Sample records for testcrosses

  1. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    PubMed Central

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable potential for pre-selection of promising hybrid combinations prior to resource-intensive field testing over multiple locations and years. PMID:26824924

  2. Biochemical and genetic analyses of N metabolism in maize testcross seedlings: 2. Roots.

    PubMed

    Silva, Ignacio Trucillo; Abbaraju, Hari Kishan R; Fallis, Lynne P; Liu, Hongjun; Lee, Michael; Dhugga, Kanwarpal S

    2018-06-01

    Intracellular factors differentially affected enzyme activities of N assimilation in the roots of maize testcrosses where alanine aminotransferase and glutamate synthase were the main enzymes regulating the levels of glutamate. N is a key macronutrient for plant growth and development. Breeding maize with improved efficiency in N use could help reduce environmental contamination as well as increase profitability for the farmers. Quantitative trait loci (QTL) mapping of traits related to N metabolism in the root tissue was undertaken in a maize testcross mapping population grown in hydroponic cultures. N concentration was negatively correlated with root and total dry mass. Neither the enzyme activities nor metabolites were appreciably correlated between the root and leaf tissues. Repeatability measures for most of the enzymes were lower than for dry mass. Weak negative correlations between most of the enzymes and dry mass resulted likely from dilution and suggested the presence of excess of enzyme activities for maximal biomass production. Glutamate synthase and alanine aminotransferase each explained more variation in glutamate concentration than either aspartate aminotransferase or asparagine synthetase whereas glutamine synthetase was inconsequential. Twenty-six QTL were identified across all traits. QTL models explained 7-43% of the variance with no significant epistasis between the QTL. Thirteen candidate genes were identified underlying QTL within 1-LOD confidence intervals. All the candidate genes were located in trans configuration, unlinked or even on different chromosomes, relative to the known genomic positions of the corresponding structural genes. Our results have implications in improving NUE in maize and other crop plants.

  3. Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    PubMed Central

    Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  4. Testcross additive and dominance effects in best linear unbiased prediction of maize single-cross performance.

    PubMed

    Bernardo, R

    1996-11-01

    Best linear unbiased prediction (BLUP) has been found to be useful in maize (Zea mays L.) breeding. The advantage of including both testcross additive and dominance effects (Intralocus Model) in BLUP, rather than only testcross additive effects (Additive Model), has not been clearly demonstrated. The objective of this study was to compare the usefulness of Intralocus and Additive Models for BLUP of maize single-cross performance. Multilocation data from 1990 to 1995 were obtained from the hybrid testing program of Limagrain Genetics. Grain yield, moisture, stalk lodging, and root lodging of untested single crosses were predicted from (1) the performance of tested single crosses and (2) known genetic relationships among the parental inbreds. Correlations between predicted and observed performance were obtained with a delete-one cross-validation procedure. For the Intralocus Model, the correlations ranged from 0.50 to 0.66 for yield, 0.88 to 0.94 for moisture, 0.47 to 0.69 for stalk lodging, and 0.31 to 0.45 for root lodging. The BLUP procedure was consistently more effective with the Intralocus Model than with the Additive Model. When the Additive Model was used instead of the Intralocus Model, the reductions in the correlation were largest for root lodging (0.06-0.35), smallest for moisture (0.00-0.02), and intermediate for yield (0.02-0.06) and stalk lodging (0.02-0.08). The ratio of dominance variance (v D) to total genetic variance (v G) was highest for root lodging (0.47) and lowest for moisture (0.10). The Additive Model may be used if prior information indicates that VD for a given trait has little contribution to VG. Otherwise, the continued use of the Intralocus Model for BLUP of single-cross performance is recommended.

  5. Genomewide predictions from maize single-cross data.

    PubMed

    Massman, Jon M; Gordillo, Andres; Lorenzana, Robenzon E; Bernardo, Rex

    2013-01-01

    Maize (Zea mays L.) breeders evaluate many single-cross hybrids each year in multiple environments. Our objective was to determine the usefulness of genomewide predictions, based on marker effects from maize single-cross data, for identifying the best untested single crosses and the best inbreds within a biparental cross. We considered 479 experimental maize single crosses between 59 Iowa Stiff Stalk Synthetic (BSSS) inbreds and 44 non-BSSS inbreds. The single crosses were evaluated in multilocation experiments from 2001 to 2009 and the BSSS and non-BSSS inbreds had genotypic data for 669 single nucleotide polymorphism (SNP) markers. Single-cross performance was predicted by a previous best linear unbiased prediction (BLUP) approach that utilized marker-based relatedness and information on relatives, and from genomewide marker effects calculated by ridge-regression BLUP (RR-BLUP). With BLUP, the mean prediction accuracy (r(MG)) of single-cross performance was 0.87 for grain yield, 0.90 for grain moisture, 0.69 for stalk lodging, and 0.84 for root lodging. The BLUP and RR-BLUP models did not lead to r(MG) values that differed significantly. We then used the RR-BLUP model, developed from single-cross data, to predict the performance of testcrosses within 14 biparental populations. The r(MG) values within each testcross population were generally low and were often negative. These results were obtained despite the above-average level of linkage disequilibrium, i.e., r(2) between adjacent markers of 0.35 in the BSSS inbreds and 0.26 in the non-BSSS inbreds. Overall, our results suggested that genomewide marker effects estimated from maize single crosses are not advantageous (cofmpared with BLUP) for predicting single-cross performance and have erratic usefulness for predicting testcross performance within a biparental cross.

  6. The Dominant Ms Allele in Onion Shows Reduced Penetrance

    USDA-ARS?s Scientific Manuscript database

    The most commonly used source of cytoplasmic male sterility in onion is controlled by the interaction of the cytoplasm [male-sterile (S) or normal (N) male-fertile] and one nuclear male-fertility-restoration locus (Ms). Scoring of genotypes at Ms is generally done by testcrossing male-fertile to mal...

  7. Testcross Response to Four Cycles of Half-sib and S2 Recurrent Selection in the BS13 Maize (Zea mays L.) Population

    USDA-ARS?s Scientific Manuscript database

    Inbred progeny recurrent selection was shown to be superior to several forms of outbred-progeny recurrent selection for improving population per se performance based on theoretical arguments. However, recent improvements to theory and mounting empirical evidence suggest that inbred-progeny recurren...

  8. Why are there so many molecular markers tagging the Ms locus of onion

    USDA-ARS?s Scientific Manuscript database

    The primary source of male sterility used to produce hybrid-onion cultivars is conditioned by the interaction of the cytoplasm (N versus S) and alleles at one nuclear male-fertility restoration (Ms) locus Due to the biennial life cycle of onion and the necessity to score testcross progenies, the de...

