Sample records for testing linear regression

  1. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  2. Classical Testing in Functional Linear Models.

    PubMed

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.

  3. Classical Testing in Functional Linear Models

    PubMed Central

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155

  4. Testing hypotheses for differences between linear regression lines

    Treesearch

    Stanley J. Zarnoch

    2009-01-01

    Five hypotheses are identified for testing differences between simple linear regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The contrast approach is presented as an easy and complete method for testing for overall differences between the regressions and for making pairwise...

  5. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  6. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    ERIC Educational Resources Information Center

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  7. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    PubMed

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  8. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing

    PubMed Central

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-01-01

    Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393

  9. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    PubMed

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  11. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  12. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  13. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  14. Transmission of linear regression patterns between time series: From relationship in time series to complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  15. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  16. RBF kernel based support vector regression to estimate the blood volume and heart rate responses during hemodialysis.

    PubMed

    Javed, Faizan; Chan, Gregory S H; Savkin, Andrey V; Middleton, Paul M; Malouf, Philip; Steel, Elizabeth; Mackie, James; Lovell, Nigel H

    2009-01-01

    This paper uses non-linear support vector regression (SVR) to model the blood volume and heart rate (HR) responses in 9 hemodynamically stable kidney failure patients during hemodialysis. Using radial bias function (RBF) kernels the non-parametric models of relative blood volume (RBV) change with time as well as percentage change in HR with respect to RBV were obtained. The e-insensitivity based loss function was used for SVR modeling. Selection of the design parameters which includes capacity (C), insensitivity region (e) and the RBF kernel parameter (sigma) was made based on a grid search approach and the selected models were cross-validated using the average mean square error (AMSE) calculated from testing data based on a k-fold cross-validation technique. Linear regression was also applied to fit the curves and the AMSE was calculated for comparison with SVR. For the model based on RBV with time, SVR gave a lower AMSE for both training (AMSE=1.5) as well as testing data (AMSE=1.4) compared to linear regression (AMSE=1.8 and 1.5). SVR also provided a better fit for HR with RBV for both training as well as testing data (AMSE=15.8 and 16.4) compared to linear regression (AMSE=25.2 and 20.1).

  17. Simplified large African carnivore density estimators from track indices.

    PubMed

    Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J

    2016-01-01

    The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y  =  αx  + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P  > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P  < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.

  18. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  19. Finite-sample and asymptotic sign-based tests for parameters of non-linear quantile regression with Markov noise

    NASA Astrophysics Data System (ADS)

    Sirenko, M. A.; Tarasenko, P. F.; Pushkarev, M. I.

    2017-01-01

    One of the most noticeable features of sign-based statistical procedures is an opportunity to build an exact test for simple hypothesis testing of parameters in a regression model. In this article, we expanded a sing-based approach to the nonlinear case with dependent noise. The examined model is a multi-quantile regression, which makes it possible to test hypothesis not only of regression parameters, but of noise parameters as well.

  20. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-07-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  1. An Introduction to Graphical and Mathematical Methods for Detecting Heteroscedasticity in Linear Regression.

    ERIC Educational Resources Information Center

    Thompson, Russel L.

    Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…

  2. Using Linear Regression To Determine the Number of Factors To Retain in Factor Analysis and the Number of Issues To Retain in Delphi Studies and Other Surveys.

    ERIC Educational Resources Information Center

    Jurs, Stephen; And Others

    The scree test and its linear regression technique are reviewed, and results of its use in factor analysis and Delphi data sets are described. The scree test was originally a visual approach for making judgments about eigenvalues, which considered the relationships of the eigenvalues to one another as well as their actual values. The graph that is…

  3. Testing a single regression coefficient in high dimensional linear models

    PubMed Central

    Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling

    2017-01-01

    In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate. Based on the p-value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively. PMID:28663668

  4. Testing a single regression coefficient in high dimensional linear models.

    PubMed

    Lan, Wei; Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling

    2016-11-01

    In linear regression models with high dimensional data, the classical z -test (or t -test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z -test to assess the significance of each covariate. Based on the p -value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively.

  5. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  6. A New Test of Linear Hypotheses in OLS Regression under Heteroscedasticity of Unknown Form

    ERIC Educational Resources Information Center

    Cai, Li; Hayes, Andrew F.

    2008-01-01

    When the errors in an ordinary least squares (OLS) regression model are heteroscedastic, hypothesis tests involving the regression coefficients can have Type I error rates that are far from the nominal significance level. Asymptotically, this problem can be rectified with the use of a heteroscedasticity-consistent covariance matrix (HCCM)…

  7. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-11-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  8. Biostatistics Series Module 6: Correlation and Linear Regression.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  9. Biostatistics Series Module 6: Correlation and Linear Regression

    PubMed Central

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175

  10. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  11. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    2004-10-01

    The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact onmore » the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.« less

  12. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    PubMed

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  13. Quantile regression models of animal habitat relationships

    USGS Publications Warehouse

    Cade, Brian S.

    2003-01-01

    Typically, all factors that limit an organism are not measured and included in statistical models used to investigate relationships with their environment. If important unmeasured variables interact multiplicatively with the measured variables, the statistical models often will have heterogeneous response distributions with unequal variances. Quantile regression is an approach for estimating the conditional quantiles of a response variable distribution in the linear model, providing a more complete view of possible causal relationships between variables in ecological processes. Chapter 1 introduces quantile regression and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of estimates for homogeneous and heterogeneous regression models. Chapter 2 evaluates performance of quantile rankscore tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). A permutation F test maintained better Type I errors than the Chi-square T test for models with smaller n, greater number of parameters p, and more extreme quantiles τ. Both versions of the test required weighting to maintain correct Type I errors when there was heterogeneity under the alternative model. An example application related trout densities to stream channel width:depth. Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). Chapter 4 simulates from a large (N = 10,000) finite population representing grid areas on a landscape to demonstrate various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable (spatially and not spatially structured). Depending on whether interactions of the measured habitat and unmeasured variable were negative (interference interactions) or positive (facilitation interactions), either upper (τ > 0.5) or lower (τ < 0.5) quantile regression parameters were less biased than mean rate parameters. Sampling (n = 20 - 300) simulations demonstrated that confidence intervals constructed by inverting rankscore tests provided valid coverage of these biased parameters. Quantile regression was used to estimate effects of physical habitat resources on a bivalve mussel (Macomona liliana) in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of location coordinates.

  14. Effect of Malmquist bias on correlation studies with IRAS data base

    NASA Technical Reports Server (NTRS)

    Verter, Frances

    1993-01-01

    The relationships between galaxy properties in the sample of Trinchieri et al. (1989) are reexamined with corrections for Malmquist bias. The linear correlations are tested and linear regressions are fit for log-log plots of L(FIR), L(H-alpha), and L(B) as well as ratios of these quantities. The linear correlations for Malmquist bias are corrected using the method of Verter (1988), in which each galaxy observation is weighted by the inverse of its sampling volume. The linear regressions are corrected for Malmquist bias by a new method invented here in which each galaxy observation is weighted by its sampling volume. The results of correlation and regressions among the sample are significantly changed in the anticipated sense that the corrected correlation confidences are lower and the corrected slopes of the linear regressions are lower. The elimination of Malmquist bias eliminates the nonlinear rise in luminosity that has caused some authors to hypothesize additional components of FIR emission.

  15. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less

  16. Mental chronometry with simple linear regression.

    PubMed

    Chen, J Y

    1997-10-01

    Typically, mental chronometry is performed by means of introducing an independent variable postulated to affect selectively some stage of a presumed multistage process. However, the effect could be a global one that spreads proportionally over all stages of the process. Currently, there is no method to test this possibility although simple linear regression might serve the purpose. In the present study, the regression approach was tested with tasks (memory scanning and mental rotation) that involved a selective effect and with a task (word superiority effect) that involved a global effect, by the dominant theories. The results indicate (1) the manipulation of the size of a memory set or of angular disparity affects the intercept of the regression function that relates the times for memory scanning with different set sizes or for mental rotation with different angular disparities and (2) the manipulation of context affects the slope of the regression function that relates the times for detecting a target character under word and nonword conditions. These ratify the regression approach as a useful method for doing mental chronometry.

  17. Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat.

    PubMed

    Nachit, M M; Nachit, G; Ketata, H; Gauch, H G; Zobel, R W

    1992-03-01

    The joint durum wheat (Triticum turgidum L var 'durum') breeding program of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) for the Mediterranean region employs extensive multilocation testing. Multilocation testing produces significant genotype-environment (GE) interaction that reduces the accuracy for estimating yield and selecting appropriate germ plasm. The sum of squares (SS) of GE interaction was partitioned by linear regression techniques into joint, genotypic, and environmental regressions, and by Additive Main effects and the Multiplicative Interactions (AMMI) model into five significant Interaction Principal Component Axes (IPCA). The AMMI model was more effective in partitioning the interaction SS than the linear regression technique. The SS contained in the AMMI model was 6 times higher than the SS for all three regressions. Postdictive assessment recommended the use of the first five IPCA axes, while predictive assessment AMMI1 (main effects plus IPCA1). After elimination of random variation, AMMI1 estimates for genotypic yields within sites were more precise than unadjusted means. This increased precision was equivalent to increasing the number of replications by a factor of 3.7.

  18. Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Zhen Yu, Jian

    2018-03-01

    Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS), Deming regression (DR), orthogonal distance regression (ODR), weighted ODR (WODR), and York regression (YR). We first introduce a new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator. The numerical simulations are also improved by (a) refining the parameterization of nonlinear measurement uncertainties, (b) inclusion of a linear measurement uncertainty, and (c) inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot) was developed to facilitate the implementation of error-in-variables regressions.

  19. Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analyses.

    PubMed

    Bennett, Bradley C; Husby, Chad E

    2008-03-28

    Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.

  20. Estimating effects of limiting factors with regression quantiles

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Schroeder, R.L.

    1999-01-01

    In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.

  1. The Use of Linear Programming for Prediction.

    ERIC Educational Resources Information Center

    Schnittjer, Carl J.

    The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)

  2. Stature Estimation from Lower Limb Anthropometry using Linear Regression Analysis: A Study on the Malaysian Population.

    PubMed

    Abu Bakar, S N; Aspalilah, A; AbdelNasser, I; Nurliza, A; Hairuliza, M J; Swarhib, M; Das, S; Mohd Nor, F

    2017-01-01

    Stature is one of the characteristics that could be used to identify human, besides age, sex and racial affiliation. This is useful when the body found is either dismembered, mutilated or even decomposed, and helps in narrowing down the missing person's identity. The main aim of the present study was to construct regression functions for stature estimation by using lower limb bones in the Malaysian population. The sample comprised 87 adult individuals (81 males, 6 females) aged between 20 to 79 years. The parameters such as thigh length, lower leg length, leg length, foot length, foot height and foot breadth were measured. They were measured by a ruler and measuring tape. Statistical analysis involved independent t-test to analyse the difference between lower limbs in male and female. The Pearson's correlation test was used to analyse correlations between lower limb parameters and stature, and the linear regressions were used to form equations. The paired t-test was used to compare between actual stature and estimated stature by using the equations formed. Using independent t-test, there was a significant difference (p< 0.05) in the measurement between males and females with regard to leg length, thigh length, lower leg length, foot length and foot breadth. The thigh length, leg length and foot length were observed to have strong correlations with stature with p= 0.75, p= 0.81 and p= 0.69, respectively. Linear regressions were formulated for stature estimation. Paired t-test showed no significant difference between actual stature and estimated stature. It is concluded that regression functions can be used to estimate stature to identify skeletal remains in the Malaysia population.

  3. Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Karen dos Santos; Winkler, Mirko S.; Benchimol-Barbosa, Paulo Roberto; de Hoogh, Kees; Artaxo, Paulo Eduardo; de Souza Hacon, Sandra; Schindler, Christian; Künzli, Nino

    2018-07-01

    Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5 concentrations, and thus provides an alternative method for producing knowledge regarding the level of pollution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2 based on results from linear regression and non-linear regression for six different models. The regression results for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 concentrations when considering the whole period studied. In the context of Amazonia, it was the first study predicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian Amazon Region.

  4. Partial F-tests with multiply imputed data in the linear regression framework via coefficient of determination.

    PubMed

    Chaurasia, Ashok; Harel, Ofer

    2015-02-10

    Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    PubMed Central

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  6. Adaptive local linear regression with application to printer color management.

    PubMed

    Gupta, Maya R; Garcia, Eric K; Chin, Erika

    2008-06-01

    Local learning methods, such as local linear regression and nearest neighbor classifiers, base estimates on nearby training samples, neighbors. Usually, the number of neighbors used in estimation is fixed to be a global "optimal" value, chosen by cross validation. This paper proposes adapting the number of neighbors used for estimation to the local geometry of the data, without need for cross validation. The term enclosing neighborhood is introduced to describe a set of neighbors whose convex hull contains the test point when possible. It is proven that enclosing neighborhoods yield bounded estimation variance under some assumptions. Three such enclosing neighborhood definitions are presented: natural neighbors, natural neighbors inclusive, and enclosing k-NN. The effectiveness of these neighborhood definitions with local linear regression is tested for estimating lookup tables for color management. Significant improvements in error metrics are shown, indicating that enclosing neighborhoods may be a promising adaptive neighborhood definition for other local learning tasks as well, depending on the density of training samples.

  7. Introduction to statistical modelling 2: categorical variables and interactions in linear regression.

    PubMed

    Lunt, Mark

    2015-07-01

    In the first article in this series we explored the use of linear regression to predict an outcome variable from a number of predictive factors. It assumed that the predictive factors were measured on an interval scale. However, this article shows how categorical variables can also be included in a linear regression model, enabling predictions to be made separately for different groups and allowing for testing the hypothesis that the outcome differs between groups. The use of interaction terms to measure whether the effect of a particular predictor variable differs between groups is also explained. An alternative approach to testing the difference between groups of the effect of a given predictor, which consists of measuring the effect in each group separately and seeing whether the statistical significance differs between the groups, is shown to be misleading. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Experimental and computational prediction of glass transition temperature of drugs.

    PubMed

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  9. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether

  10. Detecting a Change in School Performance: A Bayesian Analysis for a Multilevel Join Point Problem. CSE Technical Report 542.

    ERIC Educational Resources Information Center

    Thum, Yeow Meng; Bhattacharya, Suman Kumar

    To better describe individual behavior within a system, this paper uses a sample of longitudinal test scores from a large urban school system to consider hierarchical Bayes estimation of a multilevel linear regression model in which each individual regression slope of test score on time switches at some unknown point in time, "kj."…

  11. Testing for gene-environment interaction under exposure misspecification.

    PubMed

    Sun, Ryan; Carroll, Raymond J; Christiani, David C; Lin, Xihong

    2017-11-09

    Complex interplay between genetic and environmental factors characterizes the etiology of many diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown functional form of the environment term in the true data-generating mechanism. We study the impact of misspecification of the environmental exposure effect on inference for the GxE interaction term in linear and logistic regression models. We first examine the asymptotic bias of the GxE interaction regression coefficient, allowing for confounders as well as arbitrary misspecification of the exposure and confounder effects. For linear regression, we show that under gene-environment independence and some confounder-dependent conditions, when the environment effect is misspecified, the regression coefficient of the GxE interaction can be unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, we show that the regression coefficient is generally biased if the genetic factor is associated with the outcome directly or indirectly. Further, we show that the standard robust sandwich variance estimator for the GxE interaction does not perform well in practical GxE studies, and we provide an alternative testing procedure that has better finite sample properties. © 2017, The International Biometric Society.

  12. Investigating the detection of multi-homed devices independent of operating systems

    DTIC Science & Technology

    2017-09-01

    timestamp data was used to estimate clock skews using linear regression and linear optimization methods. Analysis revealed that detection depends on...the consistency of the estimated clock skew. Through vertical testing, it was also shown that clock skew consistency depends on the installed...optimization methods. Analysis revealed that detection depends on the consistency of the estimated clock skew. Through vertical testing, it was also

  13. A Demonstration of Regression False Positive Selection in Data Mining

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2014-01-01

    Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…

  14. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessing the Impact of Influential Observations on Multiple Regression Analysis on Human Resource Research.

    ERIC Educational Resources Information Center

    Bates, Reid A.; Holton, Elwood F., III; Burnett, Michael F.

    1999-01-01

    A case study of learning transfer demonstrates the possible effect of influential observation on linear regression analysis. A diagnostic method that tests for violation of assumptions, multicollinearity, and individual and multiple influential observations helps determine which observation to delete to eliminate bias. (SK)

  16. Construction of mathematical model for measuring material concentration by colorimetric method

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Gao, Lingceng; Yu, Kairong; Tan, Xianghua

    2018-06-01

    This paper use the method of multiple linear regression to discuss the data of C problem of mathematical modeling in 2017. First, we have established a regression model for the concentration of 5 substances. But only the regression model of the substance concentration of urea in milk can pass through the significance test. The regression model established by the second sets of data can pass the significance test. But this model exists serious multicollinearity. We have improved the model by principal component analysis. The improved model is used to control the system so that it is possible to measure the concentration of material by direct colorimetric method.

  17. 40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... linear regression parameters (slope, intercept, and correlation coefficient) describing the relationship... correlation coefficient. (2) To pass the test for comparability, the slope, intercept, and correlation...

  18. Scale of association: hierarchical linear models and the measurement of ecological systems

    Treesearch

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  19. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  20. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    PubMed

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Application of linear regression analysis in accuracy assessment of rolling force calculations

    NASA Astrophysics Data System (ADS)

    Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.

    1998-10-01

    Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.

  2. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    PubMed

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.

  3. Liquid electrolyte informatics using an exhaustive search with linear regression.

    PubMed

    Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato

    2018-06-14

    Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.

  4. The application of parameter estimation to flight measurements to obtain lateral-directional stability derivatives of an augmented jet-flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Stephenson, J. D.

    1983-01-01

    Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.

  5. Efficacy of Social Media Adoption on Client Growth for Independent Management Consultants

    DTIC Science & Technology

    2017-02-01

    design , a linear multiple regression with three predictor variables and one dependent variable per testing were used. Under those circumstances...regression test was used to compare the social media adoption of two groups on a single measure to determine if there was a statistical difference...number and types of social media platforms used and their influence on client growth was examined in this research design that used a descriptive

  6. Normality of raw data in general linear models: The most widespread myth in statistics

    USGS Publications Warehouse

    Kery, Marc; Hatfield, Jeff S.

    2003-01-01

    In years of statistical consulting for ecologists and wildlife biologists, by far the most common misconception we have come across has been the one about normality in general linear models. These comprise a very large part of the statistical models used in ecology and include t tests, simple and multiple linear regression, polynomial regression, and analysis of variance (ANOVA) and covariance (ANCOVA). There is a widely held belief that the normality assumption pertains to the raw data rather than to the model residuals. We suspect that this error may also occur in countless published studies, whenever the normality assumption is tested prior to analysis. This may lead to the use of nonparametric alternatives (if there are any), when parametric tests would indeed be appropriate, or to use of transformations of raw data, which may introduce hidden assumptions such as multiplicative effects on the natural scale in the case of log-transformed data. Our aim here is to dispel this myth. We very briefly describe relevant theory for two cases of general linear models to show that the residuals need to be normally distributed if tests requiring normality are to be used, such as t and F tests. We then give two examples demonstrating that the distribution of the response variable may be nonnormal, and yet the residuals are well behaved. We do not go into the issue of how to test normality; instead we display the distributions of response variables and residuals graphically.

