Experience of 12 kA / 16 V SMPS during the HTS Current Leads Test
NASA Astrophysics Data System (ADS)
Panchal, P.; Christian, D.; Panchal, R.; Sonara, D.; Purwar, G.; Garg, A.; Nimavat, H.; Singh, G.; Patel, J.; Tanna, V.; Pradhan, S.
2017-04-01
As a part of up gradation plans in SST-1 Tokamak, one pair of 3.3 kA rated prototype hybrid current leads were developed using Di-BSCCO as High Temperature Superconductors (HTS) and the copper heat exchanger. In order to validate the manufacturing procedure prior to go for series production of such current leads, it was recommended to test these current leads using dedicated and very reliable DC switch mode power supply (SMPS). As part of test facility, 12 kA, 16 VDC programmable SMPS was successfully installed, commissioned and tested. This power supply has special features such as modularity, N+1 redundancy, very low ripple voltage, precise current measurements with Direct Current Current Transformer, CC/CV modes with auto-crossover and auto-sequence programming. As a part of acceptance of this converter, A 5.8 mΩ water-cooled resistive dummy load and PLC based SCADA system is designed, developed for commissioning of power supply. The same power supply was used for the testing of the prototype HTS current leads. The paper describes the salient features and experience of state-of-art of power supply and results obtained from this converter during the HTS current leads test.
Measurements and tests of HTS bulk material in resistive fault current limiters
NASA Astrophysics Data System (ADS)
Noe, M.; Juengst, K.-P.; Werfel, F. N.; Elschner, S.; Bock, J.; Wolf, A.; Breuer, F.
2002-08-01
The application of superconducting fault current limiters (SCFCL) depends highly on their technical and economical benefits. Therefore it is obvious that the main requirements on the SCFCL are a reliable, fail-safe and rapid current limitation, low losses, and an inexpensive production. As a potential candidate material we have investigated HTS bulk material in resistive fault current limiters. Our report focuses on the E- j-curves, the AC-losses and the quench behaviour of melt cast processed-BSCCO 2212 and melt textured polycrystalline-YBCO 123. Within a temperature range from 64 to 80 K E- j-curves and AC losses of HTS elements were measured. The measurement results show that HTS bulk material meets the SCFCL specifications. In order to avoid hot spots during limitation and to improve mechanical stability a metallic bypass is needed. First test results of the quench behaviour of HTS bulk material with metallic bypass demonstrate safe limitation up to the specified electrical field of 100 V/m.
1 MVA HTS-2G Generator for Wind Turbines
NASA Astrophysics Data System (ADS)
Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.
2017-10-01
The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.
Development of a single-phase 30 m HTS power cable
NASA Astrophysics Data System (ADS)
Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook
2006-05-01
HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.
Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility
NASA Astrophysics Data System (ADS)
Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.
2016-08-01
During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
NASA Astrophysics Data System (ADS)
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-07-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.
NASA Astrophysics Data System (ADS)
Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi
2016-09-01
Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.
Development and test of a 100 kVA superconducting transformer operated at 77 K
NASA Astrophysics Data System (ADS)
Kummeth, P.; Schlosser, R.; Massek, P.; Schmidt, H.; Albrecht, C.; Breitfelder, D.; Neumüller, H.-W.
2000-05-01
High-temperature superconducting (HTS) transformers are very promising candidates for application in electrical power engineering. Their main advantages are reduced size, weight, better efficiency and reduced potential fire and environmental hazards. We have designed, constructed and tested a 100 kVA HTS power transformer operated at 77 K. The nominal primary and secondary currents (voltages) are 18 A (5.6 kV) and 92 A (1.1 kV), respectively. No-load tests, short-circuit tests and load tests proved repeatedly that the transformer has the rated capacity. HTS winding losses of 20.6 W and iron losses of 403 W were measured.
Development of Ulta-Efficient Electric Motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoykhet, B.; Schiferl, R.; Duckworth, R.
2008-05-01
Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrialmore » motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performance. The lessons learned from the development and testing of the 1000 hp motor were the basis for the tasks proposed for the project that is being described in this final report. These eight tasks and the technology and commercial issues they address are listed in Table 1-1.« less
Cryogenic experiences during W7-X HTS-current lead tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Thomas; Lietzow, Ralph
2014-01-29
The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three mainmore » parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.« less
Towards a 20 kA high temperature superconductor current lead module using REBCO tapes
NASA Astrophysics Data System (ADS)
Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.
2018-01-01
Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.
Characteristics on electodynamic suspension simulator with HTS levitation magnet
NASA Astrophysics Data System (ADS)
Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.
2009-10-01
High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.
Performance of the BG1Luc ER TA method in a qHTS format.
Ceger, Patricia; Allen, David; Huang, Ruili; Xia, Menghang; Casey, Warren
2015-01-01
In 2012, the BG1Luc4E2 estrogen receptor (ER) transactivation (TA) method (BG1Luc ER TA) was accepted by U.S. regulatory agencies and the Organisation for Economic Co-operation and Development to detect substances with ER agonist activity. The method is now part of the Tier 1 testing battery in the Environmental Protection Agency's Endocrine Disruptor Screening Program. The BG1Luc ER TA method uses the BG1 ovarian cell line that endogenously expresses full-length ER (α and β) and is stably transfected with a plasmid containing four estrogen responsive elements upstream of a luciferase reporter gene. To allow increased throughput and testing efficiency, the BG1Luc ER TA ("BG1 manual") method was adapted for quantitative high-throughput screening (BG1 qHTS) in the U.S. Tox21 testing program. The BG1 qHTS test method was used to test approximately 10,000 chemicals three times each, and concentration-response data (n=15) were analyzed to evaluate test method performance. The balanced accuracy of the BG1 qHTS test method (97% [32/33]) was determined by comparing results to ER TA performance standards for the BG1 manual method. Concordance between the BG1 manual and qHTS methods was 92% (57/62) when calculated for a larger set of non-reference chemicals tested in both methods. These data demonstrate that the performance of the BG1 qHTS is similar to the currently accepted BG1 manual method, thereby establishing the utility of the BG1 qHTS method for identifying ER active environmental chemicals.
NASA Astrophysics Data System (ADS)
Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.
2017-07-01
Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.
ToxCast HTS Assay Development and Retrofitting: Strategies ...
A presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods Slide presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods.
No-insulation multi-width winding technique for high temperature superconducting magnet.
Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P; Bascuñán, Juan; Iwasa, Yukikazu
2013-10-21
We present a No-Insulation ( NI ) Multi-Width ( MW ) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique.
Modelling of the test of the JT-60SA HTS current leads
NASA Astrophysics Data System (ADS)
Zappatore, A.; Heller, R.; Savoldi, L.; Zanino, R.
2017-07-01
The CURLEAD code, which was developed at the Karlsruhe Institute of Technology (KIT), implements an integrated 1D transient model of a high temperature superconducting (HTS) current lead (CL) including the room termination (RT), the meander-flow type heat exchanger (HX), and the HTS module. CURLEAD was successfully used for the design of the 70 kA ITER demonstrator and of the W7-X and JT-60SA CLs. Recently the code was successfully applied to the prediction and analysis of steady state operation of the ITER correction coils (CC) HTS CL. Here the steady state and pulsed operation of the JT-60SA HTS CLs are analysed, which requires also the modelling of the HX shell and of the vacuum shell, which was not present in the ITER CC. The CURLEAD model extension is presented and the capability of the new version of CURLEAD to reproduce the transient experimental data of the JT-60SA HTS CL is shown. The results obtained provide a better understanding of key parameters of the CL, among which the temperature evolution at the HX-HTS interface, the GHe mass flow rate needed in the HX to achieve the target temperature at that location and the heat load at the cold end.
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin
2015-11-01
High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.
Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES
NASA Astrophysics Data System (ADS)
Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.
2006-06-01
In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.
Testing of a 1.25-m HTS Cable Made from YBCO Tapes
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Lue, J. W.; Demko, J. A.; Duckworth, R. C.; Fisher, P. W.; Daumling, M.; Lindsay, D. T.; Roden, M. L.; Tolbert, J. C.
2004-06-01
Ultera and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested a 1.25-m-long, prototype high-temperature superconducting (HTS) power cable made from 1-cm-wide, second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in boiling liquid nitrogen at 77 K. DC testing of the 1.25-m cable included determination of the V-I curve, with a critical current of 4200 A. This was consistent with the properties of the 24 individual YBCO tapes. AC testing of the cable was conducted at currents up to 2500 Arms. The ac losses were measured calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. AC losses of about 2 W/m were measured at a cable ac current of 2000 Arms. Overcurrent testing was conducted at peak current values up to 12 kA for pulse lengths of 0.1-0.2 s. The cable temperature increased to 105 K for a 12 kA, 0.2 s overcurrent pulse, and the cable showed no degradation after the sequence of overcurrent testing. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.
No-insulation multi-width winding technique for high temperature superconducting magnet
Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P.; Bascuñán, Juan; Iwasa, Yukikazu
2013-01-01
We present a No-Insulation (NI) Multi-Width (MW) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique. PMID:24255549
Test results of 12/18 kA ReBCO coated conductor current leads
NASA Astrophysics Data System (ADS)
Kovalev, I. A.; Surin, M. I.; Naumov, A. V.; Novikov, M. S.; Novikov, S. I.; Ilin, A. A.; Polyakov, A. V.; Scherbakov, V. I.; Shutova, D. I.
2017-07-01
A pair of hybrid current leads (brass + stacked & soldered ReBCO tapes) rated for 12 kA in steady state and for up to 18 kA at pulsed over current conditions was designed, developed and tested at NRC ;Kurchatov Institute; (NRC ;KI;). During the experiment at LN2 temperature, the current leads (CLs) were successfully charged with 18 kA at 100 A/s ramp rate. To date, as far as we know, this is the highest current capacity achieved for 2G HTS current leads. The feasibility of ;stack-and-soldering technique; for 10 kA+ class coated conductor CLs for accelerators and fusion was demonstrated. This paper gives an overview of the leads design and presents the preliminary test results. Detailed studies of magnetic properties and current sharing process for the stacked and staggered HTS joints are also reported.
Development of Prototype HTS Components for Magnetic Suspension Applications
NASA Technical Reports Server (NTRS)
Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.
1996-01-01
We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.
Quench Detection and Protection of an HTS Coil
NASA Astrophysics Data System (ADS)
Sheehan, Evan; Pfotenhauer, John; Miller, Franklin; Christianson, Owen
2017-12-01
A pulsed, modular HTS magnet for energy storage applications was constructed and tested. Charge and discharge pulses were accomplished in about 1 second. A recuperative cryogenic cooling system supplies 42 to 80 Kelvin helium gas to the magnet. A practical solution to overvoltage and overcurrent protection has been implemented digitally using LabVIEW. Voltages as little as 46 μV greater than the expected value trigger the protection system, which stops the pulse profile and begins an immediate current ramp down to zero over 1 second. The protection system has displayed its effectiveness in HTS transition detection and damage prevention. Experimentation has demonstrated that current pulses on the order of seconds with amplitudes of up to 110 Amps can be achieved for extended periods. Higher currents produce joint heating in excess of the available cooling from the existing cryogenic system.
Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.
2007-10-01
An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.
A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study.
Paul Friedman, Katie; Papineni, Sabitha; Marty, M Sue; Yi, Kun Don; Goetz, Amber K; Rasoulpour, Reza J; Kwiatkowski, Pat; Wolf, Douglas C; Blacker, Ann M; Peffer, Richard C
2016-10-01
The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.
A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study
Paul Friedman, Katie; Papineni, Sabitha; Marty, M. Sue; Yi, Kun Don; Goetz, Amber K.; Rasoulpour, Reza J.; Kwiatkowski, Pat; Wolf, Douglas C.; Blacker, Ann M.; Peffer, Richard C.
2016-01-01
Abstract The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3–5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products’ registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information. PMID:27347635
Superconducting technology for overcurrent limiting in a 25 kA current injection system
NASA Astrophysics Data System (ADS)
Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein
2008-09-01
Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.
Commercialization of Medium Voltage HTS Triax TM Cable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoll, David
2012-12-31
The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed themore » market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.« less
Analysis of transient state in HTS tapes under ripple DC load current
NASA Astrophysics Data System (ADS)
Stepien, M.; Grzesik, B.
2014-05-01
The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.
Cryostatless high temperature supercurrent bearings for rocket engine turbopumps
NASA Technical Reports Server (NTRS)
Rao, Dantam K.; Dill, James F.
1989-01-01
The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.
NASA Astrophysics Data System (ADS)
Nguyen, Doan Ngoc
Alternating current (AC) loss and current carrying capacity are two of the most crucial considerations in large-scale power applications of high temperature superconducting (HTS) conductors. AC losses result in an increased thermal load for cooling machines, and thus increased operating costs. Furthermore, AC losses can stimulate quenching phenomena or at least decrease the stability margin for superconducting devices. Thus, understanding AC losses is essential for the development of HTS AC applications. The main focus of this dissertation is to make reliable total AC loss measurements and interpret the experimental results in a theoretical framework. With a specially designed magnet, advanced total AC loss measurement system in liquid nitrogen (77 K) has been successfully built. Both calorimetric and electromagnetic methods were employed to confirm the validity of the measured results and to have a more thorough understanding of AC loss in HTS conductors. The measurement is capable of measuring total AC loss in HTS tapes over a wide range of frequency and amplitude of transport current and magnetic field. An accurate phase control technique allows measurement of total AC loss with any phase difference between the transport current and magnetic field by calorimetric method. In addition, a novel total AC loss measurement system with variable temperatures from 30 K to 100 K was successfully built and tested. Understanding the dependence of AC losses on temperature will enable optimization of the operating temperature and design of HTS devices. As a part of the dissertation, numerical calculations using Brandt's model were developed to study electrodynamics and total AC loss in HTS conductors. In the calculations, the superconducting electrical behavior is assumed to follow a power-law model. In general, the practical properties of conductors, including field-dependence of critical current density Jc, n-value and non-uniform distribution of Jc, can be accounted for in the numerical calculations. The numerical calculations are also capable of investigating eddy current loss in the stabilizer and ferromagnetic loss in the substrate of YBa2Cu3O 7-delta (YBCO) coated conductor. AC loss characteristics and electrodynamics in several (Bi,Pb)2 Sr2Ca2Cu3Ox (Bi-2223) and YBCO tapes were studied experimentally and numerically. It was found that AC loss behavior Ax in HTS tapes is strongly affected by the sample parameters such as cross-section, structure, dimensions, critical current distribution as well as by operation parameters including temperature, frequency, the phase difference between transport current and magnetic field, the orientation of magnetic field. The Ni-5%W substrate in YBCO conductors generates some ferromagnetic loss but this loss component is significantly reduced by a small parallel DC magnetic field. At a given AC magnetic field B0, there is a temperature Tmax at which the magnetization loss is maximum. The design of HTS devices needs to be optimized to avoid operating at that temperature. In general, the total AC loss in HTS tapes is still high for many power device applications, especially for those that present a rather high AC applied magnetic field. The development of low loss conductors is therefore crucial for HTS large-scale applications.
Study on AC loss measurements of HTS power cable for standardizing
NASA Astrophysics Data System (ADS)
Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi
2017-09-01
High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..
Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing1
Judson, Richard; Kavlock, Robert; Martin, Matt; Reif, David; Houck, Keith; Knudsen, Thomas; Richard, Ann; Tice, Raymond R.; Whelan, Maurice; Xia, Menghang; Huang, Ruili; Austin, Christopher; Daston, George; Hartung, Thomas; Fowle, John R.; Wooge, William; Tong, Weida; Dix, David
2014-01-01
Summary In vitro, high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals, but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. Here we discuss streamlining the validation process, specifically for prioritization applications in which HTS assays are used to identify a high-concern subset of a collection of chemicals. The high-concern chemicals could then be tested sooner rather than later in standard guideline bioassays. The streamlined validation process would continue to ensure the reliability and relevance of assays for this application. We discuss the following practical guidelines: (1) follow current validation practice to the extent possible and practical; (2) make increased use of reference compounds to better demonstrate assay reliability and relevance; (3) deemphasize the need for cross-laboratory testing, and; (4) implement a web-based, transparent and expedited peer review process. PMID:23338806
NASA Astrophysics Data System (ADS)
Oga, Y.; Noguchi, S.; Igarashi, H.
When a temperature rise occurs at a local area inside a coil of toroidal HTS-SMES by any reason, a temperature hotspot which results in a thermal runaway appears at the local area. Subsequently, after appearing the local normal zone in the HTS coil, the transport current of the HTS coil decrease since the resistance of HTS coil appears and the current partially flows into a parallel-connecting shunt resistance. However, if the transport current of the normal-transitioned HTS coil is hardly changed, the temperature on the hotspot would rise more and then the normal zone would spread rapidly. It may cause a serious accident due to high stored energy. Therefore, using the numerical simulation, we have investigated the behaviors of the coil current, the critical current, and the temperature in the superconducting element coils of HTS-SMES. Consequently, the temperature of the superconducting element coils rises up extremely when a large heat is generated at a certain area of one of them by any reason. Moreover, there is a possibility that the shunt resister hardly functions for protection since the coil is burned out due to high inductances and low resistance of the superconducting element coil.
HTS cryogenic current comparator for non-invasive sensing of charged-particle beams
NASA Astrophysics Data System (ADS)
Hao, L.; Gallop, J. C.; Macfarlane, J. C.; Carr, C.
2002-03-01
The principle of the superconducting cryogenic direct-current comparator (CCC) is applied to the non-invasive sensing of charged-particle beams (ions, electrons). With the use of HTS components it is feasible to envisage applications, for example, in precision mass spectrometry, in real-time monitoring of ion-beam implantation currents and for the determination of the Faraday fundamental constant. We have developed a novel current concentrating technique using HTS thick-film material, to increase the sensitivity of the CCC. Recent simulations and experimental measurements of the flux and current concentration ratios, frequency response and linearity of a prototype HTS-CCC operating at 77 K are described.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
Ahn, Min Cheol; Yagai, Tsuyoshi; Hahn, Seungyong; Ando, Ryuya; Bascuñán, Juan; Iwasa, Yukikazu
2010-01-01
This paper presents experimental and simulation results of a screening current induced magnetic field (SCF) in a high temperature superconductor (HTS) insert that constitutes a low-/high-temperature superconductor (LTS/HTS) NMR magnet. In this experiment, the HTS insert, a stack of 50 double-pancake coils, each wound with Bi2223 tape, was operated at 77 K. A screening current was induced in the HTS insert by three magnetic field sources: 1) a self field from the HTS insert; 2) an external field from a 5-T background magnet; and 3) combinations of 1) and 2). For each field excitation, which induced an SCF, its axial field distribution and temporal variations were measured and compared with simulation results based on the critical state model. Agreement on field profile between experiment and simulation is satisfactory but more work is needed to make the simulation useful for designing shim coils that will cancel the SCF. PMID:20401187
A superconducting direct-current limiter with a power of up to 8 MVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.
2016-12-15
A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current atmore » a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.« less
A superconducting direct-current limiter with a power of up to 8 MVA
NASA Astrophysics Data System (ADS)
Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.
2016-12-01
A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.
Critical current studies of a HTS rectangular coil
NASA Astrophysics Data System (ADS)
Zhong, Z.; Chudy, M.; Ruiz, H. S.; Zhang, X.; Coombs, T.
2017-05-01
Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.
US effort on HTS power transformers
NASA Astrophysics Data System (ADS)
Mehta, S.
2011-11-01
Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification, Dielectric system design approach, Dewar development for containing phase assemblies, cryo-cooling system design approach, etc. will be described. Finally; overall program schedule, critical milestone events, test plans and progress to date will be reported.
Small Layer-wound ReBCO Solenoids
NASA Astrophysics Data System (ADS)
Polyakov, A. V.; Shcherbakov, V. I.; Shevchenko, S. A.; Surin, M. I.
The development of the next generation of high field superconducting magnet systems demands studies of new technological approach for its internal sections. Several small HTS solenoids (21 mm inner diameter, 32 layers) were fabricated by layer-winding technique from SuperPower type SCS-4050 ReBCO wire insulated by polyimide wrapping. Different designs of external and internal joints also were also tested. The highest field generated by HTS coil was 2.4 T in a 10 T background field (total field was 12.4 T) at 4.2 K and achieved current density in the coil was 498 A/mm2. The results will be used in development of HTS inner sections for 25 T superconducting magnet.
Optimizing multi-dimensional high throughput screening using zebrafish
Truong, Lisa; Bugel, Sean M.; Chlebowski, Anna; Usenko, Crystal Y.; Simonich, Michael T.; Massey Simonich, Staci L.; Tanguay, Robert L.
2016-01-01
The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. PMID:27453428
Cimperman, Miha; Makovec Brenčič, Maja; Trkman, Peter
2016-06-01
Although telehealth offers an improved approach to providing healthcare services, its adoption by end users remains slow. With an older population as the main target, these traditionally conservative users pose a big challenge to the successful implementation of innovative telehealth services. The objective of this study was to develop and empirically test a model for predicting the factors affecting older users' acceptance of Home Telehealth Services (HTS). A survey instrument was administered to 400 participants aged 50 years and above from both rural and urban environments in Slovenia. Structural equation modeling was applied to analyze the causal effect of seven hypothesized predicting factors. HTS were introduced as a bundle of functionalities, representing future services that currently do not exist. This enabled users' perceptions to be measured on the conceptual level, rather than attitudes to a specific technical solution. Six relevant predictors were confirmed in older users' HTS acceptance behavior, with Performance Expectancy (r=0.30), Effort Expectancy (r=0.49), Facilitating Conditions (r=0.12), and Perceived Security (r=0.16) having a direct impact on behavioral intention to use HTS. In addition, Computer Anxiety is positioned as an antecedent of Effort Expectancy with a strong negative influence (r=-0.61), and Doctor's Opinion influence showed a strong impact on Performance Expectancy (r=0.31). The results also indicate Social Influence as an irrelevant predictor of acceptance behavior. The model of six predictors yielded 77% of the total variance explained in the final measured Behavioral Intention to Use HTS by older adults. The level at which HTS are perceived as easy to use and manage is the leading acceptance predictor in older users' HTS acceptance. Together with Perceived Usefulness and Perceived Security, these three factors represent the key influence on older people's HTS acceptance behavior. When promoting HTS, interventions should focus to portray it as secure. Marketing interventions should focus also on promoting HTS among health professionals, using them as social agents to frame the services as useful and beneficial. The important role of computer anxiety may result in a need to use different equipment such as a tablet computer to access HTS. Finally, this paper introduces important methodological guidelines for measuring perceptions on a conceptual level of future services that currently do not exist. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Experiment study on an inductive superconducting fault current limiter using no-insulation coils
NASA Astrophysics Data System (ADS)
Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.
2018-03-01
No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.
Operating experience of the southwire high-temperature superconducting cable project
NASA Astrophysics Data System (ADS)
Hughey, R. L.; Lindsay, D.
2002-01-01
Southwire Company of Carrollton, Georgia in cooperation with Oak Ridge National Laboratory has designed, built, installed and is operating the world's first field installation of a High Temperature Superconducting (HTS) cable system. The cables supply power to three Southwire manufacturing facilities and part of the corporate headquarters building in Carrollton, GA. The system consists of three 30-m single phase cables rated at 12.4 kV, 1250 Amps, liquid nitrogen cooling system, and the computer-based control system. The cables are built using BSCCO-2223 powder-in-tube HTS tapes and a proprietary cryogenic dielectric material called Cryoflex™. The cables are fully shielded with a second layer of HTS tapes to eliminate any external magnetic fields. The Southwire HTS cables were first energized on january 6, 2000. Since that time they have logged over 8,500 hours of operation while supplying 100% of the required customer load. To date, the cables have worked without failure and operations are continuing. The cable design has passed requisite testing for this class of conventional cables including 10× over current to 12,500 Amps and BIL testing to 110 kV. Southwire has also successfully designed and tested a cable splice. System heat loads and AC Losses have been measured and compared to calculated values. On June 1, 2001 on-site monitoring was ceased and the system was changed to unattended operation to further prove the reliability of the HTS cable system. .
NASA Astrophysics Data System (ADS)
Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.
2017-07-01
The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.
Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K
NASA Astrophysics Data System (ADS)
van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.-A.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fontalva, A.; Gao, P.; Goldacker, W.; ten Kate, H.; Kario, A.; Lahtinen, V.; Lorin, C.; Markelov, A.; Mazet, J.; Molodyk, A.; Murtomäki, J.; Long, N.; Perez, J.; Petrone, C.; Pincot, F.; de Rijk, G.; Rossi, L.; Russenschuck, S.; Ruuskanen, J.; Schmitz, K.; Stenvall, A.; Usoskin, A.; Willering, G.; Yang, Y.
2018-06-01
This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.
Parametric Study of HTS Coil Quench Protection Strategies
NASA Astrophysics Data System (ADS)
Seibert, Joseph; Zarnstorff, Michael; Zhai, Yuhu
2016-10-01
Next generation fusion devices require high magnetic fields to adequately contain burning plasmas. Use of high temperature superconducting (HTS) coils to generate these magnetic fields would lower energy cost of operation as well as increase stability of the superconducting state compared to low temperature superconducting coils. However, use of HTS coils requires developing quench protection strategies to prevent damage to the coils. One technique involves the utilization of copper discs and other conductors mutually coupled to the HTS coil to quickly extract the current from the coil. Another technique allows conduction between HTS turns to reduce the current in the coil during quench. This project describes a parametric study of the HTS coil and resistive-conductor setup in order to determine limiting cases of the geometry in an attempt to optimize current extraction and coil protection during quench scenarios. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Mechanical reinforcement for RACC cables in high magnetic background fields
NASA Astrophysics Data System (ADS)
Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.
2016-02-01
Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.
Kim, Y G; Song, J B; Choi, Y H; Yang, D G; Kim, S G; Lee, H G
2016-11-01
This paper investigates the quench initiation and propagation characteristics of a metallic insulation (MI) coil by conducting thermal quench tests for a GdBCO single-pancake coil co-wound with a stainless steel tape as the turn-to-turn MI. The test results confirmed that the MI coil exhibited superior thermal and electrical stabilities compared to the conventional coils co-wound with organic insulation material because the operating current could flow along the radial direction due to the existence of a turn-to-turn contact when a local hot spot was generated. The results of the quench test at a heater current (I h ) of 12, 13, and 14 A indicate that the MI coil possesses a self-protecting characteristic resulting from the "current bypass" through the turn-to-turn contact. However, the test coil was not self-protecting at I h = 15 A because the Joule heat energy generated by the radial current flow was not completely dissipated due to the characteristic resistance of the metallic insulation tape and the non-superconducting materials, including the substrate, stabilizer, and buffer layers within the high-temperature superconductor (HTS) tape. Even though the MI coil possesses superior thermal and electrical stability relative to those of conventional HTS coils co-wound with an organic material as turn-to-turn insulation, it is essential to consider the critical role of the Joule heat energy resulting from the operating current and stored magnetic energy as well as the characteristic resistances in order to further develop self-protective 2G HTS magnets.
NASA Astrophysics Data System (ADS)
Park, D. K.; Kim, Y. J.; Yang, S. E.; Kwon, N. Y.; Lee, H. G.; Ko, T. K.
2009-10-01
High temperature superconducting (HTS) magnets have been studied for insert coils of high field nuclear magnetic resonance (NMR) magnets but the temporal stability required for NMR is hard to achieve due to low index value and high joint resistance. In this research, the HTS power supply with magnets using coated conductor (CC) was investigated and tested in helium cryogenic system. All joints were conducted by soldering after etching stabilizer of the CC to minimize joint resistance. The pumping rate was determined by current amplitude and timing sequential control of heaters and the electromagnet. Operating characteristics were analyzed to enhance charging efficiency and the feasibility of temporally stable CC magnet during persistent mode was studied.
Optimizing multi-dimensional high throughput screening using zebrafish.
Truong, Lisa; Bugel, Sean M; Chlebowski, Anna; Usenko, Crystal Y; Simonich, Michael T; Simonich, Staci L Massey; Tanguay, Robert L
2016-10-01
The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.
Kennedy, C E; Yeh, P T; Johnson, C; Baggaley, R
2017-12-01
New strategies for HIV testing services (HTS) are needed to achieve UN 90-90-90 targets, including diagnosis of 90% of people living with HIV. Task-sharing HTS to trained lay providers may alleviate health worker shortages and better reach target groups. We conducted a systematic review of studies evaluating HTS by lay providers using rapid diagnostic tests (RDTs). Peer-reviewed articles were included if they compared HTS using RDTs performed by trained lay providers to HTS by health professionals, or to no intervention. We also reviewed data on end-users' values and preferences around lay providers preforming HTS. Searching was conducted through 10 online databases, reviewing reference lists, and contacting experts. Screening and data abstraction were conducted in duplicate using systematic methods. Of 6113 unique citations identified, 5 studies were included in the effectiveness review and 6 in the values and preferences review. One US-based randomized trial found patients' uptake of HTS doubled with lay providers (57% vs. 27%, percent difference: 30, 95% confidence interval: 27-32, p < 0.001). In Malawi, a pre/post study showed increases in HTS sites and tests after delegation to lay providers. Studies from Cambodia, Malawi, and South Africa comparing testing quality between lay providers and laboratory staff found little discordance and high sensitivity and specificity (≥98%). Values and preferences studies generally found support for lay providers conducting HTS, particularly in non-hypothetical scenarios. Based on evidence supporting using trained lay providers, a WHO expert panel recommended lay providers be allowed to conduct HTS using HIV RDTs. Uptake of this recommendation could expand HIV testing to more people globally.
Design of conduction cooling system for a high current HTS DC reactor
NASA Astrophysics Data System (ADS)
Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun
2017-07-01
A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.
Current Bypassing Properties by Thermal Switch for PCS Application on NMR/MRI HTS Magnets
NASA Astrophysics Data System (ADS)
Kim, S. B.; Takahashi, M.; Saito, R.; Park, Y. J.; Lee, M. W.; Oh, Y. K.; Ann, H. S.
We develop the compact NMR/MRI device using high temperature superconducting (HTS) wires with the persistent current mode operating. So, the joint techniques between 2G wires are very important issue and many studies have been carried out. Recently, the Kbigdot JOINS, Inc. has developed successfully the high performance superconducting joints between 2G wires by partial melting diffusion and oxygenation annealing process [1]. In this study, the current bypassing properties in a loop-shaped 2G wire are measured experimentally to develop the permanent current switch (PSC). The current bypassing properties of loop-shaped test coil wound with 2G wire (GdBCO) are evaluated by measured the self-magnetic field due to bypassed current by Hall sensors. The strain gauge was used as heater for persistent current switch, and thermal properties against various thermal inputs were investigated experimentally.
In Vitro Toxicity Assessment Technique for Volatile ...
The U.S. Environmental Protection Agency is tasked with evaluating the human health, environmental, and wildlife effects of over 80,000 chemicals registered for use in the environment and commerce. The challenge is that sparse chemical data exists; traditional toxicity testing methods are slow, costly, involve animal studies, and cannot keep up with a chemical registry that typically grows by at least 1000 chemicals every year. In recent years, High Throughput Screening (HTS) has been used in order to prioritize chemicals for traditional toxicity screening or to complement traditional toxicity studies. HTS is an in vitro approach of rapidly assaying a large number of chemicals for biochemical activity using robotics and automation. However, no method currently exists for screening volatile chemicals such as air pollutants in a HTS fashion. Additionally, significant uncertainty regarding in vitro to in in vivo extrapolation (IVIVE) remains. An approach to bridge the IVIVE gap and the current lack of ability to screen volatile chemicals in a HTS fashion is by using a probe molecule (PrM) technique. The proposed technique uses chemicals with empirical human pharmacokinetic data as PrMs to study toxicity of molecules with no known data for gas-phase analysis. We are currently studying the xenobiotic-metabolizing enzyme CYP2A6 using transfected BEAS-2B bronchial epithelial cell line. The CYP2A6 pathway activity is studied by the formation of cotinine from nicot
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
NASA Astrophysics Data System (ADS)
Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji
2014-05-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Modelling ac ripple currents in HTS coated conductors
NASA Astrophysics Data System (ADS)
Xu, Zhihan; Grilli, Francesco
2015-10-01
Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc transmission.
The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2007-02-14
The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads canmore » be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).« less
Current protocols for developmental neurotoxicity testing are insufficient to test thousands of commercial chemicals. Thus, development of highthroughput screens (HTS) to detect and prioritize chemicals that may cause developmental neurotoxicity is needed to improve protection of...
Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.
Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S
2014-06-01
Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.
2015-12-01
High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.
Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils
NASA Astrophysics Data System (ADS)
Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.
2014-05-01
Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.
Meehan, Sue-Ann; Beyers, Nulda; Burger, Ronelle
2017-12-02
In South Africa, the financing and sustainability of HIV services is a priority. Community-based HIV testing services (CB-HTS) play a vital role in diagnosis and linkage to HIV care for those least likely to utilise government health services. With insufficient estimates of the costs associated with CB-HTS provided by NGOs in South Africa, this cost analysis explored the cost to implement and provide services at two NGO-led CB-HTS modalities and calculated the costs associated with realizing key HIV outputs for each CB-HTS modality. The study took place in a peri-urban area where CB-HTS were provided from a stand-alone centre and mobile service. Using a service provider (NGO) perspective, all inputs were allocated by HTS modality with shared costs apportioned according to client volume or personnel time. We calculated the total cost of each HTS modality and the cost categories (personnel, capital and recurring goods/services) across each HTS modality. Costs were divided into seven pre-determined project components, used to examine cost drivers. HIV outputs were analysed for each HTS modality and the mean cost for each HIV output was calculated per HTS modality. The annual cost of the stand-alone and mobile modalities was $96,616 and $77,764 respectively, with personnel costs accounting for 54% of the total costs at the stand-alone. For project components, overheads and service provision made up the majority of the costs. The mean cost per person tested at stand-alone ($51) was higher than at the mobile ($25). Linkage to care cost at the stand-alone ($1039) was lower than the mobile ($2102). This study provides insight into the cost of an NGO led CB-HTS project providing HIV testing and linkage to care through two CB-HIV testing modalities. The study highlights; (1) the importance of including all applicable costs (including overheads) to ensure an accurate cost estimate that is representative of the full service implementation cost, (2) the direct link between test uptake and mean cost per person tested, and (3) the need for effective linkage to care strategies to increase linkage and thereby reduce the mean cost per person linked to HIV care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, D. C.; Noyes, P. D.; Miller, G. E.