  9. Pyramiding Sclerotinia head rot and stalk rot resistances into elite sunflower breeding lines with the aid of DNA markers

    USDA-ARS?s Scientific Manuscript database

    Work was conducted in 2008 to determine the stalk rot resistance of RILs from the RHA 280 x RHA 801 population, as well as to begin introgression of previously identified QTL for head rot resistance into elite sunflower germplasm lines. The stalk rot RILs and their testcrosses with cms HA 89 were t...

  10. A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markerswac

    Treesearch

    Shawn A. Mehlenbacher; Rebecca N. Brown; Eduardo R. Nouhra; Tufan Gokirmak; Nahla V. Bassil; Thomas L. Kubisiak

    2006-01-01

    A linkage map for European hazelnut (Corylus avellana L.) was constructed using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers and the 2-way pseudotestcross approach. A full-sib population of 144 seedlings from the cross OSU 252.146 x OSU 414.062 was used. RAPD markers in testcross configuration,segregating 1:I, were...

  11. [Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E cytoplasm male sterility induced by environmental conditions].

    PubMed

    Elkonin, L A; Gerashchenkov, G A; Domanina, I V; Rozhnova, N A

    2015-03-01

    Heritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, were transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, Tdry plot,(y) Tirrigated plot(y)). In a number of test-crosses of revertants to CMS lines in the 9E cytoplasm, restoration of male fertility in F1 hybrids was found, indicating that revertants possess functional fertility-restoring genes. A high positive correlation was found between the fertility level of the test-cross hybrids and the hydrothermal coefficient (the ratio of the sum of precipitation to the sum of temperatures) during the booting stage and pollen maturation (r = 0.75...0.91; P<0.01), suggesting that a high level of plant water availability is needed for the expression of fertility-restoring genes of revertants. These data show that the fertility-restoring genes for the 9E cytoplasm are dominant in conditions of high water availability and recessive in drought conditions; reversions to male fertility are due to up-regulation of fertility-restoring genes by a high level of water availability. Comparative MSAP-analysis of DNA of male-sterile and male-fertile test-cross hybrids using HpaII/MspI restrictases and primers to polygalacturonase gene ADPG2, which is required for cell separation during reproductive development, and gene MYB46, the transcription factor regulating secondary wall biosynthesis, revealed differences in the number and the length of amplified fragments. Changes in the methylation of these genes in conditions of drought stress are apparently the reason for male sterility of sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon.

  12. Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.).

    PubMed

    Cadic, Elena; Coque, Marie; Vear, Felicity; Grezes-Besset, Bruno; Pauquet, Jerôme; Piquemal, Joël; Lippi, Yannick; Blanchard, Philippe; Romestant, Michel; Pouilly, Nicolas; Rengel, David; Gouzy, Jerôme; Langlade, Nicolas; Mangin, Brigitte; Vincourt, Patrick

    2013-05-01

    Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.

  13. Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus).

    PubMed

    Portis, E; Mauromicale, G; Mauro, R; Acquadro, A; Scaglione, D; Lanteri, S

    2009-12-01

    The genome organization of globe artichoke (Cynara cardunculus var. scolymus), unlike other species belonging to Asteraceae (=Compositae) family (i.e. sunflower, lettuce and chicory), remains largely unexplored. The species is highly heterozygous and suffers marked inbreeding depression when forced to self-fertilize. Thus a two-way pseudo-testcross represents the optimal strategy for linkage analysis. Here, we report linkage maps based on the progeny of a cross between globe artichoke (C. cardunculus var. scolymus) and cultivated cardoon (C. cardunculus var. altilis). The population was genotyped using a variety of PCR-based marker platforms, resulting in the identification of 708 testcross markers suitable for map construction. The male map consisted of 177 loci arranged in 17 major linkage groups, spanning 1,015.5 cM, while female map was built with 326 loci arranged into 20 major linkage groups, spanning 1,486.8 cM. The presence of 84 loci shared between these maps and those previously developed from a cross within globe artichoke allowed for map alignment and the definition of 17 homologous linkage groups, corresponding to the haploid number of the species. This will provide a favourable property for QTL scanning; furthermore, as 25 mapped markers (8%) correspond to coding regions, it has an additional value as functional map and might represent an important genetic tool for candidate gene studies in globe artichoke.

  14. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance.

    PubMed

    Grieder, Christoph; Dhillon, Baldev S; Schipprack, Wolfgang; Melchinger, Albrecht E

    2012-04-01

    Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.

  15. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments.

    PubMed

    Windhausen, Vanessa S; Atlin, Gary N; Hickey, John M; Crossa, Jose; Jannink, Jean-Luc; Sorrells, Mark E; Raman, Babu; Cairns, Jill E; Tarekegne, Amsal; Semagn, Kassa; Beyene, Yoseph; Grudloyma, Pichet; Technow, Frank; Riedelsheimer, Christian; Melchinger, Albrecht E

    2012-11-01

    Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F(2)-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F(2)-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set.

  16. A cytogenetic method for stacking gene pairs in common wheat.

    PubMed

    Thomas, J; Riedel, E; Benabdelmouna, A; Armstrong, K

    2004-10-01

    The potential for non-reciprocal Robertsonian translocations of wheat (Triticum aestivum L.) to assist in the stacking of genes was assessed from a study of their cytological and genetic behaviour. To obtain translocations, a double monosomic (3B+5A; 2n=40=19ii+2i) was crossed reciprocally with a contrasting disomic. Individuals inheriting a broken monosome were identified from the loss of one arm-specific DNA marker coupled with retention of a marker for the opposite arm. No double breaks (potential translocations) were found in 180 cross progeny recovered from pollen of the double monosomic but two instances (loss of 5AL plus 3BS; loss of 5AL plus 3BL) were found in 251 progeny recovered from ovules. Meiotic pairing and multi-color genome-specific fluorescence in situ hybridization (mcGISH) showed that each plant with a double break contained one translocated chromosome between the A and B genomes that had rejoined at the centromere and that formed a trivalent (19ii+ liii) in about 83% of PMC. Most trivalents (approximately 92%) aligned at metaphase in a 'V' configuration(alternate disjunction) while the rest aligned in linear 'I'(adjacent disjunction) or ambiguous 'L' configurations. Genetic analysis of a testcross of these 'fusion monosomics' showed that this preferential co-orientation of the trivalent influenced the assortment of the chromosome arms involved. Loci that were located in the hemizygous ends of the 'V' trivalent showed strong quasi-linkage in that most ovules from the female testcross carried relevant DNA markers either from both standard chromosomes or from neither. This shows that, in most cases, the two standard chromosomes assorted to the same pole while the fused monosome segregated to the opposite pole. For heterozygous loci (present both on the fusion monosome and the standard chromosomes) assortment was either independent or showed partial linkage to the hemizygous arm depending on the reported recombination distance from centromere. Marker assortment was further distorted in male testcrosses and in doubled haploids (made from the fusion monosomics by the maize method) by the strong selective advantage of pollen or haploids that inherited the standard chromosomes rather than the deficiencies. This genetic data shows that under the combined influence of alternate disjunction and natural selection, progeny of fusion monosomics will revert to the standard disomic arrangement, fixing the gene content of both hemizygous arms in the process. Thus, any pair of genes could be targeted for joint fixation by isolating the fusion monosome that will link them temporarily in a segregating population.