  7. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  8. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    PubMed

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  9. Notes on power of normality tests of error terms in regression models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Střelec, Luboš

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importancemore » of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.« less

  10. Predictive value of grade point average (GPA), Medical College Admission Test (MCAT), internal examinations (Block) and National Board of Medical Examiners (NBME) scores on Medical Council of Canada qualifying examination part I (MCCQE-1) scores.

    PubMed

    Roy, Banibrata; Ripstein, Ira; Perry, Kyle; Cohen, Barry

    2016-01-01

    To determine whether the pre-medical Grade Point Average (GPA), Medical College Admission Test (MCAT), Internal examinations (Block) and National Board of Medical Examiners (NBME) scores are correlated with and predict the Medical Council of Canada Qualifying Examination Part I (MCCQE-1) scores. Data from 392 admitted students in the graduating classes of 2010-2013 at University of Manitoba (UofM), College of Medicine was considered. Pearson's correlation to assess the strength of the relationship, multiple linear regression to estimate MCCQE-1 score and stepwise linear regression to investigate the amount of variance were employed. Complete data from 367 (94%) students were studied. The MCCQE-1 had a moderate-to-large positive correlation with NBME scores and Block scores but a low correlation with GPA and MCAT scores. The multiple linear regression model gives a good estimate of the MCCQE-1 (R2 =0.604). Stepwise regression analysis demonstrated that 59.2% of the variation in the MCCQE-1 was accounted for by the NBME, but only 1.9% by the Block exams, and negligible variation came from the GPA and the MCAT. Amongst all the examinations used at UofM, the NBME is most closely correlated with MCCQE-1.

  11. Image interpolation via regularized local linear regression.

    PubMed

    Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang

    2011-12-01

    The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE

  12. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  13. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  14. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  15. Carbon dioxide stripping in aquaculture -- part III: model verification

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 < approximately 1.5/h, the 2-point or ASCE method are a good fit to experimental data, but the fit breaks down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.

  16. Changes in aerobic power of men, ages 25-70 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Beard, E. F.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.; Blair, S. N.

    1995-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak). The cross-sectional sample consisted of 1,499 healthy men ages 25-70 yr. The 156 men of the longitudinal sample were from the same population and examined twice, the mean time between tests was 4.1 (+/- 1.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill exercise test. The zero-order correlations between VO2peak and %fat (r = -0.62) and SR-PA (r = 0.58) were significantly (P < 0.05) higher that the age correlation (r = -0.45). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.46 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.79) showed that nearly 50% of this cross-sectional decline was due to %fat and SR-PA, adding these lifestyle variables to the multiple regression model reduced the age regression weight to -0.26 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results.

  17. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  18. Classification of sodium MRI data of cartilage using machine learning.

    PubMed

    Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R

    2015-11-01

    To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.

  19. Validation of the Omni Scale of Perceived Exertion in a sample of Spanish-speaking youth from the USA.

    PubMed

    Suminski, Richard R; Robertson, Robert J; Goss, Fredric L; Olvera, Norma

    2008-08-01

    Whether the translation of verbal descriptors from English to Spanish affects the validity of the Children's OMNI Scale of Perceived Exertion is not known, so the validity of a Spanish version of the OMNI was examined with 32 boys and 36 girls (9 to 12 years old) for whom Spanish was the primary language. Oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and ratings of perceived exertion for the overall body (RPE-O) were measured during an incremental treadmill test. All response values displayed significant linear increases across test stages. The linear regression analyses indicated RPE-O values were distributed as positive linear functions of oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and percent of maximal oxygen consumption. All regression models were statistically significant. The Spanish OMNI Scale is valid for estimating exercise effort during walking and running amongst Hispanic youth whose primary language is Spanish.

  20. Correlation of Respirator Fit Measured on Human Subjects and a Static Advanced Headform

    PubMed Central

    Bergman, Michael S.; He, Xinjian; Joseph, Michael E.; Zhuang, Ziqing; Heimbuch, Brian K.; Shaffer, Ronald E.; Choe, Melanie; Wander, Joseph D.

    2015-01-01

    This study assessed the correlation of N95 filtering face-piece respirator (FFR) fit between a Static Advanced Headform (StAH) and 10 human test subjects. Quantitative fit evaluations were performed on test subjects who made three visits to the laboratory. On each visit, one fit evaluation was performed on eight different FFRs of various model/size variations. Additionally, subject breathing patterns were recorded. Each fit evaluation comprised three two-minute exercises: “Normal Breathing,” “Deep Breathing,” and again “Normal Breathing.” The overall test fit factors (FF) for human tests were recorded. The same respirator samples were later mounted on the StAH and the overall test manikin fit factors (MFF) were assessed utilizing the recorded human breathing patterns. Linear regression was performed on the mean log10-transformed FF and MFF values to assess the relationship between the values obtained from humans and the StAH. This is the first study to report a positive correlation of respirator fit between a headform and test subjects. The linear regression by respirator resulted in R2 = 0.95, indicating a strong linear correlation between FF and MFF. For all respirators the geometric mean (GM) FF values were consistently higher than those of the GM MFF. For 50% of respirators, GM FF and GM MFF values were significantly different between humans and the StAH. For data grouped by subject/respirator combinations, the linear regression resulted in R2 = 0.49. A weaker correlation (R2 = 0.11) was found using only data paired by subject/respirator combination where both the test subject and StAH had passed a real-time leak check before performing the fit evaluation. For six respirators, the difference in passing rates between the StAH and humans was < 20%, while two respirators showed a difference of 29% and 43%. For data by test subject, GM FF and GM MFF values were significantly different for 40% of the subjects. Overall, the advanced headform system has potential for assessing fit for some N95 FFR model/sizes. PMID:25265037

  1. Toward customer-centric organizational science: A common language effect size indicator for multiple linear regressions and regressions with higher-order terms.

    PubMed

    Krasikova, Dina V; Le, Huy; Bachura, Eric

    2018-06-01

    To address a long-standing concern regarding a gap between organizational science and practice, scholars called for more intuitive and meaningful ways of communicating research results to users of academic research. In this article, we develop a common language effect size index (CLβ) that can help translate research results to practice. We demonstrate how CLβ can be computed and used to interpret the effects of continuous and categorical predictors in multiple linear regression models. We also elaborate on how the proposed CLβ index is computed and used to interpret interactions and nonlinear effects in regression models. In addition, we test the robustness of the proposed index to violations of normality and provide means for computing standard errors and constructing confidence intervals around its estimates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  3. London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure

    PubMed Central

    Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith

    2017-01-01

    Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343

  4. Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.

    PubMed

    Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H

    2017-11-01

    This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.

  5. Selection of a Geostatistical Method to Interpolate Soil Properties of the State Crop Testing Fields using Attributes of a Digital Terrain Model

    NASA Astrophysics Data System (ADS)

    Sahabiev, I. A.; Ryazanov, S. S.; Kolcova, T. G.; Grigoryan, B. R.

    2018-03-01

    The three most common techniques to interpolate soil properties at a field scale—ordinary kriging (OK), regression kriging with multiple linear regression drift model (RK + MLR), and regression kriging with principal component regression drift model (RK + PCR)—were examined. The results of the performed study were compiled into an algorithm of choosing the most appropriate soil mapping technique. Relief attributes were used as the auxiliary variables. When spatial dependence of a target variable was strong, the OK method showed more accurate interpolation results, and the inclusion of the auxiliary data resulted in an insignificant improvement in prediction accuracy. According to the algorithm, the RK + PCR method effectively eliminates multicollinearity of explanatory variables. However, if the number of predictors is less than ten, the probability of multicollinearity is reduced, and application of the PCR becomes irrational. In that case, the multiple linear regression should be used instead.

  6. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    PubMed

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P < .001) in eyes with glaucoma and for OCT average thickness (0.888 ± 0.072; P < .001) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with spectral-domain OCT than with scanning laser polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Conditional Monte Carlo randomization tests for regression models.

    PubMed

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Optimized multiple linear mappings for single image super-resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  9. Energy expenditure estimation during daily military routine with body-fixed sensors.

    PubMed

    Wyss, Thomas; Mäder, Urs

    2011-05-01

    The purpose of this study was to develop and validate an algorithm for estimating energy expenditure during the daily military routine on the basis of data collected using body-fixed sensors. First, 8 volunteers completed isolated physical activities according to an established protocol, and the resulting data were used to develop activity-class-specific multiple linear regressions for physical activity energy expenditure on the basis of hip acceleration, heart rate, and body mass as independent variables. Second, the validity of these linear regressions was tested during the daily military routine using indirect calorimetry (n = 12). Volunteers' mean estimated energy expenditure did not significantly differ from the energy expenditure measured with indirect calorimetry (p = 0.898, 95% confidence interval = -1.97 to 1.75 kJ/min). We conclude that the developed activity-class-specific multiple linear regressions applied to the acceleration and heart rate data allow estimation of energy expenditure in 1-minute intervals during daily military routine, with accuracy equal to indirect calorimetry.

  10. A Feature-Free 30-Disease Pathological Brain Detection System by Linear Regression Classifier.

    PubMed

    Chen, Yi; Shao, Ying; Yan, Jie; Yuan, Ti-Fei; Qu, Yanwen; Lee, Elizabeth; Wang, Shuihua

    2017-01-01

    Alzheimer's disease patients are increasing rapidly every year. Scholars tend to use computer vision methods to develop automatic diagnosis system. (Background) In 2015, Gorji et al. proposed a novel method using pseudo Zernike moment. They tested four classifiers: learning vector quantization neural network, pattern recognition neural network trained by Levenberg-Marquardt, by resilient backpropagation, and by scaled conjugate gradient. This study presents an improved method by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Therefore, it can be used to detect Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  12. A FORTRAN technique for correlating a circular environmental variable with a linear physiological variable in the sugar maple.

    PubMed

    Pease, J M; Morselli, M F

    1987-01-01

    This paper deals with a computer program adapted to a statistical method for analyzing an unlimited quantity of binary recorded data of an independent circular variable (e.g. wind direction), and a linear variable (e.g. maple sap flow volume). Circular variables cannot be statistically analyzed with linear methods, unless they have been transformed. The program calculates a critical quantity, the acrophase angle (PHI, phi o). The technique is adapted from original mathematics [1] and is written in Fortran 77 for easier conversion between computer networks. Correlation analysis can be performed following the program or regression which, because of the circular nature of the independent variable, becomes periodic regression. The technique was tested on a file of approximately 4050 data pairs.

  13. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    PubMed

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P < 0.05) and fairly linear, although it remains unresolved whether a polynomial fit could provide even stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  14. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  15. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  16. Gene set analysis using variance component tests.

    PubMed

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  17. Building "e-rater"® Scoring Models Using Machine Learning Methods. Research Report. ETS RR-16-04

    ERIC Educational Resources Information Center

    Chen, Jing; Fife, James H.; Bejar, Isaac I.; Rupp, André A.

    2016-01-01

    The "e-rater"® automated scoring engine used at Educational Testing Service (ETS) scores the writing quality of essays. In the current practice, e-rater scores are generated via a multiple linear regression (MLR) model as a linear combination of various features evaluated for each essay and human scores as the outcome variable. This…

  18. Regression Is a Univariate General Linear Model Subsuming Other Parametric Methods as Special Cases.

    ERIC Educational Resources Information Center

    Vidal, Sherry

    Although the concept of the general linear model (GLM) has existed since the 1960s, other univariate analyses such as the t-test and the analysis of variance models have remained popular. The GLM produces an equation that minimizes the mean differences of independent variables as they are related to a dependent variable. From a computer printout…

  19. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  20. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  1. An hourly PM10 diagnosis model for the Bilbao metropolitan area using a linear regression methodology.

    PubMed

    González-Aparicio, I; Hidalgo, J; Baklanov, A; Padró, A; Santa-Coloma, O

    2013-07-01

    There is extensive evidence of the negative impacts on health linked to the rise of the regional background of particulate matter (PM) 10 levels. These levels are often increased over urban areas becoming one of the main air pollution concerns. This is the case on the Bilbao metropolitan area, Spain. This study describes a data-driven model to diagnose PM10 levels in Bilbao at hourly intervals. The model is built with a training period of 7-year historical data covering different urban environments (inland, city centre and coastal sites). The explanatory variables are quantitative-log [NO2], temperature, short-wave incoming radiation, wind speed and direction, specific humidity, hour and vehicle intensity-and qualitative-working days/weekends, season (winter/summer), the hour (from 00 to 23 UTC) and precipitation/no precipitation. Three different linear regression models are compared: simple linear regression; linear regression with interaction terms (INT); and linear regression with interaction terms following the Sawa's Bayesian Information Criteria (INT-BIC). Each type of model is calculated selecting two different periods: the training (it consists of 6 years) and the testing dataset (it consists of 1 year). The results of each type of model show that the INT-BIC-based model (R(2) = 0.42) is the best. Results were R of 0.65, 0.63 and 0.60 for the city centre, inland and coastal sites, respectively, a level of confidence similar to the state-of-the art methodology. The related error calculated for longer time intervals (monthly or seasonal means) diminished significantly (R of 0.75-0.80 for monthly means and R of 0.80 to 0.98 at seasonally means) with respect to shorter periods.

  2. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR).

    PubMed

    O'Leary, Neil; Chauhan, Balwantray C; Artes, Paul H

    2012-10-01

    To establish a method for estimating the overall statistical significance of visual field deterioration from an individual patient's data, and to compare its performance to pointwise linear regression. The Truncated Product Method was used to calculate a statistic S that combines evidence of deterioration from individual test locations in the visual field. The overall statistical significance (P value) of visual field deterioration was inferred by comparing S with its permutation distribution, derived from repeated reordering of the visual field series. Permutation of pointwise linear regression (PoPLR) and pointwise linear regression were evaluated in data from patients with glaucoma (944 eyes, median mean deviation -2.9 dB, interquartile range: -6.3, -1.2 dB) followed for more than 4 years (median 10 examinations over 8 years). False-positive rates were estimated from randomly reordered series of this dataset, and hit rates (proportion of eyes with significant deterioration) were estimated from the original series. The false-positive rates of PoPLR were indistinguishable from the corresponding nominal significance levels and were independent of baseline visual field damage and length of follow-up. At P < 0.05, the hit rates of PoPLR were 12, 29, and 42%, at the fifth, eighth, and final examinations, respectively, and at matching specificities they were consistently higher than those of pointwise linear regression. In contrast to population-based progression analyses, PoPLR provides a continuous estimate of statistical significance for visual field deterioration individualized to a particular patient's data. This allows close control over specificity, essential for monitoring patients in clinical practice and in clinical trials.

  3. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle.

    PubMed

    Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-01-01

    Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Estimating integrated variance in the presence of microstructure noise using linear regression

    NASA Astrophysics Data System (ADS)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  5. Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method

    NASA Astrophysics Data System (ADS)

    Asavaskulkiet, Krissada

    2018-04-01

    In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.

  6. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.

    PubMed

    Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit

    2018-06-01

    In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.

  8. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  9. Higher direct bilirubin levels during mid-pregnancy are associated with lower risk of gestational diabetes mellitus.

    PubMed

    Liu, Chaoqun; Zhong, Chunrong; Zhou, Xuezhen; Chen, Renjuan; Wu, Jiangyue; Wang, Weiye; Li, Xiating; Ding, Huisi; Guo, Yanfang; Gao, Qin; Hu, Xingwen; Xiong, Guoping; Yang, Xuefeng; Hao, Liping; Xiao, Mei; Yang, Nianhong

    2017-01-01

    Bilirubin concentrations have been recently reported to be negatively associated with type 2 diabetes mellitus. We examined the association between bilirubin concentrations and gestational diabetes mellitus. In a prospective cohort study, 2969 pregnant women were recruited prior to 16 weeks of gestation and were followed up until delivery. The value of bilirubin was tested and oral glucose tolerance test was conducted to screen gestational diabetes mellitus. The relationship between serum bilirubin concentration and gestational weeks was studied by two-piecewise linear regression. A subsample of 1135 participants with serum bilirubin test during 16-18 weeks gestation was conducted to research the association between serum bilirubin levels and risk of gestational diabetes mellitus by logistic regression. Gestational diabetes mellitus developed in 8.5 % of the participants (223 of 2969). Two-piecewise linear regression analyses demonstrated that the levels of bilirubin decreased with gestational week up to the turning point 23 and after that point, levels of bilirubin were increased slightly. In multiple logistic regression analysis, the relative risk of developing gestational diabetes mellitus was lower in the highest tertile of direct bilirubin than that in the lowest tertile (RR 0.60; 95 % CI, 0.35-0.89). The results suggested that women with higher serum direct bilirubin levels during the second trimester of pregnancy have lower risk for development of gestational diabetes mellitus.

  10. Surgery for left ventricular aneurysm: early and late survival after simple linear repair and endoventricular patch plasty.

    PubMed

    Lundblad, Runar; Abdelnoor, Michel; Svennevig, Jan Ludvig

    2004-09-01

    Simple linear resection and endoventricular patch plasty are alternative techniques to repair postinfarction left ventricular aneurysm. The aim of the study was to compare these 2 methods with regard to early mortality and long-term survival. We retrospectively reviewed 159 patients undergoing operations between 1989 and 2003. The epidemiologic design was of an exposed (simple linear repair, n = 74) versus nonexposed (endoventricular patch plasty, n = 85) cohort with 2 endpoints: early mortality and long-term survival. The crude effect of aneurysm repair technique versus endpoint was estimated by odds ratio, rate ratio, or relative risk and their 95% confidence intervals. Stratification analysis by using the Mantel-Haenszel method was done to quantify confounders and pinpoint effect modifiers. Adjustment for multiconfounders was performed by using logistic regression and Cox regression analysis. Survival curves were analyzed with the Breslow test and the log-rank test. Early mortality was 8.2% for all patients, 13.5% after linear repair and 3.5% after endoventricular patch plasty. When adjusted for multiconfounders, the risk of early mortality was significantly higher after simple linear repair than after endoventricular patch plasty (odds ratio, 4.4; 95% confidence interval, 1.1-17.8). Mean follow-up was 5.8 +/- 3.8 years (range, 0-14.0 years). Overall 5-year cumulative survival was 78%, 70.1% after linear repair and 91.4% after endoventricular patch plasty. The risk of total mortality was significantly higher after linear repair than after endoventricular patch plasty when controlled for multiconfounders (relative risk, 4.5; 95% confidence interval, 2.0-9.7). Linear repair dominated early in the series and patch plasty dominated later, giving a possible learning-curve bias in favor of patch plasty that could not be adjusted for in the regression analysis. Postinfarction left ventricular aneurysm can be repaired with satisfactory early and late results. Surgical risk was lower and long-term survival was higher after endoventricular patch plasty than simple linear repair. Differences in outcome should be interpreted with care because of the retrospective study design and the chronology of the 2 repair methods.