2013-02-13
The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured atmore » 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.« less
Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei
2018-01-01
High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.
NASA Astrophysics Data System (ADS)
Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei
2018-01-01
High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.
HTS flux concentrator for non-invasive sensing of charged particle beams
NASA Astrophysics Data System (ADS)
Hao, L.; Gallop, J. C.; Macfarlane, J. C.; Carr, C.; Donaldson, G. B.
2001-12-01
The principle of the superconducting cryogenic current comparator (CCC) is applied to the non-invasive sensing of charged-particle beams (ions, electrons). With the use of HTS components it is feasible to envisage applications, for example, in precision mass spectrometry and real-time monitoring of ion-beam implantation currents. Recent simulations and experimental measurements of the flux concentration ratio, frequency response and linearity of a prototype HTS-CCC operating at 77 K are described.
Progress in American Superconductor's HTS wire and optimization for fault current limiting systems
NASA Astrophysics Data System (ADS)
Malozemoff, Alexis P.
2016-11-01
American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25-50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires' critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and decreasing its critical J. This conflicts with other desirable wire characteristics. Optimization of these conflicting requirements is discussed.
Hahn, Seung-yong; Ahn, Min Cheol; Bascuñán, Juan; Yao, Weijun; Iwasa, Yukikazu
2010-01-01
This paper reports results, experimental and analytical, of the nonlinear behavior of a shim coil in the presence of an HTS coil assembled with double-pancake (DP) HTS-tape coils. The experimental results are from: 1) operation of a 700 MHz LTS/HTS NMR magnet (LH700) consisting of a 600 MHz LTS NMR magnet (L600) equipped with superconducting shim coils and a 100 MHz DP-assembled HTS insert (H100) and; 2) an experiment with a room-temperature (RT) Z1 shim coil coupled to a 50 MHz DP-as-sembled HTS insert (H50). A field mapping theory with a harmonic analysis is applied to interpret both results. Based on experimental results and analyses, we conclude that the screening-current-induced field (SCF) generated by a DP-assembled HTS insert is primarily responsible for the nonlinear behavior, including strength degradation, of a shim coil. PMID:20383282
Test of an 8.66-T REBCO Insert Coil with Overbanding Radial Build for a 1.3-GHz LTS/HTS NMR Magnet.
Qu, Timing; Michael, Philip C; Bascuñán, Juan; Lécrevisse, Thibault; Guan, Mingzhi; Hahn, Seungyong; Iwasa, Yukikazu
2017-06-01
A 1.3-GHz/54-mm LTS/HTS NMR magnet, assembled with a 3-coil (Coils 1-3) 800-MHz HTS insert in a 500-MHz LTS NMR magnet, is under construction. The innermost HTS insert Coil 1 has a stack of 26 no-insulation (NI) double pancake (DP) coils wound of 6-mm wide and 75- μ m thick REBCO tapes. In order to keep the hoop strains on REBCO tape < 0.6% at an operating current I op of 250 A and in a field of 30.5 T, we overbanded each pancake in Coil 1 with a 6-mm wide, 76- μ m thick 304 stainless steel strip: 7-mm thick radial build for the central 18 pancakes, while 6-mm thick for the outer 2×17 pancakes. In this paper, Coil 1 was successfully tested at 77K and 4.2 K. In the 77-K test, the measured critical current was 35.7 A, determined by an E -field criterion of 0.1 μ V/cm. The center field magnet constant decreased from 34.2 mT/A to 29.3 mT/A, when I op increased from 5 A to 40 A. The field distribution at different I op along the z -axis was measured. The residual field distributions discharged from 10 A and 20 A were recorded. In the 4.2-K test, Coil 1 successfully generated a central field of 8.78 T at 255 A. The magnet constant is 34.4 mT/A, which is same as our designed value. The field homogeneity at the coil center within a ± 15-mm region is around 1700 ppm. This large error field must be reduced before field shimming is applied.
Design, Test and Demonstration of Fault Current Limiting HTS Transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazelton, Drew
The project developed new technology that enables the creation of a high temperature superconductor-based FCL power transformer. SuperPower’s research and development created new methods to bond HTS conductor to a supporting substrate, test, and insulate the resulting bonded conductor, reduce winding ac losses, ensure FCL functionality during a transformer fault and build firm superconducting joints in the transformer harnesses and cabling. The bonded conductor in this program was shown to meet the critical operating parameters of providing the superconducting transformer operation while being able to meet the target normal state resistance required for FCL operation. The bonded conductor was alsomore » shown to be able to handle the fabrication stresses associated with the manufacture of the FCL transformer while also being able to handle the high hoop stresses and axial forces during a fault transient. Much of the technology developed here is applicable to the broader applied superconductivity community. The ability to tailor the clad conductors performance characteristics gives the designer of devices utilizing HTS a broader capability to address the particular needs of an given application. SuperPower worked with its sub-recipients Waukesha Electric Systems, ORNL, Southern California Edison and University of Houston to develop the design, fabrication, installation and operational aspects of a fault current limiting transformer on the electrical grid.« less
Oh, Wan-Suk; Jeong, Pan-Young; Joo, Hyoe-Jin; Lee, Jeong-Eui; Moon, Yil-Seong; Cheon, Hyang-Mi; Kim, Jung-Ho; Lee, Yong-Uk; Shim, Yhong-Hee; Paik, Young-Ki
2009-11-11
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+) channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury
Here, this paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm -2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advancemore » in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.« less
High-temperature superconducting undulator magnets
Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury; ...
2017-02-13
Here, this paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm -2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advancemore » in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.« less
Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus
NASA Astrophysics Data System (ADS)
Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi
This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.
Feasibility and electromagnetic analysis of a REBCO superconducting undulator
Kesgin, Ibrahim; Kasa, Matthew; Doose, Charles; ...
2016-03-17
Recent advances in second-generation (2G) high temperature superconducting (HTS) coated conductors (CCs) have made them very attractive for new applications such as undulators. In this study, we have, for the first time, experimentally evaluated a design to validate applicability of 2G-HTS tapes for next generation undulator magnetic structures. A two-period undulator magnetic core was fabricated and 2G-HTS CCs were successfully wound onto the undulator core. The performance of the undulator magnetic structure was investigated and the highest engineering current density, J e, in such configuration reported yet was obtained. A new U-slit tape configuration was used to reduce the numbermore » of resistive joints and it was shown that with this new technique affordable levels of resistance values can be achieved for short length undulators. The ferromagnetic core was designed such as to accommodate winding the U-slit tapes. Finally, test results indicated that the winding and the soldering procedures are successful and do not deteriorate the performance of the 2G-HTS tapes.« less
NASA Technical Reports Server (NTRS)
Brown, G. V.; Dirusso, E.; Provenza, A. J.
1995-01-01
A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.
Development of 66 kV class REBCO superconducting cable
NASA Astrophysics Data System (ADS)
Ohya, M.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.
Sumitomo Electric Industries (SEI) has been involved in the development of 66 kV/5 kA-class HTS cables using REBCO wires. One of the technical targets was to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI developed a clad-type textured metal substrate with lower magnetization loss than NiW substrates. REBCO wires of 30 mm wide were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The measured AC loss of the manufactured cable was 1.8 W/m/phase at 5 kA, achieving the AC loss goal. Another important target was to manage fault current. The copper protection layers were designed based on simulation findings. Fault current tests (max. 31.5 kA, 2 sec) showed that the designed HTS cable has the required withstanding performance. The development of the elemental technologies was finished on schedule, and a 15 m-long HTS cable system will be constructed to demonstrate that it meets all the required specifications.
Operating experience with the southwire 30-meter high-temperature superconducting power cable
NASA Astrophysics Data System (ADS)
Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.
2002-05-01
Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.
2010-03-01
INTRODUCTION The separation of high-temperature superconducting HTS tapes into filaments is a viable approach to reduce ac and hysteretic losses in...generation HTS coated conductors. However, ac losses of finely striated tapes can still be larger than desired as predicted by analytical expressions.6...necessitates an in-depth understanding of the flux and current dynamics in multifilamentary HTS structures as both depend strongly on temperature and history of
Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter
NASA Astrophysics Data System (ADS)
Liu, Guole; Zhang, Guomin; Jing, Liwei; Yu, Hui
2017-12-01
High temperature superconducting (HTS) coils are key parts of many AC applications, such as generators, superconducting magnetic energy storage and transformers. AC loss reduction in HTS coils is essential for the commercialization of these HTS devices. Magnetic material is generally used as the flux diverter in an effort to reduce the AC loss in HTS coils. To achieve the greatest reduction in the AC loss of the coils, the flux diverter should be made of a material with low loss and high saturated magnetic density, and the optimization of the geometric size and location of the flux diverter is required. In this paper, we chose Ni-alloy as the flux diverter, which can be processed into a specific shape and size. The influence of the shape and location of the flux diverter on the AC loss characteristics of stacked (RE)BCO tapes is investigated by use of a finite element method. Taking both the AC loss of the (RE)BCO coils and the ferromagnetic loss of the flux diverter into account, the optimal geometry of the flux diverter is obtained. It is found that when the applied current is at half the value of the critical current, the total loss of the HTS stack with the optimal flux diverter is only 18% of the original loss of the HTS stack without the flux diverter. Besides, the effect of the flux diverter on the critical current of the (RE)BCO stack is investigated.
A gene expression biomarker accurately predicts estrogen ...
The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c
Integration of HTS Cables in the Future Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.
Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H
2010-04-01
We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang
2015-12-01
High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.
High temperature superconducting synchronous motor design and test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, R.; Zhang, B.; Shoykhet, B.
1996-10-01
High horsepower synchronous motors with high temperature superconducting (HTS) field windings offer the potential to cut motor operating losses in half compared to conventional energy efficient induction motors available today. The design, construction and test of a prototype, air core, synchronous motor with helium gas cooled HTS field coils will be described in this paper. The work described is part of a US Department of Energy, Superconductivity Partnership Initiative award. The motor uses a modified conventional motor armature combined with a vacuum insulated rotor that contains the four racetrack-shaped HTS field coils. The rotor is cooled by helium gas somore » that the HTS coils operate at a temperature of 30 K. This paper provides a status report on HTS motor research and development at Reliance Lab., Rockwell Automation that will lead to commercial HTS motors for utility and industrial applications.« less
NASA Astrophysics Data System (ADS)
Lécrevisse, T.; Badel, A.; Benkel, T.; Chaud, X.; Fazilleau, P.; Tixador, P.
2018-05-01
In the framework of a project aiming at fabricating a 10 T high temperature superconducting (HTS) insert to operate in a 20 T background field, we are investigating the behavior of pancakes consisting of a REBCO HTS tape co-wound with a stainless steel tape (metal-as-insulation (MI) coil). The MI winding is inducing a significant turn-to-turn electrical resistance which helps to reduce the charging time delay. Despite this resistance, the self-protection feature of no-insulation coils is still enabled, thanks to the voltage limit of the power supply. We have built a single pancake coil representative of the pancake that will be used in the insert and performed tests under very high background magnetic field. Our coil experienced over 100 heater induced quenches without a measureable increase of its internal resistance. We have gathered stability and quench behavior data for magnetic fields and engineering current densities (je ) in the range of 0–17 T and 0–635 A mm‑2 respectively. We also present our very first experiments on the insert/outsert interaction in the case of a resistive magnet fault. We show that if self-protection of the MI winding is really effective in the case of a MI coil quench, a major issue comes from the outsert fault which induces a huge current inside the MI coil.
The influence of winding direction of two-layer HTS DC cable on the critical current
NASA Astrophysics Data System (ADS)
Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.
2017-09-01
The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.
High temperature superconducting Maglev equipment on vehicle
NASA Astrophysics Data System (ADS)
Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.
2003-04-01
Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.
Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.; ...
2016-01-01
The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.
The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-François; Gray, Kimberly A; Kelly, John J
2014-01-01
The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally occurring bacterial species can be assessed simultaneously under environmentally relevant conditions.
Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-François; Gray, Kimberly A.; Kelly, John J.
2014-01-01
The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally occurring bacterial species can be assessed simultaneously under environmentally relevant conditions. PMID:25162615
Adverse Outcome Pathways – Organizing Toxicological Information to Improve Decision Making
The number of chemicals for which environmental regulatory decisions are required far exceeds the current capacity for toxicity testing. High throughput screening (HTS) commonly used for drug discovery has the potential to increase this capacity. The adverse outcome pathway (AOP)...
Development and Validation of a Computational Model for Androgen Receptor Activity
Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can mo...
Transient analysis of an HTS DC power cable with an HVDC system
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo
2013-11-01
The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
Design versions of HTS three-phase cables with the minimized value of AC losses
NASA Astrophysics Data System (ADS)
Altov, V. A.; Balashov, N. N.; Degtyarenko, P. N.; Ivanov, S. S.; Kopylov, S. I.; Lipa, DA; Samoilenkov, S. V.; Sytnikov, V. E.; Zheltov, V. V.
2018-03-01
Design versions of HTS three-phase cables consisting of 2G HTS tapes have been investigated by the numerical simulation method with the aim of AC losses minimization. Two design versions of cables with the coaxial and extended rectangular cross-section shape are considered – the non-sectioned and sectioned one. In the latter each cable phase consists of sections connected in parallel. The optimal dimensions of sections and order of their alteration are chosen by appropriate calculations. The model used takes into account the current distribution between the sections and its non-uniformity within each single HTS tape as well. The following characteristics are varied: design version, dimension, positioning of extra copper layer in a cable, design of HTS tapes themselves and their mutual position. The dependence of AC losses on the latter two characteristics is considered in details, and the examples of cable designs optimized by the total set of characteristics for the medium class of voltages (10 – 60 kV) are given. At the critical current JC=5.1 кA per phase and current amplitudes lower than 0.85JC, the level of total AC losses does not exceed the natural cryostat heat losses.
An active magnetic bearing with high T(sub c) superconducting coils and ferromagnetic cores
NASA Technical Reports Server (NTRS)
Brown, G. V.; Dirusso, E.; Provenza, A. J.
1995-01-01
A proof-of-feasibility demonstration showed that high-T(sub c) superconductor (HTS) coils can be used in a high-load, active magnetic bearing in LN2. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 890 N (200 lb) radial load capacity (measured non-rotatings) and supported a shaft to 14,000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that for Cu in LN2. The bias coil, wound with non-twisted, multifilament HTS conductor, dissipated negligible power for its direct current. The control coils, wound with monofilament HTS sheathed in Ag, dissipated negligible power for direct current. AC losses increased rapidly with frequency and quadratically with AC amplitude. Above about 2 Hz, the effective resistance of the control coils exceeds that of the silver which is in electrical parallel with the oxide superconductor. These results show that twisted multifilament conductor is not needed for stable levitation but may be desired to reduce control power for sizable dynamic loads.
AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.
Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line
NASA Astrophysics Data System (ADS)
Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.
2017-10-01
With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.
Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir
2015-11-01
Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
An overview of rotating machine systems with high-temperature bulk superconductors
NASA Astrophysics Data System (ADS)
Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro
2012-10-01
The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.
2017-02-01
The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.
Test results of a 20 kA high temperature superconductor current lead using REBCO tapes
NASA Astrophysics Data System (ADS)
Heller, R.; Fietz, W. H.; Gröner, F.; Heiduk, M.; Hollik, M.; Lange, C.; Lietzow, R.
2018-05-01
The Karlsruhe Institute of Technology has developed a 20 kA high temperature superconductor (HTS) current lead (CL) using the second generation material REBCO, as industry worldwide concentrate on the production of this material. The aim was to demonstrate the possibility of replacing the Bi-2223/AgAu tapes by REBCO tapes, while for easy comparison of results, all other components are copies of the 20 kA HTS CL manufactured for the satellite tokamak JT-60SA. After the manufacture of all CL components including the newly developed REBCO module, the assembly of the CL has been executed at KIT and an experiment has been carried out in the CuLTKa test facility where the REBCO CL was installed and connected to a JT-60SA CL via a superconducting bus bar. The experiment covers steady state operation up to 20 kA, pulsed operation, measurement of the heat load at 4.5 K end, loss-of-flow-accident simulations, and quench performance studies. Here the results of these tests are reported and directly compared to those of the JT-60SA CL.
Ictal semiology in hippocampal versus extrahippocampal temporal lobe epilepsy.
Gil-Nagel, A; Risinger, M W
1997-01-01
We have analysed retrospectively the clinical features and electroencephalograms in 35 patients with complex partial seizures of temporal lobe origin who were seizure-free after epilepsy surgery. Two groups were differentiated for statistical analysis: 16 patients had hippocampal temporal lobe seizures (HTS) and 19 patients had extrahippocampal temporal lobe seizures (ETS) associated with a small tumour of the lateral or inferior temporal cortex. All patients in the HTS group had ictal onset verified with intracranial recordings (depth or subdural electrodes). In the ETS group, extrahippocampal onset was verified with intracranial recordings in eight patients and assumed, because of failure of a previous amygdalohippocampectomy, in one patient. Historical information, ictal semiology and ictal EEG of typical seizures were analysed in each patient. The occurrence of early and late oral automatisms and dystonic posturing of an upper extremity was analysed separately. A prior history of febrile convulsions was obtained in 13 HTS patients (81.3%) but in none with ETS (P < 0.0001, Fisher's exact test). An epigastric aura preceded seizures in five patients with HTS (31.3%) and none with ETS (P = 0.0135, Fisher's exact test), while an aura with experiential content was recalled by nine patients with ETS (47.4%) and none with HTS (P = 0.0015), Fisher's exact test). Early oral automatisms occurred in 11 patients with HTS (68.8%) and in two with ETS (10.5%) (P = 0.0005, Fisher's exact test). Early motor involvement of the contralateral upper extremity without oral automatisms occurred in three patients with HTS (18.8%) and in 10 with ETS (52.6%) (P = 0.0298, Fisher's exact test). Arrest reaction, vocalization, speech, facial grimace, postictal cough, late oral automatisms and late motor involvement of the contralateral arm and hand occurred with similar frequency in both groups. These observations show that the early clinical features of HTS and ETS are different.
NASA Astrophysics Data System (ADS)
Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.
We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.
Structural modeling of HTS tapes and cables
NASA Astrophysics Data System (ADS)
Allen, N. C.; Chiesa, L.; Takayasu, M.
2016-12-01
Structural finite element analysis (FEA) has been used as an insightful tool to investigate the electromechanical behavior of HTS REBCO tapes and twisted stacked-tape cables under tension, torsion, bending and combined loads. A novel technique was developed for modeling the layered composite structure of the 2G tapes with structural solid-shell elements in ANSYS®. The FEA models produced detailed strain information for the REBCO superconducting layer which was then paired with an analytical model to predict the critical current performance of the 2G HTS tapes under various loads. Two commercially available HTS tapes (SuperPower and SuNAM) under tension, torsion and combined tension-torsion were first analyzed with FEA and compared with available experimental results at 77 K. A sharp critical current degradation was experienced at the yield strength of the tapes under tension and below a 100 mm twist-pitch under torsion. Combined tension-torsion loads had a more gradual degradation of critical current for twist-pitches of 115 mm or shorter but had a negligible difference compared to pure tension for longer twist-pitches. Using the structural solid-shell technique for modeling 2G tapes in ANSYS®, an FEA methodology for simulating full scale three-dimensional HTS stacked-tape cables under pure bending was created. A model of a Twisted-Stacked Tape Cable (TSTC), a configuration first proposed at MIT, was initially developed and then adapted to the slotted-core HTS Cable-In-Conduit Conductor produced by the ENEA laboratory in Italy. The numerical axial strain of the HTS REBCO tapes within the cables as calculated by FEA were found to agree with an analytical model for two cases: perfect-slip (frictionless) and no-slip (bonded). The ENEA CICC model was also compared with recent experimental critical current data at 77 K and was found to match best using a low friction coefficient of 0.02 indicating that the tapes within the cable freely slide with respect to each other helping to reduce the axial strain during bending.
NASA Astrophysics Data System (ADS)
Shen, Boyang; Li, Chao; Geng, Jianzhao; Zhang, Xiuchang; Gawith, James; Ma, Jun; Liu, Yingzhen; Grilli, Francesco; Coombs, T. A.
2018-07-01
This paper presents a comprehensive alternating current (AC) loss study of a circular high temperature superconductor (HTS) coated conductor coil. The AC losses from a circular double pancake coil were measured using the electrical method. A 2D axisymmetric H -formulation model using the FEM package in COMSOL Multiphysics has been established to match the circular geometry of the coil used in the experiment. Three scenarios have been analysed: Scenario 1 with AC transport current and DC magnetic field (experiment and simulation); Scenario 2 with DC transport current and AC magnetic field (simulation); and Scenario 3 with AC transport current and AC magnetic field (simulation and experimental data support). The angular dependence analysis on the coil under a magnetic field with different orientation angle θ has been carried out for all three scenarios. For Scenario 3, the effect of the relative phase difference Δφ between the AC current and the AC field on the total AC loss of the coil has been investigated. In summary, a current/field/angle/phase dependent AC loss ( I , B , θ, Δφ) study of a circular HTS coil has been carried out. The obtained results provide useful indications for the future design and research of HTS AC systems.
A Multicenter Study To Evaluate the Performance of High-Throughput Sequencing for Virus Detection
Ng, Siemon H. S.; Vandeputte, Olivier; Aljanahi, Aisha; Deyati, Avisek; Cassart, Jean-Pol; Charlebois, Robert L.; Taliaferro, Lanyn P.
2017-01-01
ABSTRACT The capability of high-throughput sequencing (HTS) for detection of known and unknown viruses makes it a powerful tool for broad microbial investigations, such as evaluation of novel cell substrates that may be used for the development of new biological products. However, like any new assay, regulatory applications of HTS need method standardization. Therefore, our three laboratories initiated a study to evaluate performance of HTS for potential detection of viral adventitious agents by spiking model viruses in different cellular matrices to mimic putative materials for manufacturing of biologics. Four model viruses were selected based upon different physical and biochemical properties and commercial availability: human respiratory syncytial virus (RSV), Epstein-Barr virus (EBV), feline leukemia virus (FeLV), and human reovirus (REO). Additionally, porcine circovirus (PCV) was tested by one laboratory. Independent samples were prepared for HTS by spiking intact viruses or extracted viral nucleic acids, singly or mixed, into different HeLa cell matrices (resuspended whole cells, cell lysate, or total cellular RNA). Data were obtained using different sequencing platforms (Roche 454, Illumina HiSeq1500 or HiSeq2500). Bioinformatic analyses were performed independently by each laboratory using available tools, pipelines, and databases. The results showed that comparable virus detection was obtained in the three laboratories regardless of sample processing, library preparation, sequencing platform, and bioinformatic analysis: between 0.1 and 3 viral genome copies per cell were detected for all of the model viruses used. This study highlights the potential for using HTS for sensitive detection of adventitious viruses in complex biological samples containing cellular background. IMPORTANCE Recent high-throughput sequencing (HTS) investigations have resulted in unexpected discoveries of known and novel viruses in a variety of sample types, including research materials, clinical materials, and biological products. Therefore, HTS can be a powerful tool for supplementing current methods for demonstrating the absence of adventitious or unwanted viruses in biological products, particularly when using a new cell line. However, HTS is a complex technology with different platforms, which needs standardization for evaluation of biologics. This collaborative study was undertaken to investigate detection of different virus types using two different HTS platforms. The results of the independently performed studies demonstrated a similar sensitivity of virus detection, regardless of the different sample preparation and processing procedures and bioinformatic analyses done in the three laboratories. Comparable HTS detection of different virus types supports future development of reference virus materials for standardization and validation of different HTS platforms. PMID:28932815
Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer
NASA Astrophysics Data System (ADS)
Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay
2017-01-01
We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.
Design, Construction and Test of Cryogen-Free HTS Coil Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocker, H.; Anerella, M.; Gupta, R.
2011-03-28
This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconductingmore » magnets.« less
Park, Dongkeun; Bascuñán, Juan; Michael, Philip C; Lee, Jiho; Hahn, Seungyong; Iwasa, Yukikazu
2018-04-01
We present construction and test results of Coils 2 and 3 of a 3-coil 800-MHz REBCO insert (H800) for the MIT 1.3 GHz LTS/HTS NMR magnet currently under construction. Each of three H800 coils (Coils 1-3) is a stack of no-insulation REBCO double pancakes (DPs). The innermost 8.67-T Coil 1 (26 DPs) was completed in 2016; the middle 5.64-T Coil 2 (32 DPs) has been wound, assembled, and tested; and for the outermost 4.44-T Coil 3, its 38 DPs have been wound and preliminary tests were performed to characterize each DP at 77 K. Included for Coil 2 are: 1) 77-K data of critical current, index, and turn-to-turn characteristic resistivity of each DP; 2) stacking order of the 32 DPs optimized to maximize the Coil 2 current margin and minimize its Joule dissipation in the pancake-to-pancake joints; 3) procedure to experimentally determine and apply a room-temperature preload to the DP stack; 4) 77-K and 4.2-K test results after each of 64 pancakes was over-banded with 75-μm-thick stainless steel tape for a radial thickness of 5 mm. Presented for each DP in Coil 3 are 77-K dada of critical current, index, and turn-to-turn characteristic resistivity.
The present status of the high temperature superconducting Maglev vehicle in China
NASA Astrophysics Data System (ADS)
Wang, J. S.; Wang, S. Y.; Zeng, Y. W.; Deng, C. Y.; Ren, Z. Y.; Wang, X. R.; Song, H. H.; Wang, X. Z.; Zheng, J.; Zhao, Y.
2005-02-01
Since the first successful running of the people-carrying high temperature superconducting (HTS) Maglev test vehicle on 31 December 2000, about 27 000 people have taken it, and the accumulated running distance is about 400 km. The levitation force of the onboard HTS equipment is measured periodically, and new experimental results measured on 5 March 2003 show that the performance of the onboard HTS Maglev equipment is almost the same as that of two years ago. Experimental results indicate that the long-term stability of the HTS Maglev vehicle is good. This further proves the feasibility of the HTS Maglev vehicle for practical transportation. It is worth mentioning that all the results are measured at a low speed; however, investigations of the dynamic performance of the HTS Maglev vehicle at high speed are necessary for practical application. Research on the dynamic performance of the HTS Maglev vehicle is ongoing.
US Navy superconductivity program
NASA Technical Reports Server (NTRS)
Gubser, Donald U.
1991-01-01
Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.
NASA Astrophysics Data System (ADS)
Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza
2008-01-01
AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.
Takano, Yoshio; Matsuse, Hiroo; Tsukada, Yuuya; Omoto, Masayuki; Hashida, Ryuki; Shiba, Naoto
2016-01-01
The hybrid training system (HTS) resists the motion of a volitionally contracting agonist muscle using force generated by its electrically stimulated antagonist. We have developed a new training method using the principle of HTS. This study was designed to evaluate the effect of HTS with electrical stimulation on muscle strength and physical function by comparing it against training without electrical stimulation in older adults. 16 subjects were randomly divided into two groups: the squat and single leg lift training (control, CTR) group, and the CTR with HTS training group. Some electrical stimulation was applied to the quadriceps and hamstring muscles in the HTS group. The subjects performed training for 25 min per session 3 times a week for 12 weeks. At points before and after the research maximal isokinetic torque, knee-flexors (KFT) and knee-extensors (KET), a one-leg standing test (OLT), a functional reach test (FRT), a 10-meter maximal gait time (10MGT) and Timed up & go test (TUG) were conducted. None of the subjects had any injuries during the study period. TUG significantly improved after the training period in both the HTS group (7.15 sec to 6.01 sec P = 0.01) and in the CTR.
Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station
NASA Astrophysics Data System (ADS)
Zhang, Xueqiang; He, Xiaofeng; Wang, Yuehui; Duan, Tao; Wang, Guizhen; Zhang, Yan; Li, Chunguang; Zhang, Qiang; Li, Hong; He, Yusheng
2010-02-01
A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.
NASA Astrophysics Data System (ADS)
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.
NASA Astrophysics Data System (ADS)
Tallouli, M.; Shyshkin, O.; Yamaguchi, S.
2017-07-01
The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of superconductivity at the edges due to penetration of magnetic field in superconducting core during the pulse.
Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing
In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...
Applications of Superconductivity and Impact on U.S. Economy
NASA Astrophysics Data System (ADS)
Selvamanickam, Venkat
2014-03-01
In the past few decades, low temperature superconducting wires (niobium-titanium) have enabled multibillion dollar industries such as magnetic resonance imaging and nuclear magnetic resonance spectroscopy which otherwise would not have been possible. High temperature superconductors (HTS) hold the promise of impacting even a larger market in diverse applications such as energy, health, military, telecommunication, transportation and research. HTS tapes are now being manufactured in quantities of few hundred kilometers annually with current carrying capacity of about 300 times that of copper wire of the same cross section. Power transmission cables up to few kilometers in length made with HTS tapes have already been inserted in the power grid world-wide. In the past few of years, tremendous advancements have occurred in nanoscale defect engineering in these thin film superconducting tapes that has led to a doubling of critical current performance in high magnetic fields and operating temperatures of interest for various applications. Technologies developed in this area have been successfully inserted in production HTS tapes by industry. With the availability of such high performance HTS tapes, a number of coil-based applications are now being aggressively pursued by several institutions. HTS coils enable power devices with high power density with significant weight, size and power benefits. Energy storage, generation, use, transformation and transmission applications as well as magnetic applications such as magnetic shields, plasma confinement, and ultra-high field magnets are becoming possible with the availability of high-performance HTS tapes. An overview of the development and use of superconductors in electric power and magnetic applications will be provided in this presentation.
NASA Astrophysics Data System (ADS)
Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon
The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.
Current leads cooling for the series-connected hybrid magnets
NASA Astrophysics Data System (ADS)
Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.
2014-01-01
Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.
Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong
1992-01-01
Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.
Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv
2012-04-01
A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations.
Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv
2012-01-01
A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device’s characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations. PMID:22393268
AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications
NASA Astrophysics Data System (ADS)
Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.
2017-12-01
This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.
High Radiation Environment Nuclear Fragment Separator Magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, Stephen; Gupta, Ramesh
2016-01-31
Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb 3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bendsmore » the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the magnetic field are large and in order minimize the deformation of the coils, mechanical support must be provided. Since the support structure cannot be made of organic materials with minimal thermal conductivity, an optimization was explored comparing the amount of coil deformation that can be tolerated and the amount of heat leakage that can be endured. A test coil containing 500 m of HTS was constructed to be tested at the 40 K operating temperature. The anticipated heat load was simulated with heater strips to demonstrate that the heat could be removed and that the coil can operate in a stable state. The FRIB project has decided that using HTS coils for this magnet was too risky considering their time and funding constraints and has opted for a more conservative approach with conventional coils. As an outcome of this STTR project, it is likely that HTS coils operating at higher temperatures will have beneficial applications for future accelerator projects.« less
Jones, P A; King, A V
2003-01-01
Testing for phototoxic hazard is usually carried out for product ingredients intended for use on skin, which may be exposed to sunlight. Unilever currently uses the validated in vitro 3T3 Neutral Red Uptake phototoxicity test (NRU PT). This protocol involves 2-3 experiments, each taking 3 days to perform. One person can test up to seven test materials plus positive control at any one time, requiring approximately 0.5 g test material. Higher throughput is required where libraries of potential actives are being generated and screening for potential phototoxicants is required. A proposed HTS protocol would use the NRU PT, but only one concentration (10 microg/ml) in a single experiment. The validity of the HTS protocol was investigated by a retrospective examination of data from 86 materials previously tested. Phototoxic hazard predictions made using the conventional NRU PT were compared with those obtained if only data at 10 microg/ml were considered. A majority of 73 materials (84.9%) gave agreement in predictions between the two protocols; for 13 materials (15.1%) the assessments did not agree. There were no false positives; however, there were some false negatives, i.e., predicted as phototoxic from the conventional assay, but non-phototoxic at 10 microg/ml. As this protocol is intended for screening purposes only it is considered that this would be acceptable at this stage in material selection. One person could screen 128 test materials in 3 days, requiring <1 mg test material, giving a substantial increase in productivity. Any material selected for further development and inclusion in a formulation may require further confirmatory testing, e.g. using a human skin model assay for phototoxicity.
Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid
NASA Astrophysics Data System (ADS)
Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.
2010-04-01
In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.
Nanomaterial (NM) bioactivity profiling by ToxCast high-throughput screening (HTS)
Rapidly increasing numbers of new NMs and their uses demand efficient tests of NM bioactivity for safety assessment. The EPA’s ToxCast program uses HTS assays to prioritize for targeted testing, identify biological pathways affected, and aid in linking NM properties and potential...
NASA Astrophysics Data System (ADS)
Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.
2015-12-01
Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.
NASA Astrophysics Data System (ADS)
Tsukamoto, O.; Utsunomiya, A.
2007-10-01
We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.
A new ring-shape high-temperature superconducting trapped-field magnet
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia
2017-09-01
This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.
Design and evaluation of 66 kV-class HTS power cable using REBCO wires
NASA Astrophysics Data System (ADS)
Ohya, M.; Yumura, H.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.
2011-11-01
Sumitomo Electric (SEI) has been involved in the development of 66 kV-class HTS cables using REBCO wires. One of the technical targets in this project is to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI has developed a clad-type of textured metal substrate with lower magnetization loss compared with a conventional NiW substrate. In addition, 30 mm-wide REBCO tapes were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The AC loss of a manufactured 4-layer cable conductor was 1.5 W/m at 5 kA at 64 K. Given that the AC loss in a shield layer is supposed to be one-fourth of a whole cable core loss, our cables are expected to achieve the AC loss target of less than 2 W/m/phase at 5 kA. Another important target is to manage a fault current. A cable core was designed and fabricated based on the simulation findings, and over-current tests (max. 31.5 kA, 2 s) were conducted to check its performance. The critical current value of the cable cores were measured before and after the over-current tests and verified its soundness. A 5 kA-class current lead for the cable terminations was also developed. The current loading tests were conducted for the developed current leads. The temperature distribution of the current leads reached to the steady-state within less than 12 h, and it was confirmed that the developed current lead has enough capacity of 5 kA loading.