  17. Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat.

    PubMed

    Longin, C Friedrich H; Mi, Xuefei; Melchinger, Albrecht E; Reif, Jochen C; Würschum, Tobias

    2014-10-01

    The use of a breeding strategy combining the evaluation of line per se with testcross performance maximizes annual selection gain for hybrid wheat breeding. Recent experimental studies confirmed a high commercial potential for hybrid wheat requiring the design of optimum breeding strategies. Our objectives were to (1) determine the optimum allocation of the type and number of testers, the number of test locations and the number of doubled haploid lines for different breeding strategies, (2) identify the best breeding strategy and (3) elaborate key parameters for an efficient hybrid wheat breeding program. We performed model calculations using the selection gain for grain yield as target variable to optimize the number of lines, testers and test locations in four different breeding strategies. A breeding strategy (BS2) combining the evaluation of line per se performance and general combining ability (GCA) had a far larger annual selection gain across all considered scenarios than a breeding strategy (BS1) focusing only on GCA. In the combined strategy, the production of testcross seed conducted in parallel with the first yield trial for line per se performance (BS2rapid) resulted in a further increase of the annual selection gain. For the current situation in hybrid wheat, this relative superiority of the strategy BS2rapid amounted to 67 % in annual selection gain compared to BS1. Varying a large number of parameters, we identified the high costs for hybrid seed production and the low variance of GCA in hybrid wheat breeding as key parameters limiting selection gain in BS2rapid.

  18. Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments

    PubMed Central

    Windhausen, Vanessa S.; Atlin, Gary N.; Hickey, John M.; Crossa, Jose; Jannink, Jean-Luc; Sorrells, Mark E.; Raman, Babu; Cairns, Jill E.; Tarekegne, Amsal; Semagn, Kassa; Beyene, Yoseph; Grudloyma, Pichet; Technow, Frank; Riedelsheimer, Christian; Melchinger, Albrecht E.

    2012-01-01

    Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set. PMID:23173094

  19. Mapping of the apple scab-resistance gene Vb.

    PubMed

    Erdin, N; Tartarini, S; Broggini, G A L; Gennari, F; Sansavini, S; Gessler, C; Patocchi, A

    2006-10-01

    Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.

  20. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.

    PubMed

    Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2016-06-01

    To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.

  1. Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance.

    PubMed

    Longin, C Friedrich H; Utz, H Friedrich; Reif, Jochen C; Schipprack, Wolfgang; Melchinger, Albrecht E

    2006-03-01

    Optimum allocation of resources is of fundamental importance for the efficiency of breeding programs. The objectives of our study were to (1) determine the optimum allocation for the number of lines and test locations in hybrid maize breeding with doubled haploids (DHs) regarding two optimization criteria, the selection gain deltaG(k) and the probability P(k) of identifying superior genotypes, (2) compare both optimization criteria including their standard deviations (SDs), and (3) investigate the influence of production costs of DHs on the optimum allocation. For different budgets, number of finally selected lines, ratios of variance components, and production costs of DHs, the optimum allocation of test resources under one- and two-stage selection for testcross performance with a given tester was determined by using Monte Carlo simulations. In one-stage selection, lines are tested in field trials in a single year. In two-stage selection, optimum allocation of resources involves evaluation of (1) a large number of lines in a small number of test locations in the first year and (2) a small number of the selected superior lines in a large number of test locations in the second year, thereby maximizing both optimization criteria. Furthermore, to have a realistic chance of identifying a superior genotype, the probability P(k) of identifying superior genotypes should be greater than 75%. For budgets between 200 and 5,000 field plot equivalents, P(k) > 75% was reached only for genotypes belonging to the best 5% of the population. As the optimum allocation for P(k)(5%) was similar to that for deltaG(k), the choice of the optimization criterion was not crucial. The production costs of DHs had only a minor effect on the optimum number of locations and on values of the optimization criteria.

  2. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    PubMed Central

    2013-01-01

    Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species. PMID:23324311

  3. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping.

    PubMed

    Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Deutsch, Joseph; Salazar, Walter; Hernandez-Ochoa, Miguel; Grygleski, Edward; Steffan, Shawn; Iorizzo, Massimo; Polashock, James; Vorsa, Nicholi; Zalapa, Juan

    2016-06-13

    The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping. We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species. GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).

  4. Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize Doubled Haploid Population Across Water Treatments.

    PubMed

    Cerrudo, Diego; Cao, Shiliang; Yuan, Yibing; Martinez, Carlos; Suarez, Edgar Antonio; Babu, Raman; Zhang, Xuecai; Trachsel, Samuel

    2018-01-01

    To increase genetic gain for tolerance to drought, we aimed to identify environmentally stable QTL in per se and testcross combination under well-watered (WW) and drought stressed (DS) conditions and evaluate the possible deployment of QTL using marker assisted and/or genomic selection (QTL/GS-MAS). A total of 169 doubled haploid lines derived from the cross between CML495 and LPSC7F64 and 190 testcrosses (tester CML494) were evaluated in a total of 11 treatment-by-population combinations under WW and DS conditions. In response to DS, grain yield (GY) and plant height (PHT) were reduced while time to anthesis and the anthesis silking interval (ASI) increased for both lines and hybrids. Forty-eight QTL were detected for a total of nine traits. The allele derived from CML495 generally increased trait values for anthesis, ASI, PHT, the normalized difference vegetative index (NDVI) and the green leaf area duration (GLAD; a composite trait of NDVI, PHT and senescence) while it reduced trait values for leaf rolling and senescence. The LOD scores for all detected QTL ranged from 2.0 to 7.2 explaining 4.4 to 19.4% of the observed phenotypic variance with R 2 ranging from 0 (GY, DS, lines) to 37.3% (PHT, WW, lines). Prediction accuracy of the model used for genomic selection was generally higher than phenotypic variance explained by the sum of QTL for individual traits indicative of the polygenic control of traits evaluated here. We therefore propose to use QTL-MAS in forward breeding to enrich the allelic frequency for a few desired traits with strong additive QTL in early selection cycles while GS-MAS could be used in more mature breeding programs to additionally capture alleles with smaller additive effects.