  11. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    PubMed

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  12. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  13. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  14. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  15. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  16. Estimating V0[subscript 2]max Using a Personalized Step Test

    ERIC Educational Resources Information Center

    Webb, Carrie; Vehrs, Pat R.; George, James D.; Hager, Ronald

    2014-01-01

    The purpose of this study was to develop a step test with a personalized step rate and step height to predict cardiorespiratory fitness in 80 college-aged males and females using the self-reported perceived functional ability scale and data collected during the step test. Multiple linear regression analysis yielded a model (R = 0.90, SEE = 3.43…

  17. Assessing risk factors for periodontitis using regression

    NASA Astrophysics Data System (ADS)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  18. Cost-effectiveness analysis of the diarrhea alleviation through zinc and oral rehydration therapy (DAZT) program in rural Gujarat India: an application of the net-benefit regression framework.

    PubMed

    Shillcutt, Samuel D; LeFevre, Amnesty E; Fischer-Walker, Christa L; Taneja, Sunita; Black, Robert E; Mazumder, Sarmila

    2017-01-01

    This study evaluates the cost-effectiveness of the DAZT program for scaling up treatment of acute child diarrhea in Gujarat India using a net-benefit regression framework. Costs were calculated from societal and caregivers' perspectives and effectiveness was assessed in terms of coverage of zinc and both zinc and Oral Rehydration Salt. Regression models were tested in simple linear regression, with a specified set of covariates, and with a specified set of covariates and interaction terms using linear regression with endogenous treatment effects was used as the reference case. The DAZT program was cost-effective with over 95% certainty above $5.50 and $7.50 per appropriately treated child in the unadjusted and adjusted models respectively, with specifications including interaction terms being cost-effective with 85-97% certainty. Findings from this study should be combined with other evidence when considering decisions to scale up programs such as the DAZT program to promote the use of ORS and zinc to treat child diarrhea.

  19. Linear regression crash prediction models : issues and proposed solutions.

    DOT National Transportation Integrated Search

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  20. Patterns of Library Use by Undergraduate Students in a Chilean University

    ERIC Educational Resources Information Center

    Jara, Magdalena; Clasing, Paula; Gonzalez, Carlos; Montenegro, Maximiliano; Kelly, Nick; Alarcón, Rosa; Sandoval, Augusto; Saurina, Elvira

    2017-01-01

    This paper explores the patterns of use of print materials and digital resources in an undergraduate library in a Chilean university, by the students' discipline and year of study. A quantitative analysis was carried out, including descriptive analysis of contingency tables, chi-squared tests, t-tests, and multiple linear regressions. The results…

  1. RELATIONSHIPS OF QUANTITATIVE STRUCTURE-ACTIVITY TO COMPARATIVE TOXICITY OF SELECTED PHENOLS IN THE 'PIMEPHALES PROMELAS' AND 'TETRAHYMENA PYRIFORMIS' TEST SYSTEMS

    EPA Science Inventory

    The relative toxic response of 27 selected phenols in the 96-hr acute flowthrough Pimephales promelas (fathead minnow) and the 48- to 60-hr chronic static Tetrahymena pyriformis (ciliate protozoan) test systems was evaluated. Log Kow-dependent linear regression analyses revealed ...

  2. A new approach to measure visual field progression in glaucoma patients using variational bayes linear regression.

    PubMed

    Murata, Hiroshi; Araie, Makoto; Asaoka, Ryo

    2014-11-20

    We generated a variational Bayes model to predict visual field (VF) progression in glaucoma patients. This retrospective study included VF series from 911 eyes of 547 glaucoma patients as test data, and VF series from 5049 eyes of 2858 glaucoma patients as training data. Using training data, variational Bayes linear regression (VBLR) was created to predict VF progression. The performance of VBLR was compared against ordinary least-squares linear regression (OLSLR) by predicting VFs in the test dataset. The total deviation (TD) values of test patients' 11th VFs were predicted using TD values from their second to 10th VFs (VF2-10), the root mean squared error (RMSE) associated with each approach then was calculated. Similarly, mean TD (mTD) of test patients' 11th VFs was predicted using VBLR and OLSLR, and the absolute prediction errors compared. The RMSE resulting from VBLR averaged 3.9 ± 2.1 (SD) and 4.9 ± 2.6 dB for prediction based on the second to 10th VFs (VF2-10) and the second to fourth VFs (VF2-4), respectively. The RMSE resulting from OLSLR was 4.1 ± 2.0 (VF2-10) and 19.9 ± 12.0 (VF2-4) dB. The absolute prediction error (SD) for mTD using VBLR was 1.2 ± 1.3 (VF2-10) and 1.9 ± 2.0 (VF2-4) dB, while the prediction error resulting from OLSLR was 1.2 ± 1.3 (VF2-10) and 6.2 ± 6.6 (VF2-4) dB. The VBLR more accurately predicts future VF progression in glaucoma patients compared to conventional OLSLR, especially in short VF series. © ARVO.

  3. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    ERIC Educational Resources Information Center

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  4. Image-analysis library

    NASA Technical Reports Server (NTRS)

    1980-01-01

    MATHPAC image-analysis library is collection of general-purpose mathematical and statistical routines and special-purpose data-analysis and pattern-recognition routines for image analysis. MATHPAC library consists of Linear Algebra, Optimization, Statistical-Summary, Densities and Distribution, Regression, and Statistical-Test packages.

  5. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Modica, G.

    1990-01-01

    Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less

  6. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  7. Blood Density Is Nearly Equal to Water Density: A Validation Study of the Gravimetric Method of Measuring Intraoperative Blood Loss.

    PubMed

    Vitello, Dominic J; Ripper, Richard M; Fettiplace, Michael R; Weinberg, Guy L; Vitello, Joseph M

    2015-01-01

    Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R (2) = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R (2) value was 0.1767. Conclusions. The R (2) value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water.

  8. Isotherm investigation for the sorption of fluoride onto Bio-F: comparison of linear and non-linear regression method

    NASA Astrophysics Data System (ADS)

    Yadav, Manish; Singh, Nitin Kumar

    2017-12-01

    A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.

  9. The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Sinharay, Sandip

    2010-01-01

    Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…

  10. Are the average gait speeds during the 10meter and 6minute walk tests redundant in Parkinson disease?

    PubMed

    Duncan, Ryan P; Combs-Miller, Stephanie A; McNeely, Marie E; Leddy, Abigail L; Cavanaugh, James T; Dibble, Leland E; Ellis, Terry D; Ford, Matthew P; Foreman, K Bo; Earhart, Gammon M

    2017-02-01

    We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Are the Average Gait Speeds During the 10 Meter and 6 Minute Walk Tests Redundant in Parkinson Disease?

    PubMed Central

    Duncan, Ryan P.; Combs-Miller, Stephanie A.; McNeely, Marie E.; Leddy, Abigail L.; Cavanaugh, James T.; Dibble, Leland E.; Ellis, Terry D.; Ford, Matthew P.; Foreman, K. Bo; Earhart, Gammon M.

    2016-01-01

    We investigated the relationships between average gait speed collected with the 10 Meter Walk Test (Comfortable and Fast) and 6 Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10 Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r > 0.70, p < 0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10 Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II–IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10 Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. PMID:27915221

  12. Changes in aerobic power of women, ages 20-64 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Wier, L. T.; Ayers, G. W.; Beard, E. F.; Stuteville, J. E.; Blair, S. N.

    1996-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak) of women. The cross-sectional sample consisted of 409 healthy women, ages 20-64 yr. The 43 women of the longitudinal sample were from the same population and examined twice, the mean time between tests was 3.7 (+/-2.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill test. The zero-order correlation of -0.742 between VO2peak and %fat was significantly (P < 0.05) higher then the SR-PA (r = 0.626) and age correlations (r = -0.633). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.537 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.851) showed that adding %fat and SR-PA and their interaction to the regression model reduced the age regression weight of -0.537, to -0.265 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results. These findings are consistent with men's data from the same lab showing that about 50% of the cross-sectional age-related decline in VO2peak was due to %fat and SR-PA.

  13. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    NASA Astrophysics Data System (ADS)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  14. Influence of prolonged static stretching on motor unit firing properties.

    PubMed

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2016-05-01

    The purpose of this study was to examine the influence of a stretching intervention on motor control strategy of the biceps brachii muscle. Ten men performed twelve 100-s passive static stretches of the biceps brachii. Before and after the intervention, isometric strength was tested during maximal voluntary contractions (MVCs) of the elbow flexors. Subjects also performed trapezoid isometric contractions at 30% and 70% of MVC. Surface electromyographic signals from the submaximal contractions were decomposed into individual motor unit action potential trains. Linear regression analysis was used to examine the relationship between motor unit mean firing rate and recruitment threshold. The stretching intervention caused significant decreases in y-intercepts of the linear regression lines. In addition, linear slopes at both intensities remained unchanged. Despite reduced motor unit firing rates following the stretches, the motor control scheme remained unchanged. © 2016 Wiley Periodicals, Inc.

  15. Integrating conventional and inverse representation for face recognition.

    PubMed

    Xu, Yong; Li, Xuelong; Yang, Jian; Lai, Zhihui; Zhang, David

    2014-10-01

    Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.

  16. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  17. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    ERIC Educational Resources Information Center

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  18. Direction-Dependence Analysis: A Confirmatory Approach for Testing Directional Theories

    ERIC Educational Resources Information Center

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    The concept of direction dependence has attracted growing attention due to its potential to help decide which of two competing linear regression models (X ? Y or Y ? X) is more likely to reflect the correct causal flow. Several tests have been proposed to evaluate hypotheses compatible with direction dependence. In this issue, Thoemmes (2015)…

  19. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-06-01

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Regression-Based Norms for a Bi-factor Model for Scoring the Brief Test of Adult Cognition by Telephone (BTACT).

    PubMed

    Gurnani, Ashita S; John, Samantha E; Gavett, Brandon E

    2015-05-01

    The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Interior car noise created by textured pavement surfaces : final report.

    DOT National Transportation Integrated Search

    1975-01-01

    Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...

  2. A novel approach for prediction of tacrolimus blood concentration in liver transplantation patients in the intensive care unit through support vector regression.

    PubMed

    Van Looy, Stijn; Verplancke, Thierry; Benoit, Dominique; Hoste, Eric; Van Maele, Georges; De Turck, Filip; Decruyenaere, Johan

    2007-01-01

    Tacrolimus is an important immunosuppressive drug for organ transplantation patients. It has a narrow therapeutic range, toxic side effects, and a blood concentration with wide intra- and interindividual variability. Hence, it is of the utmost importance to monitor tacrolimus blood concentration, thereby ensuring clinical effect and avoiding toxic side effects. Prediction models for tacrolimus blood concentration can improve clinical care by optimizing monitoring of these concentrations, especially in the initial phase after transplantation during intensive care unit (ICU) stay. This is the first study in the ICU in which support vector machines, as a new data modeling technique, are investigated and tested in their prediction capabilities of tacrolimus blood concentration. Linear support vector regression (SVR) and nonlinear radial basis function (RBF) SVR are compared with multiple linear regression (MLR). Tacrolimus blood concentrations, together with 35 other relevant variables from 50 liver transplantation patients, were extracted from our ICU database. This resulted in a dataset of 457 blood samples, on average between 9 and 10 samples per patient, finally resulting in a database of more than 16,000 data values. Nonlinear RBF SVR, linear SVR, and MLR were performed after selection of clinically relevant input variables and model parameters. Differences between observed and predicted tacrolimus blood concentrations were calculated. Prediction accuracy of the three methods was compared after fivefold cross-validation (Friedman test and Wilcoxon signed rank analysis). Linear SVR and nonlinear RBF SVR had mean absolute differences between observed and predicted tacrolimus blood concentrations of 2.31 ng/ml (standard deviation [SD] 2.47) and 2.38 ng/ml (SD 2.49), respectively. MLR had a mean absolute difference of 2.73 ng/ml (SD 3.79). The difference between linear SVR and MLR was statistically significant (p < 0.001). RBF SVR had the advantage of requiring only 2 input variables to perform this prediction in comparison to 15 and 16 variables needed by linear SVR and MLR, respectively. This is an indication of the superior prediction capability of nonlinear SVR. Prediction of tacrolimus blood concentration with linear and nonlinear SVR was excellent, and accuracy was superior in comparison with an MLR model.

  3. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.

    PubMed

    Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G

    2008-09-01

    A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.

  4. Digital Image Restoration Under a Regression Model - The Unconstrained, Linear Equality and Inequality Constrained Approaches

    DTIC Science & Technology

    1974-01-01

    REGRESSION MODEL - THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January 1974 Nelson Delfino d’Avila Mascarenha;? Image...Report 520 DIGITAL IMAGE RESTORATION UNDER A REGRESSION MODEL THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January...a two- dimensional form adequately describes the linear model . A dis- cretization is performed by using quadrature methods. By trans

  5. Element enrichment factor calculation using grain-size distribution and functional data regression.

    PubMed

    Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R

    2015-01-01

    In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    ERIC Educational Resources Information Center

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  7. Extending local canonical correlation analysis to handle general linear contrasts for FMRI data.

    PubMed

    Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar

    2012-01-01

    Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic.

  8. Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data

    PubMed Central

    Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar

    2012-01-01

    Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic. PMID:22461786

  9. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  10. Detection of changes in leaf water content using near- and middle-infrared reflectances

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Rock, Barrett N.

    1989-01-01

    A method to detect plant water stress by remote sensing is proposed using indices of near-IR and mid-IR wavelengths. The ability of the Leaf Water Content Index (LWCI) to determine leaf relative water content (RWC) is tested on species with different leaf morphologies. The way in which the Misture Stress Index (MSI) varies with RWC is studied. On test with several species, it is found that LWCI is equal to RWC, although the reflectances at 1.6 microns for two different RWC must be known to accurately predict unknown RWC. A linear correlation is found between MSI and RWC with each species having a different regression equation. Also, MSI is correlated with log sub 10 Equivalent Water Thickness (EWT) with data for all species falling on the same regression line. It is found that the minimum significant change of RWC that could be detected by appying the linear regression equation of MSI to EWT is 52 percent. Because the natural RWC variation from water stress is about 20 percent for most species, it is concluded that the near-IR and mid-IR reflectances cannot be used to remotely sense water stress.

  11. Are your covariates under control? How normalization can re-introduce covariate effects.

    PubMed

    Pain, Oliver; Dudbridge, Frank; Ronald, Angelica

    2018-04-30

    Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.

  12. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    PubMed

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  13. Linear regression models and k-means clustering for statistical analysis of fNIRS data

    PubMed Central

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-01-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets. PMID:25780751

  14. A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

    PubMed Central

    Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B

    2015-01-01

    Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050

  15. The microcomputer scientific software series 2: general linear model--regression.

    Treesearch

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  16. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  17. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    PubMed

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  18. Application of conditional moment tests to model checking for generalized linear models.

    PubMed

    Pan, Wei

    2002-06-01

    Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.

  19. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  20. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  1. Blood Density Is Nearly Equal to Water Density: A Validation Study of the Gravimetric Method of Measuring Intraoperative Blood Loss

    PubMed Central

    Vitello, Dominic J.; Ripper, Richard M.; Fettiplace, Michael R.; Weinberg, Guy L.; Vitello, Joseph M.

    2015-01-01

    Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R 2 = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R 2 value was 0.1767. Conclusions. The R 2 value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water. PMID:26464949

  2. Inferring gene regression networks with model trees

    PubMed Central

    2010-01-01

    Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452

  3. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  4. Statistical Package User’s Guide.

    DTIC Science & Technology

    1980-08-01

    261 C. STACH Nonparametric Descriptive Statistics ... ......... ... 265 D. CHIRA Coefficient of Concordance...135 I.- -a - - W 7- Test Data: This program was tested using data from John Neter and William Wasserman, Applied Linear Statistical Models: Regression...length of data file e. new fileý name (not same as raw data file) 5. Printout as optioned for only. Comments: Ranked data are used for program CHIRA

  5. Model Checking Techniques for Assessing Functional Form Specifications in Censored Linear Regression Models.

    PubMed

    León, Larry F; Cai, Tianxi

    2012-04-01

    In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.

  6. Validating Variational Bayes Linear Regression Method With Multi-Central Datasets.

    PubMed

    Murata, Hiroshi; Zangwill, Linda M; Fujino, Yuri; Matsuura, Masato; Miki, Atsuya; Hirasawa, Kazunori; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki; Asaoka, Ryo

    2018-04-01

    To validate the prediction accuracy of variational Bayes linear regression (VBLR) with two datasets external to the training dataset. The training dataset consisted of 7268 eyes of 4278 subjects from the University of Tokyo Hospital. The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG) dataset consisted of 271 eyes of 177 patients, and the Diagnostic Innovations in Glaucoma Study (DIGS) dataset includes 248 eyes of 173 patients, which were used for validation. Prediction accuracy was compared between the VBLR and ordinary least squared linear regression (OLSLR). First, OLSLR and VBLR were carried out using total deviation (TD) values at each of the 52 test points from the second to fourth visual fields (VFs) (VF2-4) to 2nd to 10th VF (VF2-10) of each patient in JAMDIG and DIGS datasets, and the TD values of the 11th VF test were predicted every time. The predictive accuracy of each method was compared through the root mean squared error (RMSE) statistic. OLSLR RMSEs with the JAMDIG and DIGS datasets were between 31 and 4.3 dB, and between 19.5 and 3.9 dB. On the other hand, VBLR RMSEs with JAMDIG and DIGS datasets were between 5.0 and 3.7, and between 4.6 and 3.6 dB. There was statistically significant difference between VBLR and OLSLR for both datasets at every series (VF2-4 to VF2-10) (P < 0.01 for all tests). However, there was no statistically significant difference in VBLR RMSEs between JAMDIG and DIGS datasets at any series of VFs (VF2-2 to VF2-10) (P > 0.05). VBLR outperformed OLSLR to predict future VF progression, and the VBLR has a potential to be a helpful tool at clinical settings.

  7. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.

    PubMed

    Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena

    2013-01-01

    The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Jing, Qi

    2017-02-01

    An assumption that the non-linear method is more reasonable than the linear method when canopy reflectance is used to establish the yield prediction model was proposed and tested in this study. For this purpose, partial least squares regression (PLSR) and artificial neural networks (ANN), represented linear and non-linear analysis method, were applied and compared for wheat yield prediction. Multi-period Landsat-8 OLI images were collected at two different wheat growth stages, and a field campaign was conducted to obtain grain yields at selected sampling sites in 2014. The field data were divided into a calibration database and a testing database. Using calibration data, a cross-validation concept was introduced for the PLSR and ANN model construction to prevent over-fitting. All models were tested using the test data. The ANN yield-prediction model produced R2, RMSE and RMSE% values of 0.61, 979 kg ha-1, and 10.38%, respectively, in the testing phase, performing better than the PLSR yield-prediction model, which produced R2, RMSE, and RMSE% values of 0.39, 1211 kg ha-1, and 12.84%, respectively. Non-linear method was suggested as a better method for yield prediction.

  9. Old and New Ideas for Data Screening and Assumption Testing for Exploratory and Confirmatory Factor Analysis

    PubMed Central

    Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip

    2011-01-01

    We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561

  10. Regression Models For Multivariate Count Data

    PubMed Central

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2016-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500

  11. Regression Models For Multivariate Count Data.

    PubMed

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  12. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  13. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  14. Orthogonal Regression: A Teaching Perspective

    ERIC Educational Resources Information Center

    Carr, James R.

