN BANGLADESH.
Islam, Sufia; Nasrin, Nishat; Rizwan, Farhana; Nahar, Lutfun; Bhowmik, Adity; Esha, Sayma Afrin; Talukder, Kaisar Ali; Akter, Mahmuda; Roy, Ajoy; Ahmed, Muniruddin
2015-05-01
The microbiological quality of street vended food samples from Dhaka, Bangladesh was evaluated. The objective of the study was to identify the presence of common pathogens (Escherichia coli, Shigella spp, Salmonella and Vibrio spp) and to describe the molecular characterization of E coli, a commonly found pathogen in various street foods. Fifty food samples were collected from fixed and mobile vendors from two sampling locations (Mohakhali and Aftabnagar) in Dhaka city, Bangladesh. The tested samples included deep fried and fried snacks; quick lunch items; pickles; fruit chutney; baked items; spicy, sour and hot snacks etc: Juices, tamarind water and plain drinking water were also tested. Sterile polythene bags were used for collecting 200 g of each category of samples. They were tested for the presence of microorganisms following conventional microbiological processes. Biochemical tests followed by serology were done for the confirmation of Shigella and Salmonella. Serological reaction was carried out for confirmation of Vibrio spp. DNA was isolated for the molecular characterization to detect the pathogenic E. coli by polymerase chain reaction (PCR). Out of 50 food samples, six (12%) were confirmed to contain different species of E. coli and Shigella. Molecular characterization of E. coli revealed that three samples were contaminated with enteroaggregative E. coli (EAEC) and one was contaminated with enterotoxigenic E. coli (ETEC). Shigellaflexneri X variant was detected in one food item and Shigella flexneri 2a was found in drinking water. All these enteric pathogens could be the potential cause for foodborne illnesses.
Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects.
Kobayashi, Naomasa; Okamura, Hideo
2004-06-01
The toxicity of the polluted waters originating from a disused lead mine was evaluated using both sea urchin bioassays and heavy metal analysis. Samples from three polluted waters (a seawater and two freshwaters) were collected from the mine area and one seawater sample was taken from a non-contaminated reference site. The test waters contained higher concentrations of heavy metals such as manganese, lead, cadmium, zinc, chromium, nickel, iron, and copper than did ambient seawater. The three test waters had inhibitory effects, in a dose-dependent manner, on the first cleavage of sea urchin embryos and on pluteus formation during the development. Some malformations, such as a radialized pluteus, exo-gastrula, and spaceship Apollo-like embryos were induced by the test waters without dilution. Zinc alone also induced the same anomaly. Zinc in the test seawater was ascertained as one of the metals that caused the anomalies, but not all of the toxicity was caused by zinc. It was speculated that interactive effects, involving zinc and possibly manganese and nickel, were occurring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.W.; Barrows, E.S.; Antrim, L.D
Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less
Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv
2016-10-18
Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
..., paper mill, saw mill, and oil refinery repairs; casting services for ``grey iron and brass,'' including... surface soil hot spots, sampling of surface water and sediment in the canals, stratigraphic profiling with..., monitor well installation, ground water sampling, and aquifer testing. Foundry operations resulted in...
Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle
2018-08-01
The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor
Yao, Na; Wang, Jinqi; Zhou, Yikai
2014-01-01
In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178
Test results of a shower water recovery system
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Price, Donald F.; Garcia, Rafael; Pierson, Duane L.; Sauer, Richard L.
1987-01-01
A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.
46 CFR 162.050-7 - Approval procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accordance with this subpart; (2) The oil content of each sample of separated water effluent taken during approval testing is 15 ppm or less; (3) During Test No. 3A an oily mixture is not observed at the separated water outlet of the separator; (4) During Test No. 5A its operation is continuous; and (5) Any substance...
46 CFR 162.050-7 - Approval procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accordance with this subpart; (2) The oil content of each sample of separated water effluent taken during approval testing is 15 ppm or less; (3) During Test No. 3A an oily mixture is not observed at the separated water outlet of the separator; (4) During Test No. 5A its operation is continuous; and (5) Any substance...
Effects of a tropical cyclone on the drinking-water quality of a remote Pacific island.
Mosley, Luke M; Sharp, Donald S; Singh, Sarabjeet
2004-12-01
The effect of a cyclone (Ami, January 2003) on drinking-water quality on the island of Vanua Levu, Fiji was investigated. Following the cyclone nearly three-quarters of the samples analysed did not conform to World Health Organisation (WHO) guideline values for safe drinking-water in terms of chlorine residual, total and faecal coliforms, and turbidity. Turbidity and total coliform levels significantly increased (up 56 and 62 per cent, respectively) from pre-cyclone levels, which was likely due to the large amounts of silt and debris entering water-supply sources during the cyclone. The utility found it difficult to maintain a reliable supply of treated water in the aftermath of the disaster. Communities were unaware they were drinking water that had not been adequately treated. Circumstances permitted this cyclone to be used as a case study to assess whether a simple paper-strip water-quality test (the hydrogen sulphide, H(2)S) kit could be distributed and used for community-based monitoring following such a disaster event to better protect public health. The H(2)S test results correlated well with faecal and total coliform results as found in previous studies. A small percentage of samples (about 10 per cent) tested positive for faecal and total coliforms but did not test positive in the H(2)S test. It was concluded that the H(2)S test would be well suited to wider use, especially in the absence of water-quality monitoring capabilities for outer island groups as it is inexpensive and easy to use, thus enabling communities and community health workers with minimal training to test their own water supplies without outside assistance. The importance of public education before and after natural disasters is also discussed.
Wójcik-Fatla, Angelina; Stojek, Nimfa Maria; Dutkiewicz, Jacek
2012-01-01
The aim of the present study was: - to compare methods for concentration and isolation of Legionella DNA from water; - to examine the efficacy of various modifications of PCR test (PCR, semi-nested PCR, and real-time PCR) for the detection of known numbers of Legionella pneumophila in water samples artificially contaminated with the strain of this bacterium and in randomly selected samples of environmental water, in parallel with examination by culture. It was found that filtration is much more effective than centrifugation for the concentration of DNA in water samples, and that the Qiamp DNA Mini-Kit is the most efficient for isolation of Legionella DNA from water. The semi-nested PCR and real-time PCR proved to be the most sensitive methods for detection of Legionella DNA in water samples. Both PCR modifications showed a high correlation with recovery of Legionella by culture (p<0.01), while no correlation occurred between the results of one-stage PCR and culture (p>0.1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fergen, R.E.; Vinci, P.; Bloetscher, F.
1999-07-01
A special bioassay study was conducted to review the impact of the City of Hollywood's Membrane Softening Water Treatment Plant (WRP) reject water as it mixes with the City's Wastewater Treatment Plant (WWTP) effluent. Three sampling periods occurred during 1997. The purpose of this study was to determine potential toxicity of the WTP reject water, pre-chlorinated effluent, and combined effluent, and to demonstrate if the combined effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent samples were collected at six sampling points;more » three were in the plant, while the other three were along the outfall pipeline. Definitive, static renewal bioassay tests were performed using Mysidopsis bahia and Menidia beryllina as indicators of potential toxicity. The bioassay tests at 30% effluent concentration indicate that there is not potential toxicity for the pre-chlorinated WTP effluent, WTP reject water, dechlorinate combined effluent at the plant, and chlorinated combined effluent at Holland Park, the riser, and the terminus. The results indicate that the WTP reject water (100%) is not toxic to Menidia beryllina but was toxic to Mysidopsis bahia. When combined with the WWRP effluent, the reject water's impact on the potential toxicity of the commingled effluent was insignificant. All of the tests indicate the combined effluents are not toxic to the species tested at the 30% effluent level. Therefore, potential toxicity concerns were not demonstrated for this outfall discharge and did not prevent FDEP from issuing a permit to the City of Hollywood for the disposal of the combined effluent. Furthermore, these results, in combination with the previous results, indicated that individual bioassay testing for the reject water for regulatory compliance is not required.« less
Shelton, Larry R.
1997-01-01
For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.
NASA Astrophysics Data System (ADS)
Hill, Kristina M.
Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.
Farré, Marinella; Martínez, Elena; Hernando, M-D; Fernández-Alba, Amadeo; Fritz, Johann; Unruh, Eckehardt; Mihail, Otilia; Sakkas, Vasilis; Morbey, Ana; Albanis, Triantafyllos; Brito, Fatima; Hansen, Peter D; Barceló, Damià
2006-04-15
An inter-laboratory comparison exercise was conducted under the European Union funded project entitled: Screening Methods for Water Data Information in Support of the Implementation of the Water Framework Directive (SWIFT-WFD) and coordinated by the Consejo Superior de Investigaciones Científicas (CSIC), in order to evaluate the reproducibility of different toxicity tests based on the bioluminescence inhibition of Vibrio fischeri, for the rapid water toxicity assessment. For the first time, this type of exercise has been organized in Europe, and using different tests based on the same principle. In this exercise, 10 laboratories from 8 countries (Austria, Cyprus, Germany, Greece, Italy, Portugal, Romania, and Spain) took place, and a total number of 360 samples were distributed. During the exercise, six series of six samples were analyzed along 5 months. Every batch of samples was composed by three real samples and three standard solutions. The real samples were: a raw influent and the effluent of a wastewater treatment plant (WWTP), and a sample from a first settlement of the WWTP spiked with a mixture of toxicant standards. A final number of 330 (91.7%) samples was analyzed, 3300 values in duplicate were collected, and the results for each sample were expressed as the 50% effective concentration (EC(50)) values calculated through five points of dilution inhibition curves, after 5 and 15min of incubation times. A statistical study was initiated using 660 results. The mean values, standard deviations (sigma), variances (sigma(2)), and upper and lower warning limits (UWL and LWL) were obtained, using the EC(50) values calculated with the result from the participating laboratories. The main objectives of this toxicity ring study were to evaluate the repeatability (r) and reproducibility (R) when different laboratories conduct the test, the influence of complex matrix samples, the variability between different tests based on the same principle, and to determine the rate at which participating laboratories successfully completed tests initiated. In this exercise, the 3.93% toxicity values were outliers according with the Z-score values and the Dixon test. The samples with the greater number of outliers were those with the smallest variability coefficient, corresponding to the greater and the smaller toxicity level. No relation was found through the cluster analysis, between the final results and the different commercial devices involved. Testing by multiple commercial devices did not appear to reduce the precision of the results, and the variability coefficient for the exercise was nearby to the average value for past editions carried out at national level, where the different participants used the same commercial device. Stability of samples was also followed during the exercise. While statistical significance differences were not found for the greater part of samples, for the sample from the WWTP influent, a significant decrease of the toxicity value was found along this study. Nevertheless, this was a type of sample with a high toxicity level during all the exercise. On the other hand, in order to obtain the chemical characterization of real samples, those were analyzed by chromatographic techniques, using different sequential solid phase extraction (SSPE) procedures, followed by liquid chromatography coupled with mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS). Good agreement was found between the chemical analysis results and the toxicity level of the samples.
Carr, R.S.; Chapman, D.C.
1995-01-01
A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.
Ceramic coatings for water-repellent textiles
NASA Astrophysics Data System (ADS)
Colleoni, C.; Esposito, F.; Guido, E.; Migani, V.; Trovato, V.; Rosace, G.
2017-10-01
In recent years, ceramic coatings have been widely studied for their potential performance in many scientific and technological fields. Ceramic coatings are also used as a textile-finishing agent to impart several properties such as anti-bacterial, anti-abrasion, flame retardant. In this study, fluoro free water repellent finishings have been developed to assess the features of the silica films on the textile fabrics. The water repellency of the treated samples has been evaluated by different tests such as water contact angle, water uptake and drop test.
NASA Astrophysics Data System (ADS)
Wang, Hao; Wang, Qunwei; He, Ming
2018-05-01
In order to investigate and improve the level of detection technology of water content in liquid chemical reagents of domestic laboratories, proficiency testing provider PT0031 (CNAS) has organized proficiency testing program of water content in toluene, 48 laboratories from 18 provinces/cities/municipals took part in the PT. This paper introduces the implementation process of proficiency testing for determination of water content in toluene, including sample preparation, homogeneity and stability test, the results of statistics of iteration robust statistic technique and analysis, summarized and analyzed those of the different test standards which are widely used in the laboratories, put forward the technological suggestions for the improvement of the test quality of water content. Satisfactory results were obtained by 43 laboratories, amounting to 89.6% of the total participating laboratories.
Ground-water data for San Nicolas Island, California, 1989-90
Duell, Lowell F. W.; Kaehler, Charles A.
1991-01-01
In an effort to gain geohydrologic knowledge and to increase the availability of ground water to the U.S. Navy on San Nicolas Island, nine test wells were drilled by the U.S. Geological Survey in 1989 and one production well was drilled by the U.S. Navy in 1990. One of the nine test wells was dry, five produced less than 10 gallons of water per day, two produced between 20 and 30 gallons per day, and one produced 400 gallons per day. The production well produced about 900 gallons per day. Water samples were collected from eight wells during 1989-90 and analyzed for concentrations of major dissolved inorganic ions and nutrients. Five of the sampled wells were constructed in 1989, one was constructed in 1990, and two were constructed prior to 1989. Data from the study are presented in tables and graphs. Included are geophysical, lithologic, and well-construction data and results obtained from well-pumping tests and from the chemical analysis of water from selected wells.
Water Source Pollution and Disease Diagnosis in a Nigerian Rural Community.
ERIC Educational Resources Information Center
Sangodoyin, A. Y.
1991-01-01
Samples from five water sources (spring, borehole, pond, stream, and well) in rural Nigerian communities were tested. Results include source reliabilities in terms of water quality and quantity, pollution effects upon water quality, epidemiological effects related to water quantity and waste disposal, and impact of water quality improvement upon…
Kohlpoth, Martin; Rusche, Brigitte
1997-01-01
The use of fetal calf serum (FCS) as standard medium additive for the cell cultivation must be regarded critically from the point of view of animal welfare as well as for scientific reasons and makes it necessary to look for alternatives. In the last years an in vitro cytotoxicity assay for the testing of industrial waste waters with the permanent fish cell line RTG-2 was established and pre-validated as an alternative to the fish test with the golden orfe. The application of FCS is also a special problem with regard to the testing of waste waters in a cytotoxicity test so that FCS-alternatives were tested. The RTG-2 cells were successfully adapted to the two solvents Basal Medium Supplement (BMS) and Ultroser-G (U-G) that are used to replace serum. The characterisation of these adapted cell lines showed no significant differences in growth rate, adhesion rate, viability and sensitivity to chemicals in comparison to the original RTG-2 cells. On the determination of the cytotoxicity of industrial waste waters the RTG-2 cells adapted to the BMS medium indicated a clearly higher toxicity of the waste water samples than the original RTG-2 cells. This result confirms the thesis that serum components react with waste water elements and thus change the bio-availability of toxic compounds.
Hörman, Ari; Hänninen, Marja-Liisa
2006-10-01
In this study we compared the reference membrane filtration (MF) lactose Tergitol-7 (LTTC) method ISO 9308-1:2000 with the MF m-Endo LES method SFS 3016:2001, the defined substrate chromogenic/fluorogenic Colilert 18, Readycult Coliforms and Water Check methods, and ready-made culture media, 3M Petrifilm EC and DryCult Coli methods for the detection of coliforms and Escherichia coli in various water samples. When the results of E. coli detection were compared between test methods, the highest agreement (both tests negative or positive) with the LTTC method was calculated for the m-Endo LES method (83.6%), followed by Colilert 18 (82.7%), Water-Check (81.8%) and Readycult (78.4%), whereas Petrifilm EC (70.6%) and DryCult Coli (68.9%) showed the weakest agreement. The m-Endo LES method was the only method showing no statistical difference in E. coli counts compared with the LTTC method, whereas the Colilert 18 and Readycult methods gave significantly higher counts for E. coli than the LTTC method. In general, those tests based on the analysis of a 1-ml sample (Petrifilm EC and DryCult Coli) showed weak sensitivity (39.5-52.5%) but high specificity (90.9-78.8%).
Low-pressure water-cooled inductively coupled plasma torch
Seliskar, C.J.; Warner, D.K.
1984-02-16
An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.
Low-pressure water-cooled inductively coupled plasma torch
Seliskar, Carl J.; Warner, David K.
1988-12-27
An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.
Sloto, Ronald A.
2009-01-01
Several shutdown-rebound tests have been conducted at the Henderson Road Superfund Site, which has been on the U.S. Environmental Protection Agency's National Priorities List since 1984. For a given test, the extraction wells are turned off, and water samples are collected from selected monitor wells at regular intervals before and during cessation of pumping to monitor for changes in chemical concentrations. A long-term shutdown-rebound test began on July 17, 2006. In support of this test, the U.S. Geological Survey conducted this study to determine the effects of shutting down on-site extraction wells on concentrations of selected contaminants and water levels. Concentrations were compared to ARARs (applicable relevant and appropriate requirements), which were set as remediation goals in the Henderson Road Site Record of Decision. Water from 10 wells in and near the source area and to the north, northeast, and northwest of the source area sampled in 2008 exceeded the 5.52 ug/L (micrograms per liter) ARAR for benzene. The greatest changes in benzene concentration between pre-shutdown samples collected in July 2006 and samples collected in February and March 2008 (19 months after the shutdown) were for wells in and north of the source area; increases in benzene concentration ranged from 1.5 to 164 ug/L. Water from five wells in the source area and to the north and northwest of the source area sampled in 2008 exceeded the 60 ug/L ARAR for chlorobenzene. The greatest changes in chlorobenzene concentration between pre-shutdown samples collected in July 2006 and samples collected in February and March 2008 were for wells north of the source area; increases in chlorobenzene concentration ranged from 6.9 to 99 ug/L. The highest concentrations of chlorobenzene were near or outside the northern site boundary, indicating chlorobenzene may have moved north away from the source area; however, no monitor well clusters are on the northern side of the Pennsylvania Turnpike, which is about 190 feet north of the source area. A much larger area was affected by chlorobenzene than benzene. Chlorobenzene concentrations decreased in the source area and increased at and beyond the site boundary. Water from four wells in and northeast of the source area sampled in 2008 exceeded the 5.06 ug/L ARAR for 1,1-dichloroethane (1,1-DCA). Increases in 1,1-DCA concentration between pre-shutdown samples collected in July 2006 and samples collected in February 2008 ranged from 0.4 to 20 ug/L. Water from two wells in the source area sampled in 2008 exceeded the 175 ug/L ARAR for total xylene. The 1,1-DCA and xylene plumes appear to extend in an east-northeast direction from the source area. Large drawdowns in the Upper Merion Reservoir during droughts in 1998 and 2001 affected water levels in the Chester Valley and at the Henderson Road Site, except for well HR-17-170. After the drought of 2001, water levels in the Chester Valley showed a protracted recovery lasting from September 2001 until June 2005 (46 months). Water-level data were evaluated temporally for 1997-2008 and spatially for (1) June 16, 2003, when the extraction wells were pumping at the full rate prior to the start of the June 2003 shutdown test; (2) July 10, 2006, during the period of reduced pumping after the June 2003 shutdown test; and (3) February 25-29, 2008, when the extraction wells were not pumping. Except for well HR-5-195, wells were categorized as shallow, intermediate-depth, and deep wells. The potentiometric surface for shallow wells did not appear to be affected by pumping of the extraction wells. The general direction of ground-water flow was to the north. The potentiometric surface for intermediate-depth wells showed a cone of depression when the extraction wells were pumping at the full rate but did not show a cone of depression when the extraction wells were pumping at the reduced rate. The ground-water-flow direction was toward the north and northeast, similar to
Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing
2017-06-01
The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl 2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Obenhuber, D. C.; Huff, T. L.
1992-01-01
NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported. Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated. Biofilm iodine sensitivity tests using an experimental laboratory scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required, which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation.