NASA Technical Reports Server (NTRS)
Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.
1996-01-01
A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.
Lee, Jiho; Park, Dongkeun; Michael, Philip C; Noguchi, So; Bascuñán, Juan; Iwasa, Yukikazu
2018-04-01
In this paper, we present experimental results, of a small-model study, from which we plan to develop and apply a full-scale field-shaking system to reduce the screening current-induced field (SCF) in the 800-MHz HTS Insert (H800) of the MIT 1.3-GHz LTS/HTS NMR magnet (1.3G) currently under construction-the H800 is composed of 3 nested coils, each a stack of no-insulation (NI) REBCO double-pancakes. In 1.3G, H800 is the chief source of a large error field generated by its own SCF. To study the effectiveness of the field-shaking technique, we used two NI REBCO double-pancakes, one from Coil 2 (HCoil2) and one from Coil 3 (HCoil3) of the 3 H800 coils, and placed them in the bore of a 5-T/300-mm room-temperature bore low-temperature superconducting (LTS) background magnet. The background magnet is used not only to induce the SCF in the double-pancakes but also to reduce it by the field-shaking technique. For each run, we induced the SCF in the double-pancakes at an axial location where the external radial field Br > 0, then for the field-shaking, moved them to another location where the external axial field Bz ≫ B R . Due to the geometry of H800 and L500, top double-pancakes of 3 H800 coils will experience the considerable radial magnetic field perpendicular to the REBCO tape surface. To examine the effect of the field-shaking on the SCF, we tested each NI REBCO DP in the absence or presence of a radial field. In this paper, we report 77-K experimental results and analysis of the effect and a few significant remarks of the field-shaking.
Adverse outcome pathway (AOP) analyses illustrate that some molecular-initiating events (MIEs) for thyroid disruption, including thyroperoxidase (TPO) inhibition, are not evaluated by current ToxCast/Tox21 high-throughput screening (HTS) assays. A novel HTS assay for TPO inhibiti...
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Tuo, X. G.; Li, L. L.; Ye, C. Q.; Liao, X. L.; Wang, S. Y.
2012-03-01
Compared with the permanent magnet, the magnetized bulk high-Tc superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-Tc superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.
NASA Astrophysics Data System (ADS)
Lee, S.; Petrykin, V.; Molodyk, A.; Samoilenkov, S.; Kaul, A.; Vavilov, A.; Vysotsky, V.; Fetisov, S.
2014-04-01
The SuperOx and SuperOx Japan LLC companies were founded with the goal of developing a cost-effective technology for second generation HTS (2G HTS) tapes by utilizing a combination of the most advanced chemical and physical deposition techniques, together with implementing original tape architectures. In this paper we present a brief overview of our production and experimental facilities and recent results of 2G HTS tape fabrication, and describe the first tests of the tapes in model cables for AC and DC power application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oz, E.; Myers, C. E.; Edwards, M. R.
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC ringsmore » with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.« less
Salson, Mikaël; Giraud, Mathieu; Caillault, Aurélie; Grardel, Nathalie; Duployez, Nicolas; Ferret, Yann; Duez, Marc; Herbert, Ryan; Rocher, Tatiana; Sebda, Shéhérazade; Quief, Sabine; Villenet, Céline; Figeac, Martin; Preudhomme, Claude
2017-02-01
Minimal residual disease (MRD) is known to be an independent prognostic factor in patients with acute lymphoblastic leukemia (ALL). High-throughput sequencing (HTS) is currently used in routine practice for the diagnosis and follow-up of patients with hematological neoplasms. In this retrospective study, we examined the role of immunoglobulin/T-cell receptor-based MRD in patients with ALL by HTS analysis of immunoglobulin H and/or T-cell receptor gamma chain loci in bone marrow samples from 11 patients with ALL, at diagnosis and during follow-up. We assessed the clinical feasibility of using combined HTS and bioinformatics analysis with interactive visualization using Vidjil software. We discuss the advantages and drawbacks of HTS for monitoring MRD. HTS gives a more complete insight of the leukemic population than conventional real-time quantitative PCR (qPCR), and allows identification of new emerging clones at each time point of the monitoring. Thus, HTS monitoring of Ig/TR based MRD is expected to improve the management of patients with ALL. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong
2017-07-01
High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.
The USEPA’s ToxCast program is developing a novel approach to chemical toxicity testing using high-throughput screening (HTS) assays to rapidly test thousands of chemicals against hundreds of in vitro molecular targets. This approach is based on the premise that in vitro HTS bioa...
Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)
2001-01-01
High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.
NASA Astrophysics Data System (ADS)
Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.
2016-08-01
Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.
Zhu, Hao; Rusyn, Ivan; Richard, Ann; Tropsha, Alexander
2008-01-01
Background To develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput screening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six different cell lines have recently become available via PubChem. Objectives We have explored these data in terms of their utility for predicting adverse health effects of the environmental agents. Methods and results Initially, the classification k nearest neighbor (kNN) quantitative structure–activity relationship (QSAR) modeling method was applied to the HTS data only, for a curated data set of 384 compounds. The resulting models had prediction accuracies for training, test (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP–HTS studies. We found that compounds classified by HTS as “actives” in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS “inactives” were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors. Conclusions Our studies suggest that combining NTP–HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology. PMID:18414635
Dry cryomagnetic system with MgB2 coil
NASA Astrophysics Data System (ADS)
Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.
2017-12-01
MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.
Damoiseaux, Robert
2014-05-01
The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.
Static and dynamic stability of the guidance force in a side-suspended HTS maglev system
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong
2017-02-01
The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.
NASA Astrophysics Data System (ADS)
Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang
A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.
NASA Astrophysics Data System (ADS)
Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki
A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).
Collaborative Core Research Program for Chemical-Biological Warfare Defense
2015-01-04
Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD...Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD) Current pharmaceutical approaches involving drug discovery...structural analysis and docking program generally known as fragment based drug design (FBDD). The main advantage of using these approaches is that
NASA Astrophysics Data System (ADS)
Goldacker, Wilfried; Grilli, Francesco; Pardo, Enric; Kario, Anna; Schlachter, Sonja I.; Vojenčiak, Michal
2014-09-01
Energy applications employing high-temperature superconductors (HTS), such as motors/generators, transformers, transmission lines and fault current limiters, are usually operated in the alternate current (ac) regime. In order to be efficient, the HTS devices need to have a sufficiently low value of ac loss, in addition to the necessary current-carrying capacity. Most applications are operated with currents beyond the current capacity of single conductors and consequently require cabled conductor solutions with much higher current carrying capacity, from a few kA up to 20-30 kA for large hydro-generators. A century ago, in 1914, Ludwig Roebel invented a low-loss cable design for copper cables, which was successively named after him. The main idea behind Roebel cables is to separate the current in different strands and to provide a full transposition of the strands along the cable direction. Nowadays, these cables are commonly used in the stator of large generators. Based on the same design concept of their conventional material counterparts, HTS Roebel cables from REBCO coated conductors were first manufactured at the Karlsruhe Institute of Technology and have been successively developed in a number of varieties that provide all the required technical features such as fully transposed strands, high transport currents and low ac losses, yet retaining enough flexibility for a specific cable design. In the past few years a large number of scientific papers have been published on the concept, manufacturing and characterization of such cables. Therefore it is timely for a review of those results. The goal is to provide an overview and a succinct and easy-to-consult guide for users, developers, and manufacturers of this kind of HTS cable.
Use of in Vitro HTS-Derived Concentration-Response Data as ...
Background: Quantitative high-throughput screening (qHTS) assays are increasingly being employed to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the NIH Chemical Genomics Center. Objectives: To test a hypothesis that dose-response data points of the qHTS assays can serve as biological descriptors of assayed chemicals and, when combined with conventional chemical descriptors, may improve the accuracy of Quantitative Structure-Activity Relationship (QSAR) models applied to prediction of in vivo toxicity endpoints. Methods and Results: The cell viability qHTS concentration-response data for 1,408 substances assayed in 13 cell lines were obtained from PubChem; for a subset of these compounds rodent acute toxicity LD50 data were also available. The classification k Nearest Neighbor and Random Forest QSAR methods were employed for modeling LD50 data using either chemical descriptors alone (conventional models) or in combination with biological descriptors derived from the concentration-response qHTS data (hybrid models). Critical to our approach was the use of a novel noise-filtering algorithm to treat qHTS data. We show that both the external classification accuracy and coverage (i.e., fraction of compounds in the external set that fall within the applicability domain) of the hybrid QSAR models was superior to convent
Low resistance splices for HTS devices and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, S. L.
This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us havingmore » splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. Finally, It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.« less
Low resistance splices for HTS devices and applications
Lalitha, S. L.
2017-06-30
This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us havingmore » splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. Finally, It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.« less
Low resistance splices for HTS devices and applications
NASA Astrophysics Data System (ADS)
Lalitha, S. L.
2017-09-01
This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.
South African HIV self-testing policy and guidance considerations.
Venter, Francois; Majam, Mohammed; Jankelowitz, Lauren; Adams, Siraaj; Moorhouse, Michelle; Carmona, Sergio; Stevens, Wendy; Msimanga, Busisiwe R; Allen, David; Balani, Pooja; Nevhutalu, Zwoitwaho; Rhagnath, Naleni; Shroufi, Amir; Devillé, Walter; Kazangarare, Victoria; van der Wiel, Renee; Templeman, Hugo; Puren, Adrian; Tucker, Tim; van Cutsem, Gilles; Conradie, Francesca; Dong, Krista; Chidarikire, Thato; Gray, Andy
2017-01-01
The gap in HIV testing remains significant and new modalities such as HIV self-testing (HIVST) have been recommended to reach key and under-tested populations. In December 2016, the World Health Organization (WHO) released the Guidelines on HIV Self-Testing and Partner Notification: A Supplement to the Consolidated Guidelines on HIV Testing Services (HTS) and urged member countries to develop HIVST policy and regulatory frameworks. In South Africa, HIVST was included as a supplementary strategy in the National HIV Testing Services Policy in 2016, and recently, guidelines for HIVST were included in the South African National Strategic Plan for HIV, sexually transmitted infections and tuberculosis 2017-2022. This document serves as an additional guidance for the National HIV Testing Services Policy 2016, with specific focus on HIVST. It is intended for policy advocates, clinical and non-clinical HTS providers, health facility managers and healthcare providers in private and public health facilities, non-governmental, community-based and faith-based organisations involved in HTS and outreach, device manufacturers, workplace programmes and institutes of higher education.
Cheminformatic Analysis of the US EPA ToxCast Chemical Library
The ToxCast project is employing high throughput screening (HTS) technologies, along with chemical descriptors and computational models, to develop approaches for screening and prioritizing environmental chemicals for further toxicity testing. ToxCast Phase I generated HTS data f...
Scoping study for compact high-field superconducting net energy tokamaks
NASA Astrophysics Data System (ADS)
Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.
2016-10-01
The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.
Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor
NASA Astrophysics Data System (ADS)
Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe
2013-11-01
A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.
Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Pleva, Ed; Ha, Tam T
2012-06-12
High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory is collaborating with Waukesha Electric Systems, SuperPower, and Southern California Edison to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen needs to bemore » verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is energized at 25 kVac around the clock. Liquid nitrogen (LN) is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.« less
Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing
NASA Astrophysics Data System (ADS)
Schwenterly, S. W.; Pleva, E. F.; Ha, T. T.
2012-06-01
High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES), SuperPower (SP), and Southern California Edison (SCE) to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen (LN) needs to be verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-rms-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is continuously energized at 25 kVac rms. LN is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.
NASA Astrophysics Data System (ADS)
Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.
2018-05-01
In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.
20180312 - Mechanistic Modeling of Developmental Defects through Computational Embryology (SOT)
Significant advances in the genome sciences, in automated high-throughput screening (HTS), and in alternative methods for testing enable rapid profiling of chemical libraries for quantitative effects on diverse cellular activities. While a surfeit of HTS data and information is n...
Potential aerospace applications of high temperature superconductors
NASA Technical Reports Server (NTRS)
Selim, Raouf
1994-01-01
The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on Earth Orbit Systems (EOS) with HTS leads. IR detectors on these EOS missions are cooled to a 4.2K to improve their signal to noise ratio. They are connected to data acquisitions systems using manganin wires (low thermal conductors) to reduce the heat load on the cryogen. Replacing these wires with HTS leads will increase the lifetime of these missions by about 50 percent. This is a promising application that is ready for actual implementation on such systems. The analysis also show that an the number of IR detectors increase in larger EOS systems, substantial increase in the lifetime of each mission will be realized by using HTS leads instead of the manganin ones.
Design of Current Leads for the MICE Coupling Magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Li, L.K.; Wu, Hong
2008-04-02
A pair of superconducting coupling magnets will be part of the Muon Ionization Cooling Experiment (MICE). They were designed and will be constructed by the Institute of Cryogenics and Superconductivity Technology, Harbin Institute of Technology, in collaboration with Lawrence Berkeley National Laboratory. The coupling magnet is to be cooled by using cryocoolers at 4.2K. In order to reduce the heat leak to the 4.2K cold mass from 300 K, a pair of current leads composed of conventional copper leads and high temperature superconductor (HTS) leads will be used to supply current to the magnet. This paper presents the optimization ofmore » the conventional conduction-cooled metal leads for the coupling magnet. Analyses on heat transfer down the leads using theoretical method and numerical simulation were carried out. The stray magnetic field around the HTS leads has been calculated and effects of the magnetic field on the performance of the HTS leads has also been analyzed.« less
High-throughput screening technologies for botulinum neurotoxins.
Bompiani, Kristin M; Dickerson, Tobin J
2014-01-01
Botulinum neurotoxins (BoNTs) are a class of bacterial neurotoxins that are the most potent toxic compounds reported to date. Exposure to relatively low concentrations of the toxin protein can result in major muscle paralysis, which may result in death in severe cases. In addition to their role in natural human disease, BoNTs are currently under close scrutiny because of their potential to be used as biowarfare agents. Clinical treatment options for botulism are currently limited, and finite stockpiles of antitoxin exist. In light of current bioterrorist threats, researchers have focused on identifying new molecules that can be applied to either sensitive toxin detection or improved clinical treatment. High-throughput screening (HTS) is a laboratory technique commonly employed to screen large libraries of diverse compounds based on specific compound binding capabilities or function. Here we review existing HTS platforms that have been applied to identify novel BoNT diagnostic or therapeutic agents. HTS platforms for screening antibodies, peptides, small molecules, and aptamers are described, as well as the screening results and current progress of the identified compounds.
Sedykh, Alexander; Zhu, Hao; Tang, Hao; Zhang, Liying; Richard, Ann; Rusyn, Ivan; Tropsha, Alexander
2011-01-01
Background Quantitative high-throughput screening (qHTS) assays are increasingly being used to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the National Institutes of Health Chemical Genomics Center. Objectives Our goal was to test a hypothesis that dose–response data points of the qHTS assays can serve as biological descriptors of assayed chemicals and, when combined with conventional chemical descriptors, improve the accuracy of quantitative structure–activity relationship (QSAR) models applied to prediction of in vivo toxicity end points. Methods We obtained cell viability qHTS concentration–response data for 1,408 substances assayed in 13 cell lines from PubChem; for a subset of these compounds, rodent acute toxicity half-maximal lethal dose (LD50) data were also available. We used the k nearest neighbor classification and random forest QSAR methods to model LD50 data using chemical descriptors either alone (conventional models) or combined with biological descriptors derived from the concentration–response qHTS data (hybrid models). Critical to our approach was the use of a novel noise-filtering algorithm to treat qHTS data. Results Both the external classification accuracy and coverage (i.e., fraction of compounds in the external set that fall within the applicability domain) of the hybrid QSAR models were superior to conventional models. Conclusions Concentration–response qHTS data may serve as informative biological descriptors of molecules that, when combined with conventional chemical descriptors, may considerably improve the accuracy and utility of computational approaches for predicting in vivo animal toxicity end points. PMID:20980217
Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
NASA Technical Reports Server (NTRS)
Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.
1995-01-01
A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.
AOPs and Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making
As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will b...
A Robotic Platform for Quantitative High-Throughput Screening
Michael, Sam; Auld, Douglas; Klumpp, Carleen; Jadhav, Ajit; Zheng, Wei; Thorne, Natasha; Austin, Christopher P.; Inglese, James
2008-01-01
Abstract High-throughput screening (HTS) is increasingly being adopted in academic institutions, where the decoupling of screening and drug development has led to unique challenges, as well as novel uses of instrumentation, assay formulations, and software tools. Advances in technology have made automated unattended screening in the 1,536-well plate format broadly accessible and have further facilitated the exploration of new technologies and approaches to screening. A case in point is our recently developed quantitative HTS (qHTS) paradigm, which tests each library compound at multiple concentrations to construct concentration-response curves (CRCs) generating a comprehensive data set for each assay. The practical implementation of qHTS for cell-based and biochemical assays across libraries of > 100,000 compounds (e.g., between 700,000 and 2,000,000 sample wells tested) requires maximal efficiency and miniaturization and the ability to easily accommodate many different assay formats and screening protocols. Here, we describe the design and utilization of a fully integrated and automated screening system for qHTS at the National Institutes of Health's Chemical Genomics Center. We report system productivity, reliability, and flexibility, as well as modifications made to increase throughput, add additional capabilities, and address limitations. The combination of this system and qHTS has led to the generation of over 6 million CRCs from > 120 assays in the last 3 years and is a technology that can be widely implemented to increase efficiency of screening and lead generation. PMID:19035846
Development and Validation of a Computational Model for Androgen Receptor Activity
2016-01-01
Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have potential weak AR pathway activity. PMID:27933809
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... January 1, 1989, such merchandise was classifiable under item numbers 610.3231, 610.3234, 610.3241, 610... currently classifiable under HTS item numbers 7306.30.1000, 7306.30.5025, 7306.30.5032, 7306.30.5040, 7306.30.5055, 7306.30.5085, 7306.30.5090. As with the TSUSA numbers, the HTS numbers are provided for...
Chiu, Weihsueh A.; Guyton, Kathryn Z.; Martin, Matthew T.; Reif, David M.; Rusyn, Ivan
2017-01-01
Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112 -113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets peroxisome proliferator activated and other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of “induces oxidative stress” and “alters cell proliferation, cell death or nutrient supply” and filling gaps for “modulates receptor-mediated effects.” Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations. PMID:28738424
Chiu, Weihsueh A; Guyton, Kathryn Z; Martin, Matthew T; Reif, David M; Rusyn, Ivan
2018-01-01
Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.
Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assess...
High throughput screening technologies for ion channels
Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang
2016-01-01
Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056
Flux pumping for non-insulated and metal-insulated HTS coils
NASA Astrophysics Data System (ADS)
Ma, Jun; Geng, Jianzhao; Coombs, T. A.
2018-01-01
High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.
NASA Astrophysics Data System (ADS)
Eaton, Russell
2002-01-01
The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .
Potential escalation of heat-related working costs with climate and socioeconomic changes in China
Zhao, Yan; Sultan, Benjamin; Vautard, Robert; Braconnot, Pascale; Wang, Huijun J.; Ducharne, Agnes
2016-01-01
Global climate change will increase the frequency of hot temperatures, impairing health and productivity for millions of working people and raising labor costs. In mainland China, high-temperature subsidies (HTSs) are allocated to employees for each working day in extremely hot environments, but the potential heat-related increase in labor cost has not been evaluated so far. Here, we estimate the potential HTS cost in current and future climates under different scenarios of socioeconomic development and radiative forcing (Representative Concentration Pathway), taking uncertainties from the climate model structure and bias correction into account. On average, the total HTS in China is estimated at 38.6 billion yuan/y (US $6.22 billion/y) over the 1979–2005 period, which is equivalent to 0.2% of the gross domestic product (GDP). Assuming that the HTS standards (per employee per hot day) remain unchanged throughout the 21st century, the total HTS may reach 250 billion yuan/y in the 2030s and 1,000 billion yuan/y in 2100. We further show that, without specific adaptation, the increased HTS cost is mainly determined by population growth until the 2030s and climate change after the mid-21st century because of increasingly frequent hot weather. Accounting for the likely possibility that HTS standards follow the wages, the share of GDP devoted to HTS could become as high as 3% at the end of 21st century. PMID:27044089
Feriani, Daniele Jardim; Gonçalves, Ivan de Oliveira; Asano, Ricardo Yukio; Aguiar, Samuel da Silva; Uchida, Marco Carlos
2017-01-01
Purpose. The present study aimed to investigate the impact of a 6-month multicomponent exercise program (MCEP) on physical function and cognitive parameters of normotensive (NTS) and hypertensive (HTS) older patients and verify if age can influence the adaptations in response to the exercise. Methods. A total of 218 subjects, 101 NTS and 117 HTS, were recruited and underwent functional and cognitive evaluations before and after six months of a MCEP. The program of exercise was performed twice a week, for 26 weeks. The physical exercises were thought to mimic the activities of daily living and, therefore, aggregated functional and walking exercises. Exercise sessions were performed at moderate intensity. Results. Data indicated that HTS and NST patients showed a similar increase in the performance of walking speed test and one-leg stand test after the MCEP. Regarding age, results did not show differences in the magnitude of adaptations between old and young HTS and NTS patients. Conclusions. Data of the present study indicated that a 6-month MCEP was able to increase equally balance and mobility in NTS and HTS patients. Moreover, data demonstrated that aging did not seem to impair the capacity to adapt in response to exercise in both groups. PMID:28409030
The effect of temperature on pinning mechanisms in HTS composites
NASA Astrophysics Data System (ADS)
Sotnikova, A. P.; Rudnev, I. A.
2016-09-01
Pinning mechanism in samples of second generation tapes (2G) of high-temperature superconductors (HTS) was studied The critical current and the pinning force were calculated from the magnetization curves measured in the temperature range of 4.2 - 77 K in magnetic fields up to 14 Tesla using vibration sample magnetometer. To determine the pinning mechanism the dependences of pinning force on magnetic field were constructed according to the Dew-Hughes model and Kramer's rule. The obtained dependences revealed a significant influence of the temperature on effectiveness of different types of pinning. At low temperatures the 2G HTS tapes of different manufacturers demonstrated an equal efficiency of the pinning centers but with temperature increase the differences in pinning mechanisms as well as in properties and effectiveness of the pinning centers become obvious. The influence of the pinning mechanism on the energy losses in HTS tapes was shown.
Potential impact of high temperature superconductors on MAGLEV transportation
NASA Astrophysics Data System (ADS)
Hull, J. R.
1992-02-01
This report describes the potential impact that high-temperature superconductors (HTS's) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTS's is described. Areas identified for possible impact on maglev technology are: (1) liquid-nitrogen-cooled levitation magnets; (2) magnetic-field shielding of the passenger compartment; (3) superconducting magnetic energy storage for wayside power; (4) superconducting bearings for flywheel energy storage for wayside power; (5) downleads to continuously powered liquid-helium-cooled levitation magnets; and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTS's in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.
Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems
NASA Astrophysics Data System (ADS)
Hazra, Abhik; Das, Saborni; Basu, Mousumi
2018-06-01
This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.
Placing and preserving priorities: projects, productivity, progress and people
Babiak, John
1998-01-01
High throughput screening (HTS) involves using automated equipment to test a large number of samples against a defined molecular target to identify a reasonable number of active molecules in a timely fashion. Major factors which can influence priorities for the limited resources of the HTS group are projects, productivity, progress and people. The challenge to the HTS group is to provide excellent and timely screening services, but still devote efforts to new technologies and personnel development. This article explains why these factors are so important. PMID:18924829
Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems
NASA Astrophysics Data System (ADS)
Hazra, Abhik; Das, Saborni; Basu, Mousumi
2018-03-01
This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.
South African HIV self-testing policy and guidance considerations
Jankelowitz, Lauren; Adams, Siraaj; Msimanga, Busisiwe R.; Nevhutalu, Zwoitwaho; Rhagnath, Naleni; Shroufi, Amir; Devillé, Walter; Kazangarare, Victoria; van der Wiel, Renee; Templeman, Hugo; Conradie, Francesca; Chidarikire, Thato; Gray, Andy
2017-01-01
The gap in HIV testing remains significant and new modalities such as HIV self-testing (HIVST) have been recommended to reach key and under-tested populations. In December 2016, the World Health Organization (WHO) released the Guidelines on HIV Self-Testing and Partner Notification: A Supplement to the Consolidated Guidelines on HIV Testing Services (HTS) and urged member countries to develop HIVST policy and regulatory frameworks. In South Africa, HIVST was included as a supplementary strategy in the National HIV Testing Services Policy in 2016, and recently, guidelines for HIVST were included in the South African National Strategic Plan for HIV, sexually transmitted infections and tuberculosis 2017–2022. This document serves as an additional guidance for the National HIV Testing Services Policy 2016, with specific focus on HIVST. It is intended for policy advocates, clinical and non-clinical HTS providers, health facility managers and healthcare providers in private and public health facilities, non-governmental, community-based and faith-based organisations involved in HTS and outreach, device manufacturers, workplace programmes and institutes of higher education. PMID:29568643
Jagannatha, Aniruddha Tekkatte; Sriganesh, Kamath; Devi, Bhagavatula Indira; Rao, Ganne Sesha Umamaheswara
2016-05-01
The impact of hypertonic saline (HTS) on long term control of intracranial hypertension (ICH) is yet to be established. The current prospective randomized controlled study was carried out in 38 patients with severe traumatic brain injury (TBI). Over 450 episodes of refractory ICH were treated with equiosmolar boluses of 20% mannitol in 20 patients and 3.0% HTS in 18 subjects. Intracranial pressure (ICP) was monitored for 6days. ICP and cerebral perfusion pressure (CPP) were comparable between the groups. The mannitol group had a progressive increase in the ICP over the study period (p=0.01). A similar increase was not seen in the HTS group (p=0.1). The percentage time for which the ICP remained below a threshold of 20 mmHg on day6 was higher in the HTS group (63% versus 49%; p=0.3). The duration of inotrope requirement in the HTS group was less compared to the mannitol group (p=0.06). The slope of fall in ICP in response to a bolus dose at a given baseline value of ICP was higher with HTS compared to mannitol (p=0.0001). In-hospital mortality tended to be lower in the HTS group (3 versus 10; p=0.07) while mortality at 6 months was not different between the groups (6 versus 10; p=0.41). Dichotomized Glasgow Outcome Scale scores at 6months were comparable between the groups (p=0.21). To conclude, immediate physiological advantages seen with HTS over mannitol did not translate into long term benefit on ICP/CPP control or mortality of patients with TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficient and lightweight current leads
NASA Astrophysics Data System (ADS)
Bromberg, L.; Dietz, A. J.; Michael, P. C.; Gold, C.; Cheadle, M.
2014-01-01
Current leads generate substantial cryogenic heat loads in short length High Temperature Superconductor (HTS) distribution systems. Thermal conduction, as well as Joule losses (I2R) along the current leads, comprises the largest cryogenic loads for short distribution systems. Current leads with two temperature stages have been designed, constructed and tested, with the goal of minimizing the electrical power consumption, and to provide thermal margin for the cable. We present the design of a two-stage current lead system, operating at 140 K and 55 K. This design is very attractive when implemented with a turbo-Brayton cycle refrigerator (two-stage), with substantial power and weight reduction. A heat exchanger is used at each temperature station, with conduction-cooled stages in-between. Compact, efficient heat exchangers are challenging, because of the gaseous coolant. Design, optimization and performance of the heat exchangers used for the current leads will be presented. We have made extensive use of CFD models for optimizing hydraulic and thermal performance of the heat exchangers. The methodology and the results of the optimization process will be discussed. The use of demountable connections between the cable and the terminations allows for ease of assembly, but require means of aggressively cooling the region of the joint. We will also discuss the cooling of the joint. We have fabricated a 7 m, 5 kA cable with second generation HTS tapes. The performance of the system will be described.
Can trained lay providers perform HIV testing services? A review of national HIV testing policies.
Flynn, David E; Johnson, Cheryl; Sands, Anita; Wong, Vincent; Figueroa, Carmen; Baggaley, Rachel
2017-01-04
Only an estimated 54% of people living with HIV are aware of their status. Despite progress scaling up HIV testing services (HTS), a testing gap remains. Delivery of HTS by lay providers may help close this testing gap, while also increasing uptake and acceptability of HIV testing among key populations and other priority groups. 50 National HIV testing policies were collated from WHO country intelligence databases, contacts and testing program websites. Data regarding lay provider use for HTS was extracted and collated. Our search had no geographical or language restrictions. This data was then compared with reported data from the Global AIDS Response Progress Reporting (GARPR) from July 2015. Forty-two percent of countries permit lay providers to perform HIV testing and 56% permit lay providers to administer pre-and post-test counseling. Comparative analysis with GARPR found that less than half (46%) of reported data from countries were consistent with their corresponding national HIV testing policy. Given the low uptake of lay provider use globally and their proven use in increasing HIV testing, countries should consider revising policies to support lay provider testing using rapid diagnostic tests.
An alternative is to perform a set of relatively inexpensive and rapid high throughput screening (HTS) assays, derive signatures predictive of effects or modes of chemical toxicity from the HTS data, then use these predictions to prioritize chemicals for more detailed analysis. T...
We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...
The EPA ToxCast™ research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I contains 309 well-characterized chemicals which are mostly pesticides tested in over 600 assays of different molecular targets, cel...
NASA Astrophysics Data System (ADS)
Ta, Wurui; Shao, Tianchong; Gao, Yuanwen
2018-04-01
High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.
Design, development and calibration of HTS wire based LOX level sensor probe
NASA Astrophysics Data System (ADS)
Karunanithi, R.; Jacob, S.; Nadig, D. S.; Prasad, M. V. N.; Gour, A. S.; Gowthaman, M.; Deekshith, P.; Shrivastava, V.
2014-01-01
For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.
Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1996-01-01
Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction model. A methodology was presented for the estimation of the thermal conductivities of the individual HTS thermal bridge materials and the effective thermal conductivities of the composite HTS thermal bridges as functions of temperature. This methodology included a sensitivity analysis and the demonstration of the estimation procedure using simulated data with added random errors. The thermal conductivities could not be estimated as functions of temperature; thus the effective thermal conductivities of the HTS thermal bridges were analyzed as constants.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1991-01-01
Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. Cassini and Comet Rendezvous/Asteroid Fly-by (CRAF), both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is slated for a 1994 launch. Cassini was chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn's orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer, the Composite Infrared Spectrometer (CIRS), for the Cassini mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement, and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce the 1/4 noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using a metal-organic chemical vapor deposition (MOCVD) technique.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1990-01-01
Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. CRAF and CASSINI, both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is a cometary rendezvous mission slated for a 1994 launch. CASSINI has been chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer (CIRS) that will be proposed for the CASSINI mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce th 1/f noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using an MOCVD technique.
Modeling AC ripple currents in HTS coated conductors by integral equations
NASA Astrophysics Data System (ADS)
Grilli, Francesco; Xu, Zhihan
2016-12-01
In several HTS applications, the superconducting tapes experience the simultaneous presence of DC and AC excitations. For example in high-current DC cables, where the transport current is not perfectly constant, but it exhibits some ripples at different frequencies introduced by the rectification process (AC-DC conversion). These ripples give rise to dissipation, whose magnitude and possible influence on the device's cooling requirements need to be evaluated. Here we report a study of the AC losses in a HTS coated conductor subjected to DC currents and AC ripples simultaneously. The modeling approach is based on an integral equation method for thin superconductors: the superconducting tape is modeled as a 1-D object with a non-linear resistivity, which includes the dependence of the critical current density Jc on the magnetic field. The model, implemented in a commercial finite-element program, runs very fast (the simulation of one AC cycle typically takes a few seconds on standard desktop workstation): this allows simulating a large number of cycles and estimating when the AC ripple losses stabilize to a constant value. The model is used to study the influence of the flux creep power index n on the stabilization speed and on the AC loss values, as well as the effect of using a field-dependent Jc instead of a constant one. The simulations confirm that the dissipation level should not be a practical concern in HTS DC cables. At the same time, however, they reveal a strong dependence of the results upon the power index n and the form of Jc , which spurs the question whether the power-law is the most suitable description of the superconductor's electrical behavior for this kind of analysis.
High-Throughput Toxicity Testing: New Strategies for ...
In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it
Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.F.; Fan, C.; Ruan, J.Z.
1994-12-31
A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less
Still, Kristina B. M.; Nandlal, Randjana S. S.; Slagboom, Julien; Somsen, Govert W.; Kool, Jeroen
2017-01-01
Coagulation assays currently employed are often low throughput, require specialized equipment and/or require large blood/plasma samples. This study describes the development, optimization and early application of a generic low-volume and high-throughput screening (HTS) assay for coagulation activity. The assay is a time-course spectrophotometric measurement which kinetically measures the clotting profile of bovine or human plasma incubated with Ca2+ and a test compound. The HTS assay can be a valuable new tool for coagulation diagnostics in hospitals, for research in coagulation disorders, for drug discovery and for venom research. A major effect following envenomation by many venomous snakes is perturbation of blood coagulation caused by haemotoxic compounds present in the venom. These compounds, such as anticoagulants, are potential leads in drug discovery for cardiovascular diseases. The assay was implemented in an integrated analytical approach consisting of reversed-phase liquid chromatography (LC) for separation of crude venom components in combination with parallel post-column coagulation screening and mass spectrometry (MS). The approach was applied for the rapid assessment and identification of profiles of haemotoxic compounds in snake venoms. Procoagulant and anticoagulant activities were correlated with accurate masses from the parallel MS measurements, facilitating the detection of peptides showing strong anticoagulant activity. PMID:29186818
Background: Quantitative high-throughput screening (qHTS) assays are increasingly being employed to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in co...
Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics (TK). While HTS generates in vitro bioactivity d...
Development of superconducting magnetic bearing using superconducting coil and bulk superconductor
NASA Astrophysics Data System (ADS)
Seino, H.; Nagashima, K.; Arai, Y.
2008-02-01
The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.
Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)
NASA Astrophysics Data System (ADS)
Weinstock, H.
1993-04-01
In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.
Logares, Ramiro; Haverkamp, Thomas H A; Kumar, Surendra; Lanzén, Anders; Nederbragt, Alexander J; Quince, Christopher; Kauserud, Håvard
2012-10-01
The incursion of High-Throughput Sequencing (HTS) in environmental microbiology brings unique opportunities and challenges. HTS now allows a high-resolution exploration of the vast taxonomic and metabolic diversity present in the microbial world, which can provide an exceptional insight on global ecosystem functioning, ecological processes and evolution. This exploration has also economic potential, as we will have access to the evolutionary innovation present in microbial metabolisms, which could be used for biotechnological development. HTS is also challenging the research community, and the current bottleneck is present in the data analysis side. At the moment, researchers are in a sequence data deluge, with sequencing throughput advancing faster than the computer power needed for data analysis. However, new tools and approaches are being developed constantly and the whole process could be depicted as a fast co-evolution between sequencing technology, informatics and microbiologists. In this work, we examine the most popular and recently commercialized HTS platforms as well as bioinformatics methods for data handling and analysis used in microbial metagenomics. This non-exhaustive review is intended to serve as a broad state-of-the-art guide to researchers expanding into this rapidly evolving field. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of a 100 kVA high temperature superconducting demonstration synchronous generator
NASA Astrophysics Data System (ADS)
Al-Mosawi, M. K.; Beduz, C.; Goddard, K.; Sykulski, J. K.; Yang, Y.; Xu, B.; Ship, K. S.; Stoll, R.; Stephen, N. G.
2002-08-01
The paper presents the main features of a 100 kVA high temperature superconducting (HTS) demonstrator generator, which is designed and being built at the University of Southampton. The generator is a 2-pole synchronous machine with a conventional 3-phase stator and a HTS rotor operating in the temperature range 57-77 K using either liquid nitrogen down to 65 K or liquid air down to 57 K. Liquid air has not been used before in the refrigeration of HTS devices but has recently been commercialised by BOC as a safe alternative to nitrogen for use in freezing of food. The generator will use an existing stator with a bore of 330 mm. The rotor is designed with a magnetic core (invar) to reduce the magnetising current and the field in the coils. For ease of manufacture, a hybrid salient pole construction is used, and the superconducting winding consists of twelve 50-turn identical flat coils. Magnetic invar rings will be used between adjacent HTS coils of the winding to divert the normal component of the magnetic field away from the Bi2223 superconducting tapes. To avoid excessive eddy-current losses in the rotor pole faces, a cold copper screen will be placed around the rotor core to exclude ac magnetic fields.
Superconductor bearings, flywheels and transportation
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.
2012-01-01
This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.
NASA Astrophysics Data System (ADS)
Tang, Junjie; Li, Jing; Li, Xiang; Han, Le
2018-03-01
High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.
The essential roles of chemistry in high-throughput screening triage
Dahlin, Jayme L; Walters, Michael A
2015-01-01
It is increasingly clear that academic high-throughput screening (HTS) and virtual HTS triage suffers from a lack of scientists trained in the art and science of early drug discovery chemistry. Many recent publications report the discovery of compounds by screening that are most likely artifacts or promiscuous bioactive compounds, and these results are not placed into the context of previous studies. For HTS to be most successful, it is our contention that there must exist an early partnership between biologists and medicinal chemists. Their combined skill sets are necessary to design robust assays and efficient workflows that will weed out assay artifacts, false positives, promiscuous bioactive compounds and intractable screening hits, efforts that ultimately give projects a better chance at identifying truly useful chemical matter. Expertise in medicinal chemistry, cheminformatics and purification sciences (analytical chemistry) can enhance the post-HTS triage process by quickly removing these problematic chemotypes from consideration, while simultaneously prioritizing the more promising chemical matter for follow-up testing. It is only when biologists and chemists collaborate effectively that HTS can manifest its full promise. PMID:25163000
NASA Technical Reports Server (NTRS)
1982-01-01
Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.
Large-scale HTS bulks for magnetic application
NASA Astrophysics Data System (ADS)
Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter
2013-01-01
ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.
Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe
2017-01-01
High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986
BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.
Fosso, Bruno; Santamaria, Monica; Marzano, Marinella; Alonso-Alemany, Daniel; Valiente, Gabriel; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano
2015-07-01
Substantial advances in microbiology, molecular evolution and biodiversity have been carried out in recent years thanks to Metagenomics, which allows to unveil the composition and functions of mixed microbial communities in any environmental niche. If the investigation is aimed only at the microbiome taxonomic structure, a target-based metagenomic approach, here also referred as Meta-barcoding, is generally applied. This approach commonly involves the selective amplification of a species-specific genetic marker (DNA meta-barcode) in the whole taxonomic range of interest and the exploration of its taxon-related variants through High-Throughput Sequencing (HTS) technologies. The accessibility to proper computational systems for the large-scale bioinformatic analysis of HTS data represents, currently, one of the major challenges in advanced Meta-barcoding projects. BioMaS (Bioinformatic analysis of Metagenomic AmpliconS) is a new bioinformatic pipeline designed to support biomolecular researchers involved in taxonomic studies of environmental microbial communities by a completely automated workflow, comprehensive of all the fundamental steps, from raw sequence data upload and cleaning to final taxonomic identification, that are absolutely required in an appropriately designed Meta-barcoding HTS-based experiment. In its current version, BioMaS allows the analysis of both bacterial and fungal environments starting directly from the raw sequencing data from either Roche 454 or Illumina HTS platforms, following two alternative paths, respectively. BioMaS is implemented into a public web service available at https://recasgateway.ba.infn.it/ and is also available in Galaxy at http://galaxy.cloud.ba.infn.it:8080 (only for Illumina data). BioMaS is a friendly pipeline for Meta-barcoding HTS data analysis specifically designed for users without particular computing skills. A comparative benchmark, carried out by using a simulated dataset suitably designed to broadly represent the currently known bacterial and fungal world, showed that BioMaS outperforms QIIME and MOTHUR in terms of extent and accuracy of deep taxonomic sequence assignments.
High voltage design structure for high temperature superconducting device
Tekletsadik, Kasegn D [Rexford, NY
2008-05-20
In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.
2013-01-01
Following recent trends in environmental microbiology, food microbiology has benefited from the advances in molecular biology and adopted novel strategies to detect, identify, and monitor microbes in food. An in-depth study of the microbial diversity in food can now be achieved by using high-throughput sequencing (HTS) approaches after direct nucleic acid extraction from the sample to be studied. In this review, the workflow of applying culture-independent HTS to food matrices is described. The current scenario and future perspectives of HTS uses to study food microbiota are presented, and the decision-making process leading to the best choice of working conditions to fulfill the specific needs of food research is described. PMID:23475615
NASA Astrophysics Data System (ADS)
Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook
2013-11-01
High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
Older Adults' Perceptions of Home Telehealth Services
Brenčič, Maja Makovec; Trkman, Peter; de Leonni Stanonik, Mateja
2013-01-01
Abstract The success of home telemedicine depends on end-user adoption, which has been slow despite rapid advances in technological development. This study focuses on an examination of significant factors that may predict the successful adoption of home telemedicine services (HTS) among older adults. Based on previous studies in the fields of remote patient monitoring, assisted living technologies, and consumer health information technology acceptance, eight factors were identified as a framework for qualitative testing. Twelve focus groups were conducted with an older population living in both urban and rural environments. The results reveal seven predictors that play an important role in perceptions of HTS: perceived usefulness, effort expectancy, social influence, perceived security, computer anxiety, facilitating conditions, and physicians' opinion. The results provide important insights in the field of older adults' acceptance of HTS, with guidelines for the strategic planning, developing, and marketing of HTS for the graying market. PMID:23931702
Hole-doped cuprate high temperature superconductors
NASA Astrophysics Data System (ADS)
Chu, C. W.; Deng, L. Z.; Lv, B.
2015-07-01
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
Chakravorty, Subhas J; Chan, James; Greenwood, Marie Nicole; Popa-Burke, Ioana; Remlinger, Katja S; Pickett, Stephen D; Green, Darren V S; Fillmore, Martin C; Dean, Tony W; Luengo, Juan I; Macarrón, Ricardo
2018-07-01
High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.
The Development and Demonstration of a 360m/10 kA HTS DC Power Cable
NASA Astrophysics Data System (ADS)
Xiao, Liye
With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.
Smartphone-Based Hearing Screening in Noisy Environments
Na, Youngmin; Joo, Hyo Sung; Yang, Hyejin; Kang, Soojin; Hong, Sung Hwa; Woo, Jihwan
2014-01-01
It is important and recommended to detect hearing loss as soon as possible. If it is found early, proper treatment may help improve hearing and reduce the negative consequences of hearing loss. In this study, we developed smartphone-based hearing screening methods that can ubiquitously test hearing. However, environmental noise generally results in the loss of ear sensitivity, which causes a hearing threshold shift (HTS). To overcome this limitation in the hearing screening location, we developed a correction algorithm to reduce the HTS effect. A built-in microphone and headphone were calibrated to provide the standard units of measure. The HTSs in the presence of either white or babble noise were systematically investigated to determine the mean HTS as a function of noise level. When the hearing screening application runs, the smartphone automatically measures the environmental noise and provides the HTS value to correct the hearing threshold. A comparison to pure tone audiometry shows that this hearing screening method in the presence of noise could closely estimate the hearing threshold. We expect that the proposed ubiquitous hearing test method could be used as a simple hearing screening tool and could alert the user if they suffer from hearing loss. PMID:24926692
Engineering design of a high-temperature superconductor current lead
NASA Astrophysics Data System (ADS)
Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Daugherty, M. A.; Buckles, W. E.
As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.
Huang, Shuguang; Yeo, Adeline A; Li, Shuyu Dan
2007-10-01
The Kolmogorov-Smirnov (K-S) test is a statistical method often used for comparing two distributions. In high-throughput screening (HTS) studies, such distributions usually arise from the phenotype of independent cell populations. However, the K-S test has been criticized for being overly sensitive in applications, and it often detects a statistically significant difference that is not biologically meaningful. One major reason is that there is a common phenomenon in HTS studies that systematic drifting exists among the distributions due to reasons such as instrument variation, plate edge effect, accidental difference in sample handling, etc. In particular, in high-content cellular imaging experiments, the location shift could be dramatic since some compounds themselves are fluorescent. This oversensitivity of the K-S test is particularly overpowered in cellular assays where the sample sizes are very big (usually several thousands). In this paper, a modified K-S test is proposed to deal with the nonspecific location-shift problem in HTS studies. Specifically, we propose that the distributions are "normalized" by density curve alignment before the K-S test is conducted. In applications to simulation data and real experimental data, the results show that the proposed method has improved specificity.
Development of a REBCO HTS magnet for Maglev - repeated bending tests of HTS pancake coils -
NASA Astrophysics Data System (ADS)
Sugino, Motohikoa; Mizuno, Katsutoshi; Tanaka, Minoru; Ogata, Masafumi
2018-01-01
In the past study, two manufacturing methods were developed that can manufacture pancake coils by using REBCO coated conductors. It was confirmed that the conductors have no electric degradation that caused by the manufacturing method. The durability evaluation tests of the pancake coils were conducted as the final evaluation of the coil manufacturing method in this study. The repeated bending deformation was applied to manufactured pancake coils in the tests. As the results of these tests, it was confirmed that the pancake coils that were manufactured by two methods had the durability for the repeated bending deformation and the coils maintained the appropriate mechanical performance and electric performance. We adopted the fusion bonding method as the coil manufacturing method of the HTS magnet Furthermore, using the prototype pancake coil that was manufactured by the fusion bonding method as a test sample, the repeated bending test under the exited condition was conducted. Thus it was confirmed that the coil manufactured by the fusion bonding method has no degradation of the electricity performance and the mechanical properties even if the repeated bending deformation was applied under the exited condition.
Microwave signal-processing applications of HTS films
NASA Astrophysics Data System (ADS)
Adam, J. D.; Wagner, G. R.
1990-01-01
The low surface resistance (Rs) of high-temperature superconductors (HTS) will lead to the development of passive microwave devices for application in radar, electronic warfare, and satellite systems with performance significantly better than achieved with normal conductors. In particular, delay line based devices such as phase shifters, convolvers, and correlators will have low lossses and multi-GHz bandwidths. Low-loss filters which presently occupy cubic feet in waveguide will be fabricated in compact microstrip or stripline, and ultra-high Q resonators which currently require liquid helium refrigeration will be operated at around 77 K. Measurement of Rs of HTS is important both for device design and for optimization of the film growth process. Several approaches have been developed which provide data over a wide range of frequency and temperature, including stripline, cacity, and dielectric resonator techniques. HTS films for microwave applications should have at least Rs(HTS(
Superconducting dc Current Limiting Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Bunin, R. A.; Voloshin, I. F.; Degtyarenko, P. N.; Yevsin, D. V.; Ivanov, V. P.; Sidorov, V. A.; Fisher, L. M.; Tshai, E. V.
Acircuitofadc superconductingfault current limiter witha direct current circuit-breaker fora nominal current 300A is proposed. It includes the 2G high temperature superconducting (HTS) tapes and the high-speed dc vacuum circuit breaker.Thetestresultsof current-limitingcapacityandrecoverytimeof superconductivityafter currentfaultatvoltage upto3 kV are presented.
Using information from historical high-throughput screens to predict active compounds.
Riniker, Sereina; Wang, Yuan; Jenkins, Jeremy L; Landrum, Gregory A
2014-07-28
Modern high-throughput screening (HTS) is a well-established approach for hit finding in drug discovery that is routinely employed in the pharmaceutical industry to screen more than a million compounds within a few weeks. However, as the industry shifts to more disease-relevant but more complex phenotypic screens, the focus has moved to piloting smaller but smarter chemically/biologically diverse subsets followed by an expansion around hit compounds. One standard method for doing this is to train a machine-learning (ML) model with the chemical fingerprints of the tested subset of molecules and then select the next compounds based on the predictions of this model. An alternative approach would be to take advantage of the wealth of bioactivity information contained in older (full-deck) screens using so-called HTS fingerprints, where each element of the fingerprint corresponds to the outcome of a particular assay, as input to machine-learning algorithms. We constructed HTS fingerprints using two collections of data: 93 in-house assays and 95 publicly available assays from PubChem. For each source, an additional set of 51 and 46 assays, respectively, was collected for testing. Three different ML methods, random forest (RF), logistic regression (LR), and naïve Bayes (NB), were investigated for both the HTS fingerprint and a chemical fingerprint, Morgan2. RF was found to be best suited for learning from HTS fingerprints yielding area under the receiver operating characteristic curve (AUC) values >0.8 for 78% of the internal assays and enrichment factors at 5% (EF(5%)) >10 for 55% of the assays. The RF(HTS-fp) generally outperformed the LR trained with Morgan2, which was the best ML method for the chemical fingerprint, for the majority of assays. In addition, HTS fingerprints were found to retrieve more diverse chemotypes. Combining the two models through heterogeneous classifier fusion led to a similar or better performance than the best individual model for all assays. Further validation using a pair of in-house assays and data from a confirmatory screen--including a prospective set of around 2000 compounds selected based on our approach--confirmed the good performance. Thus, the combination of machine-learning with HTS fingerprints and chemical fingerprints utilizes information from both domains and presents a very promising approach for hit expansion, leading to more hits. The source code used with the public data is provided.
The use of high-throughput screening techniques to evaluate mitochondrial toxicity.
Wills, Lauren P
2017-11-01
Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.
The ToxCast Chemical Landscape - Paving the Road to 21st ...
The ToxCast high-throughput screening (HTS) program within the U.S. Environmental Protection Agency (EPA) was launched in 2007. Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay endpoints. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in public release of screening data at the end of 2013. Concurrently, a larger EPA library of 3726 chemicals (including the Phase II chemicals) was undergoing screening in the cross-federal agency Tox21 HTS project. Four years later, Phase III of EPA’s ToxCast program is actively screening a diverse library consisting of more than 3800 chemicals, 96% of which are also undergoing Tox21 screening. The majority of ToxCast studies, to date, have focused on using HTS results to build biologically based models for predicting in vivo toxicity endpoints. The focus of the present article, in contrast, is on the EPA chemical library underpinning these efforts. A history of the phased construction of EPA’s ToxCast library is presented, considering factors influencing chemical selection as well as the various quality measures implemented. Next, Chemical Abstracts Service Registry Numbers (CASRN), which were used to compile initial chemical nominations for ToxCast testing, are used to assess overlaps of the current ToxCast library with important toxicity, regulatory, and exposure inventories. Lastly, ToxCast chemicals are described in terms of generaliz
Hydrolyzable tannin analysis in food.
Arapitsas, Panagiotis
2012-12-01
The discovery of plant polyphenols in food is perhaps one of the biggest breakthroughs in modern food science. Plant polyphenols are known for their role in food quality and safety, since they contribute significantly to taste, flavour, colour, stability etc., while they are increasingly recognised as important factors in long-term health, contributing towards reducing the risk of chronic disease. Almost 200years ago, hydrolyzable tannins (HTs) were the first group of plant polyphenols subjected to analytical chemical research. Despite the lack of commercially available standards, food analysis research offers a wealth of papers dealing with extraction optimisation, identification and quantification of HTs. The object of this review is to summarise analytical chemistry applications and the tools currently used for the analysis of HTs in food. Copyright © 2012 Elsevier Ltd. All rights reserved.
1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer
NASA Astrophysics Data System (ADS)
Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.
2002-05-01
A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.
Tal, Tamara; Kilty, Claire; Smith, Andrew; LaLone, Carlie; Kennedy, Brendán; Tennant, Alan; McCollum, Catherine W; Bondesson, Maria; Knudsen, Thomas; Padilla, Stephanie; Kleinstreuer, Nicole
2017-06-01
Chemically-induced vascular toxicity during embryonic development may cause a wide range of adverse effects. To identify putative vascular disrupting chemicals (pVDCs), a predictive pVDC signature was constructed from 124 U.S. EPA ToxCast high-throughput screening (HTS) assays and used to rank 1060 chemicals for their potential to disrupt vascular development. Thirty-seven compounds were selected for targeted testing in transgenic Tg(kdrl:EGFP) and Tg(fli1:EGFP) zebrafish embryos to identify chemicals that impair developmental angiogenesis. We hypothesized that zebrafish angiogenesis toxicity data would correlate with human cell-based and cell-free in vitro HTS ToxCast data. Univariate statistical associations used to filter HTS data based on correlations with zebrafish angiogenic inhibition in vivo revealed 132 total significant associations, 33 of which were already captured in the pVDC signature, and 689 non-significant assay associations. Correlated assays were enriched in cytokine and extracellular matrix pathways. Taken together, the findings indicate the utility of zebrafish assays to evaluate an HTS-based predictive toxicity signature and also provide an experimental basis for expansion of the pVDC signature with novel HTS assays. Published by Elsevier Inc.
Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid
NASA Astrophysics Data System (ADS)
Malozemoff, A. P.
2012-08-01
Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.
Moussavou-Boundzanga, Pamela; Koumakpayi, Ismaël Hervé; Labouba, Ingrid; Leroy, Eric M; Belembaogo, Ernest; Berthet, Nicolas
2017-12-21
Cervical cancer is the fourth most common malignancy in women worldwide. However, screening with human papillomavirus (HPV) molecular tests holds promise for reducing cervical cancer incidence and mortality in low- and middle-income countries. The performance of the Abbott RealTime High-Risk HPV test (AbRT) was evaluated in 83 cervical smear specimens and compared with a conventional nested PCR coupled to high-throughput sequencing (HTS) to identify the amplicons. The AbRT assay detected at least one HPV genotype in 44.57% of women regardless of the grade of cervical abnormalities. Except for one case, good concordance was observed for the genotypes detected with the AbRT assay in the high-risk HPV category determined with HTS of the amplicon generated by conventional nested PCR. The AbRT test is an easy and reliable molecular tool and was as sensitive as conventional nested PCR in cervical smear specimens for detection HPVs associated with high-grade lesions. Moreover, sequencing amplicons using an HTS approach effectively identified the genotype of the hrHPV identified with the AbRT test.
Novel model of stator design to reduce the mass of superconducting generators
NASA Astrophysics Data System (ADS)
Kails, Kevin; Li, Quan; Mueller, Markus
2018-05-01
High temperature superconductors (HTS), with much higher current density than conventional copper wires, make it feasible to develop very powerful and compact power generators. Thus, they are considered as one promising solution for large (10 + MW) direct-drive offshore wind turbines due to their low tower head mass. However, most HTS generator designs are based on a radial topology, which requires an excessive amount of HTS material and suffers from cooling and reliability issues. Axial flux machines on the other hand offer higher torque/volume ratios than the radial machines, which makes them an attractive option where space and transportation becomes an issue. However, their disadvantage is heavy structural mass. In this paper a novel stator design is introduced for HTS axial flux machines which enables a reduction in their structural mass. The stator is for the first time designed with a 45° angle that deviates the air gap closing forces into the vertical direction reducing the axial forces. The reduced axial forces improve the structural stability and consequently simplify their structural design. The novel methodology was then validated through an existing design of the HTS axial flux machine achieving a ∼10% mass reduction from 126 tonnes down to 115 tonnes. In addition, the air gap flux density increases due to the new claw pole shapes improving its power density from 53.19 to 61.90 W kg‑1. It is expected that the HTS axial flux machines designed with the new methodology offer a competitive advantage over other proposed superconducting generator designs in terms of cost, reliability and power density.
Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z
2010-05-17
Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a Magneto-Resistive Angular Position Sensor for Space Mechanisms
NASA Technical Reports Server (NTRS)
Hahn, Robert; Schmidt, Tilo; Seifart, Klaus; Olberts, Bastian; Romera, Fernando
2016-01-01
Magnetic microsystems in the form of magneto-resistive (MR) sensors are firmly established in automobiles and industrial applications. They are used to measure travel, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In some science missions, the technology is already applied, however, the designs are proprietary and case specific, for instance in case of the angular sensors used for JPL/NASA's Mars rover Curiosity [1]. Since 2013 HTS GmbH and Sensitec GmbH have teamed up to develop and qualify a standardized yet flexible to use MR angular sensor for space mechanisms. Starting with a first assessment study and market survey performed under ESA contract, a very strong industry interest in novel, contactless position measurement means was found. Currently a detailed and comprehensive development program is being performed by HTS and Sensitec. The objective of this program is to advance the sensor design up to Engineering Qualification Model level and to perform qualification testing for a representative space application. The paper briefly reviews the basics of magneto-resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The key applications and specification are presented and the preliminary baseline mechanical and electrical design will be discussed. An outlook on the upcoming development and test stages as well as the qualification program will be provided.
Yozova, Ivayla D; Howard, Judith; Henke, Diana; Dirkmann, Daniel; Adamik, Katja N
2017-06-19
Hyperosmolar therapy with either mannitol or hypertonic saline (HTS) is commonly used in the treatment of intracranial hypertension (ICH). In vitro data indicate that both mannitol and HTS affect coagulation and platelet function in dogs. The aim of this study was to compare the effects of 20% mannitol and 7.2% HTS on whole blood coagulation using rotational thromboelastometry (ROTEM®) and platelet function using a platelet function analyzer (PFA®) in dogs with suspected ICH. Thirty client-owned dogs with suspected ICH needing osmotherapy were randomized to receive either 20% mannitol (5 ml/kg IV over 15 min) or 7.2% HTS (4 ml/kg IV over 5 min). ROTEM® (EXTEM® and FIBTEM® assays) and PFA® analyses (collagen/ADP cartridges) were performed before (T 0 ), as well as 5 (T 5 ), 60 (T 60 ) and 120 (T 120 ) minutes after administration of HTS or mannitol. Data at T 5 , T 60 and T 120 were analyzed as a percentage of values at T 0 for comparison between groups, and as absolute values for comparison between time points, respectively. No significant difference was found between the groups for the percentage change of any parameter at any time point except for FIBTEM® clotting time. Within each group, no significant difference was found between time points for any parameter except for FIBTEM® clotting time in the HTS group, and EXTEM® and FIBTEM® maximum clot firmness in the mannitol group. Median ROTEM® values lay within institutional reference intervals in both groups at all time points, whereas median PFA® values were above the reference intervals at T 5 (both groups) and T 60 (HTS group). Using currently recommended doses, mannitol and HTS do not differ in their effects on whole blood coagulation and platelet function in dogs with suspected ICH. Moreover, no relevant impairment of whole blood coagulation was found following treatment with either solution, whereas a short-lived impairment of platelet function was found after both solutions.
Weak links in high critical temperature superconductors
NASA Astrophysics Data System (ADS)
Tafuri, Francesco; Kirtley, John R.
2005-11-01
The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.
NASA Astrophysics Data System (ADS)
Kim, K. L.; Song, J. B.; Choi, J. H.; Kim, S. H.; Y Koh, D.; Seong, K. C.; Chang, H. M.; Lee, H. G.
2010-12-01
A cooling system that uses solid nitrogen (SN2) as an effective heat capacity enhancer was recently introduced to enhance the thermal stability of the HTS SMES. Since SN2 has a large enthalpy with minimal weight, it enables a portable system by increasing the recooling to recooling time period (RRTP). However, contact between the SN2 and HTS SMES magnet can be broken by repeated thermal disturbances (thermal 'dry-out' phenomena). Therefore, it is essential to improve thermal contact to allow full use of the heat capacity of SN2. This study evaluated the effect of using a mixture containing SN2 and a small amount of a liquid cryogen as a cooling system in the HTS SMES system. The performance of the cooling system was evaluated using the mixed cryogen and compared with that of SN2 alone. In addition, the role of liquid neon (Ne) as a heat exchanger between SN2 and the HTS SMES magnet is discussed.
2010-06-01
2009, Northrop Grumman and American Superconductor, under an Office of Naval Research contract, successfully tested a HTS AC synchronous motor (HTS ACSM...BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE June 2010 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND
NASA Astrophysics Data System (ADS)
Hekmati, Arsalan; Aliahmadi, Mehdi
2016-12-01
High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.
NASA Astrophysics Data System (ADS)
Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.
2018-07-01
We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.
Towards liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience
NASA Astrophysics Data System (ADS)
Iwasa, Yukikazu
2017-05-01
In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB2 MRI magnets. Before reporting on our MgB2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen—I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB2 magnets, I and II, developed after discovery of MgB2 in 2000. The SN2-MgB2 Magnet II—0.5 T/240 mm, SN2-cooled, and operated in persistent mode—was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5 T/70 mm SN2-MgB2 ‘finger’ MRI magnet for osteoporosis screening—we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB2 MRI magnets.
Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience.
Iwasa, Yukikazu
2017-01-01
In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB 2 MRI magnets. Before reporting on our MgB 2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen-I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB 2 magnets, I and II, developed after discovery of MgB 2 in 2000. The SN2-MgB 2 Magnet II-0.5-T/240-mm, SN2-cooled, and operated in persistent mode-was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB 2 "finger" MRI magnet for osteoporosis screening-we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB 2 MRI magnets.
Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience
Iwasa, Yukikazu
2017-01-01
In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB2 MRI magnets. Before reporting on our MgB2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen—I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB2 magnets, I and II, developed after discovery of MgB2 in 2000. The SN2-MgB2 Magnet II—0.5-T/240-mm, SN2-cooled, and operated in persistent mode—was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB2 “finger” MRI magnet for osteoporosis screening—we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB2 MRI magnets. PMID:29568161
NASA Technical Reports Server (NTRS)
Aron, Paul R.; Myers, Ira T.
1988-01-01
Some important space based electrical power distribution systems and components are examined to determine what might be achieved with the introduction of high temperature superconductors (HTS). Components that are compared in a before-and-after fashion include transformers, transmission lines, and capacitors. It is concluded that HTS has its greatest effect on the weight associated with transmission lines, where the weight penalty could be reduced by as much as 130 kg/kW/km of cable. Transformers, because 28 percent of their mass is in the conductor, are reduced in weight by the same factor. Capacitors are helped the least with only negligible savings possible. Finally, because HTS can relax the requirement to use alternating current in order to reduce conductor mass, it will be possible to generate significant savings by eliminating most transformers and capacitors.
NASA Technical Reports Server (NTRS)
Aron, Paul R.; Myers, Ira T.
1988-01-01
Some important space based electrical power distribution systems and components are examined to determine what might be achieved with the introduction of high temperature superconductors (HTS). Components that are compared in a before and after fashion include transformers, transmission lines, and capacitors. It is concluded that HTS has its greatest effect on the weight associated with transmission lines, where the weight penalty could be reduced by as much as 130 kg/kW/km of cable. Transformers, because 28 percent of their mass is in the conductor, are reduced in weight by the same factor. Capacitors are helped the least with only negligible savings possible. Finally, because HTS can relax the requirement to use alternating current in order to reduce conductor mass, it will be possible to generate significant savings by eliminating most transformers and capacitors.
AC Loss Measurements on a 2G YBCO Coil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W
2011-01-01
The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype highmore » voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.« less
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2014-09-01
This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.
2G HTS wires made on 30 μm thick Hastelloy substrate
NASA Astrophysics Data System (ADS)
Sundaram, A.; Zhang, Y.; Knoll, A. R.; Abraimov, D.; Brownsey, P.; Kasahara, M.; Carota, G. M.; Nakasaki, R.; Cameron, J. B.; Schwab, G.; Hope, L. V.; Schmidt, R. M.; Kuraseko, H.; Fukushima, T.; Hazelton, D. W.
2016-10-01
REBCO (RE = rare earth) based high temperature superconducting (HTS) wires are now being utilized for the development of electric and electromagnetic devices for various industrial, scientific and medical applications. In the last several years, the increasing efforts in using the so-called second generation (2G) HTS wires for some of the applications require a further increase in their engineering current density (J e). The applications are those typically related to high magnetic fields where the higher J e of a REBCO wire, in addition to its higher irreversibility fields and higher mechanical strength, is already a major advantage over other superconducting wires. An effective way to increase the J e is to decrease the total thickness of a wire, for which using a thinner substrate becomes an obvious and attractive approach. By using our IBAD-MOCVD (ion beam assisted deposition-metal organic chemical vapor deposition) technology we have successfully made 2G HTS wires using a Hastelloy® C276 substrate that is only 30 μm in thickness. By using this thinner substrate instead of the typical 50 μm thick substrate and with a same critical current (I c), the J e of a wire can be increased by 30% to 45% depending on the copper stabilizer thickness. In this paper, we report the fabrication and characterization of the 2G HTS wires made on the 30 μm thick Hastelloy® C276 substrate. It was shown that with the optimization in the processing protocol, the surface of the thinner Hastelloy® C276 substrate can be readily electropolished to the quality needed for the deposition of the buffer stack. Same in the architecture as that on the standard 50 μm thick substrate, the buffer stack made on the 30 μm thick substrate showed an in-plane texture with a Δϕ of around 6.7° in the LaMnO3 cap layer. Low-temperature in-field transport measurement results suggest that the wires on the thinner substrate had achieved equivalent superconducting performance, most importantly the I c, as those on the 50 μm thick substrate. It is expected the 2G HTS wires made on the 30 μm thick Hastelloy® C276 substrate, the thinnest and with the highest J e to date, will greatly benefit such applications as high field magnets and high current cables.
A novel HTS magnetic levitation dining table
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Huang, Huiying
2018-05-01
High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.
PubChem BioAssay: A Decade's Development toward Open High-Throughput Screening Data Sharing.
Wang, Yanli; Cheng, Tiejun; Bryant, Stephen H
2017-07-01
High-throughput screening (HTS) is now routinely conducted for drug discovery by both pharmaceutical companies and screening centers at academic institutions and universities. Rapid advance in assay development, robot automation, and computer technology has led to the generation of terabytes of data in screening laboratories. Despite the technology development toward HTS productivity, fewer efforts were devoted to HTS data integration and sharing. As a result, the huge amount of HTS data was rarely made available to the public. To fill this gap, the PubChem BioAssay database ( https://www.ncbi.nlm.nih.gov/pcassay/ ) was set up in 2004 to provide open access to the screening results tested on chemicals and RNAi reagents. With more than 10 years' development and contributions from the community, PubChem has now become the largest public repository for chemical structures and biological data, which provides an information platform to worldwide researchers supporting drug development, medicinal chemistry study, and chemical biology research. This work presents a review of the HTS data content in the PubChem BioAssay database and the progress of data deposition to stimulate knowledge discovery and data sharing. It also provides a description of the database's data standard and basic utilities facilitating information access and use for new users.
Wood, Brent; Wu, David; Crossley, Beryl; Dai, Yunfeng; Williamson, David; Gawad, Charles; Borowitz, Michael J.; Devidas, Meenakshi; Maloney, Kelly W.; Larsen, Eric; Winick, Naomi; Raetz, Elizabeth; Carroll, William L.; Hunger, Stephen P.; Loh, Mignon L.; Robins, Harlan
2018-01-01
Early response to induction chemotherapy is an important prognostic factor in B-lymphoblastic leukemia (B-ALL). Here, we compare high-throughput sequencing (HTS) of IGH and TRG genes vs flow cytometry (FC) for measurable residual disease (MRD) detection at the end of induction chemotherapy in pediatric patients with newly diagnosed B-ALL. Six hundred nineteen paired pretreatment and end-of-induction bone marrow samples from Children’s Oncology Group studies AALL0331 (clinicaltrials.gov #NCT00103285) (standard risk [SR]; with MRD by FC at any level) and AALL0232 (clinicaltrials.gov #NCT00075725) (high risk; with day 29 MRD <0.1% by FC) were evaluated by HTS and FC for event-free (EFS) and overall survival (OS). HTS and FC showed similar 5-year EFS and OS for MRD-positive and -negative patients using an MRD threshold of 0.01%. However, there was a high discordant rate with HTS identifying 55 (38.7%) more patients MRD positive at this threshold. These discrepant patients have worse outcomes than FC MRD-negative patients. In addition, the increased analytic sensitivity of HTS permitted identification of 19.9% of SR patients without MRD at any detectable level who had excellent 5-year EFS (98.1%) and OS (100%). The higher analytic sensitivity and lower false-negative rate of HTS improves upon FC for MRD detection in pediatric B-ALL by identifying a novel subset of patients at end of induction who are essentially cured using current chemotherapy and identifying MRD at 0.01% in up to one-third of patients who are missed at the same threshold by FC. PMID:29284596
EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...