    2012-01-01

    A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…

  15. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  16. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  17. Tests of Sunspot Number Sequences: 3. Effects of Regression Procedures on the Calibration of Historic Sunspot Data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.; Usoskin, I. G.

    2016-11-01

    We use sunspot-group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups [RB] above a variable cut-off threshold of observed total whole spot area (uncorrected for foreshortening) to simulate what a lower-acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number [RA] using a variety of regression techniques. It is found that a very high correlation between RA and RB (r_{AB} > 0.98) does not prevent large errors in the intercalibration (for example sunspot-maximum values can be over 30 % too large even for such levels of r_{AB}). In generating the backbone sunspot number [R_{BB}], Svalgaard and Schatten ( Solar Phys., 2016) force regression fits to pass through the scatter-plot origin, which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot-cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile ("Q-Q") plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least-squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot-group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar-cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

  18. Learning accurate and interpretable models based on regularized random forests regression

    PubMed Central

    2014-01-01

    Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120

  19. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test.

    PubMed

    Aisbett, B; Le Rossignol, P

    2003-09-01

    The VO2-power regression and estimated total energy demand for a 6-minute supra-maximal exercise test was predicted from a continuous incremental exercise test. Sub-maximal VO2-power co-ordinates were established from the last 40 seconds (s) of 150-second exercise stages. The precision of the estimated total energy demand was determined using the 95% confidence interval (95% CI) of the estimated total energy demand. The linearity of the individual VO2-power regression equations was determined using Pearson's correlation coefficient. The mean 95% CI of the estimated total energy demand was 5.9 +/- 2.5 mL O2 Eq x kg(-1) x min(-1), and the mean correlation coefficient was 0.9942 +/- 0.0042. The current study contends that the sub-maximal VO2-power co-ordinates from a continuous incremental exercise test can be used to estimate supra-maximal energy demand without compromising the precision of the accumulated oxygen deficit (AOD) method.

  20. On the impact of relatedness on SNP association analysis.

    PubMed

    Gross, Arnd; Tönjes, Anke; Scholz, Markus

    2017-12-06

    When testing for SNP (single nucleotide polymorphism) associations in related individuals, observations are not independent. Simple linear regression assuming independent normally distributed residuals results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of type I error is often successfully corrected by genomic control. However, this reduces the power of the test when relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the consequences of variance inflation on hypothesis testing and compare the results with those of genomic control correction. We apply the developed theory to the publicly available HapMap trio data (N=129), the Sorbs (a self-contained population with N=977 characterised by a cryptic relatedness structure) and synthetic family studies with different sample sizes (ranging from N=129 to N=999) and different degrees of relatedness. We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability. Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation while the opposite holds for larger significance levels. When genomic control is applied, type I error is preserved while power decreases rapidly with increasing variance inflation. Stronger relatedness as well as higher heritability result in increased variance of the effect estimate of simple linear regression analysis. While type I error rates are generally inflated, the behaviour of power is more complex since power can be increased or reduced in dependence on relatedness and the heritability of the phenotype. Genomic control cannot be recommended to deal with inflation due to relatedness. Although it preserves type I error, the loss in power can be considerable. We provide a simple formula for estimating variance inflation given the relatedness structure and the heritability of a trait of interest. As a rule of thumb, variance inflation below 1.05 does not require correction and simple linear regression analysis is still appropriate.

  1. Morse Code, Scrabble, and the Alphabet

    ERIC Educational Resources Information Center

    Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss

    2004-01-01

    In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…

  2. The role of shoe design on the prediction of free torque at the shoe-surface interface using pressure insole technology.

    PubMed

    Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger

    2016-09-01

    The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.

  3. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

    NASA Astrophysics Data System (ADS)

    Kang, Pilsang; Koo, Changhoi; Roh, Hokyu

    2017-11-01

    Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.

  4. Estimating Required Contingency Funds for Construction Projects using Multiple Linear Regression

    DTIC Science & Technology

    2006-03-01

    Breusch - Pagan test , in which the null hypothesis states that the residuals have constant variance. The alternate hypothesis is that the residuals do not...variance, the Breusch - Pagan test provides statistical evidence that the assumption is justified. For the proposed model, the p-value is 0.173...entire test sample. v Acknowledgments First, I would like to acknowledge the influence and help of Greg Hoffman. His work served as the

  5. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  7. Quality of life in breast cancer patients--a quantile regression analysis.

    PubMed

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  8. Interpretation of commonly used statistical regression models.

    PubMed

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  9. Concurrent validity of persian version of wechsler intelligence scale for children - fourth edition and cognitive assessment system in patients with learning disorder.

    PubMed

    Rostami, Reza; Sadeghi, Vahid; Zarei, Jamileh; Haddadi, Parvaneh; Mohazzab-Torabi, Saman; Salamati, Payman

    2013-04-01

    The aim of this study was to compare the Persian version of the wechsler intelligence scale for children - fourth edition (WISC-IV) and cognitive assessment system (CAS) tests, to determine the correlation between their scales and to evaluate the probable concurrent validity of these tests in patients with learning disorders. One-hundered-sixty-two children with learning disorder who were presented at Atieh Comprehensive Psychiatry Center were selected in a consecutive non-randomized order. All of the patients were assessed based on WISC-IV and CAS scores questionnaires. Pearson correlation coefficient was used to analyze the correlation between the data and to assess the concurrent validity of the two tests. Linear regression was used for statistical modeling. The type one error was considered 5% in maximum. There was a strong correlation between total score of WISC-IV test and total score of CAS test in the patients (r=0.75, P<0.001). The correlations among the other scales were mostly high and all of them were statistically significant (P<0.001). A linear regression model was obtained (α = 0.51, β = 0.81 and P<0.001). There is an acceptable correlation between the WISC-IV scales and CAS test in children with learning disorders. A concurrent validity is established between the two tests and their scales.

  10. Concurrent Validity of Persian Version of Wechsler Intelligence Scale for Children - Fourth Edition and Cognitive Assessment System in Patients with Learning Disorder

    PubMed Central

    Rostami, Reza; Sadeghi, Vahid; Zarei, Jamileh; Haddadi, Parvaneh; Mohazzab-Torabi, Saman; Salamati, Payman

    2013-01-01

    Objective The aim of this study was to compare the Persian version of the wechsler intelligence scale for children - fourth edition (WISC-IV) and cognitive assessment system (CAS) tests, to determine the correlation between their scales and to evaluate the probable concurrent validity of these tests in patients with learning disorders. Methods One-hundered-sixty-two children with learning disorder who were presented at Atieh Comprehensive Psychiatry Center were selected in a consecutive non-randomized order. All of the patients were assessed based on WISC-IV and CAS scores questionnaires. Pearson correlation coefficient was used to analyze the correlation between the data and to assess the concurrent validity of the two tests. Linear regression was used for statistical modeling. The type one error was considered 5% in maximum. Findings There was a strong correlation between total score of WISC-IV test and total score of CAS test in the patients (r=0.75, P<0.001). The correlations among the other scales were mostly high and all of them were statistically significant (P<0.001). A linear regression model was obtained (α = 0.51, β = 0.81 and P<0.001). Conclusion There is an acceptable correlation between the WISC-IV scales and CAS test in children with learning disorders. A concurrent validity is established between the two tests and their scales. PMID:23724180

  11. Estimation of octanol/water partition coefficients using LSER parameters

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  12. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor.

    PubMed

    Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A

    2005-04-15

    A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.

  13. Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students

    PubMed Central

    Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed

    2013-01-01

    Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004

  14. Use of probabilistic weights to enhance linear regression myoelectric control

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  15. Predicting flight delay based on multiple linear regression

    NASA Astrophysics Data System (ADS)

    Ding, Yi

    2017-08-01

    Delay of flight has been regarded as one of the toughest difficulties in aviation control. How to establish an effective model to handle the delay prediction problem is a significant work. To solve the problem that the flight delay is difficult to predict, this study proposes a method to model the arriving flights and a multiple linear regression algorithm to predict delay, comparing with Naive-Bayes and C4.5 approach. Experiments based on a realistic dataset of domestic airports show that the accuracy of the proposed model approximates 80%, which is further improved than the Naive-Bayes and C4.5 approach approaches. The result testing shows that this method is convenient for calculation, and also can predict the flight delays effectively. It can provide decision basis for airport authorities.

  16. Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland

    NASA Technical Reports Server (NTRS)

    Mcgwire, K.; Friedl, M.; Estes, J. E.

    1993-01-01

    This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.

  17. Is It the Intervention or the Students? Using Linear Regression to Control for Student Characteristics in Undergraduate STEM Education Research

    PubMed Central

    Theobald, Roddy; Freeman, Scott

    2014-01-01

    Although researchers in undergraduate science, technology, engineering, and mathematics education are currently using several methods to analyze learning gains from pre- and posttest data, the most commonly used approaches have significant shortcomings. Chief among these is the inability to distinguish whether differences in learning gains are due to the effect of an instructional intervention or to differences in student characteristics when students cannot be assigned to control and treatment groups at random. Using pre- and posttest scores from an introductory biology course, we illustrate how the methods currently in wide use can lead to erroneous conclusions, and how multiple linear regression offers an effective framework for distinguishing the impact of an instructional intervention from the impact of student characteristics on test score gains. In general, we recommend that researchers always use student-level regression models that control for possible differences in student ability and preparation to estimate the effect of any nonrandomized instructional intervention on student performance. PMID:24591502

  18. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  19. Is it the intervention or the students? using linear regression to control for student characteristics in undergraduate STEM education research.

    PubMed

    Theobald, Roddy; Freeman, Scott

    2014-01-01

    Although researchers in undergraduate science, technology, engineering, and mathematics education are currently using several methods to analyze learning gains from pre- and posttest data, the most commonly used approaches have significant shortcomings. Chief among these is the inability to distinguish whether differences in learning gains are due to the effect of an instructional intervention or to differences in student characteristics when students cannot be assigned to control and treatment groups at random. Using pre- and posttest scores from an introductory biology course, we illustrate how the methods currently in wide use can lead to erroneous conclusions, and how multiple linear regression offers an effective framework for distinguishing the impact of an instructional intervention from the impact of student characteristics on test score gains. In general, we recommend that researchers always use student-level regression models that control for possible differences in student ability and preparation to estimate the effect of any nonrandomized instructional intervention on student performance.

  20. ASURV: Astronomical SURVival Statistics

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  1. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  2. The Relation Among the Likelihood Ratio-, Wald-, and Lagrange Multiplier Tests and Their Applicability to Small Samples,

    DTIC Science & Technology

    1982-04-01

    S. (1979), "Conflict Among Criteria for Testing Hypothesis: Extension and Comments," Econometrica, 47, 203-207 Breusch , T. S. and Pagan , A. R. (1980...Savin, N. E. (1977), "Conflict Among Criteria for Testing Hypothesis in the Multivariate Linear Regression Model," Econometrica, 45, 1263-1278 Breusch , T...VNCLASSIFIED RAND//-6756NL U l~ I- THE RELATION AMONG THE LIKELIHOOD RATIO-, WALD-, AND LAGRANGE MULTIPLIER TESTS AND THEIR APPLICABILITY TO SMALL SAMPLES

  3. Assumptions of Statistical Tests: What Lies Beneath.

    PubMed

    Jupiter, Daniel C

    We have discussed many statistical tests and tools in this series of commentaries, and while we have mentioned the underlying assumptions of the tests, we have not explored them in detail. We stop to look at some of the assumptions of the t-test and linear regression, justify and explain them, mention what can go wrong when the assumptions are not met, and suggest some solutions in this case. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Computerized dynamic posturography: the influence of platform stability on postural control.

    PubMed

    Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt

    2014-01-01

    Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.

  5. Missing-value estimation using linear and non-linear regression with Bayesian gene selection.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Dougherty, Edward R

    2003-11-22

    Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value estimation are in use. The problem has two parts: (1) selection of genes for estimation and (2) design of an estimation rule. We propose Bayesian variable selection to obtain genes to be used for estimation, and employ both linear and nonlinear regression for the estimation rule itself. Fast implementation issues for these methods are discussed, including the use of QR decomposition for parameter estimation. The proposed methods are tested on data sets arising from hereditary breast cancer and small round blue-cell tumors. The results compare very favorably with currently used methods based on the normalized root-mean-square error. The appendix is available from http://gspsnap.tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd: gsplab).

  6. [From clinical judgment to linear regression model.

    PubMed

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  7. Healthcare Expenditures Associated with Depression Among Individuals with Osteoarthritis: Post-Regression Linear Decomposition Approach.

    PubMed

    Agarwal, Parul; Sambamoorthi, Usha

    2015-12-01

    Depression is common among individuals with osteoarthritis and leads to increased healthcare burden. The objective of this study was to examine excess total healthcare expenditures associated with depression among individuals with osteoarthritis in the US. Adults with self-reported osteoarthritis (n = 1881) were identified using data from the 2010 Medical Expenditure Panel Survey (MEPS). Among those with osteoarthritis, chi-square tests and ordinary least square regressions (OLS) were used to examine differences in healthcare expenditures between those with and without depression. Post-regression linear decomposition technique was used to estimate the relative contribution of different constructs of the Anderson's behavioral model, i.e., predisposing, enabling, need, personal healthcare practices, and external environment factors, to the excess expenditures associated with depression among individuals with osteoarthritis. All analysis accounted for the complex survey design of MEPS. Depression coexisted among 20.6 % of adults with osteoarthritis. The average total healthcare expenditures were $13,684 among adults with depression compared to $9284 among those without depression. Multivariable OLS regression revealed that adults with depression had 38.8 % higher healthcare expenditures (p < 0.001) compared to those without depression. Post-regression linear decomposition analysis indicated that 50 % of differences in expenditures among adults with and without depression can be explained by differences in need factors. Among individuals with coexisting osteoarthritis and depression, excess healthcare expenditures associated with depression were mainly due to comorbid anxiety, chronic conditions and poor health status. These expenditures may potentially be reduced by providing timely intervention for need factors or by providing care under a collaborative care model.

  8. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  9. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual.

    PubMed

    Hemmila, April; McGill, Jim; Ritter, David

    2008-03-01

    To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.

  10. Linearity versus Nonlinearity of Offspring-Parent Regression: An Experimental Study of Drosophila Melanogaster

    PubMed Central

    Gimelfarb, A.; Willis, J. H.

    1994-01-01

    An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818

  11. New robust statistical procedures for the polytomous logistic regression models.

    PubMed

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  12. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    PubMed

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  13. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  14. An Expert System for the Evaluation of Cost Models

    DTIC Science & Technology

    1990-09-01

    contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John

  15. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.

  16. PREDICTING CHRONIC TOXICITY OF CHEMICALS TO FISHES FROM ACUTE TOXICITY TEST DATA: CONCEPT AND LINEAR REGRESSION

    EPA Science Inventory

    A comprehensive approach to predicting chronic toxicity from acute.toxicity data was developed in which simultaneous consideration is given to concentration, degree of response, and time course of effect. onsistent endpoint (lethality) and degree of response (O%) were used to com...

  17. A Quantitative Assessment of Student Performance and Examination Format

    ERIC Educational Resources Information Center

    Davison, Christopher B.; Dustova, Gandzhina

    2017-01-01

    This research study describes the correlations between student performance and examination format in a higher education teaching and research institution. The researchers employed a quantitative, correlational methodology utilizing linear regression analysis. The data was obtained from undergraduate student test scores over a three-year time span.…

  18. Beta Regression Finite Mixture Models of Polarization and Priming

    ERIC Educational Resources Information Center

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  19. School Climate, Principal Support and Collaboration among Portuguese Teachers

    ERIC Educational Resources Information Center

    Castro Silva, José; Amante, Lúcia; Morgado, José

    2017-01-01

    This article analyses the relationship between school principal support and teacher collaboration among Portuguese teachers. Data were collected from a random sample of 234 teachers in middle and secondary schools. The use of a combined approach using linear and multiple regression tests concluded that the school principal support, through the…

  20. Substance Use, Anxiety, and Depressive Symptoms among College Students

    ERIC Educational Resources Information Center

    Walters, Kenneth S.; Bulmer, Sandra Minor; Troiano, Peter F.; Obiaka, Uzoma; Bonhomme, Rebecca

    2018-01-01

    Research on college substance use and mental illness is limited and inconsistent. Measures of substance use, and anxiety and depressive symptoms, were completed by 1,316 undergraduates within a major drug transportation corridor. Hierarchical linear regressions were used to test associations between anxious and depressive symptoms and substance…

  1. USING HYDROGRAPHIC DATA AND THE EPA VIRTUAL BEACH MODEL TO TEST PREDICTIONS OF BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    A modeling study of 2006 Huntington Beach (Lake Erie) beach bacteria concentrations indicates multi-variable linear regression (MLR) can effectively estimate bacteria concentrations compared to the persistence model. Our use of the Virtual Beach (VB) model affirms that fact. VB i...

  2. Computer Series, 65. Bits and Pieces, 26.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (l) a microcomputer-based system for filing test questions and assembling examinations; (2) microcomputer use in practical and simulated experiments of gamma rays scattering by outer shell electrons; (3) an interactive, screen-oriented, general linear regression program; and (4) graphics drill and game programs for benzene synthesis.…

  3. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.

    PubMed

    Zhao, Di; Xian, Xiaojun; Terrera, Mirna; Krishnan, Ranganath; Miller, Dylan; Bridgeman, Devon; Tao, Kevin; Zhang, Lihua; Tsow, Francis; Forzani, Erica S; Tao, Nongjian

    2014-04-01

    The assessment of metabolic parameters related to energy expenditure has a proven value for weight management; however these measurements remain too difficult and costly for monitoring individuals at home. The objective of this study is to evaluate the accuracy of a new pocket-sized metabolic analyzer device for assessing energy expenditure at rest (REE) and during sedentary activities (EE). The new device performs indirect calorimetry by measuring an individual's oxygen consumption (VO2) and carbon dioxide production (VCO2) rates, which allows the determination of resting- and sedentary activity-related energy expenditure. VO2 and VCO2 values of 17 volunteer adult subjects were measured during resting and sedentary activities in order to compare the metabolic analyzer with the Douglas bag method. The Douglas bag method is considered the Gold Standard method for indirect calorimetry. Metabolic parameters of VO2, VCO2, and energy expenditure were compared using linear regression analysis, paired t-tests, and Bland-Altman plots. Linear regression analysis of measured VO2 and VCO2 values, as well as calculated energy expenditure assessed with the new analyzer and Douglas bag method, had the following linear regression parameters (linear regression slope LRS0, and R-squared coefficient, r(2)) with p = 0: LRS0 (SD) = 1.00 (0.01), r(2) = 0.9933 for VO2; LRS0 (SD) = 1.00 (0.01), r(2) = 0.9929 for VCO2; and LRS0 (SD) = 1.00 (0.01), r(2) = 0.9942 for energy expenditure. In addition, results from paired t-tests did not show statistical significant difference between the methods with a significance level of α = 0.05 for VO2, VCO2, REE, and EE. Furthermore, the Bland-Altman plot for REE showed good agreement between methods with 100% of the results within ±2SD, which was equivalent to ≤10% error. The findings demonstrate that the new pocket-sized metabolic analyzer device is accurate for determining VO2, VCO2, and energy expenditure. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  5. Selection of higher order regression models in the analysis of multi-factorial transcription data.