Guévremont, Evelyne; Lamoureux, Lisyanne; Généreux, Mylène; Côté, Caroline
2017-07-01
Irrigation water has been identified as a possible source of vegetable contamination by foodborne pathogens. Risk management for pathogens such as Campylobacter spp. and Listeria monocytogenes in fields can be influenced by the source of the irrigation water and the time interval between last irrigation and harvest. Plots of romaine lettuce were irrigated with manure-contaminated water or aerated pond water 21, 7, or 3 days prior to harvesting, and water and muck soil samples were collected at each irrigation treatment. Lettuce samples were collected at the end of the trials. The samples were tested for the presence of Campylobacter spp. and L. monocytogenes. Campylobacter coli was isolated from 33% of hog manure samples (n = 9) and from 11% of the contaminated water samples (n = 27), but no lettuce samples were positive (n = 288). L. monocytogenes was not found in manure, and only one sample of manure-contaminated irrigation water (n = 27) and one lettuce sample (n = 288) were positive. No Campylobacter or L. monocytogenes was recovered from the soil samples (n = 288). Because of the low incidence of pathogens, it was not possible to link the contamination of either soil or lettuce with the type of irrigation water. Nevertheless, experimental field trials mimicking real conditions provide new insights into the survival of two significant foodborne pathogens on romaine lettuce.
White HDPE bottles as source of serious contamination of water samples with Ba and Zn.
Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik
2007-03-15
During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.
Castro-Hermida, José Antonio; González-Warleta, Marta; Mezo, Mercedes
2015-01-01
The objectives of this cross-sectional study were to detect the presence of Cryptosporidium spp. and Giardia duodenalis in drinking water treatments plants (DWTPs) in Galicia (NW Spain) and to identify which species and genotype of these pathogenic protozoans are present in the water. Samples of untreated water (surface or ground water sources) and of treated drinking water (in total, 254 samples) were collected from 127 DWTPs and analysed by an immunofluorescence antibody test (IFAT) and by PCR. Considering the untreated water samples, Cryptosporidium spp. were detected in 69 samples (54.3%) by IFAT, and DNA of this parasite was detected in 57 samples (44.8%) by PCR, whereas G. duodenalis was detected in 76 samples (59.8%) by IFAT and in 56 samples (44.0%) by PCR. Considering the treated drinking water samples, Cryptosporidium spp. was detected in 52 samples (40.9%) by IFAT, and the parasite DNA was detected in 51 samples (40.1%) by PCR, whereas G. duodenalis was detected in 58 samples (45.6%) by IFAT and in 43 samples (33.8%) by PCR. The percentage viability of the (oo)cysts ranged between 90.0% and 95.0% in all samples analysed. Cryptosporidium andersoni, C. hominis, C. parvum and assemblages A-I, A-II, E of G. duodenalis were identified. The results indicate that Cryptosporidium spp. and G. duodenalis are widespread in the environment and that DWTPs are largely ineffective in reducing/inactivating these pathogens in drinking water destined for human and animal consumption in Galicia. In conclusion, the findings suggest the need for better monitoring of water quality and identification of sources of contamination. Copyright © 2014 Elsevier GmbH. All rights reserved.
Pickup, R. W.; Rhodes, G.; Bull, T. J.; Arnott, S.; Sidi-Boumedine, K.; Hurley, M.; Hermon-Taylor, J.
2006-01-01
Mycobacterium avium subsp. paratuberculosis from infected animals enters surface waters and rivers in runoff from contaminated pastures. We studied the River Tywi in South Wales, United Kingdom, whose catchment comprises 1,100 km2 containing more than a million dairy and beef cattle and more than 1.3 million sheep. The River Tywi is abstracted for the domestic water supply. Between August 2002 and April 2003, 48 of 70 (68.8%) twice-weekly river water samples tested positive by IS900 PCR. In river water, the organisms were associated with a suspended solid which was depleted by the water treatment process. Disposal of contaminated slurry back onto the land established a cycle of environmental persistence. A concentrate from 100 liters of finished water tested negative, but 1 of 54 domestic cold water tanks tested positive, indicating the potential for these pathogens to access domestic outlets. In the separate English Lake District region, with hills up to 980 m, tests for M. avium subsp. paratuberculosis in the high hill lakes and sediments were usually negative, but streams and sediments became positive lower down the catchment. Sediments from 9 of 10 major lakes receiving inflow from these catchments were positive, with sediment cores indicating deposition over at least 40 to 50 years. Two of 12 monthly 1-liter samples of effluent and a single 100-liter sample from the Ambleside sewage treatment works were positive for M. avium subsp. paratuberculosis. Since Lake Ambleside discharges into Lake Windermere, which is available for domestic supply, there is a potential for these organisms to cycle within human populations. PMID:16751517
NASA Technical Reports Server (NTRS)
Mcquillen, John; Brown, Dan; Hussey, Sam; Zoldak, John
2014-01-01
The Intravenous Fluid Generation (IVGEN) Experiment was a technology demonstration experiment that purified ISS potable water, mixed it with salt, and transferred it through a sterilizing filter. On-orbit performance was verified as appropriate and two 1.5 l bags of normal saline solution were returned to earth for post-flight testing by a FDA certified laboratory for compliance with United States Pharmacopiea (USP) standards. Salt concentration deviated from required values and an analysis identified probable causes. Current efforts are focused on Total Organic Content (TOC) testing, and shelf life.The Intravenous Fluid Generation (IVGEN) Experiment demonstrated the purification of ISS potable water, the mixing of the purified water with sodium chloride, and sterilization of the solution via membrane filtration. On-orbit performance was monitored where feasible and two 1.5-liter bags of normal saline solution were returned to earth for post-flight testing by a FDA-registered laboratory for compliance with United States Pharmacopeia (USP)standards [1]. Current efforts have been focused on challenge testing with identified [2] impurities (total organic-carbon), and shelf life testing. The challenge testing flowed known concentrations of contaminants through the IVGEN deionizing cartridge and membrane filters to test their effectiveness. One finding was that the filters and DI-resin themselves contribute to the contaminant load during initial startup, suggesting that the first 100 ml of fluid be discarded. Shelf life testing is ongoing and involves periodic testing of stored DI cartridges and membrane filters that are capped and sealed in hermetic packages. The testing is conducted at six month intervals measuring conductivity and endotoxins in the effluent. Currently, the packaging technique has been successfully demonstrated for one year of storage testing. The USP standards specifies that the TOC be conducted at point of generation as opposed to point of consumption. Samples were generated and shipped to an FDA facility however, testing determined that the samples failed the TOC specification with most likely due to leaching from the sample container. Shelf life testing is examining packaging techniques and periodic testing of samples of DI cartridges that are capped and sealed in hermetic packages. Periodic testing of the purified water output will be conducted at six month intervals.
Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita
2017-01-01
The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances originating from waste waters and traffic which still should be taken seriously, particularly with regard to the impairment of fish health at both investigated field sites. Since the Argen is a tributary of Lake Constance, our results call for a management plan to ensure and improve the river's ecological stability.
Neelam, Taneja; Malkit, Singh; Pooja, Rao; Manisha, Biswal; Shiva, Priya; Ram, Chander; Meera, Sharma
2012-12-01
Acute gastroenteritis due to Vibrio cholerae and Enterotoxigenic E. coli is a common problem faced in the hot and humid summer months in north India. The study was undertaken to evaluate drinking water supplies for fecal coliforms, V. cholerae and Enterotoxigenic E. coli in urban, semiurban and rural areas in and around Chandigarh and correlate with occurrence of acute gastroenteritis occurring from the same region. Drinking water sample were collected from various sources from April to October 2004 from a defined area. Samples were tested for fecal coliforms and E. coli count. E. coli were screened for heat labile toxin (LT) also. Stool samples from cases of acute gastroenteritis from the same region and time were collected and processed for V. cholerae, Enterotoxigenic E. coli (ETEC) and others like Salmonella, Shigella and Aeromonas spp. A total of 364 water samples were collected, (251 semi urban, 41 rural and 72 from urban areas). 116 (31.8%) samples were contaminated with fecal coliforms (58.5% rural, 33.4% semiurban and 11.1% of samples from urban areas). E. coli were grown from 58 samples. Ninety two isolates of E. coli were tested for enterotoxins of which 8 and 24 were positive for LT and ST respectively. V. cholerae were isolated from 2 samples during the outbreak investigation. Stored water samples showed a significantly higher level of contamination and most of Enterotoxigenic E. coli were isolated from stored water samples. A total of 780 acute gastroenteritis cases occurred; 445 from semiurban, 265 rural and 70 from urban areas. Out of 189 stool samples submitted, ETEC were the commonest (30%) followed by V. cholerae (19%), Shigellae (8.4%), Salmonellae (2.1%) and Aeromonas (2.6%). ST-ETEC (40/57) were commoner than LT-ETEC (17/57). In the present study, high levels of contamination of drinking water supplies (32.1%) correlated well with cases of acute gastroenteritis. Majority of cases of acute gastroenteritis occurred in the semi urban corresponding with high level of contamination (33.4%). The highest level of water contamination was seen in rural areas (58.5%) but the number of acute gastroenteritis cases were lesser (33.9%) as ponds were infrequently used for drinking purpose. Safer household water storage and treatment is recommended to prevent acute gastroenteritis, together with point-of-use water quality monitoring.
Cryptosporidium Contamination and Attributed Risks in Yunlong Lake in Xuzhou, China
Kong, Yadong; Yuan, Tao; Niu, Jinghui; Li, Zhaoji; Yang, Baisong
2017-01-01
Swimming in surface water bodies (e.g., lakes, rivers) can expose the human body to substantial risk of infection by Cryptosporidium. These findings are from a one-year investigation on the occurrence and distribution of the protozoan parasite Cryptosporidium in Yunlong Lake, Xuzhou, China. Cryptosporidium oocysts were detected by immunofluorescence microscopy. From January to November of 2015, 180 samples (120 water samples and 60 sediment samples) were collected and analyzed. Among them, 42 (35%) water samples and 28 (47%) sediment samples tested positive for Cryptosporidium. The concentration of Cryptosporidium oocysts in the water samples was 0–8/10 L and 0–260/g in sediment samples. Results revealed that July was the highest risk period for both swimming and diving with an estimated probability of infection from swimming of greater than 18 per 10,000 swim sessions. It was concluded that swimming or diving in Yunlong Lake has a higher risk of Cryptosporidium infection than the acceptable risk level set by the United States Environmental Protection Agency. Thus, regular monitoring of water quality in recreation water bodies is strongly recommended. PMID:28386287
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration
Mull, Bonnie; Hill, Vincent R.
2015-01-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.
Mull, Bonnie; Hill, Vincent R
2012-12-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, David L.; Allen, Raymond
Sandia National Laboratories is seeking access to crude oil samples for a research project evaluating crude oil combustion properties in large-scale tests at Sandia National Laboratories in Albuquerque, NM. Samples must be collected from a source location and transported to Albuquerque in a tanker that complies with all applicable regulations for transportation of crude oil over public roadways. Moreover, the samples must not gain or lose any components, to include dissolved gases, from the point of loading through the time of combustion at the Sandia testing facility. In order to achieve this, Sandia designed and is currently procuring a custommore » tanker that utilizes water displacement in order to achieve these performance requirements. The water displacement procedure is modeled after the GPA 2174 standard “Obtaining Liquid Hydrocarbons Samples for Analysis by Gas Chromatography” (GPA 2014) that is used routinely by crude oil analytical laboratories for capturing and testing condensates and “live” crude oils, though it is practiced at the liter scale in most applications. The Sandia testing requires 3,000 gallons of crude. As such, the water displacement method will be upscaled and implemented in a custom tanker. This report describes the loading process for acquiring a ~3,000 gallon crude oil sample from commercial process piping containing single phase liquid crude oil at nominally 50-100 psig. This document contains a general description of the process (Section 2), detailed loading procedure (Section 3) and associated oil testing protocols (Section 4).« less
Alam, Noore; Corbett, Stephen J; Ptolemy, Helen C
2008-01-01
To assess the health risks associated with consumption of drinking water with elevated nickel concentration in a NSW country town named Sampleton. We used enHealth Guidelines (2002) as our risk assessment tool. Laboratory test results for nickel in water samples were compared with the Australian Drinking Water Guidelines 2004 and the World Health Organization's (WHO) Guidelines for Drinking Water Quality 2005. The mean nickel concentration in the drinking water samples tested over a 4-year period (2002-2005) was 0.03 mg/L (95% CI: 0.02-0.04). The average daily consumption of two litres of water by a 70-kg adult provided 0.06 mg (0.03 mg x 2) of nickel, which was only 7% of the lowest observed adverse effect level (LOAEL) based on experiments on nickel-sensitive people in a fasting state. The mean nickel concentration in drinking water appears to have no health risks for the inhabitants of Sampleton.
A level change in mutagenicity of Japanese tap water over the past 12 yr.
Takanashi, Hirokazu; Kishida, Misako; Nakajima, Tsunenori; Ohki, Akira; Akiba, Michihiro
2011-05-01
A relative comparison study of mutagenicity in Japanese tap water was conducted for 1993 and 2005 surveys. It intended to assess the effects of advanced water treatment installations to water works, improvement of raw water quality and improvement of residual HOCl concentration controlling. Sampling points (taps) were the same in both surveys. The results of 245 samples obtained by the Ames Salmonella mutagenicity test (Ames test) were analyzed. The Ames tests were conducted by using Salmonella typhimurium TA98 and TA100 strains with and without exogenous activation (S9). With the exception of TA100-S9, the other conditions needed no discussion as a factor in the mutagenicity level change. The average mutagenicity in 1993 and 2005 under the conditions of TA100-S9 were 2600 and 1100 net revertantL(-1), respectively. This indicated that the mutagenicity level of Japanese tap water decreased during the 12-yr period. Particularly a remarkable decrease in mutagenicity was observed in the water works where the advanced water treatments were installed during the 12-yr period. The advanced water treatments were effective in decreasing the mutagenicity of tap water. Mutagenicity also decreased in the water works with conventional water treatments; the improvement of residual HOCl concentration controlling was also considered to be effective in decreasing the mutagenicity of tap water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hesari, Nikou; Kıratlı Yılmazçoban, Nursel; Elzein, Mohamad; Alum, Absar; Abbaszadegan, Morteza
2017-01-03
Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities.
Kulkarni, Prachi; Olson, Nathan D.; Raspanti, Greg A.; Rosenberg Goldstein, Rachel E.; Gibbs, Shawn G.; Sapkota, Amir; Sapkota, Amy R.
2017-01-01
Reclaimed water has emerged as a potential irrigation solution to freshwater shortages. However, limited data exist on the persistence of antibiotics in reclaimed water used for irrigation. Therefore, we examined the fate of nine commonly-used antibiotics (ampicillin, azithromycin, ciprofloxacin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, and tetracycline) in differentially treated wastewater and reclaimed water from two U.S. regions. We collected 72 samples from two Mid-Atlantic and two Midwest treatment plants, as well as one Mid-Atlantic spray irrigation site. Antibiotic concentrations were measured using liquid-chromatography- tandem mass spectrometry. Data were analyzed using Mann-Whitney-Wilcoxon tests and Kruskal Wallis tests. Overall, antibiotic concentrations in effluent samples were lower than that of influent samples. Mid-Atlantic plants had similar influent but lower effluent antibiotic concentrations compared to Midwest plants. Azithromycin was detected at the highest concentrations (of all antibiotics) in influent and effluent samples from both regions. For most antibiotics, transport from the treatment plant to the irrigation site resulted in no changes in antibiotic concentrations, and UV treatment at the irrigation site had no effect on antibiotic concentrations in reclaimed water. Our findings show that low-level antibiotic concentrations persist in reclaimed water used for irrigation; however, the public health implications are unclear at this time. PMID:28635638
Hesari, Nikou; Kıratlı Yılmazçoban, Nursel; Elzein, Mohamad; Alum, Absar; Abbaszadegan, Morteza
2017-01-01
Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities. PMID:28054956
Fernandez, Mario
1978-01-01
From November 1973 to July 1977, water samples were collected from wells to identify background water-quality conditions and to determine the effects on ground-water quality by St. Petersburg 's sludge-disposal operation (sod farm). Specific conductance and pH were determined in the field. Samples were collected for laboratory determination of selected nitrogen and phosphorus species, sodium, potassium, calcium, magnesium, chloride, trace metals, chemical and biochemical oxygen demand, and coliforms. (Woodard-USGS)
Smith, Douglas G.
2004-01-01
During 2002, a baseline study of hydrologic conditions was conducted, and selected features were mapped within the Mt. Pisgah campground on the Blue Ridge Parkway in Haywood County, North Carolina. Field surveys were performed by using global positioning system equipment one time (January 2002) during the study to locate hydrologic and other types of features in the study area. Water-level and streamflow data and seasonal water-quality samples were collected from a stream that receives all surface-water drainage from the campground area. During 2002, water levels (stage) in the stream ranged from 1.09 to 1.89 feet above gage datum (4,838.06 to 4,838.86 feet above mean sea level). Flow in the stream ranged from 0.05 to 9.7 cubic feet per second. Annual daily mean flow for calendar year 2002 was approximately 0.35 cubic foot per second (about 226,000 gallons per day). Samples collected from the stream had low concentrations of all constituents measured. Four compounds associated with human activity (camphor, N,N-diethyl-meta-toluamide (the insect repellent DEET), tributylphosphate, and methylsalicylate) were detected in the stream samples; however, concentrations were less than detection levels. Stream samples collected in April and September and analyzed for fecal coliform bacteria had densities of 76 and 110 colonies per 100 milliliters of water, respectively. No violations of water-quality standards were noted for any constituent measured in the stream samples. Seven shallow ground-water wells were installed near a natural area in the center of the campground. Ground-water levels measured periodically in these wells and in two existing shallow piezometers generally were highest in the spring and lowest in the fall. Water temperature, pH, and specific conductance were measured in samples collected from the shallow wells in April and September 2002. Measured pH values were consistently lowest in samples from two wells on the west side of the natural area and highest in samples from the well located near the center of the natural area. Specific-conductance values measured in samples from wells on the east side of the natural area were lower than those measured in samples from the other wells. Specific-conductance values measured in samples from two wells on the west side and from one well near the center of the natural area generally were two to three times higher than the specific-conductance values measured in samples from wells on the east side of the natural area. Samples for fecal coliform bacteria were collected from six wells on September 11, 2002. The fecal coliform densities in samples from most of the wells were less than or equal to 8 colonies per 100 milliliters. Samples from two of the three wells on the west side of the natural area had coliform densities of 16 and 480 colonies per 100 milliliters. Other ground-water samples collected on September 11 and September 24 were analyzed with a spectrophotometer in the U.S. Geological Survey (USGS) North Carolina District Office for nitrate concentrations only. From the samples collected on September 11, estimated nitrate concentrations of 1 milligram per liter or less were detected in three wells, two on the west side and one on the east side of the natural area. Nitrate was not detected with a spectrophotometer in any of the ground-water samples collected on September 24. Indicator test strips also were used in the field to screen for nitrate and nitrite in ground-water samples collected on September 24. Nitrate was detected by test strips in one well on the west side of the natural area, with estimated concentrations of 1 milligram per liter or less indicated. Nitrite was not detected by the test strips in samples collected from any of the wells.