  5. Hybrid maize breeding with doubled haploids: II. Optimum type and number of testers in two-stage selection for general combining ability.

    PubMed

    Longin, C Friedrich H; Utz, H Friedrich; Melchinger, Albrecht E; Reif, Jochen C

    2007-02-01

    Optimum allocation of test resources is of crucial importance for the efficiency of breeding programs. Our objectives were to (1) determine the optimum allocation of the number of lines, test locations, as well as number and type of testers in hybrid maize breeding using doubled haploids with two breeding strategies for improvement of general combining ability (GCA), (2) compare the maximum selection gain (DeltaG) achievable under both strategies, and (3) give recommendations for the optimum implementation of doubled haploids in commercial hybrid maize breeding. We calculated DeltaG by numerical integration for two two-stage selection strategies with evaluation of (1) testcross performance in both stages (BS1) or (2) line per se performance in the first stage followed by testcross performance in the second stage (BS2). Different assumptions were made regarding the budget, variance components (VCs), and the correlation between line per se performance and GCA. Selection gain for GCA increased with a broader genetic base of the tester. Hence, testers combining a large number of divergent lines are advantageous. However, in applied breeding programs, the use of single- or double-cross testers in the first and inbred testers in the second selection stage may be a good compromise between theoretical and practical requirements. With a correlation between line per se performance and GCA of 0.50, DeltaG for BS1 is about 5% higher than for BS2, if an economic weight of line per se performance is neglected. With increasing economic weight of line per se performance, relative efficiency of BS2 increased rapidly resulting in a superiority of BS2 over BS1 already for an economic weight for line per se performance larger than 0.1. Considering the importance of an economic seed production, an economic weight larger than 0.1 seems realistic indicating the necessity of separate breeding strategies for seed and pollen parent heterotic groups.

  6. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake

    PubMed Central

    Sharma, Parbodh C.; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C.T.; Yadav, Rattan S.

    2014-01-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na+ was recorded in roots. Further, the Na+ concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m−1 within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na+ ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na+ concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage affected the yield performance in pearl millet, wherein higher yield was recorded in drought tolerant parent and the two QTL-NILs compared to drought sensitive parent. PMID:24895469

  7. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  8. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering.

    PubMed

    Wei, Wenhui; Li, Yunchang; Wang, Lijun; Liu, Shengyi; Yan, Xiaohong; Mei, Desheng; Li, Yinde; Xu, Yusong; Peng, Pengfei; Hu, Qiong

    2010-04-01

    An allo-cytoplasmic male sterile line, which was developed through somatic hybridization between Brassica napus and Sinapis arvensis (thus designated as Nsa CMS line), possesses high potential for hybrid production of rapeseed. In order to select for restorer lines, fertile plants derived from the same somatic hybridization combination were self-pollinated and testcrossed with the parental Nsa CMS line for six generations. A novel disomic alien addition line, B. napus-S. arvensis, has been successfully developed. GISH analysis showed that it contains one pair of chromosomes from S. arvensis and 19 pairs from B. napus, and retains stable and regular mitotic and meiotic processes. The addition line displays very strong restoration ability to Nsa CMS line, high resistance to Sclerotinia sclerotiorum and a low incidence of pod shattering. Because the addition line shares these very important agricultural characters, it is a valuable restorer to Nsa CMS line, and is named NR1 here (Nsa restorer no. 1).

  9. A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica.

    PubMed

    Doucleff, M; Jin, Y; Gao, F; Riaz, S; Krivanek, A F; Walker, M A

    2004-10-01

    A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.

  10. An Analysis of the Mode of Gene Action Affecting Pupa Weight in TRIBOLIUM CASTANEUM

    PubMed Central

    Goodwill, R.

    1975-01-01

    Triple-testcross experiments (Kearsey and Jinks 1968) were employed to investigate the mode of gene action affecting pupa weight in Tribolium castaneum. Their experimental design involves two inbred lines, the F1 progeny and a segregating population derived from the cross of the inbred lines. In the present experiments, four segregating populations were used. These populations included the F2 generation, a select line (SEL) and two relaxed select lines (RSI and RSII). In addition, all possible reciprocal crosses were made among the RSI, RSII, and SEL populations. It was observed that: (1) additive, dominant and epistatic gene effects all made significant contributions to the pupa weight of the progeny from all four segregating populations; (2) there was no evidence of either accumulation of epistasis as a result of selection in the SEL population or decline in epistasis as a result of removing selection pressure from the RSI and RSII populations; and (3) significant negative heterosis and maternal effects contributed to the pupa weight of the crossbred progeny of the RSI, RSII and SEL populations. PMID:1132679

  11. Detection and Identification of Translocations by Increased Specific Nondisjunction in ASPERGILLUS NIDULANS

    PubMed Central

    Upshall, Alan; Käfer, Etta

    1974-01-01

    A meiotic technique for visual detection of translocations has been applied to ten mitotically identified interchanges, and three new translocations were discovered using this method. Testcrosses between "standard" strains and potential translocation strains—e.g. strains with newly induced mutants or descendants from translocation crosses—are inspected for the frequency of abnormal-looking colonies. In all heterozygous translocation crosses "abnormals" are increased at least tenfold compared to the average control level of 0.15%. Most of these are disomics, and can be recognized by their characteristic phenotypes. Each translocation produces a few specific types, since nondisjunction is increased mainly in the linkage groups involved in the translocation (50–100-fold over control values). Therefore, translocations were not only detected but often tentatively assigned to linkage groups from the analysis of the disomic progeny in crosses. In addition, this technique allows reciprocal and nonreciprocal translocations to be distinguished, since only the latter produce one-third phenotypically abnormal duplication progeny. While results are clearcut in most cases, occasionally problems are encountered, e.g. when morphological mutants segregate in crosses, or when other genetic factors which increase or reduce the frequency of nondisjunction are present in certain strains. PMID:4594334