    PubMed

    Prazeres da Costa, Olivia; Hoffman, Arthur; Rey, Johannes W; Mansmann, Ulrich; Buch, Thorsten; Tresch, Achim

    2014-01-01

    Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-treatment with interferon-γ. We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.

  6. Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye

    PubMed Central

    Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael

    2017-01-01

    Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847

  7. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  8. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    PubMed

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Does clinical pretest probability influence image quality and diagnostic accuracy in dual-source coronary CT angiography?

    PubMed

    Thomas, Christoph; Brodoefel, Harald; Tsiflikas, Ilias; Bruckner, Friederike; Reimann, Anja; Ketelsen, Dominik; Drosch, Tanja; Claussen, Claus D; Kopp, Andreas; Heuschmid, Martin; Burgstahler, Christof

    2010-02-01

    To prospectively evaluate the influence of the clinical pretest probability assessed by the Morise score onto image quality and diagnostic accuracy in coronary dual-source computed tomography angiography (DSCTA). In 61 patients, DSCTA and invasive coronary angiography were performed. Subjective image quality and accuracy for stenosis detection (>50%) of DSCTA with invasive coronary angiography as gold standard were evaluated. The influence of pretest probability onto image quality and accuracy was assessed by logistic regression and chi-square testing. Correlations of image quality and accuracy with the Morise score were determined using linear regression. Thirty-eight patients were categorized into the high, 21 into the intermediate, and 2 into the low probability group. Accuracies for the detection of significant stenoses were 0.94, 0.97, and 1.00, respectively. Logistic regressions and chi-square tests showed statistically significant correlations between Morise score and image quality (P < .0001 and P < .001) and accuracy (P = .0049 and P = .027). Linear regression revealed a cutoff Morise score for a good image quality of 16 and a cutoff for a barely diagnostic image quality beyond the upper Morise scale. Pretest probability is a weak predictor of image quality and diagnostic accuracy in coronary DSCTA. A sufficient image quality for diagnostic images can be reached with all pretest probabilities. Therefore, coronary DSCTA might be suitable also for patients with a high pretest probability. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  10. Revisiting tests for neglected nonlinearity using artificial neural networks.

    PubMed

    Cho, Jin Seo; Ishida, Isao; White, Halbert

    2011-05-01

    Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.

  11. Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data.

    PubMed

    Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme

    2018-03-05

    A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.

  12. Compound Identification Using Penalized Linear Regression on Metabolomics

    PubMed Central

    Liu, Ruiqi; Wu, Dongfeng; Zhang, Xiang; Kim, Seongho

    2014-01-01

    Compound identification is often achieved by matching the experimental mass spectra to the mass spectra stored in a reference library based on mass spectral similarity. Because the number of compounds in the reference library is much larger than the range of mass-to-charge ratio (m/z) values so that the data become high dimensional data suffering from singularity. For this reason, penalized linear regressions such as ridge regression and the lasso are used instead of the ordinary least squares regression. Furthermore, two-step approaches using the dot product and Pearson’s correlation along with the penalized linear regression are proposed in this study. PMID:27212894

  13. The Association Between Unintended Births and Poor Child Development in India: Evidence from a Longitudinal Study.

    PubMed

    Singh, Abhishek; Upadhyay, Ashish Kumar; Singh, Ashish; Kumar, Kaushalendra

    2017-03-01

    Evidence on the association between unintended births and poor child development in developing countries is limited. We used data from three waves of the Young Lives study on childhood poverty conducted in Andhra Pradesh in 2002, 2006-07, and 2009 to examine the association between unintended births and poor child development in India. Multivariable linear regression models were used to examine the association between unintended births and four indicators of child development-height-for-age Z-score (HAZ), Peabody Picture Vocabulary Test (PPVT) score, Mathematics Achievement Test (MAT) score, and Early Grade Reading Assessment (EGRA) test score. The Propensity Score Matching (PSM) technique was also used to analyze data. Children who were reported as unintended at birth had significantly lower HAZ, PPVT, and EGRA scores compared with those who were reported as intended. PSM results support the findings from the multivariable linear regressions. Our findings provide evidence on the association between unintended births and poor child development in India. There may be a need to reposition family planning within India's reproductive and child health care programs. Future studies must take into account the unobserved heterogeneity that our study could not address fully. © 2017 The Population Council, Inc.

  14. Explanation of the variance in quality of life and activity capacity of patients with heart failure by laboratory data.

    PubMed

    Athanasopoulos, Leonidas V; Dritsas, Athanasios; Doll, Helen A; Cokkinos, Dennis V

    2010-08-01

    This study was conducted to explain the variance in quality of life (QoL) and activity capacity of patients with congestive heart failure from pathophysiological changes as estimated by laboratory data. Peak oxygen consumption (peak VO2) and ventilation (VE)/carbon dioxide output (VCO2) slope derived from cardiopulmonary exercise testing, plasma N-terminal prohormone of B-type natriuretic peptide (NT-proBNP), and echocardiographic markers [left atrium (LA), left ventricular ejection fraction (LVEF)] were measured in 62 patients with congestive heart failure, who also completed the Minnesota Living with Heart Failure Questionnaire and the Specific Activity Questionnaire. All regression models were adjusted for age and sex. On linear regression analysis, peak VO2 with P value less than 0.001, VE/VCO2 slope with P value less than 0.01, LVEF with P value less than 0.001, LA with P=0.001, and logNT-proBNP with P value less than 0.01 were found to be associated with QoL. On stepwise multiple linear regression, peak VO2 and LVEF continued to be predictive, accounting for 40% of the variability in Minnesota Living with Heart Failure Questionnaire score. On linear regression analysis, peak VO2 with P value less than 0.001, VE/VCO2 slope with P value less than 0.001, LVEF with P value less than 0.05, LA with P value less than 0.001, and logNT-proBNP with P value less than 0.001 were found to be associated with activity capacity. On stepwise multiple linear regression, peak VO2 and LA continued to be predictive, accounting for 53% of the variability in Specific Activity Questionnaire score. Peak VO2 is independently associated both with QoL and activity capacity. In addition to peak VO2, LVEF is independently associated with QoL, and LA with activity capacity.

  15. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Statistical Tutorial | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.

  17. Control Variate Selection for Multiresponse Simulation.

    DTIC Science & Technology

    1987-05-01

    M. H. Knuter, Applied Linear Regression Mfodels, Richard D. Erwin, Inc., Homewood, Illinois, 1983. Neuts, Marcel F., Probability, Allyn and Bacon...1982. Neter, J., V. Wasserman, and M. H. Knuter, Applied Linear Regression .fodels, Richard D. Erwin, Inc., Homewood, Illinois, 1983. Neuts, Marcel F...Aspects of J%,ultivariate Statistical Theory, John Wiley and Sons, New York, New York, 1982. dY Neter, J., W. Wasserman, and M. H. Knuter, Applied Linear Regression Mfodels

  18. An Investigation of the Fit of Linear Regression Models to Data from an SAT[R] Validity Study. Research Report 2011-3

    ERIC Educational Resources Information Center

    Kobrin, Jennifer L.; Sinharay, Sandip; Haberman, Shelby J.; Chajewski, Michael

    2011-01-01

    This study examined the adequacy of a multiple linear regression model for predicting first-year college grade point average (FYGPA) using SAT[R] scores and high school grade point average (HSGPA). A variety of techniques, both graphical and statistical, were used to examine if it is possible to improve on the linear regression model. The results…

  19. High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer.

    PubMed

    Ross, David E; Ochs, Alfred L; Tate, David F; Tokac, Umit; Seabaugh, John; Abildskov, Tracy J; Bigler, Erin D

    2018-05-30

    NeuroQuant ® (NQ) and FreeSurfer (FS) are commonly used computer-automated programs for measuring MRI brain volume. Previously they were reported to have high intermethod reliabilities but often large intermethod effect size differences. We hypothesized that linear transformations could be used to reduce the large effect sizes. This study was an extension of our previously reported study. We performed NQ and FS brain volume measurements on 60 subjects (including normal controls, patients with traumatic brain injury, and patients with Alzheimer's disease). We used two statistical approaches in parallel to develop methods for transforming FS volumes into NQ volumes: traditional linear regression, and Bayesian linear regression. For both methods, we used regression analyses to develop linear transformations of the FS volumes to make them more similar to the NQ volumes. The FS-to-NQ transformations based on traditional linear regression resulted in effect sizes which were small to moderate. The transformations based on Bayesian linear regression resulted in all effect sizes being trivially small. To our knowledge, this is the first report describing a method for transforming FS to NQ data so as to achieve high reliability and low effect size differences. Machine learning methods like Bayesian regression may be more useful than traditional methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of mobile phone use on metal ion release from fixed orthodontic appliances.

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Mehriar, Peiman; Sheibani, Nader

    2015-06-01

    The aim of this study was to evaluate the effect of exposure to radiofrequency electromagnetic fields emitted by mobile phones on the level of nickel in saliva. Fifty healthy patients with fixed orthodontic appliances were asked not to use their cell phones for a week, and their saliva samples were taken at the end of the week (control group). The patients recorded their time of mobile phone usage during the next week and returned for a second saliva collection (experimental group). Samples at both times were taken between 8:00 and 10:00 pm, and the nickel levels were measured. Two-tailed paired-samples t test, linear regression, independent t test, and 1-way analysis of variance were used for data analysis. The 2-tailed paired-samples t test showed significant differences between the levels of nickel in the control and experimental groups (t [49] = 9.967; P <0.001). The linear regression test showed a significant relationship between mobile phone usage time and the nickel release (F [1, 48] = 60.263; P <0.001; R(2) = 0.577). Mobile phone usage has a time-dependent influence on the concentration of nickel in the saliva of patients with orthodontic appliances. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. Estimating and testing interactions when explanatory variables are subject to non-classical measurement error.

    PubMed

    Murad, Havi; Kipnis, Victor; Freedman, Laurence S

    2016-10-01

    Assessing interactions in linear regression models when covariates have measurement error (ME) is complex.We previously described regression calibration (RC) methods that yield consistent estimators and standard errors for interaction coefficients of normally distributed covariates having classical ME. Here we extend normal based RC (NBRC) and linear RC (LRC) methods to a non-classical ME model, and describe more efficient versions that combine estimates from the main study and internal sub-study. We apply these methods to data from the Observing Protein and Energy Nutrition (OPEN) study. Using simulations we show that (i) for normally distributed covariates efficient NBRC and LRC were nearly unbiased and performed well with sub-study size ≥200; (ii) efficient NBRC had lower MSE than efficient LRC; (iii) the naïve test for a single interaction had type I error probability close to the nominal significance level, whereas efficient NBRC and LRC were slightly anti-conservative but more powerful; (iv) for markedly non-normal covariates, efficient LRC yielded less biased estimators with smaller variance than efficient NBRC. Our simulations suggest that it is preferable to use: (i) efficient NBRC for estimating and testing interaction effects of normally distributed covariates and (ii) efficient LRC for estimating and testing interactions for markedly non-normal covariates. © The Author(s) 2013.

  2. Solar energy distribution over Egypt using cloudiness from Meteosat photos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosalam Shaltout, M.A.; Hassen, A.H.

    1990-01-01

    In Egypt, there are 10 ground stations for measuring the global solar radiation, and five stations for measuring the diffuse solar radiation. Every day at noon, the Meteorological Authority in Cairo receives three photographs of cloudiness over Egypt from the Meteosat satellite, one in the visible, and two in the infra-red bands (10.5-12.5 {mu}m) and (5.7-7.1 {mu}m). The monthly average cloudiness for 24 sites over Egypt are measured and calculated from Meteosat observations during the period 1985-1986. Correlation analysis between the cloudiness observed by Meteosat and global solar radiation measured from the ground stations is carried out. It is foundmore » that, the correlation coefficients are about 0.90 for the simple linear regression, and increase for the second and third degree regressions. Also, the correlation coefficients for the cloudiness with the diffuse solar radiation are about 0.80 for the simple linear regression, and increase for the second and third degree regression. Models and empirical relations for estimating the global and diffuse solar radiation from Meteosat cloudiness data over Egypt are deduced and tested. Seasonal maps for the global and diffuse radiation over Egypt are carried out.« less

  3. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  4. Does the utilization of dental services associate with masticatory performance in a Japanese urban population?: the Suita study

    PubMed Central

    Kikui, Miki; Kida, Momoyo; Kosaka, Takayuki; Yamamoto, Masaaki; Yoshimuta, Yoko; Yasui, Sakae; Nokubi, Takashi; Maeda, Yoshinobu; Kokubo, Yoshihiro; Watanabe, Makoto; Miyamoto, Yoshihiro

    2015-01-01

    Abstract There are numerous reports on the relationship between regular utilization of dental care services and oral health, but most are based on questionnaires and subjective evaluation. Few have objectively evaluated masticatory performance and its relationship to utilization of dental care services. The purpose of this study was to identify the effect of regular utilization of dental services on masticatory performance. The subjects consisted of 1804 general residents of Suita City, Osaka Prefecture (760 men and 1044 women, mean age 66.5 ± 7.9 years). Regular utilization of dental services and oral hygiene habits (frequency of toothbrushing and use of interdental aids) was surveyed, and periodontal status, occlusal support, and masticatory performance were measured. Masticatory performance was evaluated by a chewing test using gummy jelly. The correlation between age, sex, regular dental utilization, oral hygiene habits, periodontal status or occlusal support, and masticatory performance was analyzed using Spearman's correlation test and t‐test. In addition, multiple linear regression analysis was carried out to investigate the relationship of regular dental utilization with masticatory performance after controlling for other factors. Masticatory performance was significantly correlated to age when using Spearman's correlation test, and to regular dental utilization, periodontal status, or occlusal support with t‐test. Multiple linear regression analysis showed that regular utilization of dental services was significantly related to masticatory performance even after adjusting for age, sex, oral hygiene habits, periodontal status, and occlusal support (standardized partial regression coefficient β = 0.055). These findings suggested that the regular utilization of dental care services is an important factor influencing masticatory performance in a Japanese urban population. PMID:29744141

  5. Does the utilization of dental services associate with masticatory performance in a Japanese urban population?: the Suita study.

    PubMed

    Kikui, Miki; Ono, Takahiro; Kida, Momoyo; Kosaka, Takayuki; Yamamoto, Masaaki; Yoshimuta, Yoko; Yasui, Sakae; Nokubi, Takashi; Maeda, Yoshinobu; Kokubo, Yoshihiro; Watanabe, Makoto; Miyamoto, Yoshihiro

    2015-12-01

    There are numerous reports on the relationship between regular utilization of dental care services and oral health, but most are based on questionnaires and subjective evaluation. Few have objectively evaluated masticatory performance and its relationship to utilization of dental care services. The purpose of this study was to identify the effect of regular utilization of dental services on masticatory performance. The subjects consisted of 1804 general residents of Suita City, Osaka Prefecture (760 men and 1044 women, mean age 66.5 ± 7.9 years). Regular utilization of dental services and oral hygiene habits (frequency of toothbrushing and use of interdental aids) was surveyed, and periodontal status, occlusal support, and masticatory performance were measured. Masticatory performance was evaluated by a chewing test using gummy jelly. The correlation between age, sex, regular dental utilization, oral hygiene habits, periodontal status or occlusal support, and masticatory performance was analyzed using Spearman's correlation test and t -test. In addition, multiple linear regression analysis was carried out to investigate the relationship of regular dental utilization with masticatory performance after controlling for other factors. Masticatory performance was significantly correlated to age when using Spearman's correlation test, and to regular dental utilization, periodontal status, or occlusal support with t -test. Multiple linear regression analysis showed that regular utilization of dental services was significantly related to masticatory performance even after adjusting for age, sex, oral hygiene habits, periodontal status, and occlusal support (standardized partial regression coefficient β  = 0.055). These findings suggested that the regular utilization of dental care services is an important factor influencing masticatory performance in a Japanese urban population.

  6. Stroop Color-Word Interference Test: Normative data for Spanish-speaking pediatric population.

    PubMed

    Rivera, D; Morlett-Paredes, A; Peñalver Guia, A I; Irías Escher, M J; Soto-Añari, M; Aguayo Arelis, A; Rute-Pérez, S; Rodríguez-Lorenzana, A; Rodríguez-Agudelo, Y; Albaladejo-Blázquez, N; García de la Cadena, C; Ibáñez-Alfonso, J A; Rodriguez-Irizarry, W; García-Guerrero, C E; Delgado-Mejía, I D; Padilla-López, A; Vergara-Moragues, E; Barrios Nevado, M D; Saracostti Schwartzman, M; Arango-Lasprilla, J C

    2017-01-01

    To generate normative data for the Stroop Word-Color Interference test in Spanish-speaking pediatric populations. The sample consisted of 4,373 healthy children from nine countries in Latin America (Chile, Cuba, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Peru, and Puerto Rico) and Spain. Each participant was administered the Stroop Word-Color Interference test as part of a larger neuropsychological battery. The Stroop Word, Stroop Color, Stroop Word-Color, and Stroop Interference scores were normed using multiple linear regressions and standard deviations of residual values. Age, age2, sex, and mean level of parental education (MLPE) were included as predictors in the analyses. The final multiple linear regression models showed main effects for age on all scores, except on Stroop Interference for Guatemala, such that scores increased linearly as a function of age. Age2 affected Stroop Word scores for all countries, Stroop Color scores for Ecuador, Mexico, Peru, and Spain; Stroop Word-Color scores for Ecuador, Mexico, and Paraguay; and Stroop Interference scores for Cuba, Guatemala, and Spain. MLPE affected Stroop Word scores for Chile, Mexico, and Puerto Rico; Stroop Color scores for Mexico, Puerto Rico, and Spain; Stroop Word-Color scores for Ecuador, Guatemala, Mexico, Puerto Rico and Spain; and Stroop-Interference scores for Ecuador, Mexico, and Spain. Sex affected Stroop Word scores for Spain, Stroop Color scores for Mexico, and Stroop Interference for Honduras. This is the largest Spanish-speaking pediatric normative study in the world, and it will allow neuropsychologists from these countries to have a more accurate approach to interpret the Stroop Word-Color Interference test in pediatric populations.

  7. Quantile Regression in the Study of Developmental Sciences

    PubMed Central

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S. Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the differential inferences which may be drawn using linear or quantile regression. PMID:24329596

  8. The extinction law from photometric data: linear regression methods

    NASA Astrophysics Data System (ADS)

    Ascenso, J.; Lombardi, M.; Lada, C. J.; Alves, J.

    2012-04-01

    Context. The properties of dust grains, in particular their size distribution, are expected to differ from the interstellar medium to the high-density regions within molecular clouds. Since the extinction at near-infrared wavelengths is caused by dust, the extinction law in cores should depart from that found in low-density environments if the dust grains have different properties. Aims: We explore methods to measure the near-infrared extinction law produced by dense material in molecular cloud cores from photometric data. Methods: Using controlled sets of synthetic and semi-synthetic data, we test several methods for linear regression applied to the specific problem of deriving the extinction law from photometric data. We cover the parameter space appropriate to this type of observations. Results: We find that many of the common linear-regression methods produce biased results when applied to the extinction law from photometric colors. We propose and validate a new method, LinES, as the most reliable for this effect. We explore the use of this method to detect whether or not the extinction law of a given reddened population has a break at some value of extinction. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO programmes 069.C-0426 and 074.C-0728).