Gupta, Pratima; Parkhey, Piyush; Joshi, Komal; Mahilkar, Anjali
2013-10-01
Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-08-01
Emerging micropollutants (EMPs) are ubiquitous in aquatic systems and are associated with a wide range of eco-toxicological effects worldwide. There remains a lack of scientific understanding of the major underlying hydrochemical factors behind variations in concentration heterogeneities of EMPs in time and space. This study was therefore conducted to determine major hydrochemical processes controlling water quality and the occurrence of EMPs mainly, carbamazepine (CBZ), tonalide (AHTN), galaxolide (HHCB), caffeine (CAF), technical 4-nonylphenol (NP) and bisphenol A (BPA) in water from Mpumalanga, Gauteng and North West Provinces in South Africa. Grab water samples were collected bi-monthly between June 2014 and April 2016 from 44 water sources using standard sampling procedures. BPA, NP, CAF, HHCB, AHTN, CBZ were extracted, cleaned and enriched using autotrace-SPE at neutral pH and analyzed using GC × GC-TOFMS. Kruskal Wallis-test was used to test for temporal variations in occurrence of the analytes. The Geochemist's Workbench® Release 11 software, Surfer Golden Graphics for surface mapping, PHREEQC software and bivariate ion plots were used determine the major hydrogeochemical processes. The mean concentrations of EMPs varied from 3.48 μg/L for CAF to 421.53 μg/L for HHCB. Although the Kruskal Wallis test revealed no any statistically significant temporal variations in concentrations of the analytes in water samples at 95% confidence level, their occurrence and distribution vary spatially with BPA being the most widely distributed EMP and was present in 62% of the sampled sites. Municipal waste water inputs, agricultural pollution, ion-exchange reactions, carbonate and silicate weathering were the major processes controlling water quality in the study area. This study may assist water resource managers to ably address and manage water pollution resulting from a number of natural and anthropogenic hydrochemical processes in the study area.
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)
1978-01-01
The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.
NASA Technical Reports Server (NTRS)
Witte, W. G.
1975-01-01
The dual differential radiometer (DDR) was tested to determine its capability for measuring suspended sediment and chlorophyll in turbid waters. Measurements were obtained from a boat dock and from a helicopter with combinations of sample and reference filters with peak transmissions at various wavelengths. Water samples were taken concurrently and were analyzed for light scattering, particle count, and total chlorophyll. Least-squares estimates of the linear relationship between DDR output and the water parameters yielded correlation coefficients of less than 0.7. Under the turbid water conditions of the present tests, the DDR did not accurately measure either suspended sediment or chlorophyll. A precise knowledge of the spectral signatures of various pollutants might enable appropriate filters to be selected for tuning the DDR to monitor a particular pollutant.
The Tapwater Tour. The Hands-On Test Kit & Mini Curriculum for Exploring Drinking Water.
ERIC Educational Resources Information Center
LaMotte Co., Chestertown, MD.
The goal of this mini-curriculum is for students to discover what drinking water really is. Five units are designed to be presented as a lecture and to allow 30 to 40 students to perform every procedure, each testing their own tap water sample. Games are provided in each section to reinforce the concepts presented in each unit. Unit 1 introduces…
Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B
2018-03-15
Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples. Copyright © 2018 John Wiley & Sons, Ltd.
Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.
2018-01-01
RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1–2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples.
Determination of patulin in apple juice by liquid chromatography: collaborative study.
Brause, A R; Trucksess, M W; Thomas, F S; Page, S W
1996-01-01
An AOAC International-International Union of Pure and Applied Chemistry-International Fruit Juice Union (AOAC-IUPAC-IFJU) collaborative study was conducted to evaluate a liquid chromatographic (LC) procedure for determination of patulin in apple juice. Patulin is a mold metabolite found naturally in rotting apples. Patulin is extracted with ethyl acetate, treated with sodium carbonate solution, and determined by reversed-phase LC with UV detection at 254 or 276 nm. Water, water-tetrahydrofuran, or water-acetonitrile was used as mobile phase. Levels determined in spiked test samples were 20, 50, 100, and 200 micrograms/L. A test sample naturally contaminated at 31 micrograms/L was also included. Twenty-two collaborators in 10 countries analyzed 12 test samples of apple juice. Recoveries averaged 96%, with a range of 91-108%. Repeatability relative standard deviations (RSDr) ranged from 10.9 to 53.8%. The reproducibility relative standard deviation (RSDR) ranged from 15.1 to 68.8%. The LC method for determination of patulin in apple juice has been adopted first action by AOAC INTERNATIONAL.
Evaluation of ELISA tests specific for Shiga toxin 1 and 2 in food and water samples
USDA-ARS?s Scientific Manuscript database
Two enzyme-linked immunosorbent assay (ELISA) kits were evaluated for their effectiveness in detecting and differentiating between Shiga toxin 1 and 2 (Stx1 and Stx2) produced by Shiga toxin-producing E. coli (STEC) inoculated into food and water samples. Each kit incorporated monoclonal antibodies ...
Duarte, Ian Drumond; Silva, Nayara Heloisa Vieira Fraga; da Costa Souza, Iara; de Oliveira, Larissa Bassani; Rocha, Lívia Dorsch; Morozesk, Mariana; Bonomo, Marina Marques; de Almeida Pereira, Thaís; Dias, Mauro Cesar; de Oliveira Fernandes, Valéria; Matsumoto, Silvia Tamie
2017-04-01
Assessment of water resources requires interdisciplinary studies that include multiple ecosystem aspects. This study evaluated the water quality of Juara Lagoon (ES, Brazil) based on physical and chemical variables, cytogenetic responses in Allium cepa and phytoplankton dynamics. Three sampling sites were defined and water samples were collected during two sampling periods. Analyses such as determination of photic zone, conductivity, and concentrations of nutrients and metals were conducted as well as cytotoxic, mutagenic, and genotoxic potentials using A. cepa test. The main attributes of phytoplankton community, such as total richness, total density, density by class, dominance, and diversity, were also evaluated. Results have revealed that Juara Lagoon has signs of artificial eutrophication at two sampling sites due to high levels of total phosphorus and ammonia nitrogen. Cytotoxic, genotoxic, and mutagenic potentials were detected as well as high concentrations of Fe and Mn. Furthermore, 165 phytoplankton taxa were recorded, with highest richness in Chlorophyceae and Cyanophyceae classes. In addition, Cyanophyceae presented as the highest density class. A. cepa test and phytoplankton community evaluation indicated that the ecological quality of Juara Lagoon is compromised.
Henneberg, Anja; Bender, Katrin; Blaha, Ludek; Giebner, Sabrina; Kuch, Bertram; Köhler, Heinz-R.; Maier, Diana; Oehlmann, Jörg; Richter, Doreen; Scheurer, Marco; Schulte-Oehlmann, Ulrike; Sieratowicz, Agnes; Ziebart, Simone; Triebskorn, Rita
2014-01-01
Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1) chemical analyses, (2) in vitro bioassays, and (3) in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7) and reporter gene assays (human cell line HeLa-9903 and MDA-kb2). In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario) to water downstream of a wastewater outfall (Schussen River) or to water from a reference site (Argen River) to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus) and spirlin (Alburnoides bipunctatus), were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test) in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests) and an occasional endocrine action (vitellogenin levels) in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index). We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine disruption observed in snails and field-exposed fish, respectively. PMID:24901835
Akhter, Asma; Imran, Mohd; Akhter, Firoz
2014-01-01
The distribution of resistance to ampicillin, chloramphenicol, sulfonamides, tetracycline, and streptomycin among coliform in the Gomti river water samples was investigated. The coliform populations were isolated on Mac Conky and eosin methylene blue (EMB) agar plates supplemented with antibiotics. The incidence of resistance among the coliform population varied considerably in different drug and water sampling sites. Coliform bacteria showed lower drug resistant viable count in sampling site-III (receiving treated wastewater) as compared to more polluted site-I and site-II. Viable count of coliform population obtained on both medium was recorded higher against erythromycin from sampling site-III. Lower viable count of coliforms was recorded against tetracycline in site-II and III. Similar resistance pattern was obtained in the frequency of E. coli and Enterobacter species from all the three sampling sites. Percentage of antibiotic resistant E. coli was observed higher than Enterobacter spp among the total coliforms against all antibiotics tested without Erythromycin and penicillin in site-I and II respectively. Isolates of E. coli and Enterobacter spp. showed their tolerance level (MIC) in the range of 2-100 against the antibiotics tested. Maximum number of isolates of both genus exhibited their MICs at lower concentration range 2-5µg/ml against ciprofloxacin, tetracyclin and amoxycillin. EMB - Eosin methylene blue, IMViC tests - Indole, Methyl Red, Voges Proskauer and Citrate Utilization Tests, MIC - Minimum inhibitory concentration.
Akhter, Asma; Imran, Mohd; Akhter, Firoz
2014-01-01
The distribution of resistance to ampicillin, chloramphenicol, sulfonamides, tetracycline, and streptomycin among coliform in the Gomti river water samples was investigated. The coliform populations were isolated on Mac Conky and eosin methylene blue (EMB) agar plates supplemented with antibiotics. The incidence of resistance among the coliform population varied considerably in different drug and water sampling sites. Coliform bacteria showed lower drug resistant viable count in sampling site-III (receiving treated wastewater) as compared to more polluted site-I and site-II. Viable count of coliform population obtained on both medium was recorded higher against erythromycin from sampling site-III. Lower viable count of coliforms was recorded against tetracycline in site-II and III. Similar resistance pattern was obtained in the frequency of E. coli and Enterobacter species from all the three sampling sites. Percentage of antibiotic resistant E. coli was observed higher than Enterobacter spp among the total coliforms against all antibiotics tested without Erythromycin and penicillin in site-I and II respectively. Isolates of E. coli and Enterobacter spp. showed their tolerance level (MIC) in the range of 2-100 against the antibiotics tested. Maximum number of isolates of both genus exhibited their MICs at lower concentration range 2-5µg/ml against ciprofloxacin, tetracyclin and amoxycillin. Abbreviations EMB - Eosin methylene blue, IMViC tests - Indole, Methyl Red, Voges Proskauer and Citrate Utilization Tests, MIC - Minimum inhibitory concentration. PMID:24966515
King, Dawn N.; Donohue, Maura J.; Vesper, Stephen J.; Villegas, Eric N.; Ware, Michael W.; Vogel, Megan E.; Furlong, Edward; Kolpin, Dana W.; Glassmeyer, Susan T.; Pfaller, Stacy
2016-01-01
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters.
NASA Astrophysics Data System (ADS)
Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Shen, Tsung Yu; Kao, Po Min; Shen, Shu Min; Chen, Jung Sheng
2013-04-01
Salmonella spp. is one of the most important causal agents of waterborne diseases. The taxonomy of Salmonella is very complicated and its genus comprises more than 2,500 serotypes. The detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time consuming. To overcome this drawback, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using molecular technology and to identify the serovars of Salmonella isolates from 70 environmental water samples in Taiwan. The analytical procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella. After that, we isolated Salmonella strains by selective culture plates. Both selective enrichment and culture plates were detected by Polymerase Chain Reaction (PCR). Finally, the serovars of Salmonella were confirmed by using biochemical tests and serological assay. In this study, 15 water samples (21.4%) were identified as Salmonella by PCR. The positive water samples will further identify their serotypes by culture method. The presence of Salmonella in environmental water indicates the possibility of waterborne transmission in drinking watershed. Consequently, the authorities need to provide sufficient source protection and to maintain the system for disease prevention. Keywords: Salmonella spp., serological assay, PCR
Ingersoll, C.G.; MacDonald, D.D.; Brumbaugh, W.G.; Johnson, B. Thomas; Kemble, N.E.; Kunz, J.L.; May, T.W.; Wang, N.; Smith, J.R.; Sparks, D.W.; Ireland, D.S.
2002-01-01
The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox® Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3.4 (based on concentrations of metals, PAHs, and PCBs) was exceeded in 33% of the sediment samples and a mean quotient of 0.63 was exceeded in 70% of the thirty sediment samples from the assessment area. A 50% incidence of toxicity has been previously reported in a database for sediment tests with H. azteca at a mean quotient of 3.4 in 10-day exposures and at a mean quotient of 0.63 in 28-day exposures. Among the Indiana Harbor samples, most of the samples with a mean PEC quotient above 0.63 (i.e., 15 of 21; 71%) and above 3.4 (i.e., 10 of 10; 100%) were toxic to amphipods. Results of this study and previous studies demonstrate that sediments from this assessment area are among the most contaminated and toxic that have ever been reported.
Zhang, Heng; Lan, Fang; Shi, Yupeng; Wan, Zhi-Gang; Yue, Zhen-Feng; Fan, Fang; Lin, Yan-Kui; Tang, Mu-Jin; Lv, Jing-Zhang; Xiao, Tan; Yi, Changqing
2014-06-15
VitaFast(®) test kits designed for the microbiological assay in microtiter plate format can be applied to quantitative determination of B-group water-soluble vitamins such as vitamin B12, folic acid and biotin, et al. Compared to traditional microbiological methods, VitaFast(®) kits significantly reduce sample processing time and provide greater reliability, higher productivity and better accuracy. Recently, simultaneous determination of vitamin B12, folic acid and biotin in one sample is urgently required when evaluating the quality of infant formulae in our practical work. However, the present sample preparation protocols which are developed for individual test systems, are incompatible with simultaneous determination of several analytes. To solve this problem, a novel "three-in-one" sample preparation method is herein developed for simultaneous determination of B-group water-soluble vitamins using VitaFast(®) kits. The performance of this novel "three-in-one" sample preparation method was systematically evaluated through comparing with individual sample preparation protocols. The experimental results of the assays which employed "three-in-one" sample preparation method were in good agreement with those obtained from conventional VitaFast(®) extraction methods, indicating that the proposed "three-in-one" sample preparation method is applicable to the present three VitaFast(®) vitamin test systems, thus offering a promising alternative for the three independent sample preparation methods. The proposed new sample preparation method will significantly improve the efficiency of infant formulae inspection. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beganskas, S.; Gorski, G.; Fisher, A. T.; Weir, W. B.; Schmidt, C. M.; Saltikov, C.; Stoneburner, B.; Hernandez, J.; Harmon, R. E.; Weathers, T. S.
2016-12-01
We have designed field experiments to observe and quantify water quality improvement during infiltration in the shallow subsurface, as part of managed aquifer recharge (MAR). We are exploring how microbial diversity and denitrification rate respond to different infiltration rates and the presence or absence of carbon-rich reactive materials (woodchips or biochar). In 2015, we conducted a series of two-week-long field infiltration tests, and in 2016 we are running tests at a new site. For each test, nitrate-rich water (20-25 ppm NO3-N) was continuously applied to 1-m square plots instrumented to measure infiltration rates and sample subsurface water at multiple depths. Soil samples were collected before and after each test to assess microbial diversity. In 2015, we observed infiltration rates of 4-18 m/d, consistent with very sandy soils at our field site. All water samples had >20 ppm DOC, indicating that denitrification was unlikely carbon-limited. There was a net increase in DOC in fluids sampled below woodchips, but no change in DOC in samples from un-amended native soil. Up to 20% of NO3- was removed below woodchips on days with infiltration rates below 15 m/d. Nitrate removal was not observed in native soil, even though infiltration rates were considerably lower, 4 m/d. Isotopic analyses indicate that denitrification is likely the mechanism for nitrate removal. Genomic sequencing of soil microbes shows that microbial populations' relative abundance shifted significantly due to infiltration; further analyses are underway. Our results suggest that rapid infiltration can lead to oxic conditions unfavorable for denitrification, and that a carbon-rich reactive material (woodchips) may stimulate microbially-mediated denitrification. Our experimental design is a novel way to examine factors that impact water quality during infiltration. Nitrate, a pervasive groundwater contaminant, can be removed via denitrification during MAR under some conditions, depending on infiltration rate, available carbon, and substrate material. Our work has applications for designing MAR systems that effectively improve water supply and water quality.
Hydrogeologic data from test drilling near Verna, Florida, 1978
Barker, Michael; Bowman, Geronia; Sutcliffe, Horace
1981-01-01
Four test wells were drilled in the vicinity of the city of Sarasota well field near Verna, Fla., to provide hydrologic and geologic information. An expedient and economical method of air lifting water samples from isolated water-producing zones while drilling was utilized. Lithologic logs of drill cuttings and geophysical logs, including point resistance and spontaneous potential electric logs, gamma-ray logs, and caliper logs, were made. Chemical quality of water was determined for principal producing zones at each well. Dissolved solids from composite water samples ranged from 313 milligrams per liter in test well 0-1 north of the well field to 728 milligrams per liter in test well 0-3 within the well field. Each test well was pumped to determine maximum discharge, water-level drawdown, and recovery time. A leaking pump column on test well 0-1 prevented accurate measurement of drawdown on the well. Test well 0-2, located east of the well field, had a pumping rate of 376 gallons per minute and 13.11 feet of drawdown after 3 hours and 50 minutes; test well 0-3 had a maximum yield of 320 gallons per minute, a drawdown of 31.91 feet after 2 hours and 35 minutes of pumping, had a recovery time of 20 minutes; and test well 0-4, south of the well field, had a pumping rate of 200 gallons per minute with 63.34 feet of drawdown after 2 hours and 35 minutes. (USGS)
Identification of tobacco-specific nitrosamines as disinfection byproducts in chloraminated water.
Wu, Minghuo; Qian, Yichao; Boyd, Jessica M; Leavey, Shannon; Hrudey, Steve E; Krasner, Stuart W; Li, Xing-Fang
2014-01-01
Tobacco-specific nitrosamines (TSNAs) exist in environmental waters; however, it is unknown whether TSNAs can be produced during water disinfection. Here we report on the investigation and evidence of TSNAs as a new class of disinfection byproducts (DBPs). Using five common TSNAs, including (methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) as the targets, we first developed a solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method capable of rapidly determining these TSNAs at levels as low as 0.02 ng/L in treated water. Using this highly sensitive method, we investigated the occurrence and formation potential (FP) (precursor test conducted in the presence of chloramines) of TSNAs in treated water from two wastewater treatment plants (WWTPs) and seven drinking water treatment plants (DWTPs). NNAL was detected in the FP samples, but not in the samples before the FP test, confirming NNAL as a DBP. NNK was detected in the treated wastewater before the FP test, but its concentration increased significantly after chloramination in two of three tests. Thus, NNK could be a DBP and/or a contaminant in wastewater. Moreover, these TSNAs were detected in FP tests of wastewater-impacted DWTP plant influents in 9 of 11 samples. However, TSNAs were not detected at full-scale DWTPs, except for at one DWTP with high ammonia where breakpoint chlorination was not achieved. The concentration of the sum of five TSNAs (0.3 ng/L) was 100-fold lower than NDMA, suggesting that TSNAs have a minor contribution to total nitrosamines in water. We examined several factors in the treatment process and found that chlorine or ozone may destroy TSNA precursors and granular activated carbon (GAC) treatment may remove the precursors. Further research is warranted into the efficiency of these processes at different DWTPs using sources of varying water quality.
Uljevic, Ognjen; Spasic, Miodrag; Sekulic, Damir
2013-01-01
Sport-specific motor fitness tests are not often examined in water polo. In this study we examined the reliability, factorial and discriminative validity of 10 water-polo-specific motor-fitness tests, namely: three tests of in-water jumps (thrusts), two characteristic swimming sprints (10 and 20 metres from the water start), three ball-throws (shoots), one test of passing precision (accuracy), and a test of the dynamometric force produced while using the eggbeater kick. The sample of subjects consisted of 54 young male water polo players (15 to 17 years of age; 1.86 ± 0.07 m, and 83.1 ± 9.9 kg). All tests were applied over three testing trials. Reliability analyses included Cronbach Alpha coefficients (CA), inter-item- correlations (IIR) and coefficients of the variation (CV), while an analysis of variance was used to define any systematic bias between the testing trials. All tests except the test of accuracy (precision) were found to be reliable (CA ranged from 0.83 to 0.97; IIR from 0.62 to 0.91; CV from 2% to 21%); with small and irregular biases between the testing trials. Factor analysis revealed that jumping capacities as well as throwing and sprinting capacities should be observed as a relatively independent latent dimensions among young water polo players. Discriminative validity of the applied tests is partially proven since the playing positions significantly (p < 0.05) differed in some of the applied tests, with the points being superior in their fitness capacities in comparison to their teammates. This study included players from one of the world’s best junior National leagues, and reported values could be used as fitness standards for such an age. Further studies are needed to examine the applicability of the proposed test procedures to older subjects and females. Key Points Here presented and validated sport specific water polo motor fitness tests are found to be reliable in the sample of young male water polo players. Factor analysis revealed existence of three inde-pendent latent motor dimensions, namely, in-water jumping capacity, throwing ability, and sprint swimming capacity. Points are found to be most advanced in their fitness capacities which are mainly related to their game duties which allowed them to develop variety of fit-ness components. PMID:24421723
New methods for the detection of viruses: call for review of drinking water quality guidelines.