Courtenay-Quirk, Cari; Spindler, Hilary; Leidich, Aimee; Bachanas, Pam
2016-12-01
Strategic, high quality HIV testing services (HTS) delivery is an essential step towards reaching the end of AIDS by 2030. We conducted HTS Data Use workshops in five African countries to increase data use for strategic program decision-making. Feedback was collected on the extent to which workshop skills and tools were applied in practice and to identify future capacity-building needs. We later conducted six semistructured phone interviews with workshop planning teams and sent a web-based survey to 92 past participants. The HTS Data Use workshops provided accessible tools that were readily learned by most respondents. While most respondents reported increased confidence in interpreting data and frequency of using such tools over time, planning team representatives indicated ongoing needs for more automated tools that can function across data systems. To achieve ambitious global HIV/AIDS targets, national decision makers may continue to seek tools and skill-building opportunities to monitor programs and identify opportunities to refine strategies.
A study on the required performance of a 2G HTS wire for HTS wind power generators
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun
2016-05-01
YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.
Improvements and Performance of the Fermilab Solenoid Test Facility
Orris, Darryl; Arnold, Don; Brandt, Jeffrey; ...
2017-06-01
Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less
Improvements and Performance of the Fermilab Solenoid Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, Darryl; Arnold, Don; Brandt, Jeffrey
Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less
High-temperature superconductors for space power transmission lines
NASA Astrophysics Data System (ADS)
Hull, John R.; Myers, Ira T.
1989-08-01
Analysis of high temperature superconductors (HTS) for space power transmission lines shows that they have the potential to provide low weight alternatives to conventional power distribution systems, especially for line lengths greater than 100 m. The use of directional radiators, combined with the natural vacuum of space, offers the possibility of reducing or eliminating the heat flux from the environment that dominates loss in terrestrial systems. This leads to scaling laws that favor flat conductor geometries. From a total launch weight viewpoint, HTS transmission lines appear superior, even with presently attainable values of current density.
Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method
NASA Astrophysics Data System (ADS)
Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.
2009-02-01
Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.
NASA Astrophysics Data System (ADS)
Gromoll, B.
2004-06-01
For the future high temperature superconductivity, HTS, series products new refrigerators are essential. Demands are made on these which are only partly fulfilled by refrigerators available in the market today. This refers to cooling power, initial cost and in particular reliability. Without proper refrigeration techniques it will be almost impossible to bring HTS products to the market. Based on the experiences made by the construction and operation of HTS prototypes within our company, like the 400 kW motor, 1.2 MVA current limiter and 1 MVA traction-transformer provided with refrigerators which are available in the market today, criteria have been established to identify the future technical and economical requirements. These criteria apply to efficiency, maintainability, operation flexibility, feasibility of integration and performance/cost ratio. For the temperature range of 20 K to 77 K cooling with Gifford-McMahon, Pulse Tube, Stirling and Mixture-Cascade refrigerators are applicable. The development potential of these processes are compared for the different applications in future series products. Presented are the necessary steps towards reliable and economic refrigerators from the viewpoint of an equipment manufacturer. These are essential for a market entry in the year 2008.
A compact 3 T all HTS cryogen-free MRI system
NASA Astrophysics Data System (ADS)
Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.
2017-12-01
We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.
Rabe, Kaitlin G; Matsuse, Hiroo; Jackson, Anthony; Segal, Neil A
2018-05-28
Knee osteoarthritis (OA) is a leading cause of disability that is associated with quadriceps weakness. However, strengthening in people with or with risk factors for knee OA can be poorly tolerated. To assess the efficacy of a twelve-week low-load exercise program, using a hybrid training system (HTS) that utilizes the combination of neuromuscular electrical stimulation and volitional contractions, for improving thigh muscle strength, knee pain and physical performance in women with or with risk factors for knee OA. Randomized, single-blind, controlled trial SETTING: Exercise training laboratory PARTICIPANTS: Forty-two women, age 44-85 years, with risk factors for knee OA INTERVENTIONS: Participants randomized to 12 weeks of biweekly low-load resistance training either with HTS or on an isokinetic dynamometer (control). Maximum isokinetic knee extensor torque. Secondary measures included: maximum isokinetic knee flexor torque, knee pain (KOOS), and timed 20-meter walk and chair-stand tests. HTS and control both resulted in muscle strengthening, reduced knee pain and improved physical performance. HTS group quadriceps and hamstring strength increased by 0.06±0.04 Nm/kg (p>.05) and 0.05±0.02 Nm/kg (p=.02), respectively. Control group quadriceps and hamstring strength increased by 0.03±0.04 Nm/kg (p>.05) and 0.06±0.02 Nm/kg (p=.009), respectively. Knee pain improved by 11.9±11.5 points (p<.001) for the HTS group and 14.1±15.4 points (p=.001) for the control group. 20-meter walk time decreased by 1.60±2.04 seconds (p=.005) and 0.95±1.2 seconds (p=.004), and chair stand time decreased by 4.8±10.0 seconds (p>.05) and 1.9±4.7 seconds (p>.05) in the HTS and control groups, respectively. These results did not differ statistically between HTS and control groups. These results suggest HTS is effective for improving pain and physical performance in women with risk factors for knee OA. However, HTS does not appear to be superior to low-load resistance training for improving muscle strength, pain or physical function. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry
NASA Astrophysics Data System (ADS)
Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June
2017-07-01
High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.
Open Access High Throughput Drug Discovery in the Public Domain: A Mount Everest in the Making
Roy, Anuradha; McDonald, Peter R.; Sittampalam, Sitta; Chaguturu, Rathnam
2013-01-01
High throughput screening (HTS) facilitates screening large numbers of compounds against a biochemical target of interest using validated biological or biophysical assays. In recent years, a significant number of drugs in clinical trails originated from HTS campaigns, validating HTS as a bona fide mechanism for hit finding. In the current drug discovery landscape, the pharmaceutical industry is embracing open innovation strategies with academia to maximize their research capabilities and to feed their drug discovery pipeline. The goals of academic research have therefore expanded from target identification and validation to probe discovery, chemical genomics, and compound library screening. This trend is reflected in the emergence of HTS centers in the public domain over the past decade, ranging in size from modestly equipped academic screening centers to well endowed Molecular Libraries Probe Centers Network (MLPCN) centers funded by the NIH Roadmap initiative. These centers facilitate a comprehensive approach to probe discovery in academia and utilize both classical and cutting-edge assay technologies for executing primary and secondary screening campaigns. The various facets of academic HTS centers as well as their implications on technology transfer and drug discovery are discussed, and a roadmap for successful drug discovery in the public domain is presented. New lead discovery against therapeutic targets, especially those involving the rare and neglected diseases, is indeed a Mount Everestonian size task, and requires diligent implementation of pharmaceutical industry’s best practices for a successful outcome. PMID:20809896
NASA Astrophysics Data System (ADS)
Matsumoto, S.; Kiyoshi, T.; Otsuka, A.; Hamada, M.; Maeda, H.; Yanagisawa, Y.; Nakagome, H.; Suematsu, H.
2012-02-01
High-temperature superconducting (HTS) magnets are believed to be a practical option in the development of high field nuclear magnetic resonance (NMR) systems. The development of a 600 MHz NMR system that uses an HTS magnet and a probe with an HTS radio frequency coil is underway. The HTS NMR magnet is expected to reduce the volume occupied by the magnet and to encourage users to install higher field NMR systems. The tolerance to high tensile stress is expected for HTS conductors in order to reduce the magnet in volume. A layer-wound Gd-Ba-Cu-O (GdBCO) insert coil was fabricated in order to investigate its properties under a high electromagnetic force in a high magnetic field. The GdBCO insert coil was successfully operated at a current of up to 321 A and an electromagnetic force BJR of 408 MPa in an external magnetic field generated by Nb3Sn and Nb-Ti low-temperature superconducting coils. The GdBCO insert coil also managed to generate a magnetic field of 6.8 T at the center of the coil in an external magnetic field of 17.2 T. The superconducting magnet consisting of GdBCO, Nb3Sn and Nb-Ti coils successfully generated a magnetic field of 24.0 T at 4.2 K, which represents a new record for a superconducting magnet.
Centrifuge advances using HTS magnetic bearings
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.
2001-05-01
Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.
Liotta, Eric M; Lizza, Bryan D; Romanova, Anna L; Guth, James C; Berman, Michael D; Carroll, Timothy J; Francis, Brandon; Ganger, Daniel; Ladner, Daniela P; Maas, Matthew B; Naidech, Andrew M
2016-01-01
Objective Cerebral edema is common in severe hepatic encephalopathy and may be life-threatening. Bolus 23.4% hypertonic saline (HTS) improves surveillance neuromonitoring scores, although its mechanism of action is not clearly established. We investigated the hypothesis that bolus HTS decreases cerebral edema in severe hepatic encephalopathy utilizing a quantitative technique to measure brain and CSF volume changes. Design Retrospective analysis of serial computed tomography (CT) scans and clinical data for a case-control series was performed. Setting Intensive care units of a tertiary care hospital. Patients Patients with severe hepatic encephalopathy treated with 23.4% HTS and control patients who did not receive 23.4% HTS. Methods We used clinically obtained CT scans to measure volumes of the ventricles, intracranial CSF, and brain using a previously validated semi-automated technique (Analyze Direct; Overland Park, KS). Volumes before and after 23.4% HTS were compared with Wilcoxon signed-rank test. Associations between total CSF volume, ventricular volume, serum sodium, and Glasgow Coma Scale Scores were assessed using Spearman correlation. Results Eleven patients with 18 administrations of 23.4% HTS met inclusion criteria. Total CSF (median 47.6 [35.1–69.4] to 61.9 [47.7–87.0] mL, p<0.001) and ventricular volumes (median 8.0 [6.9–9.5] to 9.2 [7.8–11.9] mL, p=0.002) increased and Glasgow Coma Scale Scores improved (median 4 [3–6] to 7 [6–9], p=0.008) after 23.4% HTS. In contrast, total CSF and ventricular volumes decreased in untreated control patients. Serum sodium increase was associated with increase in total CSF volume (r=0.83, p<0.001) and change in total CSF volume was associated with ventricular volume change (r=0.86, p<0.001). Conclusions Total CSF and ventricular volumes increased after 23.4% HTS, consistent with a reduction in brain tissue volume. Total CSF and ventricular volume change may be useful quantitative measures to assess cerebral edema in severe hepatic encephalopathy. PMID:26308431
Design of a Very Large Pulse Tube Cryocooler for HTS Cable Application
NASA Astrophysics Data System (ADS)
Tanchon, J.; Ercolani, E.; Trollier, T.; Ravex, A.; Poncet, J. M.
2006-04-01
The needs for large cooling powers are more and more increasing together with the increase of superconductor capabilities. Within the framework of an High Voltage HTS cable project (LIPA project funded by the DOE with American Superconductor AMSC, Nexans, LIPA and Air Liquide as consortium partners), the Technologies & Innovation Department of Air Liquide with the partnership of the CEA/SBT are currently developing a prototype of a Very Large Pulse Tube Cooler (VLPTC). This prototype is traditionally based on an In-Line pulse tube configuration, making use of an inertance and a buffer volume as phase shifter. The expected performances are 280W heat lift at 65K with a 300K rejection temperature. The cold head prototype has been manufactured and preliminary tests have been carried out with a 8 kW flexure bearing Stirling Technology Corporation STC linear compressor. One of the objectives of this prototype is to compete the Gifford-MacMahon coolers in term of cooling capacity while offering the advantage of the high frequency Pulse Tube in term of high lifetime, reliability and reduced exported vibrations.
Recent Development Status of Stirling Type Pulse Tube Cryocooler for HTS
NASA Astrophysics Data System (ADS)
Hiratsuka, Y.; Nakano, K.; Kato, T.
2014-05-01
Sumitomo Heavy Industries, Ltd. (SHI) has been developing a high power stirling type pulse tube cryocooler. For the purpose of cooling high-temperature superconductor (HTS) devices, such as superconductor motor, SMES and current fault limiter, requested specifications from the devices to a cryocooler are compact size, light weight, high efficiency and high reliability. Especially, the cryocooler must be demanded COP > 0.1 in the efficiency. The experimental results of prototype pulse tube cryocooler were reported in June 2012 [1]. For an In-line type expander, the cooling capacity was 210 W at 77 K and the minimum temperature was 37 K when the compressor input power was 3.8 kW and the operating frequency was 49 Hz. Accordingly, COP was about 0.055. Moreover, for miniaturization a U type expander was tested and the performance is about 10 % less than that of an In-line type expander. After that, we have estimated that the cooling performance is influenced by the environment such as the effect of the pulse-tube inclination, the temperature and the flowing quantity of cooling water. The detailed results are reported in this paper.
History of HTS motor development at Reliance Electric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, R.
1994-07-29
A review of the High Temperature Superconducting (HTS) motor development program at Reliance Electric is presented. The project was initiated in 1987 by EPRI to investigate the use of high temperature superconducting materials in electric motors. Liquid nitrogen was proposed as the HTS winding coolant. The ultimate goal, motivation, motor type and HTS wire requirements as well as the program milestones are outlined. It was concluded that the HTS motor development has paralleled wire development; progress continues toward the goal of large horsepower HTS motors for commercial applications; the team is well on the way toward completing the design ofmore » a 125 hp, 1800 rpm motor with HTS coils cooled to 20 to 40 K; and the program is a vital step in the development of HTS motors.« less
Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment
NASA Astrophysics Data System (ADS)
Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.
2014-01-01
We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.
Hygiene-therapists could be used to screen for dental caries and periodontal disease.
Richards, Derek
2015-12-01
A purposive sample of large NHS dental practices with a minimum of three surgeries employing at least one hygiene-therapist (HT) was taken. Asymptomatic patients attending for routine checkups who consented to the study underwent a screen by H-T for dental caries and periodontal disease (index test) followed by a screen by a general dental practitioner (reference test). Patients were recruited consecutively. H-Ts and dentists attended a compulsory training day, which covered recruitment, consenting, screening process, calibration using stock photographs and patient record form completion. Diagnostic threshold for caries was any tooth in the patient's mouth that showed evidence of frank cavitation or shadowing and opacity that would indicate dental caries into the dentine. The diagnostic threshold for periodontal disease was any pocket in the patient's mouth where the black-band of a basic periodontal examination (BPE) probe (3.5 to 5.5 mm) partially or totally disappeared (ie BPE code 3). The index test was compared with the reference test to determine true-positive, false-positive, false-negative and true-negative values. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic odds ratios are shown in Table 1. Eighteen hundred and ninety-nine patients consented to dental screening with 996 patients being randomly allocated to see the dentist first and 903 H-T first. The time interval between the index and reference test never exceeded 21 minutes. With the exception of two practices failing to collect data on smoking and dentures there were no missing results regarding the outcome of a positive or negative screening decision. No adverse events were reported. Mean screening time was five min 25 s for H-Ts and four min 26 s for dentists. Dentists identified 668 patients with caries (Prevalence of 0.35) while H-Ts classified 548 positive and correctly identified 1,047 of the 1,231 patients with no caries. Dentists identified 1074 patients with at least one pocket exceeding 3.5 mm in depth. Of these 935 were correctly identified by the H-Ts. For the 825 screened as negative by the dentist H-Ts correctly identified 621. The results suggest that hygiene-therapists could be used to screen for dental caries and periodontal disease. This has important ramifications for service design in public-funded health systems.
Heavy Metals in ToxCast: Relevance to Food Safety (SOT) ...
Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals have not been systematically examined for potential toxicities. We describe results from testing a large set of heavy metal-containing compounds in extensive suites of in vitro assays to suggest possible molecular initiating events in toxicity pathways. A broad definition of heavy metals that includes As, Se and organometallics or inorganic salts containing metals in Group III or higher (MW > 40) was used to identify 75 different compounds tested in the EPA’s ToxCast assays encompassing biochemical, cellular and model organism assays. These 75, plus an additional 100 metal-containing compounds, were tested in Tox21 quantitative high-throughput screening (qHTS) assays covering nuclear receptor and stress pathways. Known activities were confirmed such as activation of stress pathways and nuclear receptors (RXR, PPARg) as well as overt cytotoxicity. Specifically, organotin and organomercury were among the most potent of over 8K chemicals tested. The HTS results support known toxicities, including promiscuous GPCR activity for mercury compounds consistent with the neuropsychiatric effects seen in mercury poisoning (Mad Hatter’s Syndrome). As such, HTS approaches provide an efficient method
Flux-transfer losses in helically wound superconducting power cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R; Malozemoff, A P
2013-06-25
Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of eithermore » of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, and its application to the case of paramagnetic substrates including the calculation of this flux-transfer loss, is presented.« less
NASA Astrophysics Data System (ADS)
Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.
2017-11-01
This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.
Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A
2015-12-01
Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.
Space qualified hybrid superconductor/semiconductor planar oscillator circuit
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Chorey, C. M.; Romanofsky, R. R.; Bhasin, K. B.
1995-01-01
We report on the space qualification of a hybrid superconductor/semiconductor planar local oscillator (LO) at 8.4 GHz. This oscillator was designed, fabricated, and tested as a component for the High Temperature Superconductivity Space Experiment 2 (HTSSE-2). The LO consisted of a GaAs MESFET and microstrip circuitry patterned onto a YBa2Cu3O(7-delta) high temperature superconducting (HTS) thin film on a 1.0 x 1.0 sq cm lanthanum aluminate (LaAlO3) substrate. At 77 K, this oscillator achieved power output levels up to 10 dBm into a 50 Ohm load. When incorporated into a full cryogenic receiver, the LO provided output powers within 0.0-3.0 dBm with less than 50 mW of dc power dissipation. Space qualification data on the sensitivity of the HTS films to the processing steps involved in the fabrication of HTS-based components are presented. Data on ohmic contacts, strength of wire bonds made to such contacts, and aging effects as well as vibration test results are discussed.
Babaoglu, Kerim; Simeonov, Anton; Irwin, John J.; Nelson, Michael E.; Feng, Brian; Thomas, Craig J.; Cancian, Laura; Costi, M. Paola; Maltby, David A.; Jadhav, Ajit; Inglese, James; Austin, Christopher P.; Shoichet, Brian K.
2009-01-01
High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate “hit lists”; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against β-lactamase using quantitative HTS (qHTS). Of the 1274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting β-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 µM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens. PMID:18333608
Resistive-Type Fault Current Limiter
NASA Astrophysics Data System (ADS)
Martini, L.; Bocchi, M.; Angeli, G.
Among the wide range of High-Temperature Superconducting (HTS) materials presently known Bismuth Strontium Calcium Copper Oxide (BSCCO) is a very suitable candidate for power applications either at low temperature (e.g. <30K) at any field or at high temperature (e.g. 77K) in self-field conditions. This is due to several advantages of BSCCO from an electrical, thermal, mechanical and economic point of view. In particular, BSCCO has been proven to be particularly suitable for hybrid current leads and HTS cables. However, BSCCO-based Superconducting Fault Current Limiter (SFCL) applications have been an important issue within the Ricerca sul Sistema Energetico (RSE) S.p.A. R&D portfolio in the last decade. The SFCL project, funded in the framework of a R&D national project, started focusing on a preliminary single-phase device, which was submitted to dielectric and short-circuit current testing. The first success paved the way for the finalization of the remaining two phases and the final result was a three-phase resistive-type 9 kV/3.4 MVA SFCL device, based on first generation (1G) BSCCO tapes that was installed in the S. Dionigi substation, belonging to the Italian utility A2A Reti Elettriche S.p.A. (A2A), in the Milan MV distribution grid. The in-field activity lasted for more than two years, demonstrating the SFCL capability to cope with the grid in every-day operating conditions. Moreover, at the end of the experimentation, the SFCL device was able to perform a true limitation during a three-phase fault, thereby becoming one of the first SFCL devices in the world (the first in Italy) installed in a real grid and to have limited a real short-circuit current.
Progress in second-generation HTS wire development and manufacturing
NASA Astrophysics Data System (ADS)
Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J.
2008-09-01
2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current × Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world’s first 2G device installed in the grid.
Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike
2016-07-01
High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Optimization of HTS superconducting magnetic energy storage magnet volume
NASA Astrophysics Data System (ADS)
Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto
2003-08-01
Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.
Seashols-Williams, Sarah; Green, Raquel; Wohlfahrt, Denise; Brand, Angela; Tan-Torres, Antonio Limjuco; Nogales, Francy; Brooks, J Paul; Singh, Baneshwar
2018-05-17
Sequencing and classification of microbial taxa within forensically relevant biological fluids has the potential for applications in the forensic science and biomedical fields. The quantity of bacterial DNA from human samples is currently estimated based on quantity of total DNA isolated. This method can miscalculate bacterial DNA quantity due to the mixed nature of the sample, and consequently library preparation is often unreliable. We developed an assay that can accurately and specifically quantify bacterial DNA within a mixed sample for reliable 16S ribosomal DNA (16S rDNA) library preparation and high throughput sequencing (HTS). A qPCR method was optimized using universal 16S rDNA primers, and a commercially available bacterial community DNA standard was used to develop a precise standard curve. Following qPCR optimization, 16S rDNA libraries from saliva, vaginal and menstrual secretions, urine, and fecal matter were amplified and evaluated at various DNA concentrations; successful HTS data were generated with as low as 20 pg of bacterial DNA. Changes in bacterial DNA quantity did not impact observed relative abundances of major bacterial taxa, but relative abundance changes of minor taxa were observed. Accurate quantification of microbial DNA resulted in consistent, successful library preparations for HTS analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lo, William C. Y.; Villiger, Martin; Golberg, Alexander; Broelsch, G. Felix; Khan, Saiqa; Lian, Christine G.; Austen, William G.; Yarmush, Martin; Bouma, Brett E.
2016-01-01
Hypertrophic scars (HTS), frequently seen after traumatic injuries and surgery, remain a major clinical challenge due to the limited success of existing therapies. A significant obstacle to understanding HTS etiology is the lack of tools to monitor scar remodeling longitudinally and non-invasively. We present an in vivo, label-free technique using polarization-sensitive optical frequency domain imaging (PS-OFDI) for the 3D, longitudinal assessment of collagen remodeling in murine HTS. In this study, HTS was induced with a mechanical tension device for 4 to 10 days on incisional wounds and imaged up to one month after device removal; an excisional HTS model was also imaged at 6 months after injury to investigate deeper and more mature scars. We showed that local retardation (LR) and degree of polarization (DOP) provide a robust signature for HTS. Compared to normal skin with heterogeneous LR and low DOP, HTS was characterized by an initially low LR, which increased as collagen fibers remodeled, and a persistently high DOP. This study demonstrates that PS-OFDI offers a powerful tool to gain significant biological insights into HTS remodeling by enabling longitudinal assessment of collagen in vivo, which is critical to elucidating HTS etiology and developing more effective HTS therapies. PMID:26763427
EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS)and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
Epitaxy of mercury-based high temperature superconducting films on oxide and metal substrates
NASA Astrophysics Data System (ADS)
Xie, Yi-Yuan
High-Tc superconducting (HTS) cuprates are highly anisotropic thus epitaxy along certain crystalline directions is essential to realize high-current-carrying capability at temperatures above 77 K. Hg-based HTS (Hg-HTS) cuprates have the record-high Tc up to 135 K, therefore are of great interest for fundamental research and practical applications. However, growth Of epitaxial Hg-HTS films is extremely difficult in conventional thermal-reaction process since Hg is highly volatile. Motivated by this, we first developed a cation-exchange process for growing epitaxial Hg-HTS films, which involves two steps: selection of precursor matrices with predesigned structure and composition followed by cation-exchange processing. New materials are formed via "atomic surgery" on an existing structure rather than thermal reaction among amorphous oxides in conventional process, thus the structural features of the precursor are inherited by the new material. Using epitaxial Tl-based HTS films as precursor and annealing them in Hg-vapor, epitaxial Hg-HTS films with superior quality have been obtained. This success encouraged us to develop epitaxy on metal tapes for coated conductors and On large-area wafers for electronic devices. For coated conductors, we addressed three critical issues: epitaxy on metal substrates, enhancement of in-field Jcs and scale-up in thickness and length. First, using a fabrication scheme that combines two processes: cation-exchange and fast-temperature-ramping-annealing, epitaxial HgBa2CaCu2O6+delta films were grown on rolling-assisted-biaxially-textured Ni substrates buffered with CeO 2/YSZ/CeO2 for the first time. We fabricated HgBa2CaCu 2O6+delta coated conductors with Tc = 122--124 K and self-field Jc > 1 x 106A/cm2 at 92 K which are record-high for HTS coated conductors. Second, we demonstrated improved in-field J cs via overdoping HgBa2CaCu 2O6+delta films (by means Of charge "overdoped"), heavy-ion-irradiation and substrate engineering. Finally, thick HgBa 2CaCu2O6+delta films show high I c, and spool process also shows potential in middle-length tape fabrication. These results make Hg-HTS films good candidates as power transmission wires/tapes. For large-area epitaxy, ½ inch x ½ inch HgBa2CaCu 2O6+delta films were synthesized on LaAlO3(100) with uniform and high Tcs and Jc s. A new crucible Hg-annealing technique that requires neither vacuum nor torch-sealing has been invented, promising for large-area wafers and long tapes/wires. So far HgBa2CaCu2O6+delta films with good quality have been reproducibly fabricated using this new technique.
Superconducting magnetic Wollaston prism for neutron spin encoding
NASA Astrophysics Data System (ADS)
Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.
2014-05-01
A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.
A Possible Path from BCS through HTS to VHTS
NASA Astrophysics Data System (ADS)
Chu, C. W.
2010-03-01
Three years after celebrating the 50th anniversary of the BCS theory and the 20th anniversary of the discovery of high temperature superconductivity (HTS), it appears to be most fitting for us to contemplate the possibility of very high temperature superconductivity (VHTS). VHTS, preferably at room temperature, if achieved, could change the world both scientifically and technologically. Unfortunately, it has long been considered by some to belong to the domain of science fiction and to occur only ``at an astronomical distance and under an astronomical pressure.'' With the advent of liquid nitrogen superconductivity in 1987, the outlook has become much brighter. Currently, there appears to be no reason, either theoretical or experimental, why VHTS would be impossible, in spite of the 2006 prediction of the death of HTS by 2010-2015 through the so-called scientometric analysis of the publication record of the previous 20 years. The recent discovery of the new class of Fe-pnictide HTSs fuels more cautious optimism. Since its inception, BCS theory has provided the basic framework for the occurrence and understanding of superconductivity, but it has failed to show where and how to find superconductivity at a higher temperature. This may be attributed to the small energy scale of superconductivity in comparison with those of other excitations in the solids. After examining existing data, we believe that a holistic multidisciplinary enlightened empirical approach appears to be the most effective way to discover novel superconductors with higher transition temperatures. In this talk, I shall present several possible approaches toward VHTS that we are currently pursuing, after briefly summarizing what has happened in the long search for HTS and VHTS.
Superconducting magnetic Wollaston prism for neutron spin encoding.
Li, F; Parnell, S R; Hamilton, W A; Maranville, B B; Wang, T; Semerad, R; Baxter, D V; Cremer, J T; Pynn, R
2014-05-01
A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ~30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ~98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.
Strickland, N M; Hoffmann, C; Wimbush, S C
2014-11-01
A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, R.; Ebersberger, B.; Kupfer, C.
SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP)more » finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.« less
Power system applications of high temperature superconductors
NASA Astrophysics Data System (ADS)
Garlick, W. G.
This paper presents an overview of potential applications for high temperature superconductors (HTSs) in the field of power engineering. For almost 10 years material scientists, chemists and physicists have had the freedom to find, explore and characterize the properties of new HTS materials. 10 years is not a long time in the development of a revolutionary technology, but it seems like an age to the engineer who has recognized its potential and waits impatiently for the technology to stabilize in order to apply it. Largely due to Government and Industry partnerships, only a few years after the discovery of HTS, electrical power applications based on HTS are now being designed and tested. These applications offer many benefits to the resident electrical system: increased energy efficiency, smaller equipment, reduced emissions, increased stability and reliability, deferred expansion and flexible transmission and distribution. They have a common focus: lower electricity costs, improved environmental quality and more competitive products for a global market. For HTS to become a commercial success, the development of materials technologies is necessary but not sufficient on its own; the development of a capability to design and manufacture products that use the materials is also fundamental to a viable and successful industrial base.
New fluorescence techniques for high-throughput drug discovery.
Jäger, S; Brand, L; Eggeling, C
2003-12-01
The rapid increase of compound libraries as well as new targets emerging from the Human Genome Project require constant progress in pharmaceutical research. An important tool is High-Throughput Screening (HTS), which has evolved as an indispensable instrument in the pre-clinical target-to-IND (Investigational New Drug) discovery process. HTS requires machinery, which is able to test more than 100,000 potential drug candidates per day with respect to a specific biological activity. This calls for certain experimental demands especially with respect to sensitivity, speed, and statistical accuracy, which are fulfilled by using fluorescence technology instrumentation. In particular the recently developed family of fluorescence techniques, FIDA (Fluorescence Intensity Distribution Analysis), which is based on confocal single-molecule detection, has opened up a new field of HTS applications. This report describes the application of these new techniques as well as of common fluorescence techniques--such as confocal fluorescence lifetime and anisotropy--to HTS. It gives experimental examples and presents advantages and disadvantages of each method. In addition the most common artifacts (auto-fluorescence or quenching by the drug candidates) emerging from the fluorescence detection techniques are highlighted and correction methods for confocal fluorescence read-outs are presented, which are able to circumvent this deficiency.
High-throughput screening of chromatographic separations: II. Hydrophobic interaction.
Kramarczyk, Jack F; Kelley, Brian D; Coffman, Jonathan L
2008-07-01
A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored. (c) 2008 Wiley Periodicals, Inc.
Robustness of Massively Parallel Sequencing Platforms
Kavak, Pınar; Yüksel, Bayram; Aksu, Soner; Kulekci, M. Oguzhan; Güngör, Tunga; Hach, Faraz; Şahinalp, S. Cenk; Alkan, Can; Sağıroğlu, Mahmut Şamil
2015-01-01
The improvements in high throughput sequencing technologies (HTS) made clinical sequencing projects such as ClinSeq and Genomics England feasible. Although there are significant improvements in accuracy and reproducibility of HTS based analyses, the usability of these types of data for diagnostic and prognostic applications necessitates a near perfect data generation. To assess the usability of a widely used HTS platform for accurate and reproducible clinical applications in terms of robustness, we generated whole genome shotgun (WGS) sequence data from the genomes of two human individuals in two different genome sequencing centers. After analyzing the data to characterize SNPs and indels using the same tools (BWA, SAMtools, and GATK), we observed significant number of discrepancies in the call sets. As expected, the most of the disagreements between the call sets were found within genomic regions containing common repeats and segmental duplications, albeit only a small fraction of the discordant variants were within the exons and other functionally relevant regions such as promoters. We conclude that although HTS platforms are sufficiently powerful for providing data for first-pass clinical tests, the variant predictions still need to be confirmed using orthogonal methods before using in clinical applications. PMID:26382624
Malginov, Vladimir A; Malginov, Andrey V; Fleishman, Leonid S
2013-01-01
The quench process in high-temperature superconducting (HTS) wires plays an important role in superconducting power devices, such as fault current limiters, magnets, cables, etc. The superconducting device should survive after the overheating due to quench. We studied the evolution of the resistance of the YBCO tape wire during the quench process with 1 ms time resolution for various excitation voltages. The resistive normal zone was found to be located in a domain of about 1-4 cm long. The normal state nucleation begins in 40-60 ms after voltage is applied across the HTS tape. In subsequent 200-300 ms other normal state regions appear. The normal domain heating continues in the following 5-10s that results in a factor of 2-3 increase of its resistance. Formation of the normal domain during the quench process follows the same stages for different excitation voltages. Characteristic domain sizes, lifetimes and temperatures are determined for all stages.
A novel propulsion method for high- Tc superconducting maglev vehicle
NASA Astrophysics Data System (ADS)
Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu
2008-01-01
High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.
NASA Astrophysics Data System (ADS)
Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu
2013-02-01
We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.
NASA Astrophysics Data System (ADS)
Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.
2011-11-01
A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).
Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu
2010-01-01
This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595
Partial Discharge Characteristics in Composite Insulation Systems with PPLP for HTS Cable
NASA Astrophysics Data System (ADS)
Kikuchi, Y.; Yamashita, K.; Kumada, A.; Hidaka, K.; Tatamidani, K.; Masuda, T.
2014-05-01
The electrical insulation system of high-temperature superconducting (HTS) cable consists of liquid nitrogen (N2(l)) and polypropylene laminated paper (PPLP). Partial discharge (PD) may occur in butt gaps of the insulation layers and its characteristics imply the insulation performance of HTS cables. N2(l) cooling system is installed in the power system and N2(l) will flow through the cables during the system operation. Filling the HTS cable with N2(l) in order to perform pre-shipment inspection is time-consuming and costly for cable manufacturers. Therefore, they are trying to find a cost effective method for pre-shipment inspections. One alternative is to use high pressure gaseous nitrogen (N2(g)) instead of N2(l). This article investigates PD characteristics such as PD inception electric field (PDIE) and PD extinction electric field (PDEE) in butt gaps of HTS cables in 0.1 to 0.3 MPa and 0.1 MPa to 1.0 MPa N2(g) environments. For assessing the surface/volume effects, PD characteristics are measured with changing the size of butt gaps. It turns out that PDIE and PDEE in N2(g) are linearly correlated with those in N2(l) at any gas pressure in our testing, and PDIE in 1.0 MPa N2(g) is almost 30% of that in 0.2 MPa It suggests that PD characteristics in N2(l) can be extrapolated from those in N2(g).
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S
2016-08-15
The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.
High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element
NASA Astrophysics Data System (ADS)
Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.
2006-04-01
A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.
Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut's musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system's orbital operation capability and utility, as well as its preventative effect on an astronaut's musculoskeletal atrophy. HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. These results showed the orbital operation capability and utility, and the preventive effect of HTS for an astronaut's musculoskeletal atrophy. The initial flight data together with the ground data obtained so far will be utilized in the future planning of human space exploration.