  9. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  10. Cancer Patients Enrolled in a Smoking Cessation Clinical Trial: Characteristics and Correlates of Smoking Rate and Nicotine Dependence.

    PubMed

    Miele, Andrew; Thompson, Morgan; Jao, Nancy C; Kalhan, Ravi; Leone, Frank; Hogarth, Lee; Hitsman, Brian; Schnoll, Robert

    2018-01-01

    A substantial proportion of cancer patients continue to smoke after their diagnosis but few studies have evaluated correlates of nicotine dependence and smoking rate in this population, which could help guide smoking cessation interventions. This study evaluated correlates of smoking rate and nicotine dependence among 207 cancer patients. A cross-sectional analysis using multiple linear regression evaluated disease, demographic, affective, and tobacco-seeking correlates of smoking rate and nicotine dependence. Smoking rate was assessed using a timeline follow-back method. The Fagerström Test for Nicotine Dependence measured levels of nicotine dependence. A multiple linear regression predicting nicotine dependence showed an association with smoking to alleviate a sense of addiction from the Reasons for Smoking scale and tobacco-seeking behavior from the concurrent choice task ( p < .05), but not with affect measured by the HADS and PANAS ( p > .05). Multiple linear regression predicting prequit showed an association with smoking to alleviate addiction ( p < .05). ANOVA showed that Caucasian participants reported greater rates of smoking compared to other races. The results suggest that behavioral smoking cessation interventions that focus on helping patients to manage tobacco-seeking behavior, rather than mood management interventions, could help cancer patients quit smoking.

  11. Strengthen forensic entomology in court--the need for data exploration and the validation of a generalised additive mixed model.

    PubMed

    Baqué, Michèle; Amendt, Jens

    2013-01-01

    Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.

  12. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    EPA Science Inventory

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  13. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  14. Lower limb muscle strength is associated with poor balance in middle-aged women: linear and nonlinear analyses.

    PubMed

    Wu, F; Callisaya, M; Laslett, L L; Wills, K; Zhou, Y; Jones, G; Winzenberg, T

    2016-07-01

    This was the first study investigating both linear associations between lower limb muscle strength and balance in middle-aged women and the potential for thresholds for the associations. There was strong evidence that even in middle-aged women, poorer LMS was associated with reduced balance. However, no evidence was found for thresholds. Decline in balance begins in middle age, yet, the role of muscle strength in balance is rarely examined in this age group. We aimed to determine the association between lower limb muscle strength (LMS) and balance in middle-aged women and investigate whether cut-points of LMS exist that might identify women at risk of poorer balance. Cross-sectional analysis of 345 women aged 36-57 years was done. Associations between LMS and balance tests (timed up and go (TUG), step test (ST), functional reach test (FRT), and lateral reach test (LRT)) were assessed using linear regression. Nonlinear associations were explored using locally weighted regression smoothing (LOWESS) and potential cut-points identified using nonlinear least-squares estimation. Segmented regression was used to estimate associations above and below the identified cut-points. Weaker LMS was associated with poorer performance on the TUG (β -0.008 (95 % CI: -0.010, -0.005) second/kg), ST (β 0.031 (0.011, 0.051) step/kg), FRT (β 0.071 (0.047, 0.096) cm/kg), and LRT (β 0.028 (0.011, 0.044) cm/kg), independent of confounders. Potential nonlinear associations were evident from LOWESS results; significant cut-points of LMS were identified for all balance tests (29-50 kg). However, excepting ST, cut-points did not persist after excluding potentially influential data points. In middle-aged women, poorer LMS is associated with reduced balance. Therefore, improving muscle strength in middle-age may be a useful strategy to improve balance and reduce falls risk in later life. Middle-aged women with low muscle strength may be an effective target group for future randomized controlled trials. Australian New Zealand Clinical Trials Registry (ANZCTR) NCT00273260.

  15. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  16. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2006-08-25

    Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.

  17. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models.

    PubMed

    Wiedermann, Wolfgang; Artner, Richard; von Eye, Alexander

    2017-01-01

    Heteroscedasticity is a well-known issue in linear regression modeling. When heteroscedasticity is observed, researchers are advised to remedy possible model misspecification of the explanatory part of the model (e.g., considering alternative functional forms and/or omitted variables). The present contribution discusses another source of heteroscedasticity in observational data: Directional model misspecifications in the case of nonnormal variables. Directional misspecification refers to situations where alternative models are equally likely to explain the data-generating process (e.g., x → y versus y → x). It is shown that the homoscedasticity assumption is likely to be violated in models that erroneously treat true nonnormal predictors as response variables. Recently, Direction Dependence Analysis (DDA) has been proposed as a framework to empirically evaluate the direction of effects in linear models. The present study links the phenomenon of heteroscedasticity with DDA and describes visual diagnostics and nine homoscedasticity tests that can be used to make decisions concerning the direction of effects in linear models. Results of a Monte Carlo simulation that demonstrate the adequacy of the approach are presented. An empirical example is provided, and applicability of the methodology in cases of violated assumptions is discussed.

  18. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  19. Association of comorbid mental health symptoms and physical health conditions with employee productivity.

    PubMed

    Parker, Kristin M; Wilson, Mark G; Vandenberg, Robert J; DeJoy, David M; Orpinas, Pamela

    2009-10-01

    This study tests the hypothesis that employees with comorbid physical health conditions and mental health symptoms are less productive than other employees. Self-reported health status and productivity measures were collected from 1723 employees of a national retail organization. chi2, analysis of variance, and linear contrast analyses were conducted to evaluate whether health status groups differed on productivity measures. Multivariate linear regression and multinomial logistic regression analyses were conducted to analyze how predictive health status was of productivity. Those with comorbidities were significantly less productive on all productivity measures compared with all other health status groups and those with only physical health conditions or mental health symptoms. Health status also significantly predicted levels of employee productivity. These findings provide evidence for the relationship between health statuses and productivity, which has potential programmatic implications.

  20. A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives

    NASA Astrophysics Data System (ADS)

    Colen, Charles Raymond, Jr.

    There have been numerous studies with ultrasonic nondestructive testing and wood fiber composites. The problem of the study was to ascertain whether ultrasonic nondestructive testing can be used in place of destructive testing to obtain the modulus of elasticity (MOE) of the wood/agricultural material with comparable results. The uniqueness of this research is that it addressed the type of content (cornstalks and switchgrass) being used with the wood fibers and the type of adhesives (soybean-based) associated with the production of these composite materials. Two research questions were addressed in the study. The major objective was to determine if one can predict the destructive test MOE value based on the nondestructive test MOE value. The population of the study was wood/agricultural fiberboards made from wood fibers, cornstalks, and switchgrass bonded together with soybean-based, urea-formaldehyde, and phenol-formaldehyde adhesives. Correlational analysis was used to determine if there was a relationship between the two tests. Regression analysis was performed to determine a prediction equation for the destructive test MOE value. Data were collected on both procedures using ultrasonic nondestructing testing and 3-point destructive testing. The results produced a simple linear regression model for this study which was adequate in the prediction of destructive MOE values if the nondestructive MOE value is known. An approximation very close to the entire error in the model equation was explained from the destructive test MOE values for the composites. The nondestructive MOE values used to produce a linear regression model explained 83% of the variability in the destructive test MOE values. The study also showed that, for the particular destructive test values obtained with the equipment used, the model associated with the study is as good as it could be due to the variability in the results from the destructive tests. In this study, an ultrasonic signal was used to determine the MOE values on nondestructive tests. Future research studies could use the same or other hardboards to examine how the resins affect the ultrasonic signal.

  1. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  2. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  3. Ultrasensitive surveillance of sensors and processes

    DOEpatents

    Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.

    2001-01-01

    A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.

  4. Ultrasensitive surveillance of sensors and processes

    DOEpatents

    Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.

    1999-01-01

    A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.

  5. Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

    DTIC Science & Technology

    2015-07-15

    Long-term effects on cancer survivors’ quality of life of physical training versus physical training combined with cognitive-behavioral therapy ...COMPARISON OF NEURAL NETWORK AND LINEAR REGRESSION MODELS IN STATISTICALLY PREDICTING MENTAL AND PHYSICAL HEALTH STATUS OF BREAST...34Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

  6. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  7. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  8. Methodology for the development of normative data for Spanish-speaking pediatric populations.

    PubMed

    Rivera, D; Arango-Lasprilla, J C

    2017-01-01

    To describe the methodology utilized to calculate reliability and the generation of norms for 10 neuropsychological tests for children in Spanish-speaking countries. The study sample consisted of over 4,373 healthy children from nine countries in Latin America (Chile, Cuba, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Peru, and Puerto Rico) and Spain. Inclusion criteria for all countries were to have between 6 to 17 years of age, an Intelligence Quotient of≥80 on the Test of Non-Verbal Intelligence (TONI-2), and score of <19 on the Children's Depression Inventory. Participants completed 10 neuropsychological tests. Reliability and norms were calculated for all tests. Test-retest analysis showed excellent or good- reliability on all tests (r's>0.55; p's<0.001) except M-WCST perseverative errors whose coefficient magnitude was fair. All scores were normed using multiple linear regressions and standard deviations of residual values. Age, age2, sex, and mean level of parental education (MLPE) were included as predictors in the models by country. The non-significant variables (p > 0.05) were removed and the analysis were run again. This is the largest Spanish-speaking children and adolescents normative study in the world. For the generation of normative data, the method based on linear regression models and the standard deviation of residual values was used. This method allows determination of the specific variables that predict test scores, helps identify and control for collinearity of predictive variables, and generates continuous and more reliable norms than those of traditional methods.

  9. A pilot evaluation of a computer-based psychometric test battery designed to detect impairment in patients with cirrhosis.

    PubMed

    Cook, Nicola A; Kim, Jin Un; Pasha, Yasmin; Crossey, Mary Me; Schembri, Adrian J; Harel, Brian T; Kimhofer, Torben; Taylor-Robinson, Simon D

    2017-01-01

    Psychometric testing is used to identify patients with cirrhosis who have developed hepatic encephalopathy (HE). Most batteries consist of a series of paper-and-pencil tests, which are cumbersome for most clinicians. A modern, easy-to-use, computer-based battery would be a helpful clinical tool, given that in its minimal form, HE has an impact on both patients' quality of life and the ability to drive and operate machinery (with societal consequences). We compared the Cogstate™ computer battery testing with the Psychometric Hepatic Encephalopathy Score (PHES) tests, with a view to simplify the diagnosis. This was a prospective study of 27 patients with histologically proven cirrhosis. An analysis of psychometric testing was performed using accuracy of task performance and speed of completion as primary variables to create a correlation matrix. A stepwise linear regression analysis was performed with backward elimination, using analysis of variance. Strong correlations were found between the international shopping list, international shopping list delayed recall of Cogstate and the PHES digit symbol test. The Shopping List Tasks were the only tasks that consistently had P values of <0.05 in the linear regression analysis. Subtests of the Cogstate battery correlated very strongly with the digit symbol component of PHES in discriminating severity of HE. These findings would indicate that components of the current PHES battery with the international shopping list tasks of Cogstate would be discriminant and have the potential to be used easily in clinical practice.

  10. Regression assumptions in clinical psychology research practice-a systematic review of common misconceptions.

    PubMed

    Ernst, Anja F; Albers, Casper J

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking.

  11. Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions

    PubMed Central

    Ernst, Anja F.

    2017-01-01

    Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking. PMID:28533971

  12. Estimating linear temporal trends from aggregated environmental monitoring data

    USGS Publications Warehouse

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  13. Tests of Alignment among Assessment, Standards, and Instruction Using Generalized Linear Model Regression

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.; Polikoff, Morgan S.

    2014-01-01

    An essential component in school accountability efforts is for assessments to be well-aligned with the standards or curriculum they are intended to measure. However, relatively little prior research has explored methods to determine statistical significance of alignment or misalignment. This study explores analyses of alignment as a special case…

  14. Motivations and Benefits for Attaining HR Certifications

    ERIC Educational Resources Information Center

    Lester, Scott W.; Dwyer, Dale J.

    2012-01-01

    Purpose: The aim of this paper is to examine the motivations and benefits for pursuing or not pursuing the PHR and SPHR. Design/methodology/approach: Using a sample of 1,862 participants, the study used multinomial logistic and hierarchical linear regression to test six hypotheses. Findings: Participants pursuing SPHR were more likely to report…

  15. Identifying Predictors of Physics Item Difficulty: A Linear Regression Approach

    ERIC Educational Resources Information Center

    Mesic, Vanes; Muratovic, Hasnija

    2011-01-01

    Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary…

  16. The Inverted Student Density and Test Scores.

    ERIC Educational Resources Information Center

    Boldt, Robert F.

    The inverted density is one whose contour lines are spheroidal as in the normal distribution, but whose moments differ from those of the normal in that its conditional arrays are not homoscedastic, being quadratic functions of the values of the linear regression functions. It is also platykurtic, its measure of kurtosis ranging from that of the…

  17. EMI-Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...

  18. Prosocial Motivation, Stress and Burnout among Direct Support Workers

    ERIC Educational Resources Information Center

    Hickey, Robert

    2014-01-01

    Aim: This study explores whether the desire to engage in work that is beneficial to others moderates the effects of stress on burnout. Method: Based on a survey of 1570 direct support professionals in Ontario, this study conducted linear regression analyses and tested for the interaction effects of prosocial motivation on occupational stress and…

  19. Daily commuting to work is not associated with variables of health.

    PubMed

    Mauss, Daniel; Jarczok, Marc N; Fischer, Joachim E

    2016-01-01

    Commuting to work is thought to have a negative impact on employee health. We tested the association of work commute and different variables of health in German industrial employees. Self-rated variables of an industrial cohort (n = 3805; 78.9 % male) including absenteeism, presenteeism and indices reflecting stress and well-being were assessed by a questionnaire. Fasting blood samples, heart-rate variability and anthropometric data were collected. Commuting was grouped into one of four categories: 0-19.9, 20-44.9, 45-59.9, ≥60 min travelling one way to work. Bivariate associations between commuting and all variables under study were calculated. Linear regression models tested this association further, controlling for potential confounders. Commuting was positively correlated with waist circumference and inversely with triglycerides. These associations did not remain statistically significant in linear regression models controlling for age, gender, marital status, and shiftwork. No other association with variables of physical, psychological, or mental health and well-being could be found. The results indicate that commuting to work has no significant impact on well-being and health of German industrial employees.

  20. Depression and coping in subthreshold eating disorders.

    PubMed

    Dennard, E Eliot; Richards, C Steven

    2013-08-01

    The eating disorder literature has sought to understand the role of comorbid psychiatric diagnoses and coping in relation to eating disorders. The present research extends these findings by studying the relationships among depression, coping, and the entire continuum of disordered eating behaviors, with an emphasis on subthreshold eating disorders. 109 undergraduate females completed questionnaires to assess disordered eating symptoms, depressive symptoms, and the use of active and avoidant coping mechanisms. Hypotheses were tested using bivariate linear regression and multivariate linear regression. Results indicated that depression was a significant predictor of disordered eating symptoms after controlling for relationships between depression and coping. Although avoidant coping was positively associated with disordered eating, it was not a significant predictor after controlling for depression and coping. Previous research has found associations between depression and diagnosable eating disorders, and this research extends those findings to the entire continuum of disordered eating. Future research should continue to investigate the predictors and correlates of the disordered eating continuum using more diverse samples. Testing for mediation and moderation among these variables may also be a fruitful area of investigation. Published by Elsevier Ltd.

  1. Abdominal girth, vertebral column length, and spread of spinal anesthesia in 30 minutes after plain bupivacaine 5 mg/mL.

    PubMed

    Zhou, Qing-he; Xiao, Wang-pin; Shen, Ying-yan

    2014-07-01

    The spread of spinal anesthesia is highly unpredictable. In patients with increased abdominal girth and short stature, a greater cephalad spread after a fixed amount of subarachnoidally administered plain bupivacaine is often observed. We hypothesized that there is a strong correlation between abdominal girth/vertebral column length and cephalad spread. Age, weight, height, body mass index, abdominal girth, and vertebral column length were recorded for 114 patients. The L3-L4 interspace was entered, and 3 mL of 0.5% plain bupivacaine was injected into the subarachnoid space. The cephalad spread (loss of temperature sensation and loss of pinprick discrimination) was assessed 30 minutes after intrathecal injection. Linear regression analysis was performed for age, weight, height, body mass index, abdominal girth, vertebral column length, and the spread of spinal anesthesia, and the combined linear contribution of age up to 55 years, weight, height, abdominal girth, and vertebral column length was tested by multiple regression analysis. Linear regression analysis showed that there was a significant univariate correlation among all 6 patient characteristics evaluated and the spread of spinal anesthesia (all P < 0.039) except for age and loss of temperature sensation (P > 0.068). Multiple regression analysis showed that abdominal girth and the vertebral column length were the key determinants for spinal anesthesia spread (both P < 0.0001), whereas age, weight, and height could be omitted without changing the results (all P > 0.059, all 95% confidence limits < 0.372). Multiple regression analysis revealed that the combination of a patient's 5 general characteristics, especially abdominal girth and vertebral column length, had a high predictive value for the spread of spinal anesthesia after a given dose of plain bupivacaine.

  2. Comparing The Effectiveness of a90/95 Calculations (Preprint)

    DTIC Science & Technology

    2006-09-01

    Nachtsheim, John Neter, William Li, Applied Linear Statistical Models , 5th ed., McGraw-Hill/Irwin, 2005 5. Mood, Graybill and Boes, Introduction...curves is based on methods that are only valid for ordinary linear regression. Requirements for a valid Ordinary Least-Squares Regression Model There... linear . For example is a linear model ; is not. 2. Uniform variance (homoscedasticity

  3. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  4. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  5. Changes in Clavicle Length and Maturation in Americans: 1840-1980.

    PubMed

    Langley, Natalie R; Cridlin, Sandra

    2016-01-01

    Secular changes refer to short-term biological changes ostensibly due to environmental factors. Two well-documented secular trends in many populations are earlier age of menarche and increasing stature. This study synthesizes data on maximum clavicle length and fusion of the medial epiphysis in 1840-1980 American birth cohorts to provide a comprehensive assessment of developmental and morphological change in the clavicle. Clavicles from the Hamann-Todd Human Osteological Collection (n = 354), McKern and Stewart Korean War males (n = 341), Forensic Anthropology Data Bank (n = 1,239), and the McCormick Clavicle Collection (n = 1,137) were used in the analysis. Transition analysis was used to evaluate fusion of the medial epiphysis (scored as unfused, fusing, or fused). Several statistical treatments were used to assess fluctuations in maximum clavicle length. First, Durbin-Watson tests were used to evaluate autocorrelation, and a local regression (LOESS) was used to identify visual shifts in the regression slope. Next, piecewise regression was used to fit linear regression models before and after the estimated breakpoints. Multiple starting parameters were tested in the range determined to contain the breakpoint, and the model with the smallest mean squared error was chosen as the best fit. The parameters from the best-fit models were then used to derive the piecewise models, which were compared with the initial simple linear regression models to determine which model provided the best fit for the secular change data. The epiphyseal union data indicate a decline in the age at onset of fusion since the early twentieth century. Fusion commences approximately four years earlier in mid- to late twentieth-century birth cohorts than in late nineteenth- and early twentieth-century birth cohorts. However, fusion is completed at roughly the same age across cohorts. The most significant decline in age at onset of epiphyseal union appears to have occurred since the mid-twentieth century. LOESS plots show a breakpoint in the clavicle length data around the mid-twentieth century in both sexes, and piecewise regression models indicate a significant decrease in clavicle length in the American population after 1940. The piecewise model provides a slightly better fit than the simple linear model. Since the model standard error is not substantially different from the piecewise model, an argument could be made to select the less complex linear model. However, we chose the piecewise model to detect changes in clavicle length that are overfitted with a linear model. The decrease in maximum clavicle length is in line with a documented narrowing of the American skeletal form, as shown by analyses of cranial and facial breadth and bi-iliac breadth of the pelvis. Environmental influences on skeletal form include increases in body mass index, health improvements, improved socioeconomic status, and elimination of infectious diseases. Secular changes in bony dimensions and skeletal maturation stipulate that medical and forensic standards used to deduce information about growth, health, and biological traits must be derived from modern populations.