  12. Location of Vibrio anguillarum resistance-associated trait loci in half-smooth tongue sole Cynoglossus semilaevis at its microsatellite linkage map

    NASA Astrophysics Data System (ADS)

    Tang, Zhihong; Guo, Li; Liu, Yang; Shao, Changwei; Chen, Songlin; Yang, Guanpin

    2016-11-01

    A cultured female half-smooth tongue sole ( Cynoglossus semilaevis) was crossed with a wild male, yielding the first filial generation of pseudo-testcrossing from which 200 fish were randomly selected to locate the Vibrio anguillarum resistance trait in half-smooth tongue sole at its microsatellite linkage map. In total, 129 microsatellites were arrayed into 18 linkage groups, ≥4 each. The map reconstructed was 852.85 cM in length with an average spacing of 7.68 cM, covering 72.07% of that expected (1 183.35 cM). The V. anguillarum resistance trait was a composite rather than a unit trait, which was tentatively partitioned into Survival time in Hours After V. anguillarum Infection (SHAVI) and Immunity of V. Anguillarum Infection (IVAI). Above a logarithm of the odds (LOD) threshold of 2.5, 18 loci relative to SHAVI and 3 relative to IVAI were identified. The 3 loci relative to IVAI explained 18.78%, 5.87% and 6.50% of the total phenotypic variation in immunity. The microsatellites bounding the 3 quantitative trait loci (QTLs) of IVAI may in future aid to the selection of V. anguillarum-immune half-smooth tongue sole varieties, and facilitate cloning the gene(s) controlling such immunity.

  13. Rampant Gene Exchange Across a Strong Reproductive Barrier Between the Annual Sunflowers, Helianthus annuus and H. petiolaris

    PubMed Central

    Yatabe, Yoko; Kane, Nolan C.; Scotti-Saintagne, Caroline; Rieseberg, Loren H.

    2007-01-01

    Plant species may remain morphologically distinct despite gene exchange with congeners, yet little is known about the genomewide pattern of introgression among species. Here we analyze the effects of persistent gene flow on genomic differentiation between the sympatric sunflower species Helianthus annuus and H. petiolaris. While the species are strongly isolated in testcrosses, genetic distances at 108 microsatellite loci and 14 sequenced genes are highly variable and much lower (on average) than for more closely related but historically allopatric congeners. Our analyses failed to detect a positive association between levels of genetic differentiation and chromosomal rearrangements (as reported in a prior publication) or proximity to QTL for morphological differences or hybrid sterility. However, a significant increase in differentiation was observed for markers within 5 cM of chromosomal breakpoints. Together, these results suggest that islands of differentiation between these two species are small, except in areas of low recombination. Furthermore, only microsatellites associated with ESTs were identified as outlier loci in tests for selection, which might indicate that the ESTs themselves are the targets of selection rather than linked genes (or that coding regions are not randomly distributed). In general, these results indicate that even strong and genetically complex reproductive barriers cannot prevent widespread introgression. PMID:17277373

  14. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis.

    PubMed

    Chen, Yingnan; Wang, Tiantian; Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar).

  15. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis

    PubMed Central

    Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar). PMID:26828940

  16. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts.

    PubMed

    Sumathi, Murugan; Bachpai, Vijaya Kumar Waman; Mayavel, A; Dasgupta, Modhumita Ghosh; Nagarajan, Binai; Rajasugunasekar, D; Sivakumar, Veerasamy; Yasodha, Ramasamy

    2018-05-01

    The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis , show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis  ×  E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.

  17. A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers.

    PubMed

    Lanteri, S; Acquadro, A; Comino, C; Mauro, R; Mauromicale, G; Portis, E

    2006-05-01

    We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.

  18. [Genetic improvement of breeding materials in tropical and sub- tropical maize].

    PubMed

    Sansern, Jampatong; Chaba, Jampatong

    2011-12-01

    In the present study, 122 maize local cultivars and adapted exotic germplasm from Thailand were used to develop open pollinate varieties (OPVs) using modified ear-to-row scheme, top-cross or test-cross programmes. Ten new maize OPVs with distinct characters were created based on the precise breeding objectives and directional design. The selection of breeding materials was based upon three factors: elite performance, broad adaptability, and genetic diversity. The synthesizing system provided four features: genetic mixing and recombination, equal comparable genetic contribution, mild selection pressure, and maximum intermating for genetic equilibrium (i.e., the female traits were close for the genetic com-positions). Subsequently, Suwan 1 composite and its deritives (Suwan 2, Suwan 3 composite, Suwan 5 and KS24 synthetics), KS6 and KS28 synthetics with the dent type of different origins, and Caripeno DMR composite, KS23, and KS27 synthetics with the dent type of Non-Suwan 1 origin were developed. These OPVs had been improved for 2~13 cycles using S1 recurrent selection method. About 50 inbred lines were developed from these OPVs, and 16 elite single (three-way) crosses were combined and released from these inbred lines. At present, at least one parental inbred line of all the tropical hybrids was derived from Suwan (KS) germplasm in Thailand. Based on the theory of the synthesizing OPVs and developing inbred lines, this paper discussed the genetic moderate diversity, relationship, heterotic group, and patterns for synthesizing OPVs, and inspiration for composed OPVs to heterosis breeding.

  19. Identification of Amplified Fragment Length Polymorphism (AFLP) Markers Tightly Associated with Drought Stress Gene in Male Sterile and Fertile Salvia miltiorrhiza Bunge

    PubMed Central

    Zhang, Yuejin; Guo, Lijun; Shu, Zhiming; Sun, Yiyue; Chen, Yuanyuan; Liang, Zongsuo; Guo, Hongbo

    2013-01-01

    Consistent grain yield in drought environment has attracted wide attention due to global climate change. However, the important drought-related traits/genes in crops have been rarely reported. Many near-isogenic lines (NILs) of male sterile and fertile Salvia miltiorrhiza have been obtained in our previous work through testcross and backcross in continuous field experiments conducted in 2006–2009. Both segregating sterile and fertile populations were subjected to bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) with 384 and 170 primer combinations, respectively. One out of 14 AFLP markers (E9/M3246) was identified in treated fertile population as tightly linked to the drought stress gene with a recombination frequency of 6.98% and at a distance of 7.02 cM. One of 15 other markers (E2/M5357) was identified in a treated sterile population that is closely associated with the drought stress gene. It had a recombination frequency of 4.65% and at a distance of 4.66 cM. Interestingly, the E9/M3246 fragment was found to be identical to another AFLP fragment E11/M4208 that was tightly linked to the male sterile gene of S. miltiorrhiza with 95% identity and e-value 4 × 10−93. Blastn analysis suggested that the drought stress gene sequence showed higher identity with nucleotides in Arabidopsis chromosome 1–5. PMID:23525049

  20. Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize

    PubMed Central

    Technow, Frank; Schrag, Tobias A.; Schipprack, Wolfgang; Bauer, Eva; Simianer, Henner; Melchinger, Albrecht E.