High- and Mid-temperature Superconducting Sensors for Far IR/Sub-mm Applications in Space
NASA Technical Reports Server (NTRS)
Lakew, Brook; Brasunas, J. C.
2004-01-01
In this review paper an overview of the potential applications of high Tc (approx. 90 K) superconductors (HTS) and mid-Tc (approx. 39 K) superconductors (MTS) thin films in far IR/Sub-mm thermal detectors is presented. HTSs (YBCO, GdBCO etc.) were discovered in the late 80s while superconductivity in MgB2, an MTS, was discovered in 2001. The sharp transition in transport properties of HTS has allowed the fabrication of composite infrared thermal detectors (bolometers) with better figures of merit than thermopile detectors - thermopiles are currently on board the CIRS instrument on the Cassini mission to Saturn. The potential for developing even more sensitive sensors for IR/Sub-mm applications using MgB2 thin films is assessed. Current MgB2 thin film deposition techniques and film quality are reviewed.
2011-03-01
with Dr. Arkin to address compound selectivity for human RAD54 by testing the 5 lead candidate compounds identified in the HTS in malachite green...Mukherjee is on track to achieve this goal. Task 3 (Months 3-6): Development of malachite green ATPase assay for RAD51/RAD54 Deliverable: HTS...assay for RAD51/RAD54 Dr. Kirk Ehmsen successfully developed and optimized the malachite green ATPase assay (7) for human RAD54 in year 1 of the
Microwave Hybrid Integrated Circuit Applicatins of High Transition Temperature Superconductor
NASA Astrophysics Data System (ADS)
Lu, Shih-Lin
This research work involves microwave characterization of high Tc superconducting (HTS) thin film using microstrip ring resonators, studying the nonlinear properties of HTS thin film transmission lines using two-tone intermodulation technique, coupling mechanisms and coupling factors of microstrip ring resonators side coupled to a microstrip line, two-port S-parameters measurements of GaAs MESFET at low temperature, and the design and implementation of hybrid ring resonator stabilized microwave oscillator using both metal films and superconducting films. A microstrip ring resonators operating at 10 GHz have been fabricated from YBCO HTS thin films deposited on one side of LaAl_2O_3 substrates. Below 60^circ Kelvin the measured unloaded Q of the HTS thin film microstrip ring resonators are more than 1.5 times that of gold film resonators. The two distinct but very close resonance peaks of a ring resonator side coupled to a microstrip line are experimentally identified as due to odd-mode and even-mode coupling. These two mechanisms have different characteristic equivalent circuit models and lead to different coupling coefficients and loaded resonance frequencies. The coupling factors for the two coupling modes are calculated using piecewise coupled line approximations. The two-port S-parameters measurement techniques and GaAs MESFET low temperature DC and microwave characteristics have been investigated. A system errors model including the errors caused by the line constriction at low temperature has been proposed and a temperature errors correction procedure has been developed for the two-port microwave S-parameters measurements at low temperature. The measured GaAs MESFET DC characteristics shows a 20% increase in transconductance at 77^circ K. There is also a 2 db increase in /S21/ at 77^circ K. The microwave oscillator stabilized with both metal and HTS thin film ring resonators have been studied. The tuning ability of the oscillator by a varactor diode has also been investigated. The phase noise performance of one side of the high Tc film oscillator does not show appreciable improvement over the gold film oscillator. With a varactor diode, the oscillator tuning range can be 300 MHz more. Two-tone intermodulation distortion (IMD) at 6.3 GHz in an HTS YBCO superconducting thin film microstrip transmission line on LaAl_2O _3 substrates are experimentally studied. At fixed input power, the 3rd order IMD power as function of temperature shows a minimum at a temperature around 60^circ Kelvin. With DC current applied, the second order IMD is observed and shows a strong functional dependance to the applied DC current and input power.
Long length coated conductor fabrication by inclined substrate deposition and evaporation
NASA Astrophysics Data System (ADS)
Prusseit, W.; Hoffmann, C.; Nemetschek, R.; Sigl, G.; Handke, J.; Lümkemann, A.; Kinder, H.
2006-06-01
The commercial development of coated conductors is rapidly progressing. As a result we present an economic route to produce second generation HTS tape from the initial substrate preparation to the final metal coating. The most important and technically challenging steps are the deposition of an oriented buffer layer and the superconductor film in a reel-to-reel configuration. New evaporation techniques have been developed to enable reliable, high rate tape coating. Highly oriented MgO - buffer layers are realized by inclined substrate deposition (ISD) and DyBCO is deposited by simple e-gun evaporation yielding critical currents beyond 200 A/cm. Coated conductors have been fabricated up to 40 m length and are currently tested in a variety of applications.
Reproducibility of HTS-SQUID magnetocardiography in an unshielded clinical environment.
Leder, U; Schrey, F; Haueisen, J; Dörrer, L; Schreiber, J; Liehr, M; Schwarz, G; Solbrig, O; Figulla, H R; Seidel, P
2001-07-01
A new technology has been developed which measures the magnetic field of the human heart (magnetocardiogram, MCG) by using high temperature superconducting (HTS) sensors. These sensors can be operated at the temperature of liquid nitrogen without electromagnetic shielding. We tested the reproducibility of HTS-MCG measurements in healthy volunteers. Unshielded HTS-MCG measurements were performed in 18 healthy volunteers in left precordial position in two separate sessions in a clinical environment. The heart cycles of 10 min were averaged, smoothed, the baselines were adjusted, and the data were standardized to the respective areas under the curves (AUC) of the absolute values of the QRST amplitudes. The QRS complexes and the ST-T intervals were used to assess the reproducibility of the two measurements. Ratios (R(QRS), R(STT)) were calculated by dividing the AUC of the first measurement by the ones of the second measurement. The linear correlation coefficients (CORR(QRS), CORR(STT)) of the time intervals of the two measurements were calculated, too. The HTS-MCG signal was completely concealed by the high noise level in the raw data. The averaging and smoothing algorithms unmasked the QRS complex and the ST segment. A high reproducibility was found for the QRS complex (R(QRS)=1.2+/-0.3, CORR(QRS)=0.96+/-0.06). Similarly to the shape of the ECG it was characterized by three bends, the Q, R, and S waves. In the ST-T interval, the reproducibility was considerably lower (R(STT)=0.9+/-0.2, CORR(STT)=0.66+/-0.28). In contrast to the shape of the ECG, a baseline deflection after the T wave which may belong to U wave activity was found in a number of volunteers. HTS-MCG devices can be operated in a clinical environment without shielding. Whereas the reproducibility was found to be high for the depolarization interval, it was considerably lower for the ST segment and for the T wave. Therefore, before clinically applying HTS-MCG systems to the detection of repolarization abnormalities in acute coronary syndromes, further technical development of the systems is necessary to improve the signal-to-noise ratio.
Burnout Test of First- and Second-Generation HTS Tapes in Liquid-Nitrogen Bath Cooling
NASA Astrophysics Data System (ADS)
Young, M. A.; Demko, J. A.; Duckworth, R. C.; Lue, J. W.; Gouge, M. J.; Pace, M. O.
2004-06-01
A series of BSCCO-2223 and YBCO tapes were subjected to burnout tests in a liquid-nitrogen bath to observe operational stability limits when different layers of dielectric tape are added to the sample surface. In this study, the BSCCO tapes were composed of a silver/alloy sheath with nickel/copper plating, while the YBCO tapes had a 50-μm layer of copper attached to the silver surface. After attaching the tapes to a thermally insulated G-10 holder, the stability of the tapes was found by applying current greater than the critical current and holding it constant for up to 1 min. If the sample voltage increased rapidly during this period, the tape was considered unstable at this current. This was repeated at different layers of Cryoflex™, and the results were compared to a numerical simulation of the energy balance equation. This simulation was also utilized to investigate the effect of the layers on the stability limit and estimate the thermal conductivity of the Cryoflex™.
THE TOXCAST PROGRAM FOR PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS
The United States Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals...
Hypertonic Saline Reduces Vascular Leakage in a Mouse Model of Severe Dengue
Tan, Kar Wai; Angeli, Veronique; Moochhala, Shabbir; Ooi, Eng Eong; Alonso, Sylvie
2013-01-01
Dengue (DEN) is a mosquito-borne viral disease and represents a serious public health threat and an economical burden throughout the tropics. Dengue clinical manifestations range from mild acute febrile illness to severe DEN hemorrhagic fever/DEN shock syndrome (DHF/DSS). Currently, resuscitation with large volumes of isotonic fluid remains the gold standard of care for DEN patients who develop vascular leakage and shock. Here, we investigated the ability of small volume of hypertonic saline (HTS) suspensions to control vascular permeability in a mouse model of severe DEN associated with vascular leakage. Several HTS treatment regimens were considered and our results indicated that a single bolus of 7.5% NaCl at 4 mL per kg of body weight administered at the onset of detectable vascular leakage rapidly and significantly reduced vascular leak for several days after injection. This transient reduction of vascular leakage correlated with reduced intestine and liver damage with restoration of the hepatic functions, and resulted in delayed death of the infected animals. Mechanistically, we showed that HTS did not directly impact on the viral titers but resulted in lower immune cells counts and decreased systemic levels of soluble mediators involved in vascular permeability. In addition, we demonstrated that neutrophils do not play a critical role in DEN-associated vascular leakage and that the therapeutic effect of HTS is not mediated by its impact on the neutrophil counts. Together our data indicate that HTS treatment can transiently but rapidly reduce dengue-associated vascular leakage, and support the findings of a recent clinical trial which evaluated the efficacy of a hypertonic suspension to impact on vascular permeability in DSS children. PMID:23637867
Eto, Hitomi; Suga, Hirotaka; Aoi, Noriyuki; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Tabata, Yasuhiko; Yoshimura, Kotaro
2012-02-01
Although hypertrophic scars (HTSs) and keloids are challenging problems, their pathogenesis is not well understood, making therapy difficult. We showed that matrix metalloproteinase (MMP)-1 expression was downregulated in HTS compared with normal skin from the same patients, whereas type 1 and 3 collagen and transforming growth factor-β (TGF-β) were upregulated. These differences, however, were not seen in cultured fibroblasts, suggesting the involvement of microenvironmental factors in the pathogenesis of HTS. Fibroblast growth factor-2 (FGF-2) highly upregulated the expression of MMP-1 and hepatocyte growth factor (HGF) in both HTS-derived and control fibroblasts; the upregulation was reversed by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors. An animal study using human HTS tissue implanted into nude mice indicated that controlled-release FGF-2 resulted in significantly less weight and decreased hydroxyproline content in HTS. Degradation of collagen fibers in FGF-2-treated HTS was also confirmed histologically. Western blotting showed that FGF-2-treated HTS expressed significantly higher MMP-1 protein than control. Decreased MMP-1 expression may be an important transcriptional change in HTS, and its reversal as well as upregulation of HGF by FGF-2 could be a new therapeutic approach for HTS.
Validation of high throughput sequencing and microbial forensics applications
2014-01-01
High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security. PMID:25101166
Validation of high throughput sequencing and microbial forensics applications.
Budowle, Bruce; Connell, Nancy D; Bielecka-Oder, Anna; Colwell, Rita R; Corbett, Cindi R; Fletcher, Jacqueline; Forsman, Mats; Kadavy, Dana R; Markotic, Alemka; Morse, Stephen A; Murch, Randall S; Sajantila, Antti; Schmedes, Sarah E; Ternus, Krista L; Turner, Stephen D; Minot, Samuel
2014-01-01
High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.
Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut’s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system’s orbital operation capability and utility, as well as its preventative effect on an astronaut’s musculoskeletal atrophy. Methods HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). Results The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. Conclusions These results showed the orbital operation capability and utility, and the preventive effect of HTS for an astronaut’s musculoskeletal atrophy. The initial flight data together with the ground data obtained so far will be utilized in the future planning of human space exploration. PMID:26296204
Lattice parameters guide superconductivity in iron-arsenides
NASA Astrophysics Data System (ADS)
Konzen, Lance M. N.; Sefat, Athena S.
2017-03-01
The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.
Paytubi, Sonia; de La Cruz, Mercedes; Tormo, Jose R.; Martín, Jesús; González, Ignacio; González-Menendez, Victor; Genilloud, Olga; Reyes, Fernando; Vicente, Francisca; Madrid, Cristina; Balsalobre, Carlos
2017-01-01
In this report, we describe a High-Throughput Screening (HTS) to identify compounds that inhibit biofilm formation or cause the disintegration of an already formed biofilm using the Salmonella Enteritidis 3934 strain. Initially, we developed a new methodology for growing Salmonella biofilms suitable for HTS platforms. The biomass associated with biofilm at the solid-liquid interface was quantified by staining both with resazurin and crystal violet, to detect living cells and total biofilm mass, respectively. For a pilot project, a subset of 1120 extracts from the Fundación MEDINA's collection was examined to identify molecules with antibiofilm activity. This is the first validated HTS assay of microbial natural product extracts which allows for the detection of four types of activities which are not mutually exclusive: inhibition of biofilm formation, detachment of the preformed biofilm and antimicrobial activity against planktonic cells or biofilm embedded cells. Currently, several extracts have been selected for further fractionation and purification of the active compounds. In one of the natural extracts patulin has been identified as a potent molecule with antimicrobial activity against both, planktonic cells and cells within the biofilm. These findings provide a proof of concept that the developed HTS can lead to the discovery of new natural compounds with antibiofilm activity against Salmonella and its possible use as an alternative to antimicrobial therapies and traditional disinfectants. PMID:28303128
Emerging applications of high temperature superconductors for space communications
NASA Technical Reports Server (NTRS)
Heinen, Vernon O.; Bhasin, Kul B.; Long, Kenwyn J.
1990-01-01
Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates.
Lattice parameters guide superconductivity in iron-arsenides.
Konzen, Lance M N; Sefat, Athena S
2017-03-01
The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Han, Lianyi; Wang, Yanli; Bryant, Stephen H
2008-09-25
Recent advances in high-throughput screening (HTS) techniques and readily available compound libraries generated using combinatorial chemistry or derived from natural products enable the testing of millions of compounds in a matter of days. Due to the amount of information produced by HTS assays, it is a very challenging task to mine the HTS data for potential interest in drug development research. Computational approaches for the analysis of HTS results face great challenges due to the large quantity of information and significant amounts of erroneous data produced. In this study, Decision Trees (DT) based models were developed to discriminate compound bioactivities by using their chemical structure fingerprints provided in the PubChem system http://pubchem.ncbi.nlm.nih.gov. The DT models were examined for filtering biological activity data contained in four assays deposited in the PubChem Bioassay Database including assays tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models are 57.2 approximately 80.5%, 97.3 approximately 99.0%, 0.4 approximately 0.5 respectively. A further evaluation was also performed for DT models built for two independent bioassays, where inhibitors for the same HIV RNase target were screened using different compound libraries, this experiment yields enrichment factor of 4.4 and 9.7. Our results suggest that the designed DT models can be used as a virtual screening technique as well as a complement to traditional approaches for hits selection.
Crisman, Thomas J; Jenkins, Jeremy L; Parker, Christian N; Hill, W Adam G; Bender, Andreas; Deng, Zhan; Nettles, James H; Davies, John W; Glick, Meir
2007-04-01
This work describes a novel semi-sequential technique for in silico enhancement of high-throughput screening (HTS) experiments now employed at Novartis. It is used in situations in which the size of the screen is limited by the readout (e.g., high-content screens) or the amount of reagents or tools (proteins or cells) available. By performing computational chemical diversity selection on a per plate basis (instead of a per compound basis), 25% of the 1,000,000-compound screening was optimized for general initial HTS. Statistical models are then generated from target-specific primary results (percentage inhibition data) to drive the cherry picking and testing from the entire collection. Using retrospective analysis of 11 HTS campaigns, the authors show that this method would have captured on average two thirds of the active compounds (IC(50) < 10 microM) and three fourths of the active Murcko scaffolds while decreasing screening expenditure by nearly 75%. This result is true for a wide variety of targets, including G-protein-coupled receptors, chemokine receptors, kinases, metalloproteinases, pathway screens, and protein-protein interactions. Unlike time-consuming "classic" sequential approaches that require multiple iterations of cherry picking, testing, and building statistical models, here individual compounds are cherry picked just once, based directly on primary screening data. Strikingly, the authors demonstrate that models built from primary data are as robust as models built from IC(50) data. This is true for all HTS campaigns analyzed, which represent a wide variety of target classes and assay types.
Crystallization screening test for the whole-cell project on Thermus thermophilus HB8
Iino, Hitoshi; Naitow, Hisashi; Nakamura, Yuki; Nakagawa, Noriko; Agari, Yoshihiro; Kanagawa, Mayumi; Ebihara, Akio; Shinkai, Akeo; Sugahara, Mitsuaki; Miyano, Masashi; Kamiya, Nobuo; Yokoyama, Shigeyuki; Hirotsu, Ken; Kuramitsu, Seiki
2008-01-01
It was essential for the structural genomics of Thermus thermophilus HB8 to efficiently crystallize a number of proteins. To this end, three conventional robots, an HTS-80 (sitting-drop vapour diffusion), a Crystal Finder (hanging-drop vapour diffusion) and a TERA (modified microbatch) robot, were subjected to a crystallization condition screening test involving 18 proteins from T. thermophilus HB8. In addition, a TOPAZ (microfluidic free-interface diffusion) designed specifically for initial screening was also briefly examined. The number of diffraction-quality crystals and the time of appearance of crystals increased in the order HTS-80, Crystal Finder, TERA. With the HTS-80 and Crystal Finder, the time of appearance was short and the rate of salt crystallization was low. With the TERA, the number of diffraction-quality crystals was high, while the time of appearance was long and the rate of salt crystallization was relatively high. For the protein samples exhibiting low crystallization success rates, there were few crystallization conditions that were common to the robots used. In some cases, the success rate depended greatly on the robot used. The TOPAZ showed the shortest time of appearance and the highest success rate, although the crystals obtained were too small for diffraction studies. These results showed that the combined use of different robots significantly increases the chance of obtaining crystals, especially for proteins exhibiting low crystallization success rates. The structures of 360 of 944 purified proteins have been successfully determined through the combined use of an HTS-80 and a TERA. PMID:18540056
MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.
2002-08-04
The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test resultsmore » will be discussed.« less
Fast Poisson noise removal by biorthogonal Haar domain hypothesis testing
NASA Astrophysics Data System (ADS)
Zhang, B.; Fadili, M. J.; Starck, J.-L.; Digel, S. W.
2008-07-01
Methods based on hypothesis tests (HTs) in the Haar domain are widely used to denoise Poisson count data. Facing large datasets or real-time applications, Haar-based denoisers have to use the decimated transform to meet limited-memory or computation-time constraints. Unfortunately, for regular underlying intensities, decimation yields discontinuous estimates and strong “staircase” artifacts. In this paper, we propose to combine the HT framework with the decimated biorthogonal Haar (Bi-Haar) transform instead of the classical Haar. The Bi-Haar filter bank is normalized such that the p-values of Bi-Haar coefficients (p) provide good approximation to those of Haar (pH) for high-intensity settings or large scales; for low-intensity settings and small scales, we show that p are essentially upper-bounded by pH. Thus, we may apply the Haar-based HTs to Bi-Haar coefficients to control a prefixed false positive rate. By doing so, we benefit from the regular Bi-Haar filter bank to gain a smooth estimate while always maintaining a low computational complexity. A Fisher-approximation-based threshold implementing the HTs is also established. The efficiency of this method is illustrated on an example of hyperspectral-source-flux estimation.
NASA Astrophysics Data System (ADS)
Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.
2015-12-01
The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.
Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements
NASA Astrophysics Data System (ADS)
Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.
Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.
EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
In situ DMSO hydration measurements of HTS compound libraries.
Ellson, R; Stearns, R; Mutz, M; Brown, C; Browning, B; Harris, D; Qureshi, S; Shieh, J; Wold, D
2005-09-01
Compounds used in high throughput screening (HTS) are typically dissolved in DMSO. These solutions are stored automation-friendly racks of wells or tubes. DMSO is hygroscopic and quickly absorbs water from the atmosphere. When present in DMSO compound solutions, water can accelerate degradation and precipitation. Understanding DMSO hydration in an HTS compound library can improve storage and screening methods by managing the impact of water on compound stability. A non-destructive, acoustic method compatible with HTS has been developed to measure water content in DMSO solutions. Performance of this acoustic method was compared with an optical technique and found to be in good agreement. The accuracy and precision of acoustic measurements was shown to be under 3% over the tested range of DMSO solutions (0% to 35% water by volume) and insensitive to the presence of HTS compounds at typical storage concentrations. Time course studies of hydration for wells in 384-well and 1536-well microplates were performed. Well geometry, fluid volume, well position and atmospheric conditions were all factors in hydration rate. High rates of hydration were seen in lower-volume fills, higher-density multi-well plates and when there was a large differential between the humidity of the lab and the water content of the DMSO. For example, a 1536-well microplate filled with 2microL of 100% DMSO exposed for one hour to a laboratory environment with approximately 40% relative humidity will absorb over 6% water by volume. Understanding DMSO hydration rates as well as the ability to reverse library hydration are important steps towards managing stability and availability of compound libraries.
NASA Astrophysics Data System (ADS)
Sass, F.; Dias, D. H. N.; Sotelo, G. G.; Junior, R. de Andrade
2018-07-01
A-V and H are two of the most widespread formulations applied in the literature to calculate current distribution in high-temperature superconductors (HTSs). Both formulations can successfully solve problems related to large-scale HTS applications, but the way to implement the calculations is different. In recent years, several authors have chosen the H formulation to solve problems related to HTS applications. This choice can probably be attributed to the easy implementation of the H formulation with the aid of commercial finite element method (FEM) software, producing precise results and performing fast calculations. In a previous work, we proposed the use of the H formulation to solve superconducting magnetic bearing (SMB) problems. However, most of the SMB simulations presented in the literature are solved using the A-V formulation implemented with the finite difference method (FDM). Which of these two techniques is more suitable for superconducting magnetic bearing applications? This paper aims to answer this question. In order to do so, an experimental rig was developed to test SMBs using YBCO bulks or stacks of coated conductors. The simulated levitation force results from the A-V formulation using FDM and from the H formulation using FEM were compared with the experimental data. In general, the calculation time and the results error obtained with both formulations are comparable. It is worth mentioning that the main contribution of this paper is to present improvements to reduce the A-V formulation computational time and details of how to implement it using FDM in any platform. For this reason, most of this work is about the A-V formulation, while the H formulation is just presented for comparison.
NASA Astrophysics Data System (ADS)
Zhang, Cunshan; Zheng, Xinxin; Li, Haitao; Li, Zhenmei; Zhang, Tao; Jiao, Can
2018-04-01
High temperature superconducting pulsed power transformer (HTSPPT) is an important device for pulsed power supplies. It consists of a superconducting primary and a normal conducting secondary, which is used for energy storage and current amplification. The critical current density, the energy storage, and the coupling coefficient are three main performance indexes. They are affected by the geometry parameters of HTSPPT modules, such as the height and the width of the superconducting coils. In addition, the hoop stress of the HTSPPT coils is limited by the maximum tensile strength of high temperature superconducting (HTS) tapes. In this paper, Bi-2223/Ag HTS tapes are selected as the wire of primary inductor and the toroidal structure model is selected for multiple HTSPPT modules. The relationships between the geometry parameters of HTSPPT modules and the electrical performance are studied.
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.
2007-10-01
We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.
Jacobs, K R; Guillemin, G J; Lovejoy, D B
2018-02-01
Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC 50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.
Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki
2018-07-01
The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.
Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species.
Pafčo, Barbora; Čížková, Dagmar; Kreisinger, Jakub; Hasegawa, Hideo; Vallo, Peter; Shutt, Kathryn; Todd, Angelique; Petrželková, Klára J; Modrý, David
2018-04-12
Strongylid nematodes in large terrestrial herbivores such as great apes, equids, elephants, and humans tend to occur in complex communities. However, identification of all species within strongylid communities using traditional methods based on coproscopy or single nematode amplification and sequencing is virtually impossible. High-throughput sequencing (HTS) technologies provide opportunities to generate large amounts of sequence data and enable analyses of samples containing a mixture of DNA from multiple species/genotypes. We designed and tested an HTS approach for strain-level identification of gastrointestinal strongylids using ITS-2 metabarcoding at the MiSeq Illumina platform in samples from two free-ranging non-human primate species inhabiting the same environment, but differing significantly in their host traits and ecology. Although we observed overlapping of particular haplotypes, overall the studied primate species differed in their strongylid nematode community composition. Using HTS, we revealed hidden diversity in the strongylid nematode communities in non-human primates, more than one haplotype was found in more than 90% of samples and coinfections of more than one putative species occurred in 80% of samples. In conclusion, the HTS approach on strongylid nematodes, preferably using fecal samples, represents a time and cost-efficient way of studying strongylid communities and provides a resolution superior to traditional approaches.
Nakai, Ryuichiro; Salisbury, Cleo M; Rosen, Hugh; Cravatt, Benjamin F
2009-02-01
High-throughput screening (HTS) has become an integral part of academic and industrial efforts aimed at developing new chemical probes and drugs. These screens typically generate several 'hits', or lead active compounds, that must be prioritized for follow-up medicinal chemistry studies. Among primary considerations for ranking lead compounds is selectivity for the intended target, especially among mechanistically related proteins. Here, we show how the chemical proteomic technology activity-based protein profiling (ABPP) can serve as a universal assay to rank HTS hits based on their selectivity across many members of an enzyme superfamily. As a case study, four metalloproteinase-13 (MMP13) inhibitors of similar potency originating from a publically supported HTS and reported in PubChem were tested by ABPP for selectivity against a panel of 27 diverse metalloproteases. The inhibitors could be readily separated into two groups: (1) those that were active against several metalloproteases and (2) those that showed high selectivity for MMP13. The latter set of inhibitors was thereby designated as more suitable for future medicinal chemistry optimization. We anticipate that ABPP will find general utility as a platform to rank the selectivity of lead compounds emerging from HTS assays for a wide variety of enzymes.
Conductor requirements for high-temperature superconducting utility power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pleva, E. F.; Mehrotra, V.; Schwenterly, S W
High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.
EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals that likely represent the greatest hazard to human ...
REBCO tape performance under high magnetic field
NASA Astrophysics Data System (ADS)
Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal
2017-08-01
New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek
Most nanomaterials (NMs) in commerce lack hazard data. Efficient NM testing requires suitable toxicity tests for prioritization of NMs to be tested. The EPA’s ToxCast program is screening NM bioactivities and ranking NMs by their bioactivities to inform targeted testing planning....
One use of alternative methods is to target animal use at only those chemicals and tests that are absolutely necessary. We discuss prioritization of testing based on high-throughput screening assays (HTS), QSAR modeling, high-throughput toxicokinetics (HTTK), and exposure modelin...
Chen, Dan; Jansson, Anna; Sim, Daniel; Larsson, Andreas; Nordlund, Pär
2017-08-11
Thymidylate synthase (TS) is the sole enzyme responsible for de novo biosynthesis of thymidylate (TMP) and is essential for cell proliferation and survival. Inhibition of human TS (hTS) has been extensively investigated for cancer chemotherapy, but several aspects of its activity and regulation are still uncertain. In this study, we performed comprehensive structural and biophysical studies of hTS using crystallography and thermal shift assay and provided the first detailed structural information on the conformational changes induced by ligand binding to the hTS active site. We found that upon binding of the antifolate agents raltitrexed and nolatrexed, the two insert regions in hTS, the functions of which are unclear, undergo positional shifts toward the catalytic center. We investigated the inactive conformation of hTS and found that the two insert regions are also involved in the conformational transition between the active and inactive state of hTS. Moreover, we identified a ligand-binding site in the dimer interface, suggesting that the cavity in the dimer interface could serve as an allosteric site of hTS to regulate the conformational switching between the active and inactive states. On the basis of these findings, we propose a regulatory mechanism of hTS activity that involves allosteric regulation of interactions of hTS with its own mRNA depending on cellular demands for TMP. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.
Zhai, Yufeng; Chen, Kaisheng; Zhong, Yang; Zhou, Bin; Ainscow, Edward; Wu, Ying-Ta; Zhou, Yingyao
2016-09-01
The correction or removal of signal errors in high-throughput screening (HTS) data is critical to the identification of high-quality lead candidates. Although a number of strategies have been previously developed to correct systematic errors and to remove screening artifacts, they are not universally effective and still require fair amount of human intervention. We introduce a fully automated quality control (QC) pipeline that can correct generic interplate systematic errors and remove intraplate random artifacts. The new pipeline was first applied to ~100 large-scale historical HTS assays; in silico analysis showed auto-QC led to a noticeably stronger structure-activity relationship. The method was further tested in several independent HTS runs, where QC results were sampled for experimental validation. Significantly increased hit confirmation rates were obtained after the QC steps, confirming that the proposed method was effective in enriching true-positive hits. An implementation of the algorithm is available to the screening community. © 2016 Society for Laboratory Automation and Screening.
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-04-13
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-06-01
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.
1997-01-01
High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed.
Progress on applications of high temperature superconducting microwave filters
NASA Astrophysics Data System (ADS)
Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He
2017-07-01
In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.
Superconducting magnetic Wollaston prism for neutron spin encoding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.
2014-05-15
A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS)more » materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.« less
Calorimetric method of ac loss measurement in a rotating magnetic field.
Ghoshal, P K; Coombs, T A; Campbell, A M
2010-07-01
A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Design of Conduction-cooled HTS Coils for a Rotating Gantry
NASA Astrophysics Data System (ADS)
Takayama, Shigeki; Koyanagi, Kei; Yamaguchi, Akiko; Tasaki, Kenji; Kurusu, Tsutomu; Ishii, Yusuke; Amemiya, Naoyuki; Ogitsu, Toru; Noda, Koji
Carbon ion cancer therapy is becoming more widespread due to its high curative effects and low burden on patients. Carbon ions are delivered to patients through electromagnets on a rotating gantry.A rotating gantry is attractive because it allows carbon ions to irradiate a tumor from any direction without changing the posture of the patient. On the other hand, because of the high magnetic rigidity of carbon ions, the weight of a rotating gantry for carbon cancer therapy is about three times higher than one for proton cancer therapy, according to our estimation. The use of high-temperature superconducting (HTS) magnets has been considered for reducing the size of the rotating gantry for carbon cancer therapy. The target weight is 200 t or less,which is equivalent to the weight of a typical rotating gantry for proton cancer therapy.In this study, the magnet layout of the rotating gantry and the superconducting magnets were designed from the viewpoint of beam optics.When applying high-temperature superconductors to accelerator magnets, there are some issues that should be considered, for example, the influence of tape magnetization and manufacturing accuracy on the field quality, the thermal stability of the conduction-cooled HTS coils under an alternating magnetic field, and methods to protect the coils from thermal runaway caused by an anomalous thermal input such as that due to beam loss. First, the thermal stability of the conduction-cooled HTS coils was simulated numerically, and the thermal runaway current was calculated in a static situation.
GobyWeb: Simplified Management and Analysis of Gene Expression and DNA Methylation Sequencing Data
Dorff, Kevin C.; Chambwe, Nyasha; Zeno, Zachary; Simi, Manuele; Shaknovich, Rita; Campagne, Fabien
2013-01-01
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins. PMID:23936070
NASA Astrophysics Data System (ADS)
Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc
2013-05-01
The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either with or without the presence of the sample. Notably, the additional cooling in the presence of conductive samples appears more beneficial at higher field strengths and with an orthogonal incidence than with parallel. The temperature range accessible here, involving a relatively straightforward cryogenic design, brings a gain in RF sensitivity that is of great significance to cutting-edge applications with very weakly conducting samples, small biological specimens, or small animals in vivo. This work also demonstrates a better tolerance to thin-film orientation misalignments relative to the magnetic field, and this could eventually play a role in designing effective non-planar HTS coils or coil arrays which include elements of various orientations. Finally, the data provided in this work may help understand some critical aspects in the design of HTS coils for NMR and MRI applications and accounts for the presence of the static magnetic field, particularly regarding the SNR loss due to a decreased quality factor and detuning issues.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-05-19
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-01-01
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382
To become more efficient and cost effective regulatory toxicology is increasingly averting from whole animal testing toward collecting data at lower levels of biological organization, through such means as in vitro high throughput screening (HTS) assays. When anchored to relevant...
Computational Modeling and Simulation of Developmental ...
Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional (animal-based) methods. A compendium of in vitro data from ToxCast/Tox21 high-throughput screening (HTS) programs is available for predictive toxicology. ‘Predictive DART’ will require an integrative strategy that mobilizes HTS data into in silico models that capture the relevant embryology. This lecture addresses progress on EPA's 'virtual embryo'. The question of how tissues and organs are shaped during development is crucial for understanding (and predicting) human birth defects. While ToxCast HTS data may predict developmental toxicity with reasonable accuracy, mechanistic models are still necessary to capture the relevant biology. Subtle microscopic changes induced chemically may amplify to an adverse outcome but coarse changes may override lesion propagation in any complex adaptive system. Modeling system dynamics in a developing tissue is a multiscale problem that challenges our ability to predict toxicity from in vitro profiling data (ToxCast/Tox21). (DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the US EPA). This was an invited seminar presentation to the National Institute for Public H
Cheng, Qinglin; Xie, Li; Hu, Yunkai; Hu, Jinfeng; Gao, Wei; Lv, Yongxiang; Xu, Yong
2018-02-07
Few studies have attempted to compare the differences in the prevalence and impact factors of hysterical tendencies (HTs) in adolescents. Thus, the aim of this study was to examine gender differences in the prevalence and impact factors of adolescents' HTs across three eastern Chinese provinces (Anhui, Jiangsu, and Zhejiang). A multicenter, school-based, cross-sectional study was conducted in three provinces (Anhui, Jiangsu, and Zhejiang) in China in 2014. The sample included 10,131 middle-school students aged 13-18 years who were randomly selected using a multiphase, stratified, cluster sampling technique. A two-stage appraisal procedure was used to determine the adolescents' HTs. We also designed a multicenter, school-based, case control (1329 cases with 2661 control individuals) study to collect data on the common factors affecting this population using a common protocol and questionnaire. An overall positive rate of HTs among adolescents across the three eastern Chinese provinces studied was found at 13.1% (95% confidence interval (CI) 12.5-13.8%), at 14.5% (95% CI 13.3-15.7%) for females, and at 12.2% (95% CI 11.1-13.4%) for males. Gender-stratified, multiple conditional regression analyses revealed that superstitious beliefs pertaining to life, somatotype, teacher-student satisfaction, and family achievement orientation were significantly linked to HTs only in males, while left-behind adolescents, emotional and social adaptation, teacher-student support, family cohesion, and the Hospital Anxiety and Depression Scale - depression scores were significantly associated with female HTs only. The models indicated that of all the independent variables studied, family medical history was the strongest impact factor for both male HTs (adjusted matched odds ratio (amOR) = 2.92, 95% CI = 1.84-4.86) and female HTs (amOR = 2.74, 95% CI = 1.59-4.98). HTs are prevalent among adolescents in the three eastern Chinese provinces studied. Gender differences in the prevalence and impact factors of HTs are significant in adolescents, and HTs seem to affect more females than males. Therefore, sex-specific intervention programs against HTs in adolescents should be considered to reduce HT prevalence in adolescents by modifying influential social, school, and family factors.