  6. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The geometric quality of the TM and MSS film products were evaluated by making selective photo measurements such as scale, linear and area determinations; and by measuring the coordinates of known features on both the film products and map products and then relating these paired observations using a standard linear least squares regression approach. Quantitative interpretation tests are described which evaluate the quality and utility of the TM film products and various band combinations for detecting and identifying important forest and agricultural features.

  7. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  8. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

    DTIC Science & Technology

    2017-10-01

    ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

  9. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.

    2015-05-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels) relative to the small number of samples studied. The best-performing models were SVR-Lin for SiO2, MgO, Fe2O3, and Na2O, lasso for Al2O3, elastic net for MnO, and PLS-1 for CaO, TiO2, and K2O. Although these differences in model performance between methods were identified, most of the models produce comparable results when p ≤ 0.05 and all techniques except kNN produced statistically-indistinguishable results. It is likely that a combination of models could be used together to yield a lower total error of prediction, depending on the requirements of the user.

  10. Linear regression in astronomy. II

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  11. Molecular markers of neuropsychological functioning and Alzheimer's disease.

    PubMed

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O'Bryant, Sid

    2015-03-01

    The current project sought to examine molecular markers of neuropsychological functioning among elders with and without Alzheimer's disease (AD) and determine the predictive ability of combined molecular markers and select neuropsychological tests in detecting disease presence. Data were analyzed from 300 participants (n = 150, AD and n = 150, controls) enrolled in the Texas Alzheimer's Research and Care Consortium. Linear regression models were created to examine the link between the top five molecular markers from our AD blood profile and neuropsychological test scores. Logistical regressions were used to predict AD presence using serum biomarkers in combination with select neuropsychological measures. Using the neuropsychological test with the least amount of variance overlap with the molecular markers, the combined neuropsychological test and molecular markers was highly accurate in detecting AD presence. This work provides the foundation for the generation of a point-of-care device that can be used to screen for AD.

  12. A Constrained Linear Estimator for Multiple Regression

    ERIC Educational Resources Information Center

    Davis-Stober, Clintin P.; Dana, Jason; Budescu, David V.

    2010-01-01

    "Improper linear models" (see Dawes, Am. Psychol. 34:571-582, "1979"), such as equal weighting, have garnered interest as alternatives to standard regression models. We analyze the general circumstances under which these models perform well by recasting a class of "improper" linear models as "proper" statistical models with a single predictor. We…

  13. Mapping diffuse photosynthetically active radiation from satellite data in Thailand

    NASA Astrophysics Data System (ADS)

    Choosri, P.; Janjai, S.; Nunez, M.; Buntoung, S.; Charuchittipan, D.

    2017-12-01

    In this paper, calculation of monthly average hourly diffuse photosynthetically active radiation (PAR) using satellite data is proposed. Diffuse PAR was analyzed at four stations in Thailand. A radiative transfer model was used for calculating the diffuse PAR for cloudless sky conditions. Differences between the diffuse PAR under all sky conditions obtained from the ground-based measurements and those from the model are representative of cloud effects. Two models are developed, one describing diffuse PAR only as a function of solar zenith angle, and the second one as a multiple linear regression with solar zenith angle and satellite reflectivity acting linearly and aerosol optical depth acting in logarithmic functions. When tested with an independent data set, the multiple regression model performed best with a higher coefficient of variance R2 (0.78 vs. 0.70), lower root mean square difference (RMSD) (12.92% vs. 13.05%) and the same mean bias difference (MBD) of -2.20%. Results from the multiple regression model are used to map diffuse PAR throughout the country as monthly averages of hourly data.

  14. Neck-focused panic attacks among Cambodian refugees; a logistic and linear regression analysis.

    PubMed

    Hinton, Devon E; Chhean, Dara; Pich, Vuth; Um, Khin; Fama, Jeanne M; Pollack, Mark H

    2006-01-01

    Consecutive Cambodian refugees attending a psychiatric clinic were assessed for the presence and severity of current--i.e., at least one episode in the last month--neck-focused panic. Among the whole sample (N=130), in a logistic regression analysis, the Anxiety Sensitivity Index (ASI; odds ratio=3.70) and the Clinician-Administered PTSD Scale (CAPS; odds ratio=2.61) significantly predicted the presence of current neck panic (NP). Among the neck panic patients (N=60), in the linear regression analysis, NP severity was significantly predicted by NP-associated flashbacks (beta=.42), NP-associated catastrophic cognitions (beta=.22), and CAPS score (beta=.28). Further analysis revealed the effect of the CAPS score to be significantly mediated (Sobel test [Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182]) by both NP-associated flashbacks and catastrophic cognitions. In the care of traumatized Cambodian refugees, NP severity, as well as NP-associated flashbacks and catastrophic cognitions, should be specifically assessed and treated.

  15. On the design of classifiers for crop inventories

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.; Takacs, H. C.

    1986-01-01

    Crop proportion estimators that use classifications of satellite data to correct, in an additive way, a given estimate acquired from ground observations are discussed. A linear version of these estimators is optimal, in terms of minimum variance, when the regression of the ground observations onto the satellite observations in linear. When this regression is not linear, but the reverse regression (satellite observations onto ground observations) is linear, the estimator is suboptimal but still has certain appealing variance properties. In this paper expressions are derived for those regressions which relate the intercepts and slopes to conditional classification probabilities. These expressions are then used to discuss the question of classifier designs that can lead to low-variance crop proportion estimates. Variance expressions for these estimates in terms of classifier omission and commission errors are also derived.

  16. Measurement of pediatric regional cerebral blood flow from 6 months to 15 years of age in a clinical population.

    PubMed

    Carsin-Vu, Aline; Corouge, Isabelle; Commowick, Olivier; Bouzillé, Guillaume; Barillot, Christian; Ferré, Jean-Christophe; Proisy, Maia

    2018-04-01

    To investigate changes in cerebral blood flow (CBF) in gray matter (GM) between 6 months and 15 years of age and to provide CBF values for the brain, GM, white matter (WM), hemispheres and lobes. Between 2013 and 2016, we retrospectively included all clinical MRI examinations with arterial spin labeling (ASL). We excluded subjects with a condition potentially affecting brain perfusion. For each subject, mean values of CBF in the brain, GM, WM, hemispheres and lobes were calculated. GM CBF was fitted using linear, quadratic and cubic polynomial regression against age. Regression models were compared with Akaike's information criterion (AIC), and Likelihood Ratio tests. 84 children were included (44 females/40 males). Mean CBF values were 64.2 ± 13.8 mL/100 g/min in GM, and 29.3 ± 10.0 mL/100 g/min in WM. The best-fit model of brain perfusion was the cubic polynomial function (AIC = 672.7, versus respectively AIC = 673.9 and AIC = 674.1 with the linear negative function and the quadratic polynomial function). A statistically significant difference between the tested models demonstrating the superiority of the quadratic (p = 0.18) or cubic polynomial model (p = 0.06), over the negative linear regression model was not found. No effect of general anesthesia (p = 0.34) or of gender (p = 0.16) was found. we provided values for ASL CBF in the brain, GM, WM, hemispheres, and lobes over a wide pediatric age range, approximately showing inverted U-shaped changes in GM perfusion over the course of childhood. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Determination of suitable drying curve model for bread moisture loss during baking

    NASA Astrophysics Data System (ADS)

    Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.

    2013-03-01

    This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.

  18. Role of social support in adolescent suicidal ideation and suicide attempts.

    PubMed

    Miller, Adam Bryant; Esposito-Smythers, Christianne; Leichtweis, Richard N

    2015-03-01

    The present study examined the relative contributions of perceptions of social support from parents, close friends, and school on current suicidal ideation (SI) and suicide attempt (SA) history in a clinical sample of adolescents. Participants were 143 adolescents (64% female; 81% white; range, 12-18 years; M = 15.38; standard deviation = 1.43) admitted to a partial hospitalization program. Data were collected with well-validated assessments and a structured clinical interview. Main and interactive effects of perceptions of social support on SI were tested with linear regression. Main and interactive effects of social support on the odds of SA were tested with logistic regression. Results from the linear regression analysis revealed that perceptions of lower school support independently predicted greater severity of SI, accounting for parent and close friend support. Further, the relationship between lower perceived school support and SI was the strongest among those who perceived lower versus higher parental support. Results from the logistic regression analysis revealed that perceptions of lower parental support independently predicted SA history, accounting for school and close friend support. Further, those who perceived lower support from school and close friends reported the greatest odds of an SA history. Results address a significant gap in the social support and suicide literature by demonstrating that perceptions of parent and school support are relatively more important than peer support in understanding suicidal thoughts and history of suicidal behavior. Results suggest that improving social support across these domains may be important in suicide prevention efforts. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  19. Linear regression analysis of survival data with missing censoring indicators.

    PubMed

    Wang, Qihua; Dinse, Gregg E

    2011-04-01

    Linear regression analysis has been studied extensively in a random censorship setting, but typically all of the censoring indicators are assumed to be observed. In this paper, we develop synthetic data methods for estimating regression parameters in a linear model when some censoring indicators are missing. We define estimators based on regression calibration, imputation, and inverse probability weighting techniques, and we prove all three estimators are asymptotically normal. The finite-sample performance of each estimator is evaluated via simulation. We illustrate our methods by assessing the effects of sex and age on the time to non-ambulatory progression for patients in a brain cancer clinical trial.

  20. An Analysis of COLA (Cost of Living Adjustment) Allocation within the United States Coast Guard.

    DTIC Science & Technology

    1983-09-01

    books Applied Linear Regression [Ref. 39], and Statistical Methods in Research and Production [Ref. 40], or any other book on regression. In the event...Indexes, Master’s Thesis, Air Force Institute of Technology, Wright-Patterson AFB, 1976. 39. Weisberg, Stanford, Applied Linear Regression , Wiley, 1980. 40

  1. Graphical Description of Johnson-Neyman Outcomes for Linear and Quadratic Regression Surfaces.

    ERIC Educational Resources Information Center

    Schafer, William D.; Wang, Yuh-Yin

    A modification of the usual graphical representation of heterogeneous regressions is described that can aid in interpreting significant regions for linear or quadratic surfaces. The standard Johnson-Neyman graph is a bivariate plot with the criterion variable on the ordinate and the predictor variable on the abscissa. Regression surfaces are drawn…

  2. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  3. Estimating monotonic rates from biological data using local linear regression.

    PubMed

    Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R

    2017-03-01

    Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.

  4. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.

    PubMed

    Liu, Shu; Yu, Marco; Weinreb, Robert N; Lai, Gilda; Lam, Dennis Shun-Chiu; Leung, Christopher Kai-Shun

    2014-05-02

    We compared the detection of visual field progression and its rate of change between standard automated perimetry (SAP) and Matrix frequency doubling technology perimetry (FDTP) in glaucoma. We followed prospectively 217 eyes (179 glaucoma and 38 normal eyes) for SAP and FDTP testing at 4-month intervals for ≥36 months. Pointwise linear regression analysis was performed. A test location was considered progressing when the rate of change of visual sensitivity was ≤-1 dB/y for nonedge and ≤-2 dB/y for edge locations. Three criteria were used to define progression in an eye: ≥3 adjacent nonedge test locations (conservative), any three locations (moderate), and any two locations (liberal) progressed. The rate of change of visual sensitivity was calculated with linear mixed models. Of the 217 eyes, 6.1% and 3.9% progressed with the conservative criteria, 14.5% and 5.6% of eyes progressed with the moderate criteria, and 20.1% and 11.7% of eyes progressed with the liberal criteria by FDTP and SAP, respectively. Taking all test locations into consideration (total, 54 × 179 locations), FDTP detected more progressing locations (176) than SAP (103, P < 0.001). The rate of change of visual field mean deviation (MD) was significantly faster for FDTP (all with P < 0.001). No eyes showed progression in the normal group using the conservative and the moderate criteria. With a faster rate of change of visual sensitivity, FDTP detected more progressing eyes than SAP at a comparable level of specificity. Frequency doubling technology perimetry can provide a useful alternative to monitor glaucoma progression.

  5. Characterisation of acoustic energy content in an experimental combustion chamber with and without external forcing

    NASA Astrophysics Data System (ADS)

    Webster, S.; Hardi, J.; Oschwald, M.

    2015-03-01

    The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.

  6. Locally linear regression for pose-invariant face recognition.

    PubMed

    Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-07-01

    The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.

  7. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    NASA Astrophysics Data System (ADS)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  8. Relationships between use of television during meals and children's food consumption patterns.

    PubMed

    Coon, K A; Goldberg, J; Rogers, B L; Tucker, K L

    2001-01-01

    We examined relationships between the presence of television during meals and children's food consumption patterns to test whether children's overall food consumption patterns, including foods not normally advertised, vary systematically with the extent to which television is part of normal mealtime routines. Ninety-one parent-child pairs from suburbs adjacent to Washington, DC, recruited via advertisements and word of mouth, participated. Children were in the fourth, fifth, or sixth grades. Socioeconomic data and information on television use were collected during survey interviews. Three nonconsecutive 24-hour dietary recalls, conducted with each child, were used to construct nutrient and food intake outcome variables. Independent sample t tests were used to compare mean food and nutrient intakes of children from families in which the television was usually on during 2 or more meals (n = 41) to those of children from families in which the television was either never on or only on during one meal (n = 50). Multiple linear regression models, controlling for socioeconomic factors and other covariates, were used to test strength of associations between television and children's consumption of food groups and nutrients. Children from families with high television use derived, on average, 6% more of their total daily energy intake from meats; 5% more from pizza, salty snacks, and soda; and nearly 5% less of their energy intake from fruits, vegetables, and juices than did children from families with low television use. Associations between television and children's consumption of food groups remained statistically significant in multiple linear regression models that controlled for socioeconomic factors and other covariates. Children from high television families derived less of their total energy from carbohydrate and consumed twice as much caffeine as children from low television families. There continued to be a significant association between television and children's consumption of caffeine when these relationships were tested in multiple linear regression models. The dietary patterns of children from families in which television viewing is a normal part of meal routines may include fewer fruits and vegetables and more pizzas, snack foods, and sodas than the dietary patterns of children from families in which television viewing and eating are separate activities.

  9. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  10. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    PubMed

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  11. An Evaluation of Project iRead: A Program Created to Improve Sight Word Recognition

    ERIC Educational Resources Information Center

    Marshall, Theresa Meade

    2014-01-01

    This program evaluation was undertaken to examine the relationship between participation in Project iRead and student gains in word recognition, fluency, and comprehension as measured by the Phonological Awareness Literacy Screening (PALS) Test. Linear regressions compared the 2012-13 PALS results from 5,140 first and second grade students at…

  12. Civic Purpose in Late Adolescence: Factors That Prevent Decline in Civic Engagement after High School

    ERIC Educational Resources Information Center

    Malin, Heather; Han, Hyemin; Liauw, Indrawati

    2017-01-01

    This study investigated the effects of internal and demographic variables on civic development in late adolescence using the construct "civic purpose." We conducted surveys on civic engagement with 480 high school seniors, and surveyed them again 2 years later. Using multivariate regression and linear mixed models, we tested the main…

  13. Using Generalized Additive Models to Analyze Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William; Sullivan, Kristynn

    2013-01-01

    Many analyses for single-case designs (SCDs)--including nearly all the effect size indicators-- currently assume no trend in the data. Regression and multilevel models allow for trend, but usually test only linear trend and have no principled way of knowing if higher order trends should be represented in the model. This paper shows how Generalized…

  14. Beyond the Black-White Test Score Gap: Latinos' Early School Experiences and Literacy Outcomes

    ERIC Educational Resources Information Center

    Delgado, Enilda A.; Stoll, Laurie Cooper

    2015-01-01

    Data from the Early Childhood Longitudinal Survey-Birth Cohort are used to analyze the factors that lead to the reading readiness of children who participate in nonparental care the year prior to kindergarten (N = 4,550), with a specific focus on Latino children (N = 800). Stepwise multiple linear regression analysis demonstrates that reading…

  15. Examining the Variability of Mathematics Performance and Its Correlates Using Data from TIMSS '95 and TIMSS '99

    ERIC Educational Resources Information Center

    O'Dwyer, Laura M.

    2005-01-01

    International studies in education provide researchers with opportunities to examine how students with both similar and dissimilar formal education systems perform on a single test and provide rich information about the relationships among student outcomes and the factors that affect them. Using hierarchical linear regression techniques and TIMSS…

  16. Improving near-infrared prediction model robustness with support vector machine regression: a pharmaceutical tablet assay example.

    PubMed

    Igne, Benoît; Drennen, James K; Anderson, Carl A

    2014-01-01

    Changes in raw materials and process wear and tear can have significant effects on the prediction error of near-infrared calibration models. When the variability that is present during routine manufacturing is not included in the calibration, test, and validation sets, the long-term performance and robustness of the model will be limited. Nonlinearity is a major source of interference. In near-infrared spectroscopy, nonlinearity can arise from light path-length differences that can come from differences in particle size or density. The usefulness of support vector machine (SVM) regression to handle nonlinearity and improve the robustness of calibration models in scenarios where the calibration set did not include all the variability present in test was evaluated. Compared to partial least squares (PLS) regression, SVM regression was less affected by physical (particle size) and chemical (moisture) differences. The linearity of the SVM predicted values was also improved. Nevertheless, although visualization and interpretation tools have been developed to enhance the usability of SVM-based methods, work is yet to be done to provide chemometricians in the pharmaceutical industry with a regression method that can supplement PLS-based methods.

  17. Evaluation of pharyngeal space and its correlation with mandible and hyoid bone in patients with different skeletal classes and facial types.