Grabow, W O; Taylor, M B; de Villiers, J C
2001-01-01
Drinking water supplies which meet international recommendations for source, treatment and disinfection were analysed. Viruses recovered from 100 L-1,000 L volumes by in-line glass wool filters were inoculated in parallel into four cell culture systems. Cell culture inoculation was used to isolate cytopathogenic viruses, amplify the nucleic acid of non-cytopathogenic viruses and confirm viability of viruses. Over a period of two years, viruses were detected in 23% of 413 drinking water samples and 73% of 224 raw water samples. Cytopathogenic viruses were detected in 6% raw water samples but not in any treated drinking water supplies. Enteroviruses were detected in 17% drinking water samples, adenoviruses in 4% and hepatitis A virus in 3%. In addition to these viruses, astro- and rotaviruses were detected in raw water. All drinking water supplies had heterotrophic plate counts of < 100/mL, total and faecal coliform counts of 0/100 mL and negative results in qualitative presence-absence tests for somatic and F-RNA coliphages (500 mL samples). These results call for a revision of water quality guidelines based on indicator organisms and vague reference to the absence of viruses.
Eckner, Karl F.
1998-01-01
A total of 338 water samples, 261 drinking water samples and 77 bathing water samples, obtained for routine testing were analyzed in duplicate by Swedish standard methods using multiple-tube fermentation or membrane filtration and by the Colilert and/or Enterolert methods. Water samples came from a wide variety of sources in southern Sweden (Skåne). The Colilert method was found to be more sensitive than Swedish standard methods for detecting coliform bacteria and of equal sensitivity for detecting Escherichia coli when all drinking water samples were grouped together. Based on these results, Swedac, the Swedish laboratory accreditation body, approved for the first time in Sweden use of the Colilert method at this laboratory for the analysis of all water sources not falling under public water regulations (A-krav). The coliform detection study of bathing water yielded anomalous results due to confirmation difficulties. E. coli detection in bathing water was similar by both the Colilert and Swedish standard methods as was fecal streptococcus and enterococcus detection by both the Enterolert and Swedish standard methods. PMID:9687478
Reconnaissance of quality of water from farmstead wells in Tennessee, 1989-90
Carmichael, J.K.; Bennett, M.W.
1993-01-01
Data for fecal bacteria, nitrate, organic compounds, iron, manganese, and pH were collected during 1989-90 as part of a statewide reconnaissance of ground-water quality in 150 domestic farm wells in Tennessee. The biological and chemical data for each well were grouped according to eight of the nine principal aquifers in the State and analyzed for local and regional variation within and among these aquifers. Water samples from 45 percent of the wells statewide tested positive for fecal cot[form or streptococci bacteria. Regionally, samples from 20 percent of the wells in the primarily unconsoli- dated sedimentary aquifers in western Tennessee tested positive for either or both bacteria, compared with samples from 54 percent of the wells in the consolidated bedrock aquifers in the central and eastern parts of the State. Although nitrate nitrogen equaled or exceeded the 10.0 milligrams per liter primary drinking-water standard in only 3 percent of the wells sampled statewide, samples from 20 percent of the wells had nitrate nitrogen concentrations that exceeded 3.00 milligrams per liter possibly indicating human influence on ground-water quality. Estimated total concentrations of organic compounds were less than 5 micrograms per liter in samples from 92 percent of the wells statewide. Concentrations of iron and manganese equaled or exceeded their secondary standards of 300 and 50 micrograms per liter in samples from 35 and 25 percent of the wells, respectively, with the largest concentrations identified in samples from the alluvial and Pennsylvanian sandstone aquifers. Samples from 25 percent of the wells, had a pH below the lower secondary standard of 6.5 units, with most of these samples from the unconsolidated sedimentary aquifers in western Tennessee.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Membrane Based Thermal Control Development
NASA Technical Reports Server (NTRS)
Murdoch, Karen
1997-01-01
The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.
Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.
2003-01-01
During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.
Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil
NASA Astrophysics Data System (ADS)
Liu, Haorui; Yang, Heli; Yi, Fengyan
2016-08-01
Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.
Fulton, John W.; Koerkle, Edward H.; McCoy, Jamie L.; Zarr, Linda F.
2016-01-21
A total of 1,742 water samples were collected at 52 main-stem and tributary sites. Quantifiable concentrations of Escherichia coli (E. coli) were reported in 1,667 samples, or 97.0 percent of 1,719 samples; concentrations in 853 samples (49.6 percent) exceeded the U.S. Environmental Protection Agency (EPA) recreational water-quality criterion of 235 colonies per 100 milliliters (col/100 mL). Quantifiable concentrations of fecal coliform (FC) bacteria were reported in 1,693 samples, or 98.8 percent of 1,713 samples; concentrations in 780 samples (45.5 percent) exceeded the Commonwealth of Pennsylvania water contact criterion of 400 col/100 mL. Quantifiable concentrations of enterococci bacteria were reported in 912 samples, or 87.5 percent of 1,042 samples; concentrations in 483 samples (46.4 percent) exceeded the EPA recreational water-quality criterion of 61 col/100 mL. The median percentage of samples in which bacteria concentrations exceeded recreational water-quality standards across all sites with five or more samples was 48 for E. coli, 43 for FC, and 75 for enterococci. E. coli, FC, and enterococci concentrations at main-stem sites had significant positive correlations with streamflow under all weather conditions, with rho values ranging from 0.203 to 0.598. Seasonal Kendall and logistic regression were evaluated to determine whether statistically significant trends were present during the period 2001–09. In general, Seasonal Kendall tests for trends in E. coli and FC bacteria were inconclusive. Results of logistic regression showed no significant trends in dry-weather exceedance of the standards; however, significant decreases in the likelihood that wet-weather E. coli and FC bacteria concentrations will exceed EPA recreational standards were found at the USGS streamgaging station Allegheny River at 9th Street Bridge. Nonparametric correlation analysis, including Spearman’s rho and the paired Prentice-Wilcoxon test, was used to screen for associations among fecal indicator bacteria concentrations and the field characteristics streamflow, water temperature, pH, specific conductance, dissolved-oxygen concentration, and turbidity.
Validation of an automated fluorescein method for determining bromide in water
Fishman, M. J.; Schroder, L.J.; Friedman, L.C.
1985-01-01
Surface, atmospheric precipitation and deionized water samples were spiked with ??g l-1 concentrations of bromide, and the solutions stored in polyethylene and polytetrafluoroethylene bottles. Bromide was determined periodically for 30 days. Automated fluorescein and ion chromatography methods were used to determine bromide in these prepared samples. Analysis of the data by the paired t-test indicates that the two methods are not significantly different at a probability of 95% for samples containing from 0.015 to 0.5 mg l-1 of bromide. The correlation coefficient for the same sets of paired data is 0.9987. Recovery data, except for the surface water samples to which 0.005 mg l-1 of bromide was added, range from 89 to 112%. There appears to be no loss of bromide from solution in either type of container.Surface, atmospheric precipitation and deionized water samples were spiked with mu g l** minus **1 concentrations of bromide, and the solutions stored in polyethylene and polytetrafluoroethylene bottles. Bromide was determined periodically for 30 days. Automated fluorescein and ion chromatography methods were used to determine bromide in these prepared samples. Analysis of the data by the paired t-test indicates that the two methods are not significantly different at a probability of 95% for samples containing from 0. 015 to 0. 5 mg l** minus **1 of bromide. The correlation coefficient for the same sets of paired data is 0. 9987. Recovery data, except for the surface water samples to which 0. 005 mg l** minus **1 of bromide was added, range from 89 to 112%. Refs.
A new sampler for stratified lagoon chemical and microbiological assessments.
McLaughlin, M R; Brooks, J P; Adeli, A
2014-07-01
A sampler was needed for a spatial and temporal study of microbial and chemical stratification in a large swine manure lagoon that was known to contain zoonotic bacteria. Conventional samplers were limited to collections of surface water samples near the bank or required a manned boat. A new sampler was developed to allow simultaneous collection of multiple samples at different depths, up to 2.3 m, without a manned boat. The sampler was tethered for stability, used remote control (RC) for sample collection, and accommodated rapid replacement of sterile tubing modules and sample containers. The sampler comprised a PVC pontoon with acrylic deck and watertight enclosures, for a 12 VDC gearmotor, to operate the collection module, and vacuum system, to draw samples into reusable autoclavable tubing and 250-mL bottles. Although designed primarily for water samples, the sampler was easily modified to collect sludge. The sampler held a stable position during deployment, created minimal disturbance in the water column, and was readily cleaned and sanitized for transport. The sampler was field tested initially in a shallow fresh water lake and subsequently in a swine manure treatment lagoon. Analyses of water samples from the lagoon tests showed that chemical and bacterial levels, pH, and EC did not differ between 0.04, 0.47, and 1.0 m depths, but some chemical and bacterial levels differed between winter and spring collections. These results demonstrated the utility of the sampler and suggested that future manure lagoon studies employ fewer or different depths and more sampling dates.
Validated Test Method 5030C: Purge-and-Trap for Aqueous Samples
This method describes a purge-and-trap procedure for the analysis of volatile organic compoundsin aqueous samples & water miscible liquid samples. It also describes the analysis of high concentration soil and waste sample extracts prepared in Method 5035.
Hydrologic data for Block Island, Rhode Island
Burns, Emily
1993-01-01
This report was compiled as part of a study to assess the hydrogeology and the quality and quantity of fresh ground water on Block Island, Rhode Island. Hydrologic data were collected on Block Island during 1988-91. The data are pre- sented in illustrations and tables. Data collec- ted include precipitation, surfae-water, ground- water, lithologic, and well-construction and dis- charge information. Precipitation data include total monthly precipitation values from 11 rain gages and water-quality analyses of 14 precipi- tation samples from one station. Surface-water data include water-level measurements at 12 ponds, water-quality data for five ponds, and field specific-conductance measurements at 56 surface- water sites (streams, ponds, and springs). Ground- water data include water-level measurements at 159 wells, water-quality data at 150 wells, and field specific-conductance data at 52 wells. Lithologic logs for 375 wells and test borings, and construc- tion and location data for 570 wells, springs, and test borings are included. In addition, the data set contains data on water quality of water samples, collected by the Rhode Island Department of Health during 1976-91, from Fresh and Sands Ponds and from wells at the Block Island Water Company well field north of Sands Pond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1986-02-01
This report is a compendium of detailed test sampling and analysis data obtained in field tests of a watertube industrial boiler burning a coal/water slurry (CWS). Test data reported include preliminary stack test data, boiler operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR), liquidmore » column (LC) chromatography separation, and low-resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), and trace-element emissions using spark-source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS); N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD); and biological assay testing of SASS and ash-stream samples.« less
Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana
2014-12-01
A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Laser light scattering from wood samples soaked in water or in benzyl benzoate
NASA Astrophysics Data System (ADS)
Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.
Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.
Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005
Haack, Sheridan Kidd
2010-01-01
Beginning in the late 1990's, the U.S. Geological Survey began to develop analytical methods to detect, at concentrations less than 1 microgram per liter (ug/L), emerging water contaminants such as pharmaceuticals, personal-care chemicals, and a variety of other chemicals associated with various human and animal sources. During 1998-2005, the U.S. Geological Survey analyzed the following Michigan water samples: 41 samples for antibiotic compounds, 28 samples for pharmaceutical compounds, 46 unfiltered samples for wastewater compounds (dissolved and suspended compounds), and 113 filtered samples for wastewater compounds (dissolved constituents only). The purpose of this report is to summarize the status of emerging contaminants in Michigan waters based on data from several different project-specific sample-collection efforts in Michigan during an 8-year period. During the course of the 8-year sampling effort, antibiotics were determined at 20 surface-water sites and 2 groundwater sites, pharmaceuticals were determined at 11 surface-water sites, wastewater compounds in unfiltered water were determined at 31 surface-water sites, and wastewater compounds in filtered water were determined at 40 surface-water and 4 groundwater sites. Some sites were visited only once, but others were visited multiple times. A variety of quality-assurance samples also were collected. This report describes the analytical methods used, describes the variations in analytical methods and reporting levels during the 8-year period, and summarizes all data using current (2009) reporting criteria. Very few chemicals were detected at concentrations greater than current laboratory reporting levels, which currently vary from a low of 0.005 ug/L for some antibiotics to 5 ug/L for some wastewater compounds. Nevertheless, 10 of 51 chemicals in the antibiotics analysis, 9 of 14 chemicals in the pharmaceuticals analysis, 34 of 67 chemicals in the unfiltered-wastewater analysis, and 56 of 62 chemicals in the filtered-wastewater analysis were detected. Antibiotics were detected at 7 of 20 tested surface-water sites, but none were detected in 2 groundwater samples. Pharmaceuticals were detected at 7 of 11 surface-water sites. Wastewater compounds were detected at 25 of 31 sites for which unfiltered water samples were analyzed and at least once at all 40 surface-water sites and all 4 groundwater sites for which filtered water samples were analyzed. Overall, the chemicals detected most frequently in Michigan waters were similar to those reported frequently in other studies nationwide. Patterns of chemical detections were site specific and appear to be related to local sources, overall land use, and hydrologic conditions at the time of sampling. Field-blank results provide important information for the design of future sampling programs in Michigan and demonstrate the need for careful field-study design. Field-replicate results indicated substantial confidence regarding the presence or absence of the many chemicals tested. Overall, data reported herein indicate that a wide array of antibiotic, pharmaceutical, and organic wastewater compounds occur in Michigan waters. Patterns of occurrence, with respect to hydrologic, land use, and source variables, generally appear to be similar for Michigan as for other sampled waters across the United States. The data reported herein can serve as a basis for future studies in Michigan.
Carpani, Irene; Conti, Paolo; Lanteri, Silvia; Legnani, Pier Paolo; Leoni, Erica; Tonelli, Domenica
2008-02-28
A home-made microelectrode array, based on reticulated vitreous carbon, was used as working electrode in square wave voltammetry experiments to quantify the bacterial load of Escherichia coli ATCC 13706 and Pseudomonas aeruginosa ATCC 27853, chosen as test microorganisms, in synthetic samples similar to drinking water (phosphate buffer). Raw electrochemical signals were analysed with partial least squares regression coupled to variable selection in order to correlate these values with the bacterial load estimated by aerobic plate counting. The results demonstrated the ability of the method to detect even low loads of microorganisms in synthetic water samples. In particular, the model detects the bacterial load in the range 3-2,020 CFU ml(-1) for E. coli and in the range 76-155,556 CFU ml(-1) for P. aeruginosa.
Examination of Hydrate Formation Methods: Trying to Create Representative Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.
2011-04-01
Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlledmore » conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.« less
NASA Astrophysics Data System (ADS)
Hasanuzzaman, M.; Rahman, M. A.; Salam, M. A.
2017-10-01
Being agricultural country, different types of pesticides are widely used in Bangladesh to prevent the crop losses due to pest attack which are ultimately drain to the water bodies. The present study was conducted to identify and quantify the organochlorine (DDT, DDE and DDD), organophosphorus (malathion, diazinon and chloropyrifos) and carbamate (carbaryl) residues in water samples of different sources from Dhamrai upazila of Bangladesh using high performance liquid chromatography (HPLC) equipped with ultra violate (UV) detector. Thirty water samples from fish pond, cultivated land and tube-well were collected in winter season to analyze the pesticide residues. Among the organophosphorus pesticides, malathion was present in seven water samples ranging from 42.58 to 922.8 μg/L, whereas diazinon was detected in water sample-8 (WS-8) and the concentration was 31.5 μg/L. None of the tested water samples was found to be contaminated with chlorpyrifos, carbaryl or DDT and its metabolites (DDE and DDD). Except for a tube-well water sample, concentrations of the detected residues are above the acceptable limit for human body as assigned by different organizations. To avoid the possible health hazards, the indiscriminate application of pesticides should be restricted and various substitute products like bio-pesticide should be introduced in a broad scale as soon as possible.
Balamurugan, P; Joshi, M Hiren; Rao, T S
2011-10-01
Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.
[Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].
Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying
2013-05-01
A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.
Conclusions on measurement uncertainty in microbiology.
Forster, Lynne I
2009-01-01
Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.
Dumouchelle, Denise H.
2006-01-01
In 2004, a public-health nuisance was declared by the Wayne County Board of Health in the Scenic Heights Drive-Batdorf Road area of Wooster Township, Wayne County, Ohio, because of concerns about the safety of water from local wells. Repeated sampling had detected the presence of fecal-indicator bacteria and elevated nitrate concentrations. In June 2006, the U.S. Geological Survey (USGS), in cooperation with the Ohio Environmental Protection Agency (Ohio EPA), collected and analyzed samples from some of the affected wells to help investigate the possibility of human-origin bacterial contamination. Water samples from 12 wells and 5 home sewage-treatment systems (HSTS) were collected. Bromide concentrations were determined in samples from the 12 wells. Samples from 5 of the 12 wells were analyzed for wastewater compounds. Total coliform, enterococci and Escherichia coli (E. coli) bacteria concentrations were determined for samples from 8 of the 12 wells. In addition, two microbial source-tracking tools that employ DNA markers were used on samples from several wells and a composite sample of water from five septic tanks. The DNA markers from the Enterococcus faecium species and the order Bacteroidales are associated with specific sources, either human or ruminant sources. Bromide concentrations ranged from 0.04 to 0.18 milligrams per liter (mg/L). No wastewater compounds were detected at concentrations above the reporting limits. Samples from the 12 wells also were collected by Ohio EPA and analyzed for chloride and nitrate. Chloride concentrations ranged from 12.6 to 61.6 mg/L and nitrate concentrations ranged from 2.34 to 11.9 mg/L (as N). Total coliforms and enterococci were detected in samples from 8 wells, at concentrations from 2 to 200 colony-forming units per 100 milliliters (CFU/100 mL) and 0.5 to 17 CFU/100 mL, respectively. E. coli were detected in samples from three of the eight wells, at concentrations of 1 or 2 CFU/100 mL. Tests for the human-specific marker of enterococci, the esp gene, were negative in the seven samples tested, including the composite sample of HSTS water. DNA with the general Bacteroidales marker was detected in samples from four wells, but the tests for both the human- and ruminant-associated markers were negative. The presence of the PCR (polymerase chain reaction) -detectable DNA for the general fecal Bacteroidales marker is indicative of fecal contamination and recently recharged water.
Hydrogeology of the area near the J4 test cell, Arnold Air Force Base, Tennessee
Haugh, C.J.