    2014-01-01

    Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses. PMID:24850820

  1. Exocrine Dysfunction Correlates with Endocrinal Impairment of Pancreas in Type 2 Diabetes Mellitus.

    PubMed

    Prasanna Kumar, H R; Gowdappa, H Basavana; Hosmani, Tejashwi; Urs, Tejashri

    2018-01-01

    Diabetes mellitus (DM) is a chronic abnormal metabolic condition, which manifests elevated blood sugar level over a prolonged period. The pancreatic endocrine system generally gets affected during diabetes, but often abnormal exocrine functions are also manifested due to its proximity to the endocrine system. Fecal elastase-1 (FE-1) is found to be an ideal biomarker to reflect the exocrine insufficiency of the pancreas. The aim of this study was conducted to assess exocrine dysfunction of the pancreas in patients with type-2 DM (T2DM) by measuring FE levels and to associate the level of hyperglycemia with exocrine pancreatic dysfunction. A prospective, cross-sectional comparative study was conducted on both T2DM patients and healthy nondiabetic volunteers. FE-1 levels were measured using a commercial kit (Human Pancreatic Elastase ELISA BS 86-01 from Bioserv Diagnostics). Data analysis was performed based on the important statistical parameters such as mean, standard deviation, standard error, t -test-independent samples, and Chi-square test/cross tabulation using SPSS for Windows version 20.0. Statistically nonsignificant ( P = 0.5051) relationship between FE-1 deficiency and age was obtained, which implied age as a noncontributing factor toward exocrine pancreatic insufficiency among diabetic patients. Statistically significant correlation ( P = 0.003) between glycated hemoglobin and FE-1 levels was also noted. The association between retinopathy ( P = 0.001) and peripheral pulses ( P = 0.001) with FE-1 levels were found to be statistically significant. This study validates the benefit of FE-1 estimation, as a surrogate marker of exocrine pancreatic insufficiency, which remains unmanifest and subclinical.

  2. Genetic analysis and identification of SSR markers associated with rice blast disease in a BC2F1 backcross population.

    PubMed

    Hasan, N; Rafii, M Y; Abdul Rahim, H; Nusaibah, S A; Mazlan, N; Abdullah, S

    2017-01-23

    Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. Therefore, information on genetic resistance and virulence stability are vital to increase our understanding of the molecular basis of blast disease resistance. The present study set out to elucidate the resistance pattern and identify potential simple sequence repeat markers linked with rice blast disease. A backcross population (BC 2 F 1 ), derived from crossing MR264 and Pongsu Seribu 2 (PS2), was developed using marker-assisted backcross breeding. Twelve microsatellite markers carrying the blast resistance gene clearly demonstrated a polymorphic pattern between both parental lines. Among these, two markers, RM206 and RM5961, located on chromosome 11 exhibited the expected 1:1 testcross ratio in the BC 2 F 1 population. The 195 BC 2 F 1 plants inoculated against M. oryzae pathotype P7.2 showed a significantly different distribution in the backcrossed generation and followed Mendelian segregation based on a single-gene model. This indicates that blast resistance in PS2 is governed by a single dominant gene, which is linked to RM206 and RM5961 on chromosome 11. The findings presented in this study could be useful for future blast resistance studies in rice breeding programs.

  3. Exploring new alleles for frost tolerance in winter rye.

    PubMed

    Erath, Wiltrud; Bauer, Eva; Fowler, D Brian; Gordillo, Andres; Korzun, Viktor; Ponomareva, Mira; Schmidt, Malthe; Schmiedchen, Brigitta; Wilde, Peer; Schön, Chris-Carolin

    2017-10-01

    Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.

  4. A gene block causing cross-incompatibility hidden in wild and cultivated rice.

    PubMed Central

    Matsubara, Kazuki; Khin-Thidar; Sano, Yoshio

    2003-01-01

    Unidirectional cross-incompatibility was detected in advanced generations of backcrossing between wild (Oryza rufipogon) and cultivated (O. sativa) rice strains. The near-isogenic line (NIL) of T65wx (Japonica type) carrying an alien segment of chromosome 6 from a wild strain gave a reduced seed setting only when crossed with T65wx as the male. Cytological observations showed that abortion of hybrid seeds occurred as a consequence of a failure of early endosperm development followed by abnormalities in embryo development. The genetic basis of cross-incompatibility reactions in the female and male was investigated by testcrosses using recombinant inbred lines (RILs) that were established through dissecting the introgressed segments of wild and cultivated (Indica type) strains. The results revealed that the cross-incompatibility reaction was controlled by Cif in the female and by cim in the male. When the female plant with Cif was crossed with the male plant with cim, a failure of early endosperm development was observed in the hybrid zygotes. Among cultivars of O. sativa, cim was distributed predominantly in the Japonica type but not in the Indica type. In addition, a dominant suppressor, Su-Cif, which changes the reaction in the female from incompatible to compatible was proposed to present near the centromere of chromosome 6 of the Indica type. Further, the death of young F(1) zygotes was controlled by the parental genotypes rather than by the genotype of the hybrid zygote itself since all three genes acted sporophytically, which strongly suggests an involvement of parent-of-origin effects. We discuss the results in relation to the origin of a crossing barrier as well as their maintenance within the primary gene pool. PMID:14504241

  5. Interval mapping of high growth (hg), a major locus that increases weight gain in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horvat, S.; Medrano, J.F.