NASA Astrophysics Data System (ADS)
Panchal, Arun; Bano, Anees; Ghate, Mahesh; Raj, Piyush; Pradhan, Subrata
2017-04-01
An indigenously developed bending strain setup to examine the effect of pure bending on critical current of superconducting tapes and strands has been presented in this paper. This set up is capable of applying various bending radius in situ at cryogenic temperature with rack and pinion gear mechanism. The bending strain applied on samples can be controlled externally by rotational input which is transferred in the form of bending radius during experiments. The working principle, design and optimization of this set up have been discussed. The performance and validation of this setup has been done on various HTS tapes and copper strands at 77 K in actual experimental facility. Effect of bending radius (15.5 mm - 48 mm) i.e. strains and ramp rate (2 A/s - 8 A/s) is observed on current capability of various HTS Tapes. It is observed that in uniform bending condition, degradation in current carrying capacity BSCCO and Di-BSCCO (˜ 30 %) is more as compare to YBCO (˜ 2.75 %) at 77 K. The effect of pure mechanical strain has been experimentally observed and presented.
Goldberg, Deborah S; Lewus, Rachael A; Esfandiary, Reza; Farkas, David C; Mody, Neil; Day, Katrina J; Mallik, Priyanka; Tracka, Malgorzata B; Sealey, Smita K; Samra, Hardeep S
2017-08-01
Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development. The utility of using accelerated stability compared to HTS techniques (differential scanning light scattering and differential scanning fluorescence) for early formulation screening was evaluated along with the impact of excipients of various types on aggregation of monoclonal antibodies from multiple IgG subtypes. The excipient rank order using quantitative HTS measures was found to correlate with accelerated stability aggregation rate ranking for only 33% (by differential scanning fluorescence) to 42% (by differential scanning light scattering) of the antibodies tested, due to the high intrinsic stability and minimal impact of excipients on aggregation rates and HTS data. Also explored was a case study of employing a platform formulation instead of broader formulation screening for early formulation development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A Temperature-Stable Cryo-System for High-Temperature Superconducting MR In-Vivo Imaging
Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng
2013-01-01
To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat's temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonator at 77 K was demonstrated in a 3-Tesla MRI system. The proton resonant frequency (PRF) method was employed to monitor the rat's temperature. Moreover, the capacity of MR thermometry in the HTS experiments was evaluated by correlating with data from independent fiber-optic sensor temperature measurements. The PRF thermal coefficient was derived as 0.03 rad/°C and the temperature-monitoring architecture can be implemented to upgrade the quality and safety in HTS experiments. The signal-to-noise ratio (SNR) of the HTS surface resonator at 77 K was higher than that of a professionally made copper surface resonator at 300 K, which has the same geometry, by a 3.79-fold SNR gain. Furthermore, the temperature-stable HTS cryo-system we developed can obtain stable SNR gain in every scan. A temperature-stable HTS cryo-system with an external air-blowing circulation system is demonstrated. PMID:23637936
Adapting High-Throughput Screening Methods and Assays for Biocontainment Laboratories
Tigabu, Bersabeh; White, E. Lucile; Bostwick, Robert; Tower, Nichole; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.; Noah, James W.
2015-01-01
Abstract High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories. PMID:25710545
Adamik, Katja-Nicole; Butty, Emmanuelle; Howard, Judith
2015-09-24
Hyperosmolar therapy, using either mannitol or hypertonic saline (HTS), is considered the treatment of choice for intracranial hypertension. However, hyperosmolar agents may impair coagulation and platelet function, limiting their use in patients at risk for hemorrhage. Despite this, studies evaluating the effects of mannitol compared to other hyperosmolar agents in dogs are largely lacking. The aim of this study was to compare the in vitro effects on global hemostasis and platelet function of 20% mannitol and 3% HTS on canine blood. Citrated whole blood from 15 healthy dogs was diluted with 0.9% saline, 20% mannitol and 3% HTS in ratios of 1:16 and 1:8. Rotational thromboelastometry (ROTEM) was used to assess clotting time (CT), clot formation time (CFT) and maximal clot firmness (MCF) following extrinsic activation (Ex-tem) and after platelet inhibition (Fib-tem). A platelet function analyzer (PFA-100) was used to assess closure time (Ct(PFA)). No significant differences were observed between untreated whole blood and samples diluted with saline. Samples diluted with both mannitol and HTS were hypocoagulable compared to untreated whole blood samples. At a dilution of 1:16, no significant differences were found between any measured parameter in samples diluted with saline compared to mannitol or HTS. At a 1:8 dilution, Ct(PFA) was prolonged in samples diluted with mannitol and HTS compared to saline, and Ct(PFA) was prolonged more with mannitol than HTS. Ex-tem CT was increased at a 1:8 dilution with mannitol compared to HTS. Ex-tem CFT was prolonged at a 1:8 dilution with both agents compared to saline, and was prolonged more with mannitol than HTS. Ex-tem MCF was reduced at a 1:8 dilution with both agents compared to saline. Data in this study indicate that both mannitol and HTS affect canine platelet function and whole blood coagulation in vitro in a dose-dependent fashion. The most pronounced effects were observed after high dilutions with mannitol, which impaired platelet aggregation, clot formation time, clot strength, and fibrin formation significantly more than HTS. Further in vivo studies are necessary before recommendations can be made.
19 CFR 358.103 - Importation of supplies.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (2) The request shall state the Department antidumping and/or countervailing duty order case number, the producer of the merchandise, a detailed description of the merchandise, the current HTS number... duties, and post notification of the determination on the Department's website. (c) Any subject...
19 CFR 358.103 - Importation of supplies.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (2) The request shall state the Department antidumping and/or countervailing duty order case number, the producer of the merchandise, a detailed description of the merchandise, the current HTS number... duties, and post notification of the determination on the Department's website. (c) Any subject...
19 CFR 358.103 - Importation of supplies.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (2) The request shall state the Department antidumping and/or countervailing duty order case number, the producer of the merchandise, a detailed description of the merchandise, the current HTS number... duties, and post notification of the determination on the Department's website. (c) Any subject...
19 CFR 358.103 - Importation of supplies.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (2) The request shall state the Department antidumping and/or countervailing duty order case number, the producer of the merchandise, a detailed description of the merchandise, the current HTS number... duties, and post notification of the determination on the Department's website. (c) Any subject...
Most of the over 2800 nanomaterials (NMs) in commerce lack hazard data. Efficient NM testing requires suitable toxicity tests for prioritization of NMs to be tested. The EPA’s ToxCast program is evaluating HTS assays to prioritize NMs for targeted testing. Au, Ag, CeO2, Cu(O2), T...
HTS thin films: Passive microwave components and systems integration issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.
1994-12-31
The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustratemore » many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.« less
HTS thin films: Passive microwave components and systems integration issues
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Chorey, C. M.; Bhasin, K. B.
1995-01-01
The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and spacebased systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment 2 (HTSSE-2). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.
Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning
Langhans, Sigrid A.
2018-01-01
Drug development is a lengthy and costly process that proceeds through several stages from target identification to lead discovery and optimization, preclinical validation and clinical trials culminating in approval for clinical use. An important step in this process is high-throughput screening (HTS) of small compound libraries for lead identification. Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery. Here we will review common approaches to 3D culture, discuss the significance of 3D cultures in drug resistance and drug repositioning and address some of the challenges of applying 3D cell cultures to high-throughput drug discovery. PMID:29410625
NASA Astrophysics Data System (ADS)
Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
Modeling Reproductive Toxicity for Chemical Prioritization into an Integrated Testing Strategy
The EPA ToxCast research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I tested 309 well-characterized chemicals in over 500 assays of different molecular targets, cellular responses and cell-states. Of th...
NASA Technical Reports Server (NTRS)
Scott, Elaine P.; Lee, Kasey M.
1994-01-01
Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis.
NASA Astrophysics Data System (ADS)
Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.
2017-07-01
In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.
Mpindi, John-Patrick; Swapnil, Potdar; Dmitrii, Bychkov; Jani, Saarela; Saeed, Khalid; Wennerberg, Krister; Aittokallio, Tero; Östling, Päivi; Kallioniemi, Olli
2015-12-01
Most data analysis tools for high-throughput screening (HTS) seek to uncover interesting hits for further analysis. They typically assume a low hit rate per plate. Hit rates can be dramatically higher in secondary screening, RNAi screening and in drug sensitivity testing using biologically active drugs. In particular, drug sensitivity testing on primary cells is often based on dose-response experiments, which pose a more stringent requirement for data quality and for intra- and inter-plate variation. Here, we compared common plate normalization and noise-reduction methods, including the B-score and the Loess a local polynomial fit method under high hit-rate scenarios of drug sensitivity testing. We generated simulated 384-well plate HTS datasets, each with 71 plates having a range of 20 (5%) to 160 (42%) hits per plate, with controls placed either at the edge of the plates or in a scattered configuration. We identified 20% (77/384) as the critical hit-rate after which the normalizations started to perform poorly. Results from real drug testing experiments supported this estimation. In particular, the B-score resulted in incorrect normalization of high hit-rate plates, leading to poor data quality, which could be attributed to its dependency on the median polish algorithm. We conclude that a combination of a scattered layout of controls per plate and normalization using a polynomial least squares fit method, such as Loess helps to reduce column, row and edge effects in HTS experiments with high hit-rates and is optimal for generating accurate dose-response curves. john.mpindi@helsinki.fi. Supplementary information: R code and Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Shih, Hsin-Chin; Huang, Mu-Shun; Lee, Chen-Hsen
2012-06-15
Hypertonic saline (HTS) administration can decrease the inflammation following ischemia reperfusion. Magnolol is a potent antioxidant. The present study investigated whether combined treatment of magnolol and HTS could provide further protection in mesenteric ischemia reperfusion injury. Male C3H/HeOuJ mice were randomly segregated into the following groups: sham-operated (sham), vehicle treatment and mesenteric ischemia reperfusion (MSIR) (vehicle-treated), magnolol treatment and MSIR (magnolol-treated), HTS treatment and MSIR (HTS-treated), as well as co-administration of magnolol plus HTS and MSIR (combined-treated). In MSIR, mice were subjected to mesenteric ischemia for 60 min followed by reperfusion for 30 min. Lung injury was evaluated by lung edema (water ratio) and myeloperoxide (MPO) activity; RNA expression of inducible nitric oxide synthetase (iNOS), TNF-α, and IL-6 were assayed by real time RT-PCR. The formation of peroxynitrite in plasma was assayed by the peroxynitrite-dependent oxidation of dihydrorhodamine 123 (DHR 123) to rhodamine. Compared with those in the sham-treated group, lung edema and MPO activity, expressions of iNOS, TNF-α and IL-6, and plasma peroxynitrite were significantly increased in the vehicle-treated group. Significant attenuations of these parameters were found in the magnolol-treated or HTS-treated animals. Combined treatment of magnolol and HTS further suppressed the lung edema, iNOS, and TNF-α expressions, and plasma peroxynitrite, compared with the results of a single treatment of magnolol or HTS. Compared with single-agent use, co-administration of magnolol and HTS further decreases iNOS expression and plasma peroxynitrite as well as the degree of lung injury from MISR. These results may provide another treatment measure for post-injury immunomodulation. Copyright © 2012 Elsevier Inc. All rights reserved.
Complication Rates of 3% Hypertonic Saline Infusion Through Peripheral Intravenous Access.
Perez, Claudia Andira; Figueroa, Stephen A
2017-06-01
Hyperosmolar therapy with hypertonic saline (HTS) is a cornerstone in the management of intracranial hypertension and hyponatremia in the neurological intensive care unit. Theoretical safety concerns remain for infiltration, thrombophlebitis, tissue ischemia, and venous thrombosis associated with continuous 3% HTS administered via peripheral intravenous (pIV) catheters. It is common practice at many institutions to allow only central venous catheter infusion of 3% HTS. Hospital policy was changed to allow the administration of 3% HTS via 16- to 20-gauge pIVs to a maximum infusion rate of 50 mL/h in patients without central venous access. We prospectively monitored patients who received peripheral 3% HTS as part of a quality improvement project. We documented gauge, location, maximum infusion rate, and total hours of administration. Patients were assessed for infiltration, erythema, swelling, phlebitis, thrombosis, and line infection. There were 28 subjects across 34 peripheral lines monitored. Overall, subjects received 3% HTS for a duration between 1 and 124 hours with infusion rates of 30 to 50 mL/h. The rate of complications observed was 10.7% among all subjects. Documented complications included infiltration (n = 2), with an incidence of 6%, and thrombophlebitis (n = 1), with an incidence of 3%. There has been a long concern among healthcare providers, including nursing staff, in regard to pIV administration of prolonged 3% HTS infusion therapy. Our study indicates that peripheral administration of 3% HTS carries a low risk of minor, nonlimb, or life-threatening complications. Although central venous infusion may reduce the risk of these minor complications, it may increase the risk of more serious complications such as large vessel thrombosis, bloodstream infection, pneumothorax, and arterial injury. The concern regarding the risks of pIV administration of 3% HTS may be overstated and unfounded.
Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method
NASA Astrophysics Data System (ADS)
Qin, Yujie; Lu, Yiyun
2015-09-01
In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.
NASA Astrophysics Data System (ADS)
Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2016-07-01
Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.
NASA Astrophysics Data System (ADS)
Chung, Y. D.; Kim, D. W.; Lee, C. Y.
2017-07-01
This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method.
NASA Astrophysics Data System (ADS)
Gyuráki, Roland; Sirois, Frédéric; Grilli, Francesco
2018-07-01
Fluorescent microthermographic imaging, a method using rare-earth fluorescent coatings with temperature dependent light emission, was used for quench investigation in high temperature superconductors (HTS). A fluorophore was embedded in a polymer matrix and used as a coating on top of an HTS tape, while being excited with UV light and recorded with a high-speed camera. Simultaneously, the tape was pulsed with high amplitude, short duration DC current, and brought to quench with the help of a localised defect. The Joule heating during a quench influences the fluorescent light intensity emitted from the coating, and by recording the local variations in this intensity over time, the heating of the tape can be visualised and the developed temperatures can be calculated. In this paper, the fluorophore europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] (EuTFC) provided sufficient temperature sensitivity and a usable temperature range from 77-260 K. With the help of 2500 image captures per second, the normal zone development was imaged in a 20 μm copper stabilised HTS tape held in a liquid nitrogen bath, and using a calibration curve, the temperatures reached during the quench have been calculated.
Find relationships between bioactivities and NM characteristics or testing conditions. Recommend a dose metric for NMs in vitro studies. Establish associations to in vivo toxicity or pathways identified from testing of conventional chemicals with ToxCast HTS methods. May be abl...
New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide ...
There is a need to develop high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals for endocrine disrupting potential. The estrogen signaling pathway is a known xenobiotic target that has been implicated in a variety of adverse health effects...
In order to detect environmental chemicals that pose a risk of endocrine disruption, high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals are needed. Alteration of estrogen signaling has been implicated in a variety of adverse health effec...
Thousands of environmental chemicals are subject to regulatory review for their potential to be endocrine disruptors (ED). In vitro high-throughput screening (HTS) assays have emerged as a potential tool for prioritizing chemicals for ED-related whole-animal tests. In this study,...
Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.
1994-01-01
A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.
Kakisaka, Michinori; Mano, Takafumi; Aida, Yoko
2016-06-02
Two classes of antiviral drugs, M2 channel inhibitors and neuraminidase (NA) inhibitors, are currently approved for the treatment of influenza; however, the development of resistance against these agents limits their efficacy. Therefore, the identification of new targets and the development of new antiviral drugs against influenza are urgently needed. The third nuclear export signal (NES3) of nucleoprotein (NP) is the most important for viral replication among seven NESs encoded by four viral proteins, NP, M1, NS1, and NS2. NP-NES3 is critical for the nuclear export of NP, and targeting NP-NES3 is therefore a promising strategy that may lead to the development of antiviral drugs. However, a high-throughput screening (HTS) system to identify inhibitors of NP nuclear export has not been established. Here, we developed a novel HTS system to evaluate the inhibitory effects of compounds on the nuclear export pathway mediated by NP-NES3 using a MDCK cell line stably expressing NP-NES3 fused to a green fluorescent protein from aequorea coerulescens (AcGFP-NP-NES3) and a cell imaging analyzer. This HTS system was used to screen a 9600-compound library, leading to the identification of several hit compounds with inhibitory activity against the nuclear export of AcGFP-NP-NES3. The present HTS system provides a useful strategy for the identification of inhibitors targeting the nuclear export of NP via its NES3 sequence. Copyright © 2016. Published by Elsevier B.V.
Fabrication and assembly of a superconducting undulator for the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasse, Quentin; Fuerst, J. D.; Ivanyushenkov, Y.
2014-01-29
A prototype superconducting undulator magnet (SCU0) has been built at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) and has successfully completed both cryogenic performance and magnetic measurement test programs. The SCU0 closed loop, zero-boil-off cryogenic system incorporates high temperature superconducting (HTS) current leads, cryocoolers, a LHe reservoir supplying dual magnetic cores, and an integrated cooled beam chamber. This system presented numerous challenges in the design, fabrication, and assembly of the device. Aspects of this R and D relating to both the cryogenic and overall assembly of the device are presented here. The SCU0 magnet has been installedmore » in the APS storage ring.« less
Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupich, Martin, Dr.; Duckworth, Robert, Dr.
The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2Gmore » template strips.« less
Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.
1994-09-27
A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.
Efficient growth of HTS films with volatile elements
Siegal, M.P.; Overmyer, D.L.; Dominguez, F.
1998-12-22
A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.
NASA Astrophysics Data System (ADS)
Tsukamoto, Osami; Fujimoto, Yasutaka; Takao, Tomoaki
2014-09-01
It has been considered that HTS coils are hard to be quenched because of high quench energy due to high critical temperature and high specific heat of HTS wires. Therefore, attention to quench protection was not much paid. However, HTS coils still have possibility to be quenched during operation by mainly the following two origins, (a) presence of non-recoverable local defects in the conductors and (b) temperature rise of long part of the conductor. Actually, severe quench accidents, such as burning coils, are occurring in various places as scales of HTS increased. Purposes of this paper are to study on behaviors of normal zone and hot spot temperature of wires during quench detect/energy dump sequence and to find criteria for the stability and quench protection. In the paper, criteria are proposed for stability and quench protection of HTS coils. A criterion for the stability is that a coil can be operated stably without a quench against defects in coil windings and that for quench protection is that a coil can be safely protected from damages caused by a quench due to temperature rise of long part of coil wires. The criteria are used as design rules for HTS coils.
Ost, James; Easton, Simon; Hope, Lorraine; French, Christopher C; Wright, Daniel B
2017-01-01
In courts in the United Kingdom, understanding of memory phenomena is often assumed to be a matter of common sense. To test this assumption 337 UK respondents, consisting of 125 Chartered Clinical Psychologists, 88 individuals who advertised their services as Hypnotherapists (HTs) in a classified directory, the Yellow Pages TM , and 124 first year undergraduate psychology students, completed a questionnaire that assessed their knowledge of 10 memory phenomena about which there is a broad scientific consensus. HTs' responses were the most inconsistent with the scientific consensus, scoring lowest on six of these ten items. Principal Components Analysis indicated two latent variables - reflecting beliefs about memory quality and malleability - underlying respondents' responses. In addition, respondents were asked to rate their own knowledge of the academic memory literature in general. There was no significant relationship between participants' self reported knowledge and their actual knowledge (as measured by their responses to the 10-item questionnaire). There was evidence of beliefs among the HTs that could give rise to some concern (e.g., that early memories from the first year of life are accurately stored and are retrievable).
NASA Astrophysics Data System (ADS)
Good, J.; Bracanovic, D.
The development of High Temperature Superconductors (HTS) conductors makes it possible to build very high field superconducting magnets up to at least 25 T. Previously, the only way to obtain a steady field of 25 T for research would be to use water cooled copper solenoids. To achieve 25 T in a 50 mm working space would require about 10 MW of power with a large water cooling plant to carry away the heat. With such high powers involved it is difficult to have a stable and quiet magnetic field environment in which to make sensitive measurements such as NMR. Both capital and operating costs are high so few such facilities exist worldwide. This makes a superconducting magnet of 25 T a very attractive proposition. Figure 1 shows that the critical current of HTS as compared to NbTi and NbSn. The latter can be used up to a limit of about 20 T at 4.2 K. The HTS on the other hand shows the potential of much higher fields. The two main issues in magnet design are the maximum critical current and the maximum stress that a conductor or coil structure can support. For the inner sections of the coil the forces are modest but as the diameter increases towards the outside of the coil hoop stress becomes the dominant issue. Cryogenic has built a magnet system with first generation BSCCO conductor. It is designed to run at 4.2 K. It has a three section design, two of conventional superconductor and one of HTS. • The outer winding is made from NbTi giving a field of 9 T, in a bore of 225 mm. The coil is made from 21 km of NbTi wire graded from 1 to 0.6 mm diameter. • A middle coil of NbSn bronze route conductor providing a field of 14 T in 140 mm diameter. • An inner set of HTS coils. These are in the form of 3 coaxial windings made from silver matrix BSCCO conductor supplied by American Superconductor. This conductor has a critical current of 100 A at 77 K in zero field. At 4 K in low field the current is very much higher. The set of three BSCCO windings has a gauss per amp of 157 and when run on its own at a current of 300 A provides a field of 4.7 T, although currents above 275 A begin to show significant resistive losses in the conductor. The inner BSCCO coils are separately powered from the outer magnet. In a test of the full magnet system the BSCCO coil is ramped up at various background fields up to 13 T. The resulting voltage loss across the BSCCO is shown in Fig. 2. This test shows that the BSCCO conductor can operate up to 275 A quite successfully independent of the background field with just a slight increase in resistive losses presumably from the joints between conductor being magneto-resistive or due to flux flow in the conductor. Since the BSCCO coils were made new 2nd generation conductors have become available made from thin films of YBCO on a stainless steel backing. These have a much higher effective current density. A 4 mm wide tape of BSCCO is 0.4 mm thick but carries a similar current to an YBCO tape of 0.01 mm or even 0.05 mm thickness. Table 1 shows the properties of different conductors compared. Interestingly the conductors are not just higher current density but also more flexible and stronger in tension. A new coil has now been produced from 0.1 mm Super Power material of a size that can fit inside the existing winding so that the combination can produce above 6 T providing a total field of 20 T at 4.2 K in a working bore of 38 mm. Now that the new 2nd generation YBCO based conductors have become available it is intended to exchange the BSCCO coils for YBCO windings which will allow this magnet to operate at much higher fields of up to 25 T. At this field it will be the highest field superconducting magnet worldwide. The magnet is housed in a liquid helium cryostat. To reduce helium consumption a powerful 2nd stage cryocooler is fitted to the cryostat. The first stage cools a shield around the liquid helium to 45 K. The second stage has a cooling power of 1.5 W at 4.2 K and is used to recondense helium gas evolved from the magnet. In operation, with no current in the leads to the cryocooler it is able to condense more gas than that evolved from the cryostat so the liquid helium level will increase with time. Except at the highest currents the cryostat is a zero loss magnet system. A cross section of cryostat and magnet is show in Fig 3. The power required for the cryocooler is 6.5 kW while that for the magnet power supplies and ancillary electronics is 2 kW giving a combined power requirement of 8.5 kW. This compares very favourably with the typical value of 10 MW required by a water cooled copper solenoid to achieve the same field. Note from Publisher: This article contains the abstract only.
Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation
NASA Astrophysics Data System (ADS)
Basaran, Sinan; Sivrioglu, Selim
2017-03-01
The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.
web cellHTS2: a web-application for the analysis of high-throughput screening data.
Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael
2010-04-12
The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.
Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel
NASA Astrophysics Data System (ADS)
Duan, Yujie; Ta, Wurui; Gao, Yuanwen
2018-02-01
In extreme operating environments, delamination in 2G HTS tapes occurs within and/or near the superconductor layer from high transverse tensile stresses caused by fabrication, Lorentz forces and thermal mismatch, etc. Generally, transverse opening and peeling off are the main delamination modes, and are always studied in anvil and peel tests, respectively. Numerical models of these modes for 2G HTS tape are presented wherein the mixed-mode traction-separation law at the interface of the silver and superconductor layers is considered. Plastic deformations of copper, silver, and Hastelloy® in the HTS tape are taken into account. The results obtained from the transverse opening model show that the maximum average tensile stress is smaller than the delamination tensile strength because delamination is asynchronous in the tape. When a crack appears in the tape, only a small stress ( ≤ 1 MPa) is required to expand the crack to other stress free areas through peeling. Using the peeling model, the dependency of the peel strength on peeling angle is investigated under constant fracture toughness. Peel strength decreases with the peeling angle until the minimum value is reached at 150°, and thereafter increases slightly. Other results indicate that peel strength depends strongly on delamination strength, fracture toughness, and thickness of copper layer. The fracture toughness of the delamination interface, which is difficult to obtain by experiment, can be extracted using the present model.
Bridges, Eileen; Altherwi, Tawfeeq; Correa, José A; Hew-Butler, Tamara
2018-01-23
To determine whether oral administration of 3% hypertonic saline (HTS) is as efficacious as intravenous (IV) 3% saline in reversing symptoms of mild-to-moderate symptomatic exercise-associated hyponatremia (EAH) in athletes during and after a long-distance triathlon. Noninferiority, open-label, parallel-group, randomized control trial to IV or oral HTS. We used permuted block randomization with sealed envelopes, containing the word either "oral" or "IV." Annual long-distance triathlon (3.8-km swim, 180-km bike, and 42-km run) at Mont-Tremblant, Quebec, Canada. Twenty race finishers with mild to moderately symptomatic EAH. Age, sex, race finish time, and 9 clinical symptoms. Time from treatment to discharge. We successfully randomized 20 participants to receive either an oral (n = 11) or IV (n = 9) bolus of HTS. We performed venipuncture to measure serum sodium (Na) at presentation to the medical clinic and at time of symptom resolution after the intervention. The average time from treatment to discharge was 75.8 minutes (SD 29.7) for the IV treatment group and 50.3 minutes (SD 26.8) for the oral treatment group (t test, P = 0.02). Serum Na before and after treatment was not significantly different in both groups. There was no difference on presentation between groups in age, sex, or race finish time, both groups presented with an average of 6 symptoms. Oral HTS is effective in reversing symptoms of mild-to-moderate hyponatremia in EAH.
Reinhardt, Peter; Glatza, Michael; Hemmer, Kathrin; Tsytsyura, Yaroslav; Thiel, Cora S.; Höing, Susanne; Moritz, Sören; Parga, Juan A.; Wagner, Lydia; Bruder, Jan M.; Wu, Guangming; Schmid, Benjamin; Röpke, Albrecht; Klingauf, Jürgen; Schwamborn, Jens C.; Gasser, Thomas; Schöler, Hans R.; Sterneckert, Jared
2013-01-01
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development. PMID:23533608
Wojtecki, Rudy J; Yuen, Alexander Y; Zimmerman, Thomas G; Jones, Gavin O; Horn, Hans W; Boday, Dylan J; Hedrick, James L; García, Jeannette M
2015-08-07
The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using 1,3,5-hexahydro-1,3,5-triazines (HTs) as chemical indicators and a low cost fluorimeter-based detection system. This method takes advantage of the inherent properties of HTs to coordinate strongly with metal ions in solution, a fundamental property that was studied using a combination of analytical tools (UV-Vis titrations, (1)H-NMR titrations and computational modeling). Based on these fundamental studies that show significant changes in the HT UV signature when a metal ion is present, HT compounds were used to prepare indicator strips that resulted in significant fluorescence changes when a metal was present. A portable and economical approach was adopted to test the concept of utilizing HTs to detect heavy metals using a fluorimeter system that consisted of a low-pressure mercury lamp, a photo-detector, a monolithic photodiode and an amplifier, which produces a voltage proportional to the magnitude of the visible fluorescence emission. Readings of the prepared HT test strips were evaluated by exposure to two different heavy metals at the safe threshold concentration described by the U.S. Environmental Protection Agency (EPA) for Cr(3+) and Ag(2+) (100 μg L(-1) and 6.25, respectively). This method of detection could be used to the presence of either metal at these threshold concentrations.
NASA Astrophysics Data System (ADS)
Oomen, Marijn; Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea
2012-11-01
We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.
26 CFR 52.4682-3 - Imported taxable products.
Code of Federal Regulations, 2012 CFR
2012-04-01
....4681-1(c)(5)) of VCRs. The HTS classification for the VCRs is 8528.10.40. VCRs classified under HTS... reference to the Table. The Table ODC weight specified for VCRs classified under HTS heading 8528.10.40 is 0... of nonmechanical amplification or switching devices such as tubes, transistors, and integrated...
26 CFR 52.4682-3 - Imported taxable products.
Code of Federal Regulations, 2014 CFR
2014-04-01
....4681-1(c)(5)) of VCRs. The HTS classification for the VCRs is 8528.10.40. VCRs classified under HTS... reference to the Table. The Table ODC weight specified for VCRs classified under HTS heading 8528.10.40 is 0... of nonmechanical amplification or switching devices such as tubes, transistors, and integrated...
NASA Astrophysics Data System (ADS)
Nanato, N.; Kobayashi, Y.
AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.
Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system
NASA Astrophysics Data System (ADS)
Longcai, Zhang
2014-07-01
Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.
NASA Astrophysics Data System (ADS)
Vajda, Istvan; Kohari, Zalan; Porjesz, Tamas; Benko, Laszlo; Meerovich, V.; Sokolovsky; Gawalek, W.
2002-08-01
Technical and economical feasibilities of short-term energy storage flywheels with high temperature superconducting (HTS) bearing are widely investigated. It is essential to reduce the ac losses caused by magnetic field variations in HTS bulk disks/rings (levitators) used in the magnetic bearings of flywheels. For the HTS bearings the calculation and measurement of the magnetic field distribution were performed. Effects like eccentricity, tilting were measured. Time dependency of the levitation force following a jumpwise movement of the permanent magnet was measured. The results were used to setup an engineering design algorithm for energy storage HTS flywheels. This algorithm was applied to an experimental HTS flywheel model with a disk type permanent magnet motor/generator unit designed and constructed by the authors. A conceptual design of the disk-type motor/generator with radial flux is shown.
The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1...
We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...
ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)
US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...
HTS Data and In Silico Models for High-Throughout Risk Assessment (FutureTox II)
A significant challenge in toxicology is the “too many chemicals” problem. Humans and environmental species are exposed to as many as tens of thousands of chemicals, few of which have been thoroughly tested using standard in vivo test methods. This talk will discuss several appro...
Strategic combinations and tiered application of alternative testing methods to replace or minimize the use of animal models is attracting much attention. With the advancement of high throughput screening (HTS) assays and legacy databases providing in vivo testing results, suffic...
NASA Astrophysics Data System (ADS)
Granados, Xavier; Sánchez, Àlvar; López-López, Josep
2012-10-01
The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.
NASA Astrophysics Data System (ADS)
Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su
2017-01-01
The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.
Construction and Operation of an Internal Coil Device, RT-1, with a High-Temperature Superconductor
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi; Yoshida, Zensho; Morikawa, Junji; Saito, Haruhiko; Watanabe, Sho; Yano, Yoshihisa; Mizumaki, Shoichi; Tosaka, Taizo
An internal coil device called Ring Trap-1 (RT-1) has been constructed to explore an innovative concept for a high-beta plasma based on a new relaxation theory. A high-temperature superconductor (HTS) Bi-2223 tape is employed for the internal coil of RT-1. The coil is cooled to 20 K with helium gas supplied by G-M refrigerators, and charged to a magnetomotive force of 250 kA using an external power supply. For these cooling and charging methods, we have developed several innovative techniques such as a demountable transfer tube system, persistent current switch, detachable electrode, and others. In addition, we have paid much attention to the deterioration of the HTS tape during the fabrication of the internal coil. As a result, we have demonstrated that the decay of the persistent current of the internal coil is ˜1% during 8 h. The internal coil is lifted with a levitation coil located at the upper region of the vacuum vessel. The coil position monitored with laser sensors is feedback controlled through the regulation of the levitation coil current. Stable levitation for a few hours has been demonstrated for various plasma experiments.
Evaluation of e-liquid toxicity using an open-source high-throughput screening assay
Keating, James E.; Zorn, Bryan T.; Kochar, Tavleen K.; Wolfgang, Matthew C.; Glish, Gary L.; Tarran, Robert
2018-01-01
The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography–mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition. PMID:29584716
Target specific compound identification using a support vector machine.