1996-01-01
The U.S. Air Force operates a major aerospace systems testing facility at Arnold Engineering Development Center (AEDC) in Coffee County, Tennessee. Dewatering operations at one of the test facilities, the J4 test cell, has affected the local ground-water hydrology. The J4 test cell is approximately 100 feet in diameter, extends approximately 250 feet below land surface, and penetrates several aquifers. Ground water is pumped continuously from around the test cell to keep the cell structurally intact. Because of the test cell's depth, dewatering has depressed water levels in the aquifers surrounding the site. The depressions that have developed exhibit anisotropy that is controlled by zones of high permeability in the aquifers. Additionally, contaminants - predominately volatile organic compounds - are present in the ground-water discharge from the test cell and in ground water at several other Installation Restoration Program (IRP) sites within the AEDC facility. The dewatering activities at J4 are drawing these contaminants from the nearby sites. The effects of dewatering at the J4 test cell were investigated by studying the lithologic and hydraulic characteristics of the aquifers, investigating the anisotropy and zones of secondary permeability using geophysical techniques, mapping the potentiometric surfaces of the underlying aquifers, and developing a conceptual model of the ground-water-flow system local to the test cell. Contour maps of the potentiometric surfaces in the shallow, Manchester, and Fort Payne aquifers (collectively, part of the Highland Rim aquifer system) show anisotropic water-level depressions centered on the J4 test cell. This anisotropy is the result of features of high permeability such as chert-gravel zones in the regolith and fractures, joints, and bedding planes in the bedrock. The presence of these features of high permeability in the Manchester aquifer results in complex flow patterns in the Highland Rim aquifers near the J4 test cell. The occurrence, distribution, and orientation of these features has a great effect on ground-water flow to the J4 test cell. The depression caused by dewatering extends out horizontally through the aquifers along the most permeable pathways. Since the aquifers above the Chattanooga Shale are not separated by distinct confining units, areas in adjacent aquifers above and below these zones of high permeability in the Manchester aquifer are also dewatered. Conditions in all Highland Rim aquifers approximate steady-state equilibrium because ground-water withdrawal at the test cell has been continuous since the late 1960's. The average ground-water discharge from the dewatering system at the J4 test cell was 105 gallons per minute, for 1992-95. The ground-water capture areas in each aquifer extend into all or parts of landfill #2 and leaching pit #2 (IRP site 1), the main testing area (IRP site 7), and the old fire training area (IRP site 10). IRP sites 8 and 12 are outside the ground-water capture areas. Of the 35 sampled wells in the J4 area, 10 produced water samples containing chlorinated organic compounds such as 1,2-dichloroethane (1,2-DCA), 1,1-dichloroethylene (1,1-DCE), and trichloroethylene (TCE) in concentrations which exceeded the Tennessee Department of Environment and Conservation Maximum Contaminant Levels (MCL's) for public water-supply systems. The highest concentrations were detected in samples from well AEDC-274 with 45 micrograms per liter (mg/L) 1,2-DCA, 320 mg/L 1,1-DCE, and 1,200 mg/L TCE. These compounds are synthetic and do not occur naturally in the environment. A sample of the ground-water discharge from the J4 test cell also contained concentrations of these compounds that exceed MCL's. Chlorinated organic compounds, including 1,2-DCA; 1,1-DCE; and TCE also have been detected at IRP sites 1, 7, 8, nd 10. The six dewatering wells surrounding the J4 test cell penetrate the Chattanooga Shale and are open to the Highland Rim aquifer system, there
Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn
2004-01-01
Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon analyzer.
Chate, R A C
2006-11-11
To improve the quality of water emanating from dental unit waterlines (DUWLs). A prospective clinical audit. Three geographically separate district dental facilities of a United Kingdom NHS Trust, involving two community clinics and one hospital orthodontic department, which were evaluated between 2002 and 2004. Samples of water discharged from the DUWLs were collected prior to the start and midway through a morning session. These were tested microbiologically at a United Kingdom Accreditation Service testing laboratory within six hours of sampling. One of the clinics followed the contemporaneous BDA advice of flushing water through its DUWLs while the other two clinics used separate intermittent disinfection purging regimes instead. One of them used a two stage protocol of Ethylene Diamine Tetra-Acetic acid followed by hydrogen peroxide, while the other used Bio 2000 as a single agent, which was subsequently superseded by the continuous use of super-oxidised water (Sterilox). To assess whether the samples either met the American Dental Association's guideline on the quality of DUWL water, or the more stringent European Union standards for potable (drinking) water. The two units which used a disinfection regime both complied with the ADA guideline and the EU potable water standard. However, the unit which only flushed through its DUWLs without using a disinfectant failed to comply with either of them. After all three dental facilities subsequently standardised their DUWL disinfection regimes by using Bio 2000, the colony counts from all of the water samples thereafter remained well below the EU recommended level. The unit which progressed to using Sterilox as a continuous disinfectant achieved and maintained zero readings from its water samples. Clinical audit can result in the improvement of the quality of water that is discharged through DUWLs, thereby minimising both the risk of cross infection to vulnerable patients, as well as to dental staff chronically exposed to contaminated aerosols.
10 CFR 429.17 - Residential water heaters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water heaters...
10 CFR 429.17 - Residential water heaters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water heaters...
A modified siphon sampler for shallow water
Diehl, Timothy H.
2008-01-01
A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.
NASA Astrophysics Data System (ADS)
Muller, Wayne; Scheuermann, Alexander
2016-04-01
Measuring the electrical permittivity of civil engineering materials is important for a range of ground penetrating radar (GPR) and pavement moisture measurement applications. Compacted unbound granular (UBG) pavement materials present a number of preparation and measurement challenges using conventional characterisation techniques. As an alternative to these methods, a modified free-space (MFS) characterisation approach has previously been investigated. This paper describes recent work to optimise and validate the MFS technique. The research included finite difference time domain (FDTD) modelling to better understand the nature of wave propagation within material samples and the test apparatus. This research led to improvements in the test approach and optimisation of sample sizes. The influence of antenna spacing and sample thickness on the permittivity results was investigated by a series of experiments separating antennas and measuring samples of nylon and water. Permittivity measurements of samples of nylon and water approximately 100 mm and 170 mm thick were also compared, showing consistent results. These measurements also agreed well with surface probe measurements of the nylon sample and literature values for water. The results indicate permittivity estimates of acceptable accuracy can be obtained using the proposed approach, apparatus and sample sizes.
Contamination of River Water by Cryptosporidium parvum Oocysts in Western Japan
Ono, Kazuo; Tsuji, Hidetaka; Rai, Shiba Kumar; Yamamoto, Akio; Masuda, Kuniyoshi; Endo, Takuro; Hotta, Hak; Kawamura, Takashi; Uga, Shoji
2001-01-01
In Japan, only a few rivers have been inspected for Cryptosporidium parvum contamination, and the methods used had low sensitivity. In 1998 and 1999, we used a method with higher sensitivity to examine all large rivers used as sources of water supply in one prefecture (which we divided into four areas) in western Japan for Cryptosporidium oocysts. One sample was collected at each of 156 sites along 18 rivers, and samples were tested for Cryptosporidium oocysts by immunomagnetic separation. Samples were classified as being obtained on an island with livestock and fishing industries, a densely populated urban area, a western region including farming villages, or a still more rural northern area with agriculture and fishing. Restriction fragment length polymorphism analysis was used for identification of the C. parvum found as the bovine or human type. C. parvum was detected in at least one sample from 13 of the 18 rivers and in 47% (74 of 156) of the samples. One-third to all of the samples from each area contained C. parvum oocysts. The number of C. parvum oocysts per 20 liters of river water varied in the same pattern as the number of cattle kept in the four kinds of areas (as determined by the Mantel extension test). Oocysts isolated were of the bovine type; the C. parvum detected in rivers probably came from cattle kept in that valley. As we had expected, when tested with a more sensitive method, river water in western Japan was found to be greatly contaminated with C. parvum oocysts, as reported in other countries. PMID:11525974
Microbiological monitoring of marine recreational waters in southern California.
Schiff, K C; Weisberg, S B; Dorsey, J H
2001-01-01
An inventory was conducted to assess the number, type, spatial distribution, and costs of microbiological monitoring programs in southern California marine waters from Point Conception to the US/Mexico International Border. The location of each sampling site was determined using global positioning system (GPS), and estimates of geographic coverage were determined using geographic information system (GIS) techniques. Twenty-one programs conducted 87,007 tests annually at 576 sites in the study area. The largest number of sites was sampled in Orange County, whereas the largest number of analyses was performed in Los Angeles County because monitoring programs in this area focused on daily monitoring. Fifteen of the 21 programs were managed by National Pollutant Discharge Elimination System (NPDES) permitted sewage effluent dischargers who sampled both offshore and shoreline waters and typically tested for three indicator bacteria (total coliform, fecal coliform, and enterococcus). Their combined efforts comprised 82% of all of the microbiological indicator analyses conducted on an annual basis. Five of the remaining monitoring organizations were public health agencies, which typically focus their efforts on testing only total coliforms. Laboratory methodology also varied considerably, with NPDES permittees predominantly utilizing membrane filtration while public health agencies generally used multiple tube fermentation or premanufactured test kits. Nearly three quarters of all the effort expended in southern California occurred along the shoreline as opposed to offshore locations. Two thirds of this shoreline effort was focused on high-use sandy beaches and in proximity to perennial fresh-water outlets (storm drains and creeks). Most sampling occurred at a set of fixed sites that were revisited frequently, but only represented about 7% of the total shoreline. We estimated that roughly $3 million is spent annually on monitoring bathing water quality in southern California, exceeding that spent in any other part of the country.
Screening of ground water samples for volatile organic compounds using a portable gas chromatograph
Buchmiller, R.C.
1989-01-01
A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author
Biannual water-resources review, White Sands Missile Range, New Mexico, 1986 and 1987
Myers, Robert G.; Sharp, Steven C.
1989-01-01
Hydrologic data were collected at White Sands Missile Range, New Mexico in 1986 and 1987. The total groundwater withdrawal in 1986 was 565,462,500 gal and in 1987 it was 620,492,000 gal. The total groundwater withdrawal was 110,971,300 gal less in 1986 than in 1985, but 55,029,500 gal more in 1987 than in 1986. Water samples from five Post Headquarters water supply wells were collected for chemical analysis in 1986. In 1987, water samples were collected from four test wells in the Post Headquarters area for analysis of selected volatile organic compounds. Twenty-eight water samples from wells were collected for analysis of specific conductance in 1986 and 1987. (USGS)
Fernandez-Rendon, E; Cerna-Cortes, J F; Ramirez-Medina, M A; Helguera-Repetto, A C; Rivera-Gutierrez, S; Estrada-Garcia, T; Gonzalez-Y-Merchand, J A
2012-01-01
This study examined the frequency of occurrence of non-tuberculous mycobacteria (NTM) in potable water samples from a main trauma hospital in Mexico City. Sixty-nine potable water samples were collected, 23 from each source: cistern, kitchen tap and bathroom showers. Of the 69 samples, 36 harboured NTM species. Twenty-nine of the 36 isolates were Mycobacterium mucogenicum, two Mycobacterium rhodesiae, one Mycobacterium peregrinum, one Mycobacterium fortuitum and three were Mycobacterium spp. Hospital potable water harbouring NTM represents a potential source for nosocomial infections, therefore we suggest that hospital potable water microbiological guidelines should include testing for NTM species. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Catto, Cyril; Sabrina, Simard; Ginette, Charest-Tardif; Manuel, Rodriguez; Robert, Tardif
2012-01-01
In order to improve disinfection by-product (DBP) exposure assessment, this study was designed to document both water and air levels of these chemical contaminants in two indoor swimming pools and to analyze their within-day and day-to-day variations in both of them. Intensive sampling was carried out during two one-week campaigns to measure trihalomethanes (THMs) and chloramines (CAMs) in water and air, and haloacetic acids (HAAs) in water several times daily. Water samples were systematically collected at three locations in each pool and air samples were collected at various heights around the pool and in other rooms (e.g., changing room) in the buildings. In addition, the ability of various models to predict air concentrations from water was tested using this database. No clear trends, but actual variations of contamination levels, appeared for both water and air according to the sampling locations and times. Likewise, the available models resulted in realistic but imprecise estimates of air contamination levels from water. This study supports the recommendation that suitable minimal air and water sampling should be carried out in swimming pools to assess exposure to DBPs. PMID:23066383
Guthmann, Jean-Paul; Klovstad, Hilde; Boccia, Delia; Hamid, Nuha; Pinoges, Loretxu; Nizou, Jacques-Yves; Tatay, Mercedes; Diaz, Francisco; Moren, Alain; Grais, Rebecca Freeman; Ciglenecki, Iza; Nicand, Elisabeth; Guerin, Philippe Jean
2006-06-15
The conflict in Darfur, Sudan, was responsible for the displacement of 1.8 million civilians. We investigated a large outbreak of hepatitis E virus (HEV) infection in Mornay camp (78,800 inhabitants) in western Darfur. To describe the outbreak, we used clinical and demographic information from cases recorded at the camp between 26 July and 31 December 2004. We conducted a case-cohort study and a retrospective cohort study to identify risk factors for clinical and asymptomatic hepatitis E, respectively. We collected stool and serum samples from animals and performed a bacteriological analysis of water samples. Human samples were tested for immunoglobulin G and immunoglobulin M antibody to HEV (for serum samples) and for amplification of the HEV genome (for serum and stool samples). In 6 months, 2621 hepatitis E cases were recorded (attack rate, 3.3%), with a case-fatality rate of 1.7% (45 deaths, 19 of which involved were pregnant women). Risk factors for clinical HEV infection included age of 15-45 years (odds ratio, 2.13; 95% confidence interval, 1.02-4.46) and drinking chlorinated surface water (odds ratio, 2.49; 95% confidence interval, 1.22-5.08). Both factors were also suggestive of increased risk for asymptomatic HEV infection, although this was not found to be statistically significant. HEV RNA was positively identified in serum samples obtained from 2 donkeys. No bacteria were identified from any sample of chlorinated water tested. Current recommendations to ensure a safe water supply may have been insufficient to inactivate HEV and control this epidemic. This research highlights the need to evaluate current water treatment methods and to identify alternative solutions adapted to complex emergencies.
Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh
NASA Astrophysics Data System (ADS)
Hasanuzzaman, M.; Rahman, M. A.; Islam, M. S.; Salam, M. A.; Nabi, M. R.
2018-03-01
Pesticides used to protect the crops from pest attack in the agricultural fields pose harmful effect to the non-target organisms such as human and many other aquatic and terrestrial organisms either directly or indirectly through food chain. The present study was conducted to monitor a total of seven pesticide residues under organochlorine, organophosphorus and carbamate pesticides in three different sources of pond water, paddy field water and tube-well water from Nagarpur Upazila and paddy field water in the company of Dhaleshwari and Gazikhali river water from Saturia Upazila, Bangladesh. A total of 40 water samples were analyzed using high-performance liquid chromatography equipped with ultraviolet detector. Among the organophosphorus pesticides, diazinon was detected in eight water samples at a concentration ranging from 4.11 to 257.91 μg/l whereas, malathion was detected only in one water sample at a concentration of 84.64 μg/l and chlorpyrifos pesticide was also detected only in one water sample and the concentration was 37.3 μg/l. Trace amount of carbaryl was identified but it was below the detection limit. None of the tested water samples was found to be contaminated with DDT or its metabolites (DDE and DDD). The water samples contaminated with the suspected pesticides were above the acceptable limit except for the fish pond samples of Sahabatpur and Dubaria union. To control the misuse of pesticides and to reduce the possible health risk, appropriate control systems of pests such as integrated pest management system should be implemented immediately by the authorities of the country.
Decontaminating materials used in ground water sampling devices: Organic contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.V.; Ranney, T.A.
2000-12-31
In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants weremore » removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.« less
Examination of an indicative tool for rapidly estimating viable organism abundance in ballast water
NASA Astrophysics Data System (ADS)
Vanden Byllaardt, Julie; Adams, Jennifer K.; Casas-Monroy, Oscar; Bailey, Sarah A.
2018-03-01
Regulatory discharge standards stipulating a maximum allowable number of viable organisms in ballast water have led to a need for rapid, easy and accurate compliance assessment tools and protocols. Some potential tools presume that organisms present in ballast water samples display the same characteristics of life as the native community (e.g. rates of fluorescence). This presumption may not prove true, particularly when ships' ballast tanks present a harsh environment and long transit times, negatively impacting organism health. Here, we test the accuracy of a handheld pulse amplitude modulated (PAM) fluorometer, the Hach BW680, for detecting photosynthetic protists at concentrations above or below the discharge standard (< 10 cells·ml- 1) in comparison to microscopic counts using fluorescein diacetate as a viability probe. Testing was conducted on serial dilutions of freshwater harbour samples in the lab and in situ untreated ballast water samples originating from marine, freshwater and brackish sources utilizing three preprocessing techniques to target organisms in the size range of ≥ 10 and < 50 μm. The BW680 numeric estimates were in agreement with microscopic counts when analyzing freshly collected harbour water at all but the lowest concentrations (< 38 cells·ml- 1). Chi-square tests determined that error is not independent of preprocessing methods: using the filtrate method or unfiltered water, in addition to refining the conversion factor of raw fluorescence to cell size, can decrease the grey area where exceedance of the discharge standard cannot be measured with certainty (at least for the studied populations). When examining in situ ballast water, the BW680 detected significantly fewer viable organisms than microscopy, possibly due to factors such as organism size or ballast water age. Assuming both the BW680 and microscopy with FDA stain were measuring fluorescence and enzymatic activity/membrane integrity correctly, the observed discrepancy between methods may simply reflect that the two methods are measuring different characteristics of life. This is the first study to conduct proof-of-concept testing for a rapid compliance detection tool using freshly collected harbour water concomitantly with in situ ballast water; our results demonstrate that it is important to challenge potential compliance tools with water samples spanning a range of biotic and abiotic conditions.
NASA Astrophysics Data System (ADS)
Urakoshi, T.; Kawagoe, T.; Ohta, T.
2017-12-01
Effluent from rock muck piles consisting of waste rock, as a by-product of construction, sometimes contains heavy metals that affects human health and environment. Rain is the key to estimate water quality of the effluent because infiltrated rain to piles reacts with minerals of rocks. Thus, we newly proposed a dissolution test, namely cyclic injection test, considering rain events, as the following steps: Firstly, we crushed rock sample to particles of size of between 2 and 20 mm, and filled them into the column with 54 mm in diameter and 300 mm in length. Secondly, we saturated void in the column with pure water. One hour after, we opened a valve of the bottom of the column, and collected effluent. Thirdly, we preserved the column for 14 days. After then, we injected 200 ml of pure water from the top of the column within about 15 minutes, and collected efflent. We repeated injection of pure water every 14 days. We conducted the cyclic injection test for altered volcanic rock sample, and observed that the effluent just after the injection showed highest concentration. This result indicated that dissolved chemicals were released from minerals to capillary water after an injection, and advected outside of the column at the next injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James B. Paces; Zell E. Peterman; Kiyoto Futa
2007-08-07
Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.« less
Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.
2007-01-01
Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.
Patrick, Molly; Steenland, Maria; Dismer, Amber; Pierre-Louis, Jocelyne; Murphy, Jennifer L; Kahler, Amy; Mull, Bonnie; Etheart, Melissa D; Rossignol, Emmanuel; Boncy, Jacques; Hill, Vincent; Handzel, Thomas
2017-10-01
Consumption of drinking water from private vendors has increased considerably in Port-au-Prince, Haiti, in recent decades. A major type of vendor is private kiosks, advertising reverse osmosis-treated water for sale by volume. To describe the scale and geographical distribution of private kiosks in metropolitan Port-au-Prince, an inventory of private kiosks was conducted from July to August 2013. Coordinates of kiosks were recorded with global positioning system units and a brief questionnaire was administered with the operator to document key kiosk characteristics. To assess the quality of water originating from private kiosks, water quality analyses were also conducted on a sample of those inventoried as well as from the major provider company sites. The parameters tested were Escherichia coli , free chlorine residual, pH, turbidity, and total dissolved solids. More than 1,300 kiosks were inventoried, the majority of which were franchises of four large provider companies. Approximately half of kiosks reported opening within 12 months of the date of the inventory. The kiosk treatment chain and sales price was consistent among a majority of the kiosks. Of the 757 kiosks sampled for water quality, 90.9% of samples met World Health Organization (WHO) microbiological guideline at the point of sale for nondetectable E. coli in a 100-mL sample. Of the eight provider company sites tested, all samples met the WHO microbiological guideline. Because of the increasing role of the private sector in drinking water provision in Port-au-Prince and elsewhere in Haiti, this assessment was an important first step for government regulation of this sector.
Long-term behaviour and cross-correlation water quality analysis of the River Elbe, Germany.
Lehmann, A; Rode, M
2001-06-01
This study analyses weekly data samples from the river Elbe at Magdeburg between 1984 and 1996 to investigate the changes in metabolism and water quality in the river Elbe since the German reunification in 1990. Modelling water quality variables by autoregressive component models and ARIMA models reveals the improvement of water quality due to the reduction of waste water emissions since 1990. The models are used to determine the long-term and seasonal behaviour of important water quality variables. Organic and heavy metal pollution parameters showed a significant decrease since 1990, however, no significant change of chlorophyll-a as a measure for primary production could be found. A new procedure for testing the significance of a sample correlation coefficient is discussed, which is able to detect spurious sample correlation coefficients without making use of time-consuming prewhitening. The cross-correlation analysis is applied to hydrophysical, biological, and chemical water quality variables of the river Elbe since 1984. Special emphasis is laid on the detection of spurious sample correlation coefficients.
Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.
2004-01-01
A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert-butyl ether was detected as deep as ?9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations that were found in association with the ground-water samples that contained methyl tert-butyl ether are preliminary indicators that will assist in determining if natural attenuation of methyl tert-butyl ether is occurring in the surficial aquifer. A full assessment of natural attenuation of methyl tert-butyl ether at the site is beyond the scope of this study, but the data collected during the study will be useful in selecting appropriate remedial methyl tert-butyl ether demonstrations.
Preliminary data from Arbuckle test wells, Miami, Douglas, Saline, and Labette counties, Kansas
Gogel, Tony
1981-01-01
Formation data from drill-stem tests are presented for use in calculating transmissivity, hydraulic conductivity, and hydraulic head. Complete analyses of water samples from wells at sites 2, 3, and 4, and a partial analysis at site 1, are presented to indicate water quality in the aquifers.
Abdel-Sabour, M F; Rabie, F H; Mostafa, T; Hassan, S A
2001-10-01
The studied area (Shoubra El-Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the surrounding factories into the surface water pathways in the area. Water samples were collected seasonally from different waterways found in the area, domestic and or industrial liquid wastes from 12 discharge tubes of different factories (as a point source of pollution). Chemical characteristics of different water samples and its heavy metals content were determined using ion coupled plasma technique (ICP). Results indicate that industrial and domestic wastewater samples contain several toxic levels of tested heavy metals (Cd, Co, Pb and Ni) which have a serious impact on surface waterways in the area. Shebin El-Qanater collector drain samples exhibited the highest levels of Cd, Co, Pb and Ni compared to other tested water bodies. Mostorod collector drain samples showed the highest levels of Zn and Cu. Industrial effluent samples collected from Cairo Company for Fabric industry had the highest amounts of total Zn Cu, Cd, Co and Pb, while Delta steel company discharges the highest amounts of total Fe and Mn. Al-Ahleya Plastic Company discharges the highest amounts of total-Ni. Generally, it is necessary to impose the environmental laws and its regulation regarding the industrial wastewater treatments and disposals to minimize the risk of the adverse effects of these pollutants.
Testing of the cytotoxic effects of sulfate pulp mill waste waters.
Cernáková, M; Golis, E
1994-01-01
The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp.
Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M
2005-03-01
Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.
Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014
Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Button, Daniel T.; Garrett, Jessica D.; Nakagaki, Naomi; Qi, Sharon L.; Bradley, Paul M.
2015-07-15
This report provides a detailed description of the SESQA study components, including surveys of ecological conditions, routine water sampling, deployment of passive polar organic compound integrative samplers for pesticides and contaminants of emerging concern, and synoptic sediment sampling and toxicity testing at all urban, confined animal feeding operation, and reference sites. Continuous water-quality monitoring and daily pesticide sampling efforts conducted at a subset of urban sites are also described.
Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia
Matthews, S.E.; Krause, R.E.
1983-01-01
Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)
Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S
2017-02-01
Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.
Performance Evaluation of Pressure Transducers for Water Impacts
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean
2012-01-01
The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.
Filtration stability of living brush mattresses at navigable waterways
NASA Astrophysics Data System (ADS)
Sokopp, Manuel
2017-04-01
According to the guidelines of the Federal Waterways Engineering and Research Institute in Germany, waterway construction buildings, which include soil bioengineering structures, must be stable against soil displacements. Therefore, willow brush mattresses were tested for their filtration stability in a specially developed process which is based on the testing of geotextiles and armourstones used for navigable waterway constructions. In March 2016 willow brush mattresses made of white (Salix alba L.) or basket willows (Salix viminalis L.) were planted in 16 sample boxes, each with a cross-section area of 30x30 cm. For the tests on filtration stability, the upper 20 cm of the box were separated and placed upside down into a device in which the sample box could be flowed through from below. When a water column of 50 cm above the sample was reached, the water outlet was opened so the water flowed through the sample in the opposite direction, thus simulating drawdown. By the measurements of the pressure sensors above and below the sample, the coefficient of permeability k of the rooted soil during drawdown could be calculated. After this hydropeaking cycle, the soil material that was rinsed out through the willow branches was collected, weighed after drying until weight constancy, and compared with the dry mass of the retained soil material to calculate the share of the total mass. These filtration stability tests were carried out directly after planting the sample boxes, as well as one, three and six months afterwards, each test series with four reruns per willow species. Over time, the increasing root penetration resulted in a significant reduction in the permeability and in more retained soil material.
An institutional outbreak of leptospirosis in Chennai, South India.
Ramakrishnan, R; Patel, M S; Gupte, M D; Manickam, P; Venkataraghavan, S
2003-03-01
The emergence of an outbreak of leptospirosis in a nurses' hostel in Chennai presented a challenge to identify and control the source of the outbreak. Sixty-nine residents and staff members were interviewed to assess exposure factors. Blood samples from the acute and convalescent patients were tested with the Microscopic Agglutination Test using the serovars prevalent in Chennai. Polymerase Chain Reaction (PCR) was conducted on serum and water samples. Based on preliminary investigation, control measures with standard hygienic measures were instituted. The attack rate was 35%. The epidemic curve suggested continuous or intermittent exposure to infection over a five-week period. Twenty residents (three asymptomatic) developed laboratory confirmed Leptospira icterohemorrhagiae. Residents collected water from an underground storage tank that was filled twice weekly from a mobile water tanker with a bucket on a rope, and the tank was usually left open. PCR tests confirmed the presence of leptospires from this water. Other control measures included cleaning the large backyard with its many stray dogs and rats, chlorinating water supplies, boiling drinking water and health education. No further cases occurred twelve days after implementing control measures. Access to clean water, not only for drinking but also for bathing, brushing and washing is essential to prevent water-borne outbreaks.
Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.
Rabeiy, Ragab ElSayed
2017-04-04
The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - SO 4 2- , Fe 2+ , Mn 2+ , Cl - , electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca 2+ and Cl - . Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.
Thani, Thani Suleiman; Symekher, Samwel Morris Lifumo; Boga, Hamadi; Oundo, Joseph
2016-01-01
Introduction Safe water for human consumption is important, but there is a limited supply. Mombasa County has water shortages making residences rely on other sources of water including boreholes and wells. Microbiological evaluation of drinking water is important to reduce exposure to water borne enteric diseases. This cross sectional study aimed at determining the frequency and characterization of Escherichia coli (E. coli) pathotypes from water samples collected from wells and boreholes in Mombasa County. Methods One hundred and fifty seven (157) water samples were collected from four divisions of the county and a questionnaire administered. The samples were inoculated to double strength MacConkey broth and incubated at 370C for up to 48 hours. Positive results were compared to the 3 tube McCrady MPN table. The E. coli were confirmed by Eijkman's test and antibiotic susceptibility carried out. Using polymerase chain reaction (PCR), the E. coli were characterized to establish pathotypes. Results One hundred and thirty one (n = 131; 83.4%) samples had coliform bacteria with only 79 (60.3%) samples having E. coli. Significant values (<0.05) were noted when coliforms were compared to variables with E. Coli showing no significance when compared to similar variables. E. coli (n = 77; 100%) tested were sensitive to Gentamicin, while all (n = 77; 100%) isolates were resistant to Ampicillin. PCR typed isolates as enteroinvasive E. Coli (EIEC). Conclusion Findings suggest that coliforms and E. coli are major contaminants of wells and boreholes in Mombasa County. The isolates have a variety of resistant and sensitivity patterns to commonly used antibiotics. PMID:27200121
King, Dawn N; Donohue, Maura J; Vesper, Stephen J; Villegas, Eric N; Ware, Michael W; Vogel, Megan E; Furlong, Edward F; Kolpin, Dana W; Glassmeyer, Susan T; Pfaller, Stacy
2016-08-15
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters. Published by Elsevier B.V.
Enteropathogenic Bacteria Contamination of Unchlorinated Drinking Water in Korea, 2010
Lee, Si Won; Lee, Do Kyung; An, Hyang Mi; Cha, Min Kyeong; Kim, Kyung Jae
2011-01-01
Objectives The purpose of this study was to assess the microbiological quality of unchlorinated drinking water in Korea, 2010. One hundred and eighty unchlorinated drinking water samples were collected from various sites in Seoul and Gyeonggi province. Methods To investigate bacterial presence, the pour plate method was used with cultures grown on selective media for total bacteria, total coliforms, and Staphylococcus spp., respectively. Results In the 180 total bacteria investigation, 72 samples from Seoul and 33 samples from Gyeonggi province were of an unacceptable quality (>102 CFU/mL). Of all the samples tested, total coliforms were detected in 28 samples (15.6%) and Staphylococcus spp. in 12 samples (6.7%). Most of the coliform isolates exhibited high-level resistance to cefazolin (88.2%), cefonicid (64.7%) and ceftazidime (20.6%). In addition, Staphylococcus spp. isolates exhibited high-level resistance to mupirocin (42%). Species of Pseudomonas, Acinetobacter, Cupriavidus, Hafnia, Rahnella, Serratia, and Yersinia were isolated from the water samples. Conclusions The results of this study suggest that consumption of unchlorinated drinking water could represent a notable risk to the health of consumers. As such, there is need for continuous monitoring of these water sources and to establish standards. PMID:22216417
Cassette bacteria detection system. [for monitoring the sterility of regenerated water in spacecraft
NASA Technical Reports Server (NTRS)
1974-01-01
The design, fabrication, and testing of an automatic bacteria detection system, with a zero-g capability, based on the filter-capable approach, and intended for monitoring the sterility of regenerated water in spacecraft is discussed. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins on a luminol-hydrogen peroxide mixture. Viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. High signals for the incubated water sample indicate the presence of viable organisms.
[Evaluation of a Legionella outbreak emerged in a recently opening hotel].
Erdoğan, Haluk; Arslan, Hande
2013-04-01
Legionnaires' disease (LD) is a systemic infection caused by Legionella species especially colonized in the water systems. Hotels are common locations in which waterwork-associated sporadic or epidemic legionellosis can be detected. The aim of this study was to evaluate a small Legionella outbreak emerged in a recently opened 600-bed hotel in Alanya, a touristic county in Mediterranean part of Turkey. A 66 years old male patient who stayed in this hotel opened on May 15th, 2009, was admitted to our hospital on May 21st, 2009 with the complaints of high fever, headache and diarrhea lasting for three days. Since chest X-ray revealed non-homogenous density increase in left middle and inferior zone, the patient was diagnosed as atypical pneumoniae and LD was confirmed by positive urinary Legionella antigen test (Card test, BinaxNOW®Legionella Urinary Antigen Test; Alere Co, USA) result. Following the identification of the index case, the records of our hospital were reviewed and revealed another case being treated with the diagnosis of community acquired pneumonia who was also the guest of the same hotel. This patient was then diagnosed as LD by positive urinary antigen test. Since new cases were identified during the following days (May 22, 25 and 26) the Antalya County Health Department and hotel management were informed about a cluster of LD. In addition subsequent investigation for environmental surveillance and water sampling were conducted. The LD diagnosis and environmental inspections were performed according to the procedure described in the guideline from "Turkish Ministry of Health Travel-Associated Legionnaires' Disease Control Programme". Five definitive cases and one presumptive case of LD were identified during the outbreak period (May 20-26, 2009). All of the cases were successfully treated (intravenous ciprofloxacin or levofloxacin or clarithromycin), however one patient died due to sudden death during sleep after being discharged. Since sputum samples could not be obtained from the cases, the diagnosis were not confirmed by culture but by urinary antigen test. Besides high antibody titer in single serum sample was accepted as a diagnostic marker. Additionally 26 cases who accommodated in the same hotel and presented with high fever without pneumonia were treated in the outpatient clinics of our hospital. Urinary antigen test was performed in 11 of those patients to confirm the prediagnosis of pontiac fever, however all were found negative. Likewise convalescent phase sera for the confirmation of the diagnosis by seroconversion could not be obtained since they all were foreign tourists. Investigation of water sources of the hotel revealed that the municipal drinking water network had not been connected yet and the hotel supplied water from groundwater sources. The analysis of multiple samples from multiple sites of hotel's water system indicated that the water temperature was between 35-45°C and the iron level was beyond the acceptable limits (245 µg/L) recommended for drinking water in the regulation guides. These properties were considered as the factors that enhanced the growth and survival of Legionella species. Water samples were cultivated on BCYE-_ (Buffered Charcoal Yeast Extract a-Ketoglutarate) and GVPC (Glycine-Vancomycin-Polymyxin-Cycloheximide) agar plates and 11 out of a total 13 samples yielded Legionella spp. growth. All isolates were identified as L.pneumophila serogroup 1 by specific antisera. Legionella decontamination of hotel's water system was managed by implementation of hyperchlorination method as well as superheating (> 60°C) of water. The hotel was not closed during the outbreak and cultures of water samples obtained for one year later did not yield any Legionella spp. growth. This outbreak emphasized that hotel residents are at risk for acquiring LD in the presence of a colonized water system, even in a newly constructed building. In conclusion, effective control and decontamination programmes for the prevention of Legionella colonization should be applied even in new opening hotels.
Evseeva, Tatiana I; Geras'kin, Stanislav A; Shuktomova, Ida I
2003-01-01
Water from natural reservoirs located near the radium production industry storage cell were analyzed using the anaphase-telophase chromosome aberration assay that was carried out on Allium schoenoprasum L. meristematic root tip cells. (262)Ra, (228)U, (232)Th, (210)Pb and (210)Po concentrations in all samples were found not to exceed the radioactivity concentration guides. The concentrations of 10 heavy metal ions were measured in water samples, but only Zn and Mn levels exceeded the maximum permissible concentration for the natural reservoirs. All water samples caused a significant increase of the chromosome aberration frequency as compared to control. The chromosome aberration spectrum analysis shows that the genotoxic effect was a result of chemical toxicity mainly. Two samples from the brook springhead were found to be toxic. The regression analysis results show that the mitotic index increased in parallel to Zn ion levels, and decreased with higher (238)U concentrations. The water samples genotoxicity positively correlated with the Zn concentration. The present work demonstrates that in order to achieve pollutant screening, it is not sufficient to determine the pollutants concentration only. Adequate conclusions on the risk due to environment contamination need to be based on the additional simultaneous use of toxicity and genotoxicity tests. When bioassays indicate some genotoxic and toxic effects, the determination of the chemical composition of the samples is then required. A combination of these two methods allows the identification of the elements that require constant biological monitoring. In the study reported here, those elements are Zn and (238)U.
Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.
2009-01-01
The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Panda, Vandana; Shinde, Priyanka; Deora, Jyoti; Gupta, Pankaj
2017-10-01
The incorporation of certain alkalinizing vegetables, fruits, milk and its products in the diet has been known to alleviate hyperacidity. These foods help to restore the natural gastric balance and function, curb acid reflux, aid digestion, reduce the burning sensation due to hyperacidity and soothe the inflamed mucosa of the stomach. The present study evaluates and compares the antacid effect of broccoli, kale, radish, cucumber, lemon juice, cold milk and curd in an artificial stomach model. The pH of the test samples and their neutralizing effect on artificial gastric acid was determined and compared with that of water, the active control sodium bicarbonate and a marketed antacid preparation ENO. A modified model of Vatier's artificial stomach was used to determine the duration of consistent neutralization of artificial gastric acid by the test samples. The neutralizing capacity of the test samples was determined in vitro using the classical titration method of Fordtran. All test samples except lemon showed significantly higher (p<0.05 for cucumber and p<0.001 for the rest) acid neutralizing effect than water. All test samples also exhibited a significantly (p<0.001) higher duration of consistent neutralization and higher antacid capacity than water. Highest antacid activity was demonstrated by cold milk and broccoli which was comparable with ENO and sodium bicarbonate. It may be concluded that the natural food ingredients used in this study exhibited significant antacid activity, justifying their use as essential dietary components to counter hyperacidity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.; Vivit, Davison V.
1998-01-01
This report presents all analytical determinations for samples collected from Yellowstone National Park and vicinity during 1974 and 1975. Water temperature, pH, Eh, and dissolved O2 were determined on-site. Total alkalinity and F were determined on the day of sample collection. Flame atomic-absorption spectrometry was used to determine concentrations of Li, Na, K, Ca, and Mg. Ultraviolet/visible spectrophotometry was used to determine concentrations of Fe(II), Fe(III), As(III), and As(V). Direct-current plasma-optical-emission spectrometry was used to determine the concentrations of B, Ba, Cd, Cs, Cu, Mn, Ni, Pb, Rb, Sr, and Zn. Two samples collected from Yellowstone Park in June 1974 were used as reference samples for testing the plasma analytical method. Results of these tests demonstrate acceptable precision for all detectable elements. Charge imbalance calculations revealed a small number of samples that may have been subject to measurement errors in pH or alkalinity. These data represent some of the most complete analyses of Yellowstone waters available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaham, M.A.
1991-04-01
Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreasedmore » at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.« less
Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.
Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi
2017-03-01
We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.
Patton, Charles J.; Truitt, Earl P.
1995-01-01
This report is a compilation of analytical results from a study conducted at the U.S. Geological Survey, National Water Quality Laboratory (NWQL) in 1992 to assess the effectiveness of three field treatment protocols to stabilize nutrient concentra- tions in water samples stored for about 1 month at 4C. Field treatments tested were chilling, adjusting sample pH to less than 2 with sulfuric acid and chilling, and adding 52 milligrams of mercury (II) chloride per liter of sample and chilling. Field treatments of samples collected for determination of ammonium, nitrate plus nitrite, nitrite, dissolved Kjeldahl nitrogen, orthophosphate, and dissolved phosphorus included 0.45-micrometer membrane filtration. Only total Kjeldahl nitrogen and total phosphorus were determined in unfiltered samples. Data reported here pertain to water samples collected in April and May 1992 from 15 sites within the continental United States. Also included in this report are analytical results for nutrient concentrations in synthetic reference samples that were analyzed concurrently with real samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.
1995-12-31
Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10more » embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.« less
Foster, G.D.; Foreman, W.T.; Gates, Paul M.
1991-01-01
The reliability of the Goulden large-sample extractor in preconcentrating pesticides from water was evaluated from the recoveries of 35 pesticides amended to filtered stream waters. Recoveries greater than 90% were observed for many of the pesticides in each major chemical class, but recoveries for some of the individual pesticides varied in seemingly unpredictable ways. Corrections cannot yet be factored into liquid-liquid extraction theory to account for matrix effects, which were apparent between the two stream waters tested. The Goulden large-sample extractor appears to be well suited for rapid chemical screening applications, with quantitative analysis requiring special quality control considerations. ?? 1991 American Chemical Society.
Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa
2015-02-01
A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples.
Niyyati, Maryam; Saberi, Reza; Latifi, Alireza; Lasjerdi, Zohreh
2016-01-01
A comprehensive survey was conducted along 10 km of geothermal rivers in southwestern Iran. A total of 40 water samples were tested for the presence of Acanthamoeba spp., and genotypes were determined by targeting the diagnostic fragment 3 region of the 18S rRNA gene. The pathogenic potential of all positive isolates was also identified using tolerance ability test. High occurrences of Acanthamoeba (50%) were detected in the sampling areas. Based on sequencing analysis, isolates belonging to T4 (93.7%) and T2 (6.25%) genotypes were reported. Thermo- and osmotolerance tests revealed that five strains are highly pathogenic. Since every collection site of this study was associated with high human activity, posting of warning signs, monitoring of recreational water sources, and awareness of high-risk people are of utmost importance. To the best of our knowledge, the present research is the first to report T2 genotype from geothermal water sources in Iran. PMID:27127409
Niyyati, Maryam; Saberi, Reza; Latifi, Alireza; Lasjerdi, Zohreh
2016-01-01
A comprehensive survey was conducted along 10 km of geothermal rivers in southwestern Iran. A total of 40 water samples were tested for the presence of Acanthamoeba spp., and genotypes were determined by targeting the diagnostic fragment 3 region of the 18S rRNA gene. The pathogenic potential of all positive isolates was also identified using tolerance ability test. High occurrences of Acanthamoeba (50%) were detected in the sampling areas. Based on sequencing analysis, isolates belonging to T4 (93.7%) and T2 (6.25%) genotypes were reported. Thermo- and osmotolerance tests revealed that five strains are highly pathogenic. Since every collection site of this study was associated with high human activity, posting of warning signs, monitoring of recreational water sources, and awareness of high-risk people are of utmost importance. To the best of our knowledge, the present research is the first to report T2 genotype from geothermal water sources in Iran.