    1995-04-01

    The high growth locus (hg) causes a major increase in weight gain and body size in mice. As a first step to map-based cloning of hg, we developed a genetic map of the hg-containing region using interval mapping of 403 F{sub 2} from a C57BL/6J-hghg x CAST/EiJ cross. The maximum likelihood position of hg was at the chromosome 10 marker D10Mit41 (LOD = 24.8) in the F{sub 2} females and 1.5 cM distal to D10Mit41 (LOD = 9.56) in the F{sub 2} males with corresponding LOD 2 support intervals of 3.7 and 5.4 cM, respectively. The peak LOD scores weremore » significantly higher than the estimated empirical threshold LOD values. The localization of hg by interval mapping was supported by a test cross of F{sub 2} mice recombinant between the LOD 2 support interval and the flanking marker. The interval mapping and test-cross indicate that hg is not allelic with candidate genes Igf1 or decorin (Dcn), a gene that was mapped close to hg in this study. The hg inheritance was recessive in females, although we could not reject recessive or additive inheritance in males. Possible causes for sex differences in peak LOD scores and for the distortion of transmission ratios observed in F{sub 2} males are discussed. The genetic map of the hg region will facilitate further fine mapping and cloning of hg, and allow searches for a homologous quantitative trait locus affecting growth in humans and domestic animals. 48 refs., 3 figs., 3 tabs.« less

  6. Exocrine Dysfunction Correlates with Endocrinal Impairment of Pancreas in Type 2 Diabetes Mellitus

    PubMed Central

    Prasanna Kumar, H. R.; Gowdappa, H. Basavana; Hosmani, Tejashwi; Urs, Tejashri

    2018-01-01

    Background: Diabetes mellitus (DM) is a chronic abnormal metabolic condition, which manifests elevated blood sugar level over a prolonged period. The pancreatic endocrine system generally gets affected during diabetes, but often abnormal exocrine functions are also manifested due to its proximity to the endocrine system. Fecal elastase-1 (FE-1) is found to be an ideal biomarker to reflect the exocrine insufficiency of the pancreas. Aim: The aim of this study was conducted to assess exocrine dysfunction of the pancreas in patients with type-2 DM (T2DM) by measuring FE levels and to associate the level of hyperglycemia with exocrine pancreatic dysfunction. Methodology: A prospective, cross-sectional comparative study was conducted on both T2DM patients and healthy nondiabetic volunteers. FE-1 levels were measured using a commercial kit (Human Pancreatic Elastase ELISA BS 86-01 from Bioserv Diagnostics). Data analysis was performed based on the important statistical parameters such as mean, standard deviation, standard error, t-test-independent samples, and Chi-square test/cross tabulation using SPSS for Windows version 20.0. Results: Statistically nonsignificant (P = 0.5051) relationship between FE-1 deficiency and age was obtained, which implied age as a noncontributing factor toward exocrine pancreatic insufficiency among diabetic patients. Statistically significant correlation (P = 0.003) between glycated hemoglobin and FE-1 levels was also noted. The association between retinopathy (P = 0.001) and peripheral pulses (P = 0.001) with FE-1 levels were found to be statistically significant. Conclusion: This study validates the benefit of FE-1 estimation, as a surrogate marker of exocrine pancreatic insufficiency, which remains unmanifest and subclinical. PMID:29535950

  7. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates.

    PubMed

    Di Gaspero, G; Cipriani, G; Adam-Blondon, A-F; Testolin, R

    2007-05-01

    Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, 'Chardonnay' x 'Bianca' and 'Cabernet Sauvignon' x '20/3' where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320-364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce's disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape.

  8. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps.

    PubMed

    Teh, Soon Li; Fresnedo-Ramírez, Jonathan; Clark, Matthew D; Gadoury, David M; Sun, Qi; Cadle-Davidson, Lance; Luby, James J

    2017-01-01

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis ) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F 1 families, namely GE0711/1009 (MN1264 × MN1214; N  = 147) and GE1025 (MN1264 × MN1246; N  = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.

  9. Construction of a SSR-Based Genetic Map and Identification of QTLs for Catechins Content in Tea Plant (Camellia sinensis)

    PubMed Central

    Ma, Chun-Lei; Wang, Xin-Chao; Jin, Ji-Qiang; Wang, Xue-Min; Chen, Liang

    2014-01-01

    Catechins are the most important bioactive compounds in tea, and have been demonstrated to possess a wide variety of pharmacological activities. To characterize quantitative trait loci (QTLs) for catechins content in the tender shoots of tea plant, we constructed a moderately saturated genetic map using 406 simple sequence repeat (SSR) markers, based on a pseudo-testcross population of 183 individuals derived from an intraspecific cross of two Camellia sinensis varieties with diverse catechins composition. The map consisted of fifteen linkage groups (LGs), corresponding to the haploid chromosome number of tea plant (2n = 2x = 30). The total map length was 1,143.5 cM, with an average locus spacing of 2.9 cM. A total of 25 QTLs associated with catechins content were identified over two measurement years. Of these, nine stable QTLs were validated across years, and clustered into four main chromosome regions on LG03, LG11, LG12 and LG15. The population variability explained by each QTL was predominantly at moderate-to-high levels and ranged from 2.4% to 71.0%, with an average of 17.7%. The total number of QTL for each trait varied from four to eight, while the total population variability explained by all QTLs for a trait ranged between 38.4% and 79.7%. This is the first report on the identification of QTL for catechins content in tea plant. The results of this study provide a foundation for further cloning and functional characterization of catechin QTLs for utilization in improvement of tea plant. PMID:24676054

  10. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    PubMed

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  11. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.

    PubMed

    Messina, Carlos D; Podlich, Dean; Dong, Zhanshan; Samples, Mitch; Cooper, Mark

    2011-01-01

    The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G → P) relations associated with epistasis, pleiotropy, and genotype-by-environment interactions could be captured in realistic G → P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield-trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield-trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of test-cross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.

  12. Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content1[C][W][OA

    PubMed Central

    Zorrilla-Fontanesi, Yasmín; Rambla, José-Luis; Cabeza, Amalia; Medina, Juan J.; Sánchez-Sevilla, José F.; Valpuesta, Victoriano; Botella, Miguel A.; Granell, Antonio; Amaya, Iraida

    2012-01-01

    Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype ‘1392’, selected for its superior flavor, and ‘232’ was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line ‘1392’ displayed higher volatile levels than ‘232’, and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening. PMID:22474217

  13. Cell Wall Composition and Underlying QTL in an F1 Pseudo-Testcross Population of Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.

    Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g -1, respectively,more » while lignin content ranged from 19 to 27% of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g -1. Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1%. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. Finally, the markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production.« less

  14. Cell Wall Composition and Underlying QTL in an F1 Pseudo-Testcross Population of Switchgrass

    DOE PAGES

    Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.; ...

    2016-04-23

    Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g -1, respectively,more » while lignin content ranged from 19 to 27% of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g -1. Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1%. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. Finally, the markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production.« less

  15. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis.