Plewczynski, Dariusz; von Grotthuss, Marcin; Spieser, Stephane A H; Rychlewski, Leszek; Wyrwicz, Lucjan S; Ginalski, Krzysztof; Koch, Uwe
2007-03-01
In many cases at the beginning of an HTS-campaign, some information about active molecules is already available. Often known active compounds (such as substrate analogues, natural products, inhibitors of a related protein or ligands published by a pharmaceutical company) are identified in low-throughput validation studies of the biochemical target. In this study we evaluate the effectiveness of a support vector machine applied for those compounds and used to classify a collection with unknown activity. This approach was aimed at reducing the number of compounds to be tested against the given target. Our method predicts the biological activity of chemical compounds based on only the atom pairs (AP) two dimensional topological descriptors. The supervised support vector machine (SVM) method herein is trained on compounds from the MDL drug data report (MDDR) known to be active for specific protein target. For detailed analysis, five different biological targets were selected including cyclooxygenase-2, dihydrofolate reductase, thrombin, HIV-reverse transcriptase and antagonists of the estrogen receptor. The accuracy of compound identification was estimated using the recall and precision values. The sensitivities for all protein targets exceeded 80% and the classification performance reached 100% for selected targets. In another application of the method, we addressed the absence of an initial set of active compounds for a selected protein target at the beginning of an HTS-campaign. In such a case, virtual high-throughput screening (vHTS) is usually applied by using a flexible docking procedure. However, the vHTS experiment typically contains a large percentage of false positives that should be verified by costly and time-consuming experimental follow-up assays. The subsequent use of our machine learning method was found to improve the speed (since the docking procedure was not required for all compounds from the database) and also the accuracy of the HTS hit lists (the enrichment factor).
Tank, David C.
2016-01-01
Advances in high-throughput sequencing (HTS) have allowed researchers to obtain large amounts of biological sequence information at speeds and costs unimaginable only a decade ago. Phylogenetics, and the study of evolution in general, is quickly migrating towards using HTS to generate larger and more complex molecular datasets. In this paper, we present a method that utilizes microfluidic PCR and HTS to generate large amounts of sequence data suitable for phylogenetic analyses. The approach uses the Fluidigm Access Array System (Fluidigm, San Francisco, CA, USA) and two sets of PCR primers to simultaneously amplify 48 target regions across 48 samples, incorporating sample-specific barcodes and HTS adapters (2,304 unique amplicons per Access Array). The final product is a pooled set of amplicons ready to be sequenced, and thus, there is no need to construct separate, costly genomic libraries for each sample. Further, we present a bioinformatics pipeline to process the raw HTS reads to either generate consensus sequences (with or without ambiguities) for every locus in every sample or—more importantly—recover the separate alleles from heterozygous target regions in each sample. This is important because it adds allelic information that is well suited for coalescent-based phylogenetic analyses that are becoming very common in conservation and evolutionary biology. To test our approach and bioinformatics pipeline, we sequenced 576 samples across 96 target regions belonging to the South American clade of the genus Bartsia L. in the plant family Orobanchaceae. After sequencing cleanup and alignment, the experiment resulted in ~25,300bp across 486 samples for a set of 48 primer pairs targeting the plastome, and ~13,500bp for 363 samples for a set of primers targeting regions in the nuclear genome. Finally, we constructed a combined concatenated matrix from all 96 primer combinations, resulting in a combined aligned length of ~40,500bp for 349 samples. PMID:26828929
Formulaic expert method to integrate evaluation and valuation of heritage trees in compact city.
Jim, C Y
2006-05-01
Urban trees serve important environmental, social and economic functions, but similar to other natural endowments they are not customarily depicted in monetary terms. The needs to augment protection, funding and community support for urban greening call for proper valuation. Heritage trees (HTs), the cream of urban-tree stock, deserve special attention. Existing assessment methods do not give justice to outstanding trees in compact cities deficient in high-caliber greenery, and to their social-cultural-historical importance. They artificially separate evaluation from valuation, which should be a natural progression from the former. Review of tree valuation methods suggested the formula approach to be more suitable than contingent valuation and hedonic pricing, and provided hints on their strengths and weaknesses. This study develops an alternative formulaic expert method (FEM) that integrates evaluation and valuation, maximizes objectivity, broadly encompasses the key tree, tree-environment and tree-human traits, and accords realistic monetary value to HTs. Six primary criteria (dimension, species, tree, condition, location, and outstanding consideration) branched into 45 secondary criteria, each allocated numerical marks. Each primary criterion was standardized to carry equal weight, and a tree's maximum aggregate score is capped at 100. A Monetary Assignment Factor (MAF) to consign dollar value to each score unit was derived from three-year average per m(2) sale price of medium-sized residential flats. The applicability of FEM was tested on selected HTs in compact Hong Kong. The aggregate score of a tree multiplied by MAF yielded monetary value, which was on average 66 times higher than the result from the commonly-adopted Council of Tree and Landscape Appraisers method. The computed tree values could be publicized together with multiple tree benefits to raise understanding and awareness and rally support to protect HTs. The property-linked FEM could be flexibly applied to other cities, especially to assess HTs in compact developing cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avonto, Cristina; Chittiboyina, Amar G.; Rua, Diego
2015-12-01
Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles aftermore » incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction workflow and critical parameters is presented. • The method could provide a useful tool to complement existing chemical assays.« less
Chen, Fu; Sun, Huiyong; Liu, Hui; Li, Dan; Li, Youyong; Hou, Tingjun
2017-04-12
High-throughput screening (HTS) is widely applied in many fields ranging from drug discovery to clinical diagnostics and toxicity assessment. Firefly luciferase is commonly used as a reporter to monitor the effect of chemical compounds on the activity of a specific target or pathway in HTS. However, the false positive rate of luciferase-based HTS is relatively high because many artifacts or promiscuous compounds that have direct interaction with the luciferase reporter enzyme are usually identified as active compounds (hits). Therefore, it is necessary to develop a rapid screening method to identify these compounds that can inhibit the luciferase activity directly. In this study, a virtual screening (VS) classification model called MIEC-GBDT (MIEC: Molecular Interaction Energy Components; GBDT: Gradient Boosting Decision Tree) was developed to distinguish luciferase inhibitors from non-inhibitors. The MIECs calculated by Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition were used to energetically characterize the binding pattern of each small molecule at the active site of luciferase, and then the GBDT algorithm was employed to construct the classifiers based on MIECs. The predictions to the test set show that the optimized MIEC-GBDT model outperformed molecular docking and MM/GBSA rescoring. The best MIEC-GBDT model based on the MIECs with the energy terms of ΔG ele , ΔG vdW , ΔG GB , and ΔG SA achieves the prediction accuracies of 87.2% and 90.3% for the inhibitors and non-inhibitors in the test sets, respectively. Moreover, the energetic analysis of the vital residues suggests that the energetic contributions of the vital residues to the binding of inhibitors are quite different from those to the binding of non-inhibitors. These results suggest that the MIEC-GBDT model is reliable and can be used as a powerful tool to identify potential interference compounds in luciferase-based HTS experiments.
Identification of small molecule compounds that inhibit the HIF-1 signaling pathway
2009-01-01
Background Hypoxia-inducible factor-1 (HIF-1) is the major hypoxia-regulated transcription factor that regulates cellular responses to low oxygen environments. HIF-1 is composed of two subunits: hypoxia-inducible HIF-1α and constitutively-expressed HIF-1β. During hypoxic conditions, HIF-1α heterodimerizes with HIF-1β and translocates to the nucleus where the HIF-1 complex binds to the hypoxia-response element (HRE) and activates expression of target genes implicated in cell growth and survival. HIF-1α protein expression is elevated in many solid tumors, including those of the cervix and brain, where cells that are the greatest distance from blood vessels, and therefore the most hypoxic, express the highest levels of HIF-1α. Therapeutic blockade of the HIF-1 signaling pathway in cancer cells therefore provides an attractive strategy for development of anticancer drugs. To identify small molecule inhibitors of the HIF-1 pathway, we have developed a cell-based reporter gene assay and screened a large compound library by using a quantitative high-throughput screening (qHTS) approach. Results The assay is based upon a β-lactamase reporter under the control of a HRE. We have screened approximate 73,000 compounds by qHTS, with each compound tested over a range of seven to fifteen concentrations. After qHTS we have rapidly identified three novel structural series of HIF-1 pathway Inhibitors. Selected compounds in these series were also confirmed as inhibitors in a HRE β-lactamase reporter gene assay induced by low oxygen and in a VEGF secretion assay. Three of the four selected compounds tested showed significant inhibition of hypoxia-induced HIF-1α accumulation by western blot analysis. Conclusion The use of β-lactamase reporter gene assays, in combination with qHTS, enabled the rapid identification and prioritization of inhibitors specific to the hypoxia induced signaling pathway. PMID:20003191
Although progress has been made with HTS (high throughput screening) in profiling biological activity (e.g., EPA’s ToxCast™), challenges arise interpreting HTS results in the context of adversity & converting HTS assay concentrations to equivalent human doses for the broad domain...
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...
Adverse Outcome Pathways – Tailoring Development to Support Use
Adverse Outcome Pathways (AOPs) represent an ideal framework for connecting high-throughput screening (HTS) data and other toxicity testing results to adverse outcomes of regulatory importance. The AOP Knowledgebase (AOP-KB) captures AOP information to facilitate the development,...
High Throughput Screening For Hazard and Risk of Environmental Contaminants
High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...
High temperature superconductors for magnetic suspension applications
NASA Technical Reports Server (NTRS)
Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.
1994-01-01
High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-05-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core applies pharmaceutical industry project-management principles in an academic setting by bringing together multidisciplinary teams to fill critical scientific and technology gaps, using an experienced team of industry-trained researchers and project managers. The KU HTS proactively engages in supporting grant applications for extramural funding, intellectual-property management and technology transfer. The KU HTS staff further provides educational opportunities for the KU faculty and students to learn cutting-edge technologies in drug-discovery platforms through seminars, workshops, internships and course teaching. This is the first instalment of a two-part contribution from the KU HTS laboratory.
Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo
2013-01-01
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.
Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo
2013-01-01
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
Paul, Fiona; Otte, Jürgen; Schmitt, Imke; Dal Grande, Francesco
2018-06-05
The implementation of HTS (high-throughput sequencing) approaches is rapidly changing our understanding of the lichen symbiosis, by uncovering high bacterial and fungal diversity, which is often host-specific. Recently, HTS methods revealed the presence of multiple photobionts inside a single thallus in several lichen species. This differs from Sanger technology, which typically yields a single, unambiguous algal sequence per individual. Here we compared HTS and Sanger methods for estimating the diversity of green algal symbionts within lichen thalli using 240 lichen individuals belonging to two species of lichen-forming fungi. According to HTS data, Sanger technology consistently yielded the most abundant photobiont sequence in the sample. However, if the second most abundant photobiont exceeded 30% of the total HTS reads in a sample, Sanger sequencing generally failed. Our results suggest that most lichen individuals in the two analyzed species, Lasallia hispanica and L. pustulata, indeed contain a single, predominant green algal photobiont. We conclude that Sanger sequencing is a valid approach to detect the dominant photobionts in lichen individuals and populations. We discuss which research areas in lichen ecology and evolution will continue to benefit from Sanger sequencing, and which areas will profit from HTS approaches to assessing symbiont diversity.
NASA Astrophysics Data System (ADS)
Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang
2017-06-01
The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.
Blackwell, Brett R.; Ankley, Gerald T.; Corsi, Steven; DeCicco, Laura; Houck, Kieth A.; Judson, Richard S.; Li, Shibin; Martin, Matthew T.; Murphy, Elizabeth; Schroeder, Anthony L.; Smith, Edwin R.; Swintek, Joe; Villeneuve, Daniel L.
2017-01-01
Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure–activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.
NASA Astrophysics Data System (ADS)
Chepikov, V.; Mineev, N.; Degtyarenko, P.; Lee, S.; Petrykin, V.; Ovcharov, A.; Vasiliev, A.; Kaul, A.; Amelichev, V.; Kamenev, A.; Molodyk, A.; Samoilenkov, S.
2017-12-01
An industrial R&D programme is ongoing at SuperOx, aimed at improving 2G HTS wire performance in magnetic field. We introduce perovskite artificial pinning centres (APC) into the HTS layer matrix. In contrast to most studies described in the literature, we use the high rate production processing parameters and PLD equipment at SuperOx. This paper reports the results of Phase I of this programme. We fabricated 2G HTS wires by pulsed laser deposition of GdBCO films doped with 6%, 12% and 18% (molar) of BaSnO3 and 6% (molar) of BaZrO3, and compared their performance with an undoped reference sample. The depositions were carried out at production growth rates of 375, 560 and 750 nm min-1 by varying laser pulse frequency. BaZrO3 and BaSnO3 formed columnar semi-coherent nanoinclusions in the GdBCO film matrix. The average transverse size of the nanocolumns was about 5 nm, and their volume density correlated with the dopant concentration. All doped samples exhibited much lower angular anisotropy of in-field critical current and higher lift-factors than the undoped sample. Samples containing 6% BaSnO3 and deposited at the lower growth rates, had higher I c than the undoped sample in the entire temperature range, in a wide range of magnetic field (B//c). The sample containing 6% BaZrO3 had higher I c than the undoped sample at 20 and 4.2 K. These results are an encouraging start of our programme, as they show a positive impact of APC introduced into 2G HTS wires fabricated at production throughput. Phase II work will be focussed on maximising the improvements in specific temperature and field conditions, as well as on the verification of reproducibility of the improvements in production wires.
Ferret, Yann; Caillault, Aurélie; Sebda, Shéhérazade; Duez, Marc; Grardel, Nathalie; Duployez, Nicolas; Villenet, Céline; Figeac, Martin; Preudhomme, Claude; Salson, Mikaël; Giraud, Mathieu
2016-05-01
High-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements. Sequencing failures were halved (14% vs. 34%, P = 0.0007), enabling more patients to be monitored. Furthermore, more markers per patient could be monitored, reducing the probability of false negative MRD results. The whole analysis, from sample receipt to clinical validation, was shorter than our current diagnostic protocol, with equal resources. V(D)J recombination was successfully assigned by the software, even for unusual recombinations. This study emphasizes the progress that HTS with adapted bioinformatics tools can bring to the diagnosis of leukaemia patients. © 2016 John Wiley & Sons Ltd.
Jiang, Yue; Turinsky, Andrei L.; Brudno, Michael
2015-01-01
With the development of High-Throughput Sequencing (HTS) thousands of human genomes have now been sequenced. Whenever different studies analyze the same genome they usually agree on the amount of single-nucleotide polymorphisms, but differ dramatically on the number of insertion and deletion variants (indels). Furthermore, there is evidence that indels are often severely under-reported. In this manuscript we derive the total number of indel variants in a human genome by combining data from different sequencing technologies, while assessing the indel detection accuracy. Our estimate of approximately 1 million indels in a Yoruban genome is much higher than the results reported in several recent HTS studies. We identify two key sources of difficulties in indel detection: the insufficient coverage, read length or alignment quality; and the presence of repeats, including short interspersed elements and homopolymers/dimers. We quantify the effect of these factors on indel detection. The quality of sequencing data plays a major role in improving indel detection by HTS methods. However, many indels exist in long homopolymers and repeats, where their detection is severely impeded. The true number of indel events is likely even higher than our current estimates, and new techniques and technologies will be required to detect them. PMID:26130710
Repurposing a Histamine Detection Platform for High-Throughput Screening of Histidine Decarboxylase.
Juang, Yu-Chi; Fradera, Xavier; Han, Yongxin; Partridge, Anthony William
2018-06-01
Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z' score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure-activity relationships.
Kim, Ho-Sup; Oh, Sang-Soo; Ha, Hong-Soo; Youm, Dojun; Moon, Seung-Hyun; Kim, Jung Ho; Dou, Shi Xue; Heo, Yoon-Uk; Wee, Sung-Hun; Goyal, Amit
2014-01-01
Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1,000 A/cm-width for the entire 22 meter long wire and maximum Ic over 1,500 A/cm-width for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor. PMID:24752189
Metabolomics Approach for Toxicity Screening of Volatile Substances
In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However, the ch...
AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.
As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...
Virtual Embryo: Systems Modeling in Developmental Toxicity
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...
Rotor compound concept for designing an industrial HTS synchronous motor
NASA Astrophysics Data System (ADS)
Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.
2013-06-01
Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.
Rapid determination of enantiomeric excess: a focus on optical approaches.
Leung, Diana; Kang, Sung Ok; Anslyn, Eric V
2012-01-07
High-throughput screening (HTS) methods are becoming increasingly essential in discovering chiral catalysts or auxiliaries for asymmetric transformations due to the advent of parallel synthesis and combinatorial chemistry. Both parallel synthesis and combinatorial chemistry can lead to the exploration of a range of structural candidates and reaction conditions as a means to obtain the highest enantiomeric excess (ee) of a desired transformation. One current bottleneck in these approaches to asymmetric reactions is the determination of ee, which has led researchers to explore a wide range of HTS techniques. To be truly high-throughput, it has been proposed that a technique that can analyse a thousand or more samples per day is needed. Many of the current approaches to this goal are based on optical methods because they allow for a rapid determination of ee due to quick data collection and their parallel analysis capabilities. In this critical review these techniques are reviewed with a discussion of their respective advantages and drawbacks, and with a contrast to chromatographic methods (180 references). This journal is © The Royal Society of Chemistry 2012
The Maximum Levitation Force of High- T c Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Xian-Feng; Liu, Yuan
2007-11-01
In this paper we present the dependence of the maximum levitation force ( F {/z max }) of a high- T c superconductor (HTS) on the structural factors of high- T c superconducting systems based on the Bean critical state model and Ampère’s law. A transition point of the surface magnetic field ( B s ) of a permanent magnet (PM) is found at which the relation between F {/z max } and B s changes: while the surface magnetic field is less than the transition value the dependence is subject to a nonlinear function, otherwise it is a linear one. The two different relations are estimated to correspond to partial penetration of the shielding currents inside the superconductor below the transition point and complete penetration above it respectively. The influence of geometric properties of superconductors on the dependence is also investigated. In addition, the relation between F {/z max } and the critical current density ( J c ) of the HTS is discussed. The maximum levitation force saturates at high J c . An optimum function of the J c and the B s is presented in order to achieve large F {/z max }.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, v.; Barzi, E.; Turrioni, D.
Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Shortmore » sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.« less
Diarylthiophenes as inhibitors of the pore-forming protein perforin
Miller, Christian K.; Huttunen, Kristiina M.; Denny, William A.; Jaiswal, Jagdish K.; Ciccone, Annette; Browne, Kylie A.; Trapani, Joseph A.; Spicer, Julie A.
2016-01-01
Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure–activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class. PMID:26711151
Space applications for high temperature superconductivity - Brief review
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1990-01-01
An overview is presented of materials and devices based on high-temperature superconductivity (HTS) that could have useful space-oriented applications. Of specific interest are applications of HTS technologies to mm and microwave systems, spaceborne and planet-surface sensors, and to magnetic subsystems for robotic, rescue, and docking maneuvers. HTS technologies can be used in optoelectronics, magnetic-field detectors, antennae, transmission/delay lines, and launch/payload coils.
Sensing Fissile Materials at Long Range
2016-04-01
Adjusted Magnetic Design Working Point Parametrics ................................................ 21 B. Use of HTS Monoliths or Permanent Magnets for...25 B.3 Applications of HTS bulk to cyclotrons. ....................................................................... 26 B.4...57 D. HTS Potential for cyclotrons
Kleinstreuer, Nicole C; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Paul, Katie B; Reif, David M; Crofton, Kevin M; Hamilton, Kerry; Hunter, Ronald; Shah, Imran; Judson, Richard S
2013-01-01
Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes to build models for priority setting and further testing. We describe a model for predicting rodent carcinogenicity based on HTS data from 292 chemicals tested in 672 assays mapping to 455 genes. All data come from the EPA ToxCast project. The model was trained on a subset of 232 chemicals with in vivo rodent carcinogenicity data in the Toxicity Reference Database (ToxRefDB). Individual HTS assays strongly associated with rodent cancers in ToxRefDB were linked to genes, pathways, and hallmark processes documented to be involved in tumor biology and cancer progression. Rodent liver cancer endpoints were linked to well-documented pathways such as peroxisome proliferator-activated receptor signaling and TP53 and novel targets such as PDE5A and PLAUR. Cancer hallmark genes associated with rodent thyroid tumors were found to be linked to human thyroid tumors and autoimmune thyroid disease. A model was developed in which these genes/pathways function as hypothetical enhancers or promoters of rat thyroid tumors, acting secondary to the key initiating event of thyroid hormone disruption. A simple scoring function was generated to identify chemicals with significant in vitro evidence that was predictive of in vivo carcinogenicity in different rat tissues and organs. This scoring function was applied to an external test set of 33 compounds with carcinogenicity classifications from the EPA's Office of Pesticide Programs and successfully (p = 0.024) differentiated between chemicals classified as "possible"/"probable"/"likely" carcinogens and those designated as "not likely" or with "evidence of noncarcinogenicity." This model represents a chemical carcinogenicity prioritization tool supporting targeted testing and functional validation of cancer pathways.
380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results
NASA Astrophysics Data System (ADS)
Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.
2002-08-01
Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.
In 2007, EPA launched ToxCast™ in order to develop a cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time. Using data from state-of-the-art high throughput screening (HTS) bioassays developed in the pharmaceutical i...
High-throughput screening, predictive modeling and computational embryology - Abstract
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...
AC Application of HTS Conductors in Highly Dynamic Electric Motors
NASA Astrophysics Data System (ADS)
Oswald, B.; Best, K.-J.; Setzer, M.; Duffner, E.; Soell, M.; Gawalek, W.; Kovalev, L. K.
2006-06-01
Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit.
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-07-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Timing; Michael, Philip C.; Bascuñán, Juan
2016-08-22
We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil fieldmore » decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.« less
Chemical stability of high-temperature superconductors
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1992-01-01
A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu
2017-01-01
Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.
Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations
NASA Astrophysics Data System (ADS)
Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.
2017-02-01
Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..
NASA Technical Reports Server (NTRS)
Creason, A. S.; Miranda, F. A.
1996-01-01
Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.
Sidani, Jaime E; Shensa, Ariel; Barnett, Tracey E; Cook, Robert L; Primack, Brian A
2014-06-01
While cross-sectional studies have shown that hookah tobacco smoking (HTS) is an increasingly popular behavior among university students, little is known about factors associated with initiation. This study sought to determine associations between knowledge, attitudes, and normative beliefs and initiation of HTS among university students. Data were from a prospective longitudinal cohort study of 569 randomly selected first- and second-year university students. Online questionnaires that were developed in accordance with our composite theoretical model were completed in September 2010 and April 2011. About one-seventh (13%) of participants initiated HTS by follow-up. Positive attitudes and favorable normative beliefs were associated with increased adjusted odds of initiation (AOR = 4.12, 95% CI = 2.56, 6.59; and AOR = 2.01, 95% CI = 1.35, 2.99, respectively), while negative attitudes were associated with decreased adjusted odds (AOR = 0.62, 95% CI = 0.48, 0.80). Correct knowledge regarding toxicants associated with HTS was not significantly associated with initiation. While positive attitudes and favorable normative beliefs are associated with initiation of HTS in a cohort of never-users, increased knowledge about toxins is not associated with lower initiation. It may be particularly valuable for educational interventions to attempt to alter positive attitudes and normative beliefs related to HTS.
NASA Astrophysics Data System (ADS)
Bilkan, Ç.; Badali, Y.; Fotouhi-Shablou, S.; Azizian-Kalandaragh, Y.; Altındal, Ş.
2017-08-01
In this paper, we report the preparation and characterization of SnO2-PVA nanocomposite film as interlayer for Schottky barrier diodes (SBDs). The possible current transport mechanisms (CTMs) of the prepared SBDs were investigated using the forward-bias current-voltage ( I- V) characteristics in the temperature range of 80-400 K. The structure of nanocomposite film was characterized by an X-ray diffractometer (XRD) and the surface morphology was investigated using a Scanning Electron Microscopy (SEM) at room temperature. The values of ideality factor ( n) and zero-bias barrier height (\\overline{Φ}_{Bo}) showed variation with temperature, such that they changed from 19.10 to 3.77 and 0.190 to 0.844 eV, respectively. \\overline{Φ}_{Bo}- n, \\overline{Φ}_{Bo}- q/2 kT, and n -1- q/2 kT plots were drawn to get evidence to the Gaussian Distribution (GD) of the barrier height (BH). These plots revealed two distinct linear regions with different slopes for low temperatures (80-160 K) (LTs) and high temperatures (180-400 K) (HTs). This behavior is an evidence to the existence double GD of BHs which provides an average value for BH (\\overline{Φ}_{Bo}) and a standard deviation (σs) for each region. The high value of n especially at low temperatures was attributed to the existence of interlayer: interface states ( N ss) and barrier inhomogeneity at Au/n-Si interface. The values of \\overline{Φ}_{Bo} and σs were obtained from the intercept and slope of mentioned plots as 0.588 and 0.0768 V for LTs and 1.183 eV and 0.158 V for HTs, respectively. Moreover, the modified ln( I s/ T 2)- q 2σ s 2 /2 k 2 T 2 vs q/ kT plot also showed two linear regions. The values of \\overline{Φ}_{Bo} and effective Richardson constant ( A *) were extracted from the slope and intercept of this plot as 0.610 eV and 93.13 A/cm2 K2 for LTs and 1.235 eV and 114.65 A/cm2 K2 for HTs, respectively. The value of A* for HTs is very close to the theoretical value (112 A/cm2 K2) of n-type Si. Thus, the forward-bias I- V- T characteristics of Au/SnO2-PVA/n-Si (SBDs) were successfully explained in terms of the thermionic-emission (TE) mechanism with a double GD of BHs.
2013-01-01
Background Hypertensive patients (HTs) are usually attended in primary care (PC). We aimed to assess the diagnostic accuracy and cost-benefit ratio of 24-hour ambulatory blood pressure monitoring (ABPM) in all newly diagnosed hypertensive patients (HTs) attended in PC. Methods In a cross-sectional study ABPM was recorded in all 336 never treated HTs (Office BP ≥140 and/or ≥ 90 mm Hg) that were admitted during 16 months. Since benefits from drug treatment in white-coat hypertension (WCH) remain unproven, a cost benefit estimation of a general use of ABPM (vs absence of ABPM) in HTs was calculated comparing the cost of usual medical assistance of HTs only diagnosed in office with that based both on refraining from drug treatment all subjects identified as WCH and on the reduction by half of the frequency of biochemical exams and doctor visits. Results Women were 56%, age 51 ± 14 years and BMI 27 ± 4 Kg/m2. Out of these, 206 were considered as true HTs, daytime ABPM ≥ 135 and/or ≥85 mm Hg and 130 (38,7%) were identified as having white coat hypertension (WCH), daytime ABPM <135/85 mm Hg. Versus HTs, WCH group showed higher percentage of women (68% vs 51%) and lower values of an index composed by the association of cardiovascular risk factors. We estimated that with ABPM total medical expenses can be reduced by 23% (157.500 euros) with a strategy based on ABPM for 1000 patients followed for 2 years. Conclusions In PC, the widespread use of ABPM in newly diagnosed HTs increases diagnostic accuracy of hypertension, improves cardiovascular risk stratification, reduces health expenses showing a highly favourable benefit-cost ratio vs a strategy without ABPM. PMID:23937261
Evaluation of Series T22 Wet Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2017-01-01
Several types of advanced wet tantalum capacitors, and series T22 in particular, are designed without internal Teflon sealing that is used for military grade, CLR style capacitors. This raises concerns regarding hermeticity of the single seal parts and their capability to withstand high internal gas pressures that might develop during operation in space. To address these issues, T22 series capacitors rated to 50 V and 125 V were subjected to highly accelerated life testing (HALT) at 125 C and rated voltage and step stress random vibration testing (RVT). To simulate conditions of storage or operation under increased internal gas pressure, the parts were stored at temperature of 150 C for 2500 hr (HTS150). Electrical characteristics of the parts were measured through the storage testing and the hermeticity leak rate was tested before and after HTS150. To assess thermo-mechanical robustness of the part, capacitors were manually soldered onto printed wired boards (PWB) and stressed by 1000 temperature cycles between -55 C and +125 C. The effect of temperature cycling was assessed by additional HALT at different temperatures. Results show that T22 series capacitors have robust design and can satisfy requirements for space applications.
ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...
Fun with High Throughput Toxicokinetics (CalEPA webinar)
Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21. These chemicals are tested in part because there are limited or no data on hazard, exposure, or toxicokinetics (TK). TK models aid in predicting tissue concentrations ...
compare the effects of elevated temperature on 801-finish glass. The strength qualities at 75 F of Owens - Corning ECG-140 continuous-filament roving glass...with an 801 epoxy compatible finish and the same glass with an HTS epoxy compatible finish were tested. The strength qualities of Owens - Corning ECG
In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#
In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...
Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...
Heat Transfer Study for HTS Power Transfer Cables
NASA Technical Reports Server (NTRS)
Augustynowicz, S.; Fesmire, J.
2002-01-01
Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.
An Update on ToxCast™ | Science Inventory | US EPA
In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays Lessons learned to date for ToxCast: Large amounts of quality HTS data can be economically obtained. Large scale data sets will be required to understand potential for biological activity. Value in having multiple assays with overlapping coverage of biological pathways and a variety of methodologies Concentration-response will be important for ultimate interpretation Data transparency will be important for acceptance. Metabolic capabilities and coverage of developmental toxicity pathways will need additional attention. Need to define the gold standard Partnerships are needed to bring critical mass and expertise.
Design and market considerations for axial flux superconducting electric machine design
NASA Astrophysics Data System (ADS)
Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.
2014-05-01
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.
Bolts from Orion: Destroying Mobile Surface-to-Air Missile Systems with Lethal Autonomous Aircraft
2016-07-01
era SAMs that had been upgraded by Ukrainian contractors . During the operation, Russian aircraft’s 10 electronic countermeasures could not...main SEAD asset is the F-16 CJ equipped with the HARM targeting system ( HTS ). The HTS can autonomously locate and identify threat radars and pass...targeting information to the HARMs before launch. The HTS can also provide targeting 13 information to global positioning system (GPS) guided
High temperature superconductor analog electronics for millimeter-wavelength communications
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Bhasin, K. B.
1991-01-01
The performance of high temperature superconductor (HTS) passive microwave circuits up to X-band was encouraging when compared to their metallic counterparts. The extremely low surface resistance of HTS films up to about 10 GHz enables a reduction in loss by as much as 100 times compared to copper when both materials are kept at about 77 K. However, a superconductor's surface resistance varies in proportion to the frequency squared. Consequently, the potential benefit of HTS materials to millimeter-wave communications requires careful analysis. A simple ring resonator was used to evaluate microstrip losses at Ka-band. Additional promising components were investigated such as antennas and phase shifters. Prospects for HTS to favorable impact millimeter-wave communications systems are discussed.
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-01-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory. PMID:21806374
Loss Analysis of High Power Stirling-Type Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Nakano, K.; Hiratsuka, Y.
2015-12-01
For the purpose of cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES) and current fault limiters, cryocoolers should be compact in size, light-weight, and have high efficiency and reliability. In order to meet the demand of HTS devices world-wide, the cryocooler needs to have COP efficiency >0.1. We have developed a high power Stirling-type pulse tube cryocooler (SPTC) with an in-line expander. The experimental results were reported in June 2012[1]. The cooling capacity was 210 W at 77 K and the minimum temperature was 37 K when the compressor input power was 3.8 kW. Accordingly, the COP was about 0.055. To further improve the efficiency, the energy losses in the cryocooler were analyzed. The experimental results and the numerical calculation results are reported in this paper.
Chatterjee, Arnab K
2013-10-24
Malaria represents a significant health issue, and novel and effective drugs are needed to address parasite resistance that has emerged to the current drug arsenal. Antimalarial drug discovery has historically benefited from a whole-cell (phenotypic) screening approach to identify lead molecules. This approach has been utilized by several groups to optimize weakly active antimalarial pharmacophores, such as the quinolone scaffold, to yield potent and highly efficacious compounds that are now poised to enter clinical trials. More recently, GNF/Novartis, GSK, and others have employed the same approach in high-throughput screening (HTS) of large compound libraries to find novel scaffolds that have also been optimized to clinical candidates by GNF/Novartis. This perspective outlines some of the inherent challenges in cell-based medicinal chemistry optimization, including optimization of oral exposure and hERG activity.
Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Weinstein, Roy
1993-01-01
For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.
High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide
NASA Astrophysics Data System (ADS)
Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.
2004-05-01
A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.
Electrical and magnetic properties of conductive Cu-based coated conductors
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.
2003-11-01
The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.
2001-10-01
Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.
Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field
NASA Astrophysics Data System (ADS)
Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.
2015-11-01
A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.
Silva Elipe, Maria Victoria; Donovan, Neil; Krull, Robert; Pooke, Donald; Colson, Kimberly L
2018-04-17
After years towards higher field strength magnets, nuclear magnetic resonance (NMR) technology in commercial instruments in the past decade has expanded at low and high magnetic fields to take advantage of new opportunities. At lower field strengths, permanent magnets are well established, whereas for midrange and high field, developments utilize superconducting magnets cooled with cryogenic liquids. Recently, the desire to locate NMR spectrometers in nontypical NMR laboratories has created interest in the development of cryogen-free magnets. These magnets require no cryogenic maintenance, eliminating routine filling and large cryogen dewars in the facility. Risks of spontaneous quenches and safety concerns when working with cryogenic liquids are eliminated. The highest field commercially available cryogen-free NMR magnet previously reported was at 4.7 T in 2013. Here we tested a prototype cryogen-free 9.4-T power-driven high-temperature-superconducting (HTS) magnet mated to commercial NMR spectrometer electronics. We chose cinacalcet HCl, a typical active pharmaceutical ingredient, to evaluate its performance towards structure elucidation. Satisfactory standard 1D and 2D homonuclear and heteronuclear NMR results were obtained and compared with those from a standard 9.4-T cryogenically cooled superconducting NMR instrument. The results were similar between both systems with minor differences. Further comparison with different shims and probes in the HTS magnet system confirmed that the magnet homogeneity profile could be matched with commercially available NMR equipment for optimal results. We conclude that HTS magnet technology works well providing results comparable with those of standard instruments, leading us to investigate additional applications for this magnet technology outside a traditional NMR facility. Copyright © 2018 John Wiley & Sons, Ltd.
Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans
ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...
SeqAPASS: Sequence alignment to predict across-species susceptibility
Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, s...
VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...