Allium-test as a tool for toxicity testing of environmental radioactive-chemical mixtures
NASA Astrophysics Data System (ADS)
Oudalova, A. A.; Geras'kin, S. A.; Dikareva, N. S.; Pyatkova, S. V.
2017-01-01
Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium-test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium-test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds.
Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.
Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir
2003-04-01
High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.
Cryptosporidium oocysts and giardia cysts on salad products irrigated with contaminated water.
Amorós, Inmaculada; Alonso, José L; Cuesta, Gonzalo
2010-06-01
A field study in Valencia, Spain, was done to determine the occurrence of Giardia and Cryptosporidium on salad products that are frequently eaten raw, such as lettuces and Chinese cabbage, and in irrigation waters. Four water samples were taken weekly 1 month before harvesting the vegetables. All water samples were analyzed using techniques included in the U.S. Environmental Protection Agency Method 1623. Standard methods for detecting protozoan parasites on salad vegetables are not available. Published techniques for the isolation of parasites from vegetables generally have low and variable recovery efficiencies. In this study, vegetables were analyzed using a recently reported method for detection of Cryptosporidium oocysts and Giardia cysts on salad products. The waters tested were positive for both Cryptosporidium and Giardia. Of 19 salad products studied, we observed Cryptosporidium in 12 samples and Giardia in 10 samples. Recoveries of the Texas Red-stained Cryptosporidium and Giardia, which were used as internal controls, were 24.5% +/- 3.5% for Cryptosporidium and 16.7% +/- 8.1% for Giardia (n = 8). This study provides data on the occurrence of Cryptosporidium and Giardia in salad products in Spain. The method was useful in the detection of Cryptosporidium oocysts and Giardia cysts on the vegetables tested, and it provides a useful analytical tool for occurrence monitoring.
Jaward, Foday M.; Alegria, Henry A.; Galindo Reyes, Jose G.; Hoare, Armando
2012-01-01
PAHs were measured in water, sediment, and shrimps of Estero de Urias, an estuary in Sinaloa, Mexico, during the rainy and dry seasons, and analyzed for eleven PAHs routinely detected in samples. Phenanthrene was the most dominant congener in the water, sediment, and shrimp samples comprising about 38, 24, and 25%, respectively, of the eleven PAHs detected, followed by pyrene and naphthalene in water and sediment samples, and pyrene and fluorine in the shrimp samples. Total PAH concentrations ranged from 9 to 347 ng/L in water, 27 to 418 ng/g in sediments, and 36 to 498 ng/g in shrimps. The sources of contamination are closely related to human activities such as domestic and industrial discharge, automobile exhausts, and street runoff. High concentrations were also measured during the rainy season and during the first quarter of the year. Toxicity tests were also carried out, exposing fish embryos and juvenile shrimps to some of these PAHs. Fish embryos exposed to PAHs showed exogastrulation, while juvenile shrimps showed significantly lower growth rates than controls. DNA and protein alterations were also observed. These toxicity tests indicate that PAH concentrations measured could be dangerous to some aquatic organisms, particularly during early stages of development. PMID:22997501
Water absorption behaviour of hybrid interwoven cellulosic fibre composites
NASA Astrophysics Data System (ADS)
Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.
2017-10-01
The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.
Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan
2018-03-01
In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. DeWayne; J. R. Green; S. Vogt, P. Sharma
1999-01-01
Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is lessmore » than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.« less
Clean Water Act Analytical Methods
EPA publishes laboratory analytical methods (test procedures) that are used by industries and municipalities to analyze the chemical, physical and biological components of wastewater and other environmental samples required by the Clean Water Act.
Bacteriological analysis of indoor and outdoor water parks in Wisconsin.
Davis, Tracynda L; Standridge, Jon H; Degnan, Alan J
2009-09-01
Water parks are a rapidly growing element of the United States tourist industry. To reduce incidence of abrasion and impact injuries in such parks, designers are searching for padding materials that can withstand the harsh oxidative environments of chlorinated water. Although padded features help reduce physical injuries, they may also compromise the microbiological safety of water attractions. This study describes bacteriological testing performed on 31 different pad materials, play features and pools from 10 Wisconsin water parks. Materials and surrounding pool waters were sampled and tested quantitatively for total coliforms, Escherichia coli, E. coli 0157:H7, enterococci, staphylococci, heterotrophic bacteria, and Pseudomonas aeruginosa, using standard methods. Each location was sampled during three visits, and results were averaged. Pool waters were within acceptable levels of target organisms and disinfectant residuals, but target organisms were found on water features, even those submerged in chlorinated water. Bacteria were detected more frequently in pools using pad materials compared with pools without. These findings provide data that will help the public health community understand the relations between designs, materials and maintenance of water features. Additionally, the information will help state regulators and owner/operators develop guidelines to improve public health and safety at water parks.
Use of low density polyethylene membranes for assessment of genotoxicity of PAHs in the Seine River.
Vincent-Hubert, Françoise; Uher, Emmanuelle; Di Giorgio, Carole; Michel, Cécile; De Meo, Michel; Gourlay-France, Catherine
2017-03-01
The genotoxicity of river water dissolved contaminants is usually estimated after grab sampling of river water. Water contamination can now be obtained with passive samplers that allow a time-integrated sampling of contaminants. Since it was verified that low density polyethylene membranes (LDPE) accumulate labile hydrophobic compounds, their use was proposed as a passive sampler. This study was designed to test the applicability of passive sampling for combined chemical and genotoxicity measurements. The LDPE extracts were tested with the umu test (TA1535/pSK1002 ± S9) and the Ames assay (TA98, TA100 and YG1041 ± S9). We describe here this new protocol and its application in two field studies on four sites of the Seine River. Field LDPE extracts were negative with the YG1041 and TA100 and weakly positive with the TA98 + S9 and Umu test. Concentrations of labile mutagenic PAHs were higher upstream of Paris than downstream of Paris. Improvement of the method is needed to determine the genotoxicity of low concentrations of labile dissolved organic contaminants.
Method Development and Monitoring of Cyanotoxins in Water ...
Increasing occurrence of cyanobacterial harmful algal blooms (HABs) in ambient waters has become a worldwide concern. Numerous cyanotoxins can be produced during HAB events which are toxic to animals and humans. Validated standardized methods that are rugged, selective and sensitive are needed for these cyanotoxins in drinking and ambient waters. EPA Drinking Water Methods 544 (six microcystins [MCs] and nodularin) and 545 (cylindrospermopsin [CYL] and anatoxin-a [ANA]) have been developed using liquid chromatography/tandem mass spectrometry (LC/MS/MS). This presentation will describe the adaptation of Methods 544 and 545 to ambient waters and application of these ambient water methods to seven bodies of water across the country with visible cyanobacterial blooms.Several changes were made to Method 544 to accommodate the increased complexity of ambient water. The major changes were to reduce the sample volume from 500 to 100 mL for ambient water analyses and to incorporate seven additional MCs in an effort to capture data for more MC congeners in ambient waters. The major change to Method 545 for ambient water analyses was the addition of secondary ion transitions for each of the target analytes for confirmation purposes. Both methods have been ruggedly tested in bloom samples from multiple bodies of water, some with multiple sample locations and sampling days. For ambient water bloom samples spiked with MCs (>800 congener measurements), 97% of the measurements
A laboratory rainfall simulator to study the soil erosion and runoff water
NASA Astrophysics Data System (ADS)
Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco
2010-05-01
The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.
10 CFR 429.30 - Water closets.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Water closets. 429.30 Section 429.30 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.30 Water closets. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to water closets; and (2) For each...
10 CFR 429.30 - Water closets.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Water closets. 429.30 Section 429.30 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.30 Water closets. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to water closets; and (2) For each...
10 CFR 429.30 - Water closets.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Water closets. 429.30 Section 429.30 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.30 Water closets. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to water closets; and (2) For each...
Waithaka, Paul N; Maingi, John Muthini; Nyamache, Anthony Kebira
2015-01-01
Nakuru North sub-county is a peri-urban area which has both dry and wet seasons. Its residents rely mostly on untreated water sources for daily water needs due to unreliable water supply from the urban council. However, this water has not been evaluated on its quality despite residents solely depending on it. This study was aimed at determining the physico-chemical and bacteriological quality of water drawn from River Kandutura and water taps in Nakuru North sub-county. In addition, the study was aimed at carrying out sensitivity test of the isolates to antibiotics and determining effectiveness of solar disinfection in water treatment. A total of 510 water samples; river (255) and taps (255) were collected and analyzed between January and December 2013. Antimicrobial sensitivity test was carried out using Kirby Bauer disk diffusion test. Out of five hundred and ten (510) samples examined for microorganisms, 36.86 % (188/510) were positive for E. coli, Shigella and Salmonella. Water used by Nakuru North sub-county residents is highly contaminated thus posing public health risk. Solar disinfection experiment indicated a possibility of effective decontamination of water up on exposure to sun light for 3-5 h. E. coli showed the highest resistance (26.3 %) followed by Salmonella (17.4 %) while Shigella showed the least (17.1 %). However, there was no significant deference (p=0.98) in resistance among total coliforms, Total heterotrophic and Salmonella at 0.05 level of significant. There is a need to enforce laws and policies on proper waste disposal as part of water pollution control. PMID:26464611
NASA Astrophysics Data System (ADS)
Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah
2017-10-01
One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.
Ryu, Hodon; Griffith, John F.; Khan, Izhar U. H.; Hill, Stephen; Edge, Thomas A.; Toledo-Hernandez, Carlos; Gonzalez-Nieves, Joel
2012-01-01
Two novel gull-specific quantitative PCR (qPCR) assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR green assay targeting Streptococcus spp. (gull3) and a hydrolysis TaqMan assay targeting Catellicoccus marimammalium (gull4). The objectives of this study were to compare the host specificity of a previous C. marimammalium qPCR assay (gull2) with that of the new markers and to examine the presence of the three gull markers in environmental water samples from different geographic locations. Most of the gull fecal samples tested (n = 255) generated positive signals with the gull2 and gull4 assays (i.e., >86%), whereas only 28% were positive with gull3. Low prevalence and abundance of tested gull markers (0.6 to 15%) were observed in fecal samples from six nonavian species (n = 180 fecal samples), whereas the assays cross-reacted to some extent (13 to 31%) with other (nongull) avian fecal samples. The gull3 assay was positive against fecal samples from 11 of 15 avian species, including gull. Of the presumed gull-impacted water samples (n = 349), 86%, 59%, and 91% were positive with the gull2, the gull3, and the gull4 assays, respectively. Approximately 5% of 239 non-gull-impacted water samples were positive with the gull2 and the gull4 assays, whereas 21% were positive witg the gull3 assay. While the relatively high occurrence of gull2 and gull4 markers in waters impacted by gull feces suggests that these assays could be used in environmental monitoring studies, the data also suggest that multiple avian-specific assays will be needed to accurately assess the contribution of different avian sources in recreational waters. PMID:22226950
Varughese, Eunice A; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer L; Fout, G Shay; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T; Keely, Scott P
2018-04-01
Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters. Published by Elsevier B.V.
Detection and Identification of Salmonella spp. in Surface Water by Molecular Technology in Taiwan
NASA Astrophysics Data System (ADS)
Tseng, S. F.; Hsu, B. M.; Huang, K. H.; Hsiao, H. Y.; Kao, P. M.; Shen, S. M.; Tsai, H. F.; Chen, J. S.
2012-04-01
Salmonella spp. is classified to gram-negative bacterium and is one of the most important causal agents of waterborne diseases. The genus of Salmonella comprises more than 2,500 serotypes and its taxonomy is also very complicated. In tradition, the detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time and labor consuming. To overcome this disadvantage, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using novel procedures of detection method and to identify the serovars of Salmonella isolates from 157 surface water samples in Taiwan. The procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella, and then isolation of Salmonella strains by selective culture plates. The selective enrichment and culture plates were both detected by PCR. Finally, we used biochemical tests and serological assay to confirm the serovars of Salmonella and also used Pulsed-field gel electrophoresis (PFGE) to identify their sarovar catagories by the genetic pattern. In this study, 44 water samples (28%) were indentified as Salmonella. The 44 positive water samples by culture method were further identified as S. Agona(1/44), S. Albany (10/44), S. Bareilly (13/44),S. Choleraesuis (2/44),S. Derby (4/44),S. Isangi (3/44),S.Kedougou(3/44),S. Mbandaka(1/44),S.Newport (3/44), S. Oranienburg(1/44), S. Potsdam (1/44),S. Typhimurium (1/44), andS. Weltevreden(1/44) by PFGE. The presence of Salmonella in surface water indicates the possibility of waterborne transmission in drinking watershed if water is not adequately treated. Therefore, the authorities need to have operating systems that currently provide adequate source protection and maintaining the system to prevent disease. Keywords: Salmonella spp.; biochemical tests; Serological assay; PCR; PFGE
Catch me if you can: Comparing ballast water sampling skids to traditional net sampling
NASA Astrophysics Data System (ADS)
Bradie, Johanna; Gianoli, Claudio; Linley, Robert Dallas; Schillak, Lothar; Schneider, Gerd; Stehouwer, Peter; Bailey, Sarah
2018-03-01
With the recent ratification of the International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004, it will soon be necessary to assess ships for compliance with ballast water discharge standards. Sampling skids that allow the efficient collection of ballast water samples in a compact space have been developed for this purpose. We ran 22 trials on board the RV Meteor from June 4-15, 2015 to evaluate the performance of three ballast water sampling devices (traditional plankton net, Triton sampling skid, SGS sampling skid) for three organism size classes: ≥ 50 μm, ≥ 10 μm to < 50 μm, and < 10 μm. Natural sea water was run through the ballast water system and untreated samples were collected using paired sampling devices. Collected samples were analyzed in parallel by multiple analysts using several different analytic methods to quantify organism concentrations. To determine whether there were differences in the number of viable organisms collected across sampling devices, results were standardized and statistically treated to filter out other sources of variability, resulting in an outcome variable representing the mean difference in measurements that can be attributed to sampling devices. These results were tested for significance using pairwise Tukey contrasts. Differences in organism concentrations were found in 50% of comparisons between sampling skids and the plankton net for ≥ 50 μm, and ≥ 10 μm to < 50 μm size classes, with net samples containing either higher or lower densities. There were no differences for < 10 μm organisms. Future work will be required to explicitly examine the potential effects of flow velocity, sampling duration, sampled volume, and organism concentrations on sampling device performance.
van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian
2017-11-01
Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.
Detection of genogroup IV norovirus in wastewater and river water in Japan.
Kitajima, M; Haramoto, E; Phanuwan, C; Katayama, H; Ohgaki, S
2009-11-01
To test wastewater and river water in Japan for genogroup IV norovirus (GIV NoV). Influent and effluent samples from a wastewater treatment plant and the Tamagawa River water samples were collected monthly for a year. The water samples were concentrated by the adsorption-elution method, using an HA electronegative filter with acid rinse procedure, followed by quantitative detection of GIV NoV using TaqMan-based real-time RT-PCR. Both wastewater and river water samples showed a high positive ratio of GIV NoV during winter and spring. The highest concentration in wastewater and river water was 6.9 x 10(4) and 1.5 x 10(4) copies l(-1), respectively. Presence of GIV NoV in the environments demonstrates that not only GI and GII NoVs but also GIV strains are circulating and that routine monitoring of GIV NoV in water environments is recommended to understand its epidemics, environmental distribution and potential health risks. This is the first study providing quantitative data on the occurrence of GIV NoV in environmental water over a 1-year period.
Evaluation of the Solar Water Disinfection Method Using an Ultraviolet Measurement Device
NASA Astrophysics Data System (ADS)
Leung, H.
2015-12-01
Drinking water security is a growing problem for the population of planet Earth. According to WHO, more than 750 million people on our planet lack access to safe drinking water, resulting in approximately 502,000 diarrhoea deaths in 2012. In order to solve this problem, the Swiss water research institute, Eawag, has developed a method of solar water disinfection, called, "SODIS" The theory of SODIS is simple to understand: a clear plastic bottle filled with water is placed under full sunlight for at least 6 hours. The ultraviolet radiation kills the pathogens in the water, making the originally contaminated water safe for drinking. In order to improve this method, Helioz, an Austrian social enterprise, has created the WADI, a UV measurement device which determines when water is safe for drinking using the SODIS method. When using the WADI, the device should be placed under the sun and surrounded with bottles of water that need to be decontaminated. There is a UV sensor on the WADI, and since the bottles of water and the WADI will have equal exposure to sunlight, the WADI will be able to measure the impact of the sunlight on the contaminated water. This experiment tests the accuracy of the WADI device regarding the time interval needed for contaminated water to be disinfected. The experiment involves using the SODIS method to purify bottles of water contaminated with controlled samples of E. coli. Samples of the water are taken at different time intervals, and the E. coli levels are determined by growing the bacteria from the water samples on agar plates. Ultimately, this helps determine when the water is safe for drinking, and are compared against the WADI's measurements to test the reliability of the device.
Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05
Lathrop, Tim; Moran, Dan
2011-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).
Natural organic matters removal efficiency by coagulation
NASA Astrophysics Data System (ADS)
Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared
2017-10-01
The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.
Frankforter, Jill D.; Chafin, Daniele T.
2004-01-01
Nearly all rural inhabitants and livestock in the Upper Republican Natural Resources District (URNRD) in southwestern Nebraska use ground water that can be affected by elevated nitrate concentrations. The development of ground-water irrigation in this area has increased the vulnerability of ground water to the introduction of fertilizers and other agricultural chemicals. In 1998, the U.S. Geological Survey, in cooperation with the Upper Republican Natural Resources District, began a study to characterize the quality of ground water in the Upper Republican Natural Resources District area with respect to physical properties and concentrations of major ions, coliform bacteria, nitrate, and pesticides, and to assess the presence of nitrogen concentrations in the unsaturated zone. At selected well sites, the ground-water characterization also included tritium and nitrogen-isotope analyses to provide information about the approximate age of the ground water and potential sources of nitrogen detected in ground-water samples, respectively. In 1998, ground-water samples were collected from 101 randomly selected domestic-well sites. Of the 101 samples collected, 26 tested positive for total coliform bacteria, exceeding the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) of zero colonies. In 1999, ground-water samples were collected from 31 of the 101 well sites, and 16 tested positive for coliform bacteria. Nitrates were detected in ground water from all domestic-well samples and from all but four of the irrigation-well samples collected from 1998 to 2001. Eight percent of the domestic-well samples and 3 percent of the irrigation-well samples had nitrate concentrations exceeding the U.S. Environmental Protection Agency's MCL for drinking water of 10 milligrams per liter. Areas with nitrate concentrations exceeding 6 milligrams per liter, the URNRD's ground-water management-plan action level, were found predominantly in north-central Chase, western and south-central Dundy, and south-central Perkins Counties. Generally, these concentrations were detected in samples from wells located in upland areas with permeable soils and a high percentage of cropland. In 1999, 31 of the ground-water samples collected from irrigation wells were analyzed for pesticides, and 14 samples (45 percent) had detectable concentrations of at least one pesticide compound. In 2000, all of the 23 irrigation-well samples analyzed had one or more pesticides present at detectable concentrations. In 2001, 12 of 26 domestic-well samples (46 percent) had detectable concentrations. Although the analytical method used during the study was changed to increase the number of pesticides included in the analyses, the pesticides detected in the ground-water samples from domestic and irrigation wells were limited to the commonly used herbicide compounds acetochlor, alachlor, atrazine, metolachlor, prometon, propachlor, propazine, trifluralin, and the atrazine degradation product deethylatrazine. Of the compounds detected, only atrazine (3.0 micrograms per liter) and alachlor (2.0 micrograms per liter) have MCLs established by the U.S. Environmental Protection Agency. None of the ground-water samples from the URNRD study area had concentrations that exceeded either MCL. Tritium age-dating analyses indicate water from about one-third of the sites entered the ground-water system prior to 1952. Because the increase in agricultural practices occurred during the 1950s and 1960s, it can be assumed that this water was not influenced by agricultural practices. Nitrogen-isotope speciation analyses for samples from three irrigation wells indicated that the source of nitrates in the ground water probably is synthetic fertilizer; however, the source at most irrigation wells probably is either naturally occurring or a mixture of water from various anthropogenic sources (such as synthetic fertilizer and animal waste).
Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas
2015-10-01
Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be an effective tool to monitor ultra-trace concentrations of REEs in coastal waters with high salt content.
Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti
2012-11-01
The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart from drinking water treatment where chlorination caused an increase in oxidative stress response, presumably due to the formation of disinfection by-products. This study demonstrates the relevance and applicability of the oxidative stress response pathway for water quality monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none, none; Tuchman, Nancy
The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has beenmore » launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.« less
NASA Astrophysics Data System (ADS)
Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal
2018-05-01
The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.
Van Den Bergh, K; Du Laing, G; Montoya, Juan Carlos; De Deckere, E; Tack, F M G
2010-11-01
In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. Heavy metal concentrations in the sampled drinking water barely exceeded WHO guidelines. Arsenic concentrations reached values up to 964 μ g L⁻¹ and exceeded the current WHO provisional guideline value of 10 μ g L⁻¹ in more than 50% of the sampled wells. The WHO guideline of 250 mg L⁻¹ for chloride and sulphate was also exceeded in more than a third of the samples, indicating high salinity in the drinking waters. Synthetic drinking water could be treated effectively by the IOCS- and CIM-based filters reducing As to concentrations lower than 10 μ g L⁻¹. High levels of chloride and sulphate did not influence As removal efficiency. However, phosphate concentrations in the range from 4 to 24 mg L⁻¹ drastically decreased removal efficiency of the IOCS-based filter but had no effects on removal efficiency of the CIM-based filter. Results of this study can be used as a base for further testing and practical implementation of drinking water purification in the Oruro region.
Comparison of dialysis membrane diffusion samplers and two purging methods in bedrock wells
Imbrigiotta, T.E.; Ehlke, T.A.; Lacombe, P.J.; Dale, J.M.; ,
2002-01-01
Collection of ground-water samples from bedrock wells using low-flow purging techniques is problematic because of the random spacing, variable hydraulic conductivity, and variable contamination of contributing fractures in each well's open interval. To test alternatives to this purging method, a field comparison of three ground-water-sampling techniques was conducted on wells in fractured bedrock at a site contaminated primarily with volatile organic compounds. Constituent concentrations in samples collected with a diffusion sampler constructed from dialysis membrane material were compared to those in samples collected from the same wells with a standard low-flow purging technique and a hybrid (high-flow/low-flow) purging technique. Concentrations of trichloroethene, cis-1,2-dichloroethene, vinyl chloride, calcium, chloride, and alkalinity agreed well among samples collected with all three techniques in 9 of the 10 wells tested. Iron concentrations varied more than those of the other parameters, but their pattern of variation was not consistent. Overall, the results of nonparametric analysis of variance testing on the nine wells sampled twice showed no statistically significant difference at the 95-percent confidence level among the concentrations of volatile organic compounds or inorganic constituents recovered by use of any of the three sampling techniques.
Xiao, Sanhua; Lv, Xuemin; Zeng, Yifan; Jin, Tao; Luo, Lan; Zhang, Binbin; Zhang, Gang; Wang, Yanhui; Feng, Lin; Zhu, Yuan; Tang, Fei
2017-10-01
Public concern was aroused by frequently reported water pollution incidents in Taihu Lake and the Yangtze River. The pollution also caught and sustained the attention of the scientific community. From 2010 to 2016, raw water and drinking water samples were continually collected at Waterworks A and B (Taihu Lake) and Waterworks C (Yangtze River). The non-volatile organic pollutants in the water samples were extracted by solid phase extraction. Ames tests and yeast estrogen screen (YES) assays were conducted to evaluate the respective mutagenic and estrogenic effects. Water samples from the Yangtze River-based Waterworks C possessed higher mutagenicity than those from Taihu Lake-based Waterworks A (P<0.001) and Waterworks B (P = 0.026). Water treatment enhanced the direct mutagenicity (P = 0.022), and weakened the estrogenicity of the raw water (P<0.001) with a median removal rate of 100%. In fact, very few of the finished samples showed estrogenic activity. Raw water samples from Waterworks A showed weaker estrogenicity than those from Waterworks B (P = 0.034) and Waterworks C (P = 0.006). In summary, mutagenic effects in drinking water and estrogenic effects in raw water merited sustained attention. The Yangtze River was more seriously polluted by mutagenic and estrogenic chemicals than Taihu Lake was. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Hui; Yang, Yuelian; Cui, Jinghua; Liu, Lanzheng; Liu, Huiyuan; Hu, Guangchun; Shi, Yuwen; Li, Jian
2013-07-01
A membrane filter (MF) method was evaluated for its suitability for qualitative and quantitative analyses of Cronobacter spp. in drinking water by pure strains of Cronobacter and non-Cronobacter, and samples spiked with chlorinated Cronobacter sakazakii ATCC 29544. The applicability was verified by the tests: for pure strains, the sensitivity and the specificity were both 100%; for spiked samples, the MF method recovered 82.8 ± 10.4% chlorinated ATCC 29544 cells. The MF method was also applied to screen Cronobacter spp. in drinking water samples from municipal water supplies on premises (MWSP) and small community water supplies on premises (SCWSP). The isolation rate of Cronobacter spp. from SCWSP samples was 31/114, which was significantly higher than that from MWSP samples which was 1/131. Besides, the study confirmed the possibility of using total coliform as an indicator of contamination level of Cronobacter spp. in drinking water, and the acquired correct positive rate was 96%. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Parshionikar, Sandhya U; Cashdollar, Jennifer; Fout, G Shay
2004-10-01
Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides a means to rapidly detect low levels of these viruses, but it is sensitive to inhibitors that are present in water samples. Inhibitors of RT-PCR are concentrated along with viruses during sample processing. While procedures have been developed to remove inhibitors, none of them completely remove all inhibitors from all types of water matrices. This problem requires that adequate controls be used to distinguish true from potentially false-negative results. To address this problem, we have developed homologous viral internal controls for hepatitis A virus (HAV), poliovirus, Norwalk virus and rotavirus. These internal controls can be used in RT-PCR assays for the detection of the above viruses by competitive amplification, thereby allowing the detection of false negatives in processed water samples. The internal controls developed in this study were successfully tested with virus-seeded environmental water sample concentrates.
Rainwater harvesting in American Samoa: current practices and indicative health risks.
Kirs, Marek; Moravcik, Philip; Gyawali, Pradip; Hamilton, Kerry; Kisand, Veljo; Gurr, Ian; Shuler, Christopher; Ahmed, Warish
2017-05-01
Roof-harvested rainwater (RHRW) is an important alternative source of water that many island communities can use for drinking and other domestic purposes when groundwater and/or surface water sources are contaminated, limited, or simply not available. The aim of this pilot-scale study was to investigate current RHRW practices in American Samoa (AS) and to evaluate and compare the quality of water from common potable water sources including RHRW stored in tanks, untreated stream water, untreated municipal well water, and treated municipal tap water samples. Samples were analyzed using culture-based methods, quantitative polymerase chain reaction (qPCR), and 16S amplicon sequencing-based methods. Based on indicator bacteria (total coliform and Escherichia coli) concentrations, the quality of RHRW was slightly lower than well and chlorinated tap water but exceeded that of untreated stream water. Although no Giardia or Leptospira spp. were detected in any of the RHRW samples, 86% of the samples were positive for Cryptosporidium spp. All stream water samples tested positive for Cryptosporidium spp. Opportunistic pathogens (Pseudomonas aeruginosa and Mycobacterium intracellulare) were also detected in the RHRW samples (71 and 21% positive samples, respectively). Several potentially pathogenic genera of bacteria were also detected in RHRW by amplicon sequencing. Each RHRW system was characterized by distinct microbial communities, 77% of operational taxonomic units (OTUs) were detected only in a single tank, and no OTU was shared by all the tanks. Risk of water-borne illness increased in the following order: chlorinated tap water/well water < RHRW < stream water. Frequent detection of opportunistic pathogens indicates that RHRW should be treated before use. Stakeholder education on RHRW system design options as well as on importance of regular cleaning and proper management techniques could improve the quality of the RHRW in AS.
Abeywardena, Harshanie; Jex, Aaron R; von Samson-Himmelstjerna, Georg; Haydon, Shane R; Stevens, Melita A; Gasser, Robin B
2013-12-01
We conducted a molecular epidemiological survey of Cryptosporidium and Giardia from Bubalus bubalis (water buffalo) on two extensive farms (450 km apart) in Victoria, Australia. Faecal samples (n=476) were collected from different age groups of water buffalo at two time points (six months apart) and tested using a PCR-based mutation scanning-targeted sequencing-phylogenetic approach, employing markers within the small subunit of ribosomal RNA (designated pSSU) and triose phosphate isomerase (ptpi) genes. Based on pSSU data, Cryptosporidium parvum, Cryptosporidium bovis and Cryptosporidium genotypes 1, 2 (each 99% similar genetically to Cryptosporidium ryanae) and 3 (99% similar to Cryptosporidium suis) were detected in two (0.4%), one (0.2%), 38 (8.0%), 16 (3.4%) and one (0.2%) of the 476 samples tested, respectively. Using ptpi, Giardia duodenalis assemblages A and E were detected in totals of 56 (11.8%) and six (1.3%) of these samples, respectively. Cryptosporidium was detected on both farms, whereas Giardia was detected only on farm B, and both genera were detected in 1.5% of all samples tested. The study showed that water buffaloes on these farms excreted C. parvum and/or G. duodenalis assemblage A, which are consistent with those found in humans, inferring that these particular pathogens are of zoonotic significance. Future work should focus on investigating, in a temporal and spatial manner, the prevalence and intensity of such infections in water buffaloes in various geographical regions in Australia and in other countries. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of hurricanes storm surges on the groundwater resources
Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.
2007-01-01
Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.
Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na
2014-04-01
The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel
2016-03-01
A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological evaluation by using the same organism.
Vitello, Dominic J; Ripper, Richard M; Fettiplace, Michael R; Weinberg, Guy L; Vitello, Joseph M
2015-01-01
Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R (2) = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R (2) value was 0.1767. Conclusions. The R (2) value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water.
Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia
La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude
2003-01-01
To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-associated bacteria from10 species were isolated. Twelve of 30 serum samples seroconverted to one amoeba-associated bacterium isolated in the ICU, mainly Legionella anisa and Bosea massiliensis, the most common isolates from water (p=0.021). Amoeba-associated bacteria DNA was detected in BAL samples from two patients whose samples later seroconverted. Seroconversion was significantly associated with VAP and systemic inflammatory response syndrome, especially in patients for whom no etiologic agent was found by usual microbiologic investigations. Amoeba-associated bacteria might be a cause of VAP in ICUs, especially when microbiologic investigations are negative. PMID:12890321
Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig
2017-01-01
Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.
Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.
Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo
2004-09-01
Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.
Robbins, Lisa L.; Wynn, Jonathan; Knorr, Paul O.; Onac, Bogdan; Lisle, John T.; McMullen, Katherine Y.; Yates, Kimberly K.; Byrne, Robert H.; Liu, Xuewu
2014-01-01
During the cruise, underway continuous and discrete water samples were collected, and discrete water samples were collected at stations to document the carbonate chemistry of the Arctic waters and quantify the saturation state of seawater with respect to calcium carbonate. These data are critical for providing baseline information in areas where no data have existed prior and will also be used to test existing models and predict future trends.
NASA Astrophysics Data System (ADS)
Stevenson, J.; Walthall, S.; McKenzie, R.; Dixon, R.
2015-12-01
The Pasquotank River Watershed covers 450 sq miles in the Coastal Plain of NE North Carolina. It flows from the Great Dismal Swamp at the VA/NC border into the Albemarle Sound. The watershed provides a transition between spawning grounds and waters of the Albemarle Sound. Forested swamp wetlands border much of the waterways. Increased agricultural and urban development has greatly affected water quality during recent years. Test were completed along the tributaries and the river itself, adding to the previously data from 2011, 2013, and 2014. Streams tested were the Newbegun Creek, Knobbs Creek, Areneuse Creek, Mill Dam Creek, and Sawyers Creek. These streams cover a large area of the watershed and provide a wide variety of shore development from swampland and farmland to industrial development. Samples were tested for pH, salinity, total dissolved solids, and conductivity. Air/water temperature, dissolved oxygen, wind speed/direction, and turbidity/clarity measurements were taken in the field. The results were placed into an online database and correlated to the location of the sample using Google Maps®. Analysis tools were developed to compare the data from all years. Excel spreadsheets were developed to look more closely at individual points and tests for each point. This database was connected to a data visualization page utilizing Google Maps®. The results show variations for the individual water quality scores, but the overall water quality score for all the tested water sources remained at a comparable level from previous years. Mill Dam Creek rose above the previous three scores of 48 (2011), 47 (2013), and 49 (2014) and achieved a medium water quality score of 57. Areneuse Creek improved in water quality with a medium water quality score of 60. Sawyers Creek became the lowest scoring waterway tested at 35. Knobbs Creek decreased from previous years with a water quality score of 42. For a fourth consecutive testing year, Newbegun Creek fell within the medium water quality range with a score of 65. Pasquotank River rose from the previous testing year's score of 35 but still remained within the bad water quality range with a score of 45. The Lower Pasquotank remained the highest scoring tributary for a second consecutive year with a score of 85. Team included authors plus Ricky Dixon and Raveen McKenzie of MVSU.
Haramoto, Eiji; Yamada, Kaoru; Nishida, Kei
2011-12-01
Limited information is available on the prevalence of waterborne pathogens in aquatic environments in developing countries. In this study, water samples were collected from nine shallow wells and a river in the Kathmandu Valley, Nepal, during the rainy season in 2009 and were subjected to detection of waterborne protozoa, viruses and coliphages using a recently developed method for simultaneous concentration of protozoa and viruses in water. Escherichia coli and total coliforms were also tested as indicator bacteria. At least one type of the five pathogens tested (Cryptosporidium, Giardia, human adenoviruses, and noroviruses of genogroups I and II) was detected in five groundwater samples (56%) (1000 ml each) from shallow wells. Compared with groundwater samples, the pathogens were more abundant in the river water sample (100ml); the concentrations of Cryptosporidium and Giardia were 140 oocysts/l and 8500 cysts/l, respectively, and the mean threshold cycle (Ct) values in real-time RT-PCR were 34.3, 36.8 and 34.0 for human adenoviruses and noroviruses of genogroups I and II, respectively. Genotyping of F-RNA coliphages by real-time RT-PCR was successfully used to differentiate human and animal faecal contamination in the samples. Moreover, for the groundwater samples, protozoa and viruses were detected only in E. coli-positive samples, suggesting that E. coli may be an appropriate indicator of pathogen contamination of valley groundwater. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Steenland, Maria; Dismer, Amber; Pierre-Louis, Jocelyne; Murphy, Jennifer L.; Kahler, Amy; Mull, Bonnie; Etheart, Melissa D.; Rossignol, Emmanuel; Boncy, Jacques; Hill, Vincent; Handzel, Thomas
2017-01-01
Abstract. Consumption of drinking water from private vendors has increased considerably in Port-au-Prince, Haiti, in recent decades. A major type of vendor is private kiosks, advertising reverse osmosis-treated water for sale by volume. To describe the scale and geographical distribution of private kiosks in metropolitan Port-au-Prince, an inventory of private kiosks was conducted from July to August 2013. Coordinates of kiosks were recorded with global positioning system units and a brief questionnaire was administered with the operator to document key kiosk characteristics. To assess the quality of water originating from private kiosks, water quality analyses were also conducted on a sample of those inventoried as well as from the major provider company sites. The parameters tested were Escherichia coli, free chlorine residual, pH, turbidity, and total dissolved solids. More than 1,300 kiosks were inventoried, the majority of which were franchises of four large provider companies. Approximately half of kiosks reported opening within 12 months of the date of the inventory. The kiosk treatment chain and sales price was consistent among a majority of the kiosks. Of the 757 kiosks sampled for water quality, 90.9% of samples met World Health Organization (WHO) microbiological guideline at the point of sale for nondetectable E. coli in a 100-mL sample. Of the eight provider company sites tested, all samples met the WHO microbiological guideline. Because of the increasing role of the private sector in drinking water provision in Port-au-Prince and elsewhere in Haiti, this assessment was an important first step for government regulation of this sector. PMID:29064355
Bunnell, J.E.; Tatu, C.A.; Bushon, R.N.; Stoeckel, D.M.; Brady, A.M.G.; Beck, M.; Lerch, H.E.; McGee, B.; Hanson, B.C.; Shi, R.; Orem, W.H.
2006-01-01
In May and September, 2002, 14 private residential drinking water wells, one dewatering well at a lignite mine, eight surface water sites, and lignite from an active coal mine were sampled in five Parishes of northwestern Louisiana, USA. Using a geographic information system (GIS), wells were selected that were likely to draw water that had been in contact with lignite; control wells were located in areas devoid of lignite deposits. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (cultures maintained for up to 28 days and colonies counted and identified microscopically) and for metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and presence of pathogenic leptospiral bacteria. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and incidence of cancer of the renal pelvis (RPC) based on data obtained from the Louisiana Tumor Registry for the five Parishes included in the study. Significant associations were revealed between the cancer rate and the presence in drinking water of organic compounds, the fungi Zygomycetes, the nutrients PO4 and NH3, and 13 chemical elements. Presence of human pathogenic leptospires was detected in four out of eight (50%) of the surface water sites sampled. The present study of a stable rural population examined possible linkages between aquifers containing chemically reactive lignite deposits, hydrologic conditions favorable to the leaching and transport of toxic organic compounds from the lignite into the groundwater, possible microbial contamination, and RPC risk. ?? Springer Science+Business Media B.V. 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.
Cone penetrometer testing (CPT), combined with discrete-depth ground water sampling methods, can significantly reduce the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can then be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs). To expedite characterization, a five-week field screening program was implemented that consisted of a shallow ground water survey, CPT soundings and pore-pressure measurements, and discrete-depth ground water sampling. Based on continuous lithologic informationmore » provided by the CPT soundings, four predominantly coarse-grained, water yielding stratigraphic packages were identified. Seventy-nine discrete-depth ground water samples were collected using either shallow ground water survey techniques, the BAT Enviroprobe, or the QED HydroPunch I, depending on subsurface conditions. Using results from these efforts, a 20-well monitoring network was designed and installed to monitor critical points within each stratigraphic package. Good correlation was found for hydraulic head and chemical results between discrete-depth screening data and monitoring well data. Understanding the vertical VOC distribution and concentrations produced substantial time and cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings that had to be installed. Additionally, significant long-term cost savings will result from reduced sampling costs, because fewer wells comprise the monitoring network. The authors estimate these savings to be 50% for site characterization costs, 65% for site characterization time, and 60% for long-term monitoring costs.« less
Space Station CMIF extended duration metabolic control test
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.
1989-01-01
The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.