    PubMed

    Li, Pengcheng; Chen, Fanjun; Cai, Hongguang; Liu, Jianchao; Pan, Qingchun; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Zhang, Fusuo; Yuan, Lixing

    2015-06-01

    That root system architecture (RSA) has an essential role in nitrogen acquisition is expected in maize, but the genetic relationship between RSA and nitrogen use efficiency (NUE) traits remains to be elucidated. Here, the genetic basis of RSA and NUE traits was investigated in maize using a recombination inbred line population that was derived from two lines contrasted for both traits. Under high-nitrogen and low-nitrogen conditions, 10 NUE- and 9 RSA-related traits were evaluated in four field environments and three hydroponic experiments, respectively. In contrast to nitrogen utilization efficiency (NutE), nitrogen uptake efficiency (NupE) had significant phenotypic correlations with RSA, particularly the traits of seminal roots (r = 0.15-0.31) and crown roots (r = 0.15-0.18). A total of 331 quantitative trait loci (QTLs) were detected, including 184 and 147 QTLs for NUE- and RSA-related traits, respectively. These QTLs were assigned into 64 distinct QTL clusters, and ~70% of QTLs for nitrogen-efficiency (NUE, NupE, and NutE) coincided in clusters with those for RSA. Five important QTLs clusters at the chromosomal regions bin1.04, 2.04, 3.04, 3.05/3.06, and 6.07/6.08 were found in which QTLs for both traits had favourable effects from alleles coming from the large-rooted and high-NupE parent. Introgression of these QTL clusters in the advanced backcross-derived lines conferred mean increases in grain yield of ~14.8% for the line per se and ~15.9% in the testcross. These results reveal a significant genetic relationship between RSA and NUE traits, and uncover the most promising genomic regions for marker-assisted selection of RSA to improve NUE in maize. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. High Fitness of Heterokaryotypic Individuals Segregating Naturally within a Long-Standing Laboratory Population of Drosophila silvestris.

    PubMed

    Carson, H L

    1987-07-01

    Natural populations of Drosophila silvestris are polymorphic for inversions in one or more of four of the five major chromosome arms; laboratory stocks tend to retain this heterozygosity. A laboratory stock, U28T2, was started from a single naturally inseminated wild female caught at Kilauea Forest Reserve, Hawaii, in January 1977. Polytene analysis in 1980 showed the presence of three natural inversions in chromosome 4: k( 2) is distal, t is central and l(2) is proximal. The inversions are short but only short uncovered euchromatic sections exist at the distal and proximal ends. Periodic examinations through 1986 showed all three inversions to be persistent at moderately high frequencies. In 1984, a series of tests of mating performance of caged, mature males, taken at random as they eclosed from the stock, were followed by cytological testcrosses to females from a homokaryotypic stock. Only three of the eight possible haplotypes, k(2)/t/+ (A), +/+/l(2) ( a) and +/+/+ (a') were present. Tests of crossing over show none in males; in females, there is about 1% in each of the two regions between the inversions. Only one such apparent crossover haplotype was found among 1084 examined in samples from this stock. Thus, chromosome arrangements A, a and a' virtually behave as wholechromosome alleles in both sexes. Of 146 males marked and tested in cages, 61 produced progeny; the others failed to reproduce. Of 58 males and 80 females producing progeny and analyzed cytologically, there were, respectively, 49 and 59 heterokaryotypes. On the basis of frequencies calculated for fertilized eggs, 33.6 males and 46.3 females are expected. The facts suggest that individual males with the Aa karyotype are particularly successful in production of offspring. Adult females show an excess of Aa' as well as Aa. Such high fitness of heterokaryotypes in the effective breeding adults could be a major factor in the maintenance of stable chromosomal polymorphisms both in laboratory stocks and in nature. Although some of this heterosis is clearly ascribable to differential survival, the facts suggest that there is a substantial opportunity, indeed a likelihood, for a contribution from differential mating among surviving adults.

  17. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine

    PubMed Central

    Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications. PMID:26244767

  18. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.

    PubMed

    Dao, Abdalla; Sanou, Jacob; V S Traore, Edgar; Gracen, Vernon; Danquah, Eric Y

    2017-01-01

    In drought-prone environments, direct selection for yield is not adequate because of the variable environment and genotype x environment interaction. Therefore, the use of secondary traits in addition to yield has been suggested. The relative usefulness of secondary traits as indirect selection criteria for maize grain yield is determined by the magnitudes of their genetic variance, heritability and genetic correlation with the grain yield. Forty eight testcross hybrids derived from lines with different genetic background and geographical origins plus 7 checks were evaluated in both well-watered and water-stressed conditions over two years for grain yield and secondary traits to determine the most appropriate secondary traits and select drought tolerant hybrids. Study found that broad-sense heritability of grain yield and Ear Per Plant (EPP) increased under drought stress. Ear aspect (EASP) and ear height (EHT) had larger correlation coefficients and direct effect on grain yield but in opposite direction, negative and positive respectively. Traits like, EPP, Tassel Size (TS) and Plant Recovery (PR) contributed to increase yield via EASP by a large negative indirect effect. Under drought stress, EHT had positive and high direct effect and negative indirect effect via plant height on grain yield indicating that the ratio between ear and plant heights (R-EPH) was associated to grain yield. Path coefficient analysis showed that traits EPP, TS, PR, EASP, R-EPH were important secondary traits in the present experiment. These traits were used in a selection index to classify hybrids according to their performance under drought. The selection procedure included also a Relative Decrease in Yield (RDY) index. Some secondary traits reported as significant selection criteria for selection under drought stress were not finally established in the present study. This is because the relationship between grain and secondary traits can be affected by various factors including germplasm, environment and applied statistical analysis. Therefore, different traits and selection procedure should be applied in the selection process of drought tolerant genotypes for diverse genetic materials and growing conditions.

  19. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population

    PubMed Central

    Zhang, Xuecai; Pérez-Rodríguez, Paulino; Burgueño, Juan; Olsen, Michael; Buckler, Edward; Atlin, Gary; Prasanna, Boddupalli M.; Vargas, Mateo; San Vicente, Félix; Crossa, José

    2017-01-01

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C0) training population. A total of 1000 ear-to-row C0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C1). Predictions of the genotyped individuals forming cycle C1 were made, and the best predicted grain yielders were selected as parents of C2; this was repeated for more cycles (C2, C3, and C4), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C0, C1, C2, C3, and C4, together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C1 to C4 reached 0.225 ton ha−1 per cycle, which is equivalent to 0.100 ton ha−1 yr−1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C0), genetic diversity narrowed only slightly during the last GS cycles (C3 and C4). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time. PMID:28533335

  20. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    PubMed Central

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453

  1. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    PubMed

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.

Top