    PubMed

    Nejaim, Yuri; Aps, Johan K M; Groppo, Francisco Carlos; Haiter Neto, Francisco

    2018-06-01

    The purpose of this article was to evaluate the pharyngeal space volume, and the size and shape of the mandible and the hyoid bone, as well as their relationships, in patients with different facial types and skeletal classes. Furthermore, we estimated the volume of the pharyngeal space with a formula using only linear measurements. A total of 161 i-CAT Next Generation (Imaging Sciences International, Hatfield, Pa) cone-beam computed tomography images (80 men, 81 women; ages, 21-58 years; mean age, 27 years) were retrospectively studied. Skeletal class and facial type were determined for each patient from multiplanar reconstructions using the NemoCeph software (Nemotec, Madrid, Spain). Linear and angular measurements were performed using 3D imaging software (version 3.4.3; Carestream Health, Rochester, NY), and volumetric analysis of the pharyngeal space was carried out with ITK-SNAP (version 2.4.0; Cognitica, Philadelphia, Pa) segmentation software. For the statistics, analysis of variance and the Tukey test with a significance level of 0.05, Pearson correlation, and linear regression were used. The pharyngeal space volume, when correlated with mandible and hyoid bone linear and angular measurements, showed significant correlations with skeletal class or facial type. The linear regression performed to estimate the volume of the pharyngeal space showed an R of 0.92 and an adjusted R 2 of 0.8362. There were significant correlations between pharyngeal space volume, and the mandible and hyoid bone measurements, suggesting that the stomatognathic system should be evaluated in an integral and nonindividualized way. Furthermore, it was possible to develop a linear regression model, resulting in a useful formula for estimating the volume of the pharyngeal space. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Extension of the Peters–Belson method to estimate health disparities among multiple groups using logistic regression with survey data

    PubMed Central

    Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.

    2015-01-01

    Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235

  19. Cone-Beam Computed Tomography as a Diagnostic Method for Determination of Gingival Thickness and Distance between Gingival Margin and Bone Crest

    PubMed Central

    Borges, Germana Jayme; Ruiz, Luis Fernando Naldi; de Alencar, Ana Helena Gonçalves; Porto, Olavo César Lyra; Estrela, Carlos

    2015-01-01

    The objective of the present study was to assess cone-beam computed tomography (CBCT) as a diagnostic method for determination of gingival thickness (GT) and distance between gingival margin and vestibular (GMBC-V) and interproximal bone crests (GMBC-I). GT and GMBC-V were measured in 348 teeth and GMBC-I was measured in 377 tooth regions of 29 patients with gummy smile. GT was assessed using transgingival probing (TP), ultrasound (US), and CBCT, whereas GMBC-V and GMBC-I were assessed by transsurgical clinical evaluation (TCE) and CBCT. Statistical analyses used independent t-test, Pearson's correlation coefficient, and simple linear regression. Difference was observed for GT: between TP, CBCT, and US considering all teeth; between TP and CBCT and between TP and US in incisors and canines; between TP and US in premolars and first molars. TP presented the highest means for GT. Positive correlation and linear regression were observed between TP and CBCT, TP and US, and CBCT and US. Difference was observed for GMBC-V and GMBC-I using TCE and CBCT, considering all teeth. Correlation and linear regression results were significant for GMBC-V and GMBC-I in incisors, canines, and premolars. CBCT is an effective diagnostic method to visualize and measure GT, GMBC-V, and GMBC-I. PMID:25918737

  20. The measurement of linear frequency drift in oscillators

    NASA Astrophysics Data System (ADS)

    Barnes, J. A.

    1985-04-01

    A linear drift in frequency is an important element in most stochastic models of oscillator performance. Quartz crystal oscillators often have drifts in excess of a part in ten to the tenth power per day. Even commercial cesium beam devices often show drifts of a few parts in ten to the thirteenth per year. There are many ways to estimate the drift rates from data samples (e.g., regress the phase on a quadratic; regress the frequency on a linear; compute the simple mean of the first difference of frequency; use Kalman filters with a drift term as one element in the state vector; and others). Although most of these estimators are unbiased, they vary in efficiency (i.e., confidence intervals). Further, the estimation of confidence intervals using the standard analysis of variance (typically associated with the specific estimating technique) can give amazingly optimistic results. The source of these problems is not an error in, say, the regressions techniques, but rather the problems arise from correlations within the residuals. That is, the oscillator model is often not consistent with constraints on the analysis technique or, in other words, some specific analysis techniques are often inappropriate for the task at hand. The appropriateness of a specific analysis technique is critically dependent on the oscillator model and can often be checked with a simple whiteness test on the residuals.

  1. Causal relationship model between variables using linear regression to improve professional commitment of lecturer

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2017-01-01

    The main element to build a leading university requires lecturer commitment in a professional manner. Commitment is measured through willpower, loyalty, pride, loyalty, and integrity as a professional lecturer. A total of 135 from 337 university lecturers were sampled to collect data. Data were analyzed using validity and reliability test and multiple linear regression. Many studies have found a link on the commitment of lecturers, but the basic cause of the causal relationship is generally neglected. These results indicate that the professional commitment of lecturers affected by variables empowerment, academic culture, and trust. The relationship model between variables is composed of three substructures. The first substructure consists of endogenous variables professional commitment and exogenous three variables, namely the academic culture, empowerment and trust, as well as residue variable ɛ y . The second substructure consists of one endogenous variable that is trust and two exogenous variables, namely empowerment and academic culture and the residue variable ɛ 3. The third substructure consists of one endogenous variable, namely the academic culture and exogenous variables, namely empowerment as well as residue variable ɛ 2. Multiple linear regression was used in the path model for each substructure. The results showed that the hypothesis has been proved and these findings provide empirical evidence that increasing the variables will have an impact on increasing the professional commitment of the lecturers.

  2. Adaptive Local Linear Regression with Application to Printer Color Management

    DTIC Science & Technology

    2008-01-01

    values formed the test samples. This process guaranteed that the CIELAB test samples were in the gamut for each printer, but each printer had a...digital images has recently led to increased consumer demand for accurate color reproduction. Given a CIELAB color one would like to reproduce, the color...management problem is to determine what RGB color one must send the printer to minimize the error between the desired CIELAB color and the CIELAB

  3. Type I error rates of rare single nucleotide variants are inflated in tests of association with non-normally distributed traits using simple linear regression methods.

    PubMed

    Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F

    2016-01-01

    In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log 10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.

  4. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    NASA Astrophysics Data System (ADS)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  5. Emotional exhaustion and cognitive performance in apparently healthy teachers: a longitudinal multi-source study.

    PubMed

    Feuerhahn, Nicolas; Stamov-Roßnagel, Christian; Wolfram, Maren; Bellingrath, Silja; Kudielka, Brigitte M

    2013-10-01

    We investigate how emotional exhaustion (EE), the core component of burnout, relates to cognitive performance, job performance and health. Cognitive performance was assessed by self-rated cognitive stress symptoms, self-rated and peer-rated cognitive impairments in everyday tasks and a neuropsychological test of learning and memory (LGT-3); job performance and physical health were gauged by self-reports. Cross-sectional linear regression analyses in a sample of 100 teachers confirm that EE is negatively related to cognitive performance as assessed by self-rating and peer-rating as well as neuropsychological testing (all p < .05). Longitudinal linear regression analyses confirm similar trends (p < .10) for self-rated and peer-rated cognitive performance. Executive control deficits might explain impaired cognitive performance in EE. In longitudinal analyses, EE also significantly predicts physical health. Contrary to our expectations, EE does not affect job performance. When reversed causation is tested, none of the outcome variables at Time 1 predict EE at Time 2. This speaks against cognitive dysfunctioning serving as a vulnerability factor for exhaustion. In sum, results underpin the negative consequences of EE for cognitive performance and health, which are relevant for individuals and organizations alike. In this way, findings might contribute to the understanding of the burnout syndrome. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Association of antidiabetic medication use, cognitive decline, and risk of cognitive impairment in older people with type 2 diabetes: Results from the population-based Mayo Clinic Study of Aging.

    PubMed

    Wennberg, Alexandra M V; Hagen, Clinton E; Edwards, Kelly; Roberts, Rosebud O; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Mielke, Michelle M

    2018-06-05

    To determine the cross-sectional and longitudinal associations between diabetes treatment type and cognitive outcomes among type II diabetics. We examined the association between metformin use, as compared to other diabetic treatment (ie, insulin, other oral medications, and diet/exercise) and cognitive test performance and mild cognitive impairment (MCI) diagnosis among 508 cognitively unimpaired at baseline type II diabetics enrolled in the Mayo Clinic Study of Aging. We created propensity scores to adjust for treatment effects. We used multivariate linear and logistic regression models to investigate the cross-sectional association between treatment type and cognitive test z scores, respectively. Mixed effects models and competing risk regression models were used to determine the longitudinal association between treatment type and change in cognitive test z scores and risk of developing incident MCI. In linear regression analyses adjusted for age, sex, education, body mass index, APOE ε4, insulin treatment, medical comorbidities, number of medications, duration of diabetes, and propensity score, we did not observe an association between metformin use and cognitive test performance. Additionally, we did not observe an association between metformin use and cognitive test performance over time (median = 3.7-year follow-up). Metformin was associated with an increased risk of MCI (subhazard ratio (SHR) = 2.75; 95% CI = 1.64, 4.63, P < .001). Similarly, other oral medications (SHR = 1.96; 95% CI = 1.19, 3.25; P = .009) and insulin (SHR = 3.17; 95% CI = 1.27, 7.92; P = .014) use were also associated with risk of MCI diagnosis. These findings suggest that metformin use, as compared to management of diabetes with other treatments, is not associated with cognitive test performance. However, metformin was associated with incident MCI diagnosis. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043

  8. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    PubMed

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  9. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  10. A primer for biomedical scientists on how to execute model II linear regression analysis.

    PubMed

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  11. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  12. Change Point Problems in Regression

    DTIC Science & Technology

    1988-06-01

    equals W at i/m (i = 1,...,m) and is linear in each interval (i/m, (i + 1)/m). I!,. Section 2.2: Asymptotic Behavior of Test Statistics 13 Lemma ...Numbers implies that Qzz.vn/m - 1, QZV,/m --+ 0 in probability. By the previous lemma . B’-- W1, B’- W2 in distribution, and hence Dm - 1 in probability...2 converges to the same limit as in (2.5) by the Slutsky’s Lemma . I S Now we will consider the conditional test for HO. This conditional test is based

  13. Assessing contaminant sensitivity of endangered and threatened aquatic species: part II. Chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species.

    PubMed

    Besser, J M; Wang, N; Dwyer, F J; Mayer, F L; Ingersoll, C G

    2005-02-01

    Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at < or = 11 microg/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 microg/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern.

  14. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part II. chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species

    USGS Publications Warehouse

    Besser, J.M.; Wang, N.; Dwyer, F.J.; Mayer, F.L.; Ingersoll, C.G.

    2005-01-01

    Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at ??? 11 ??g/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 ??g/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern. ?? 2005 Springer Science+Business Media, Inc.

  15. Factors that influence standard automated perimetry test results in glaucoma: test reliability, technician experience, time of day, and season.

    PubMed

    Junoy Montolio, Francisco G; Wesselink, Christiaan; Gordijn, Marijke; Jansonius, Nomdo M

    2012-10-09

    To determine the influence of several factors on standard automated perimetry test results in glaucoma. Longitudinal Humphrey field analyzer 30-2 Swedish interactive threshold algorithm data from 160 eyes of 160 glaucoma patients were used. The influence of technician experience, time of day, and season on the mean deviation (MD) was determined by performing linear regression analysis of MD against time on a series of visual fields and subsequently performing a multiple linear regression analysis with the MD residuals as dependent variable and the factors mentioned above as independent variables. Analyses were performed with and without adjustment for the test reliability (fixation losses and false-positive and false-negative answers) and with and without stratification according to disease stage (baseline MD). Mean follow-up was 9.4 years, with on average 10.8 tests per patient. Technician experience, time of day, and season were associated with the MD. Approximately 0.2 dB lower MD values were found for inexperienced technicians (P < 0.001), tests performed after lunch (P < 0.001), and tests performed in the summer or autumn (P < 0.001). The effects of time of day and season appeared to depend on disease stage. Independent of these effects, the percentage of false-positive answers strongly influenced the MD with a 1 dB increase in MD per 10% increase in false-positive answers. Technician experience, time of day, season, and the percentage of false-positive answers have a significant influence on the MD of standard automated perimetry.

  16. A pilot evaluation of a computer-based psychometric test battery designed to detect impairment in patients with cirrhosis

    PubMed Central

    Cook, Nicola A; Kim, Jin Un; Pasha, Yasmin; Crossey, Mary ME; Schembri, Adrian J; Harel, Brian T; Kimhofer, Torben; Taylor-Robinson, Simon D

    2017-01-01

    Background Psychometric testing is used to identify patients with cirrhosis who have developed hepatic encephalopathy (HE). Most batteries consist of a series of paper-and-pencil tests, which are cumbersome for most clinicians. A modern, easy-to-use, computer-based battery would be a helpful clinical tool, given that in its minimal form, HE has an impact on both patients’ quality of life and the ability to drive and operate machinery (with societal consequences). Aim We compared the Cogstate™ computer battery testing with the Psychometric Hepatic Encephalopathy Score (PHES) tests, with a view to simplify the diagnosis. Methods This was a prospective study of 27 patients with histologically proven cirrhosis. An analysis of psychometric testing was performed using accuracy of task performance and speed of completion as primary variables to create a correlation matrix. A stepwise linear regression analysis was performed with backward elimination, using analysis of variance. Results Strong correlations were found between the international shopping list, international shopping list delayed recall of Cogstate and the PHES digit symbol test. The Shopping List Tasks were the only tasks that consistently had P values of <0.05 in the linear regression analysis. Conclusion Subtests of the Cogstate battery correlated very strongly with the digit symbol component of PHES in discriminating severity of HE. These findings would indicate that components of the current PHES battery with the international shopping list tasks of Cogstate would be discriminant and have the potential to be used easily in clinical practice. PMID:28919805

  17. A trend analysis of laboratory positive propoxyphene workplace urine drug screens before and after the product recall.

    PubMed

    Price, James

    2015-01-01

    Propoxyphene was withdrawn from the US market in November 2010. This drug is still tested for in the workplace as part of expanded panel nonregulated testing. A convenience sample of urine specimens (n = 7838) were provided by workers from various industries. The percentage of positive specimens with 95% confidence intervals was calculated for each year of the study. Logistic regression was used to assess the impact of the year upon the propoxyphene result. The prevalence of positive propoxyphene tests was much higher before the product's withdrawal from the market. Logistic regression provided evidence of a decreasing linear trend (P < 0.000; β = -0.71). The odds ratio signifies that for every additional year the urine specimens were 0.49 times less likely to be positive for propoxyphene. This favors the determination that the change in propoxyphene positive drug test over the years is not by chance. The conclusion supports no longer performing nonregulated workplace propoxyphene urine drug testing for this population.

  18. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    NASA Astrophysics Data System (ADS)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  19. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  20. Analyzing Multilevel Data: An Empirical Comparison of Parameter Estimates of Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2011-01-01

    Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…

  1. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  2. Omnibus Risk Assessment via Accelerated Failure Time Kernel Machine Modeling

    PubMed Central

    Sinnott, Jennifer A.; Cai, Tianxi

    2013-01-01

    Summary Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai et al., 2011). In this paper, we derive testing and prediction methods for KM regression under the accelerated failure time model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. PMID:24328713

  3. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    PubMed

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A Linear Regression and Markov Chain Model for the Arabian Horse Registry

    DTIC Science & Technology

    1993-04-01

    as a tax deduction? Yes No T-4367 68 26. Regardless of previous equine tax deductions, do you consider your current horse activities to be... (Mark one...E L T-4367 A Linear Regression and Markov Chain Model For the Arabian Horse Registry Accesion For NTIS CRA&I UT 7 4:iC=D 5 D-IC JA" LI J:13tjlC,3 lO...the Arabian Horse Registry, which needed to forecast its future registration of purebred Arabian horses . A linear regression model was utilized to

  5. Dry-heat Resistance of Bacillus Subtilis Var. Niger Spores on Mated Surfaces

    NASA Technical Reports Server (NTRS)

    Simko, G. J.; Devlin, J. D.; Wardle, M. D.

    1971-01-01

    Bacillus subtilis var. niger spores were placed on the surfaces of test coupons manufactured from typical spacecraft materials including stainless steel, magnesium, titanium, and aluminum. These coupons were then juxtaposed at the inoculated surfaces and subjected to test pressures of 0, 1000, 5000, and 10,000 psi. Tests were conducted in ambient, nitrogen, and helium atmospheres. While under the test pressure condition, the spores were exposed to 125 C for intervals of 5, 10, 20, 50, or 80 min. Survivor data were subjected to a linear regression analysis that calculated decimal reduction times.

  6. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  7. A Continuous Threshold Expectile Model.

    PubMed

    Zhang, Feipeng; Li, Qunhua

    2017-12-01

    Expectile regression is a useful tool for exploring the relation between the response and the explanatory variables beyond the conditional mean. A continuous threshold expectile regression is developed for modeling data in which the effect of a covariate on the response variable is linear but varies below and above an unknown threshold in a continuous way. The estimators for the threshold and the regression coefficients are obtained using a grid search approach. The asymptotic properties for all the estimators are derived, and the estimator for the threshold is shown to achieve root-n consistency. A weighted CUSUM type test statistic is proposed for the existence of a threshold at a given expectile, and its asymptotic properties are derived under both the null and the local alternative models. This test only requires fitting the model under the null hypothesis in the absence of a threshold, thus it is computationally more efficient than the likelihood-ratio type tests. Simulation studies show that the proposed estimators and test have desirable finite sample performance in both homoscedastic and heteroscedastic cases. The application of the proposed method on a Dutch growth data and a baseball pitcher salary data reveals interesting insights. The proposed method is implemented in the R package cthreshER .

  8. Testing the dose-response specification in epidemiology: public health and policy consequences for lead.

    PubMed

    Rothenberg, Stephen J; Rothenberg, Jesse C

    2005-09-01

    Statistical evaluation of the dose-response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose-response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear-linear dose response) and natural-log-transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose-response relationship. We found that a log-linear lead-IQ relationship was a significantly better fit than was a linear-linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead-IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 microg/dL to 2.0 microg/dL) was 2.2 times (319 billion dollars) that calculated using a linear-linear dose-response function (149 billion dollars). The Centers for Disease Control and Prevention action limit of 10 microg/dL for children fails to protect against most damage and economic cost attributable to lead exposure.

  9. A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations.

    PubMed

    Agier, Lydiane; Portengen, Lützen; Chadeau-Hyam, Marc; Basagaña, Xavier; Giorgis-Allemand, Lise; Siroux, Valérie; Robinson, Oliver; Vlaanderen, Jelle; González, Juan R; Nieuwenhuijsen, Mark J; Vineis, Paolo; Vrijheid, Martine; Slama, Rémy; Vermeulen, Roel

    2016-12-01

    The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. We compared the performances of linear regression-based statistical methods in assessing exposome-health associations. In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. Citation: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848-1856; http://dx.doi.org/10.1289/EHP172.

  10. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.

  11. Verification of spectrophotometric method for nitrate analysis in water samples

    NASA Astrophysics Data System (ADS)

    Kurniawati, Puji; Gusrianti, Reny; Dwisiwi, Bledug Bernanti; Purbaningtias, Tri Esti; Wiyantoko, Bayu

    2017-12-01

    The aim of this research was to verify the spectrophotometric method to analyze nitrate in water samples using APHA 2012 Section 4500 NO3-B method. The verification parameters used were: linearity, method detection limit, level of quantitation, level of linearity, accuracy and precision. Linearity was obtained by using 0 to 50 mg/L nitrate standard solution and the correlation coefficient of standard calibration linear regression equation was 0.9981. The method detection limit (MDL) was defined as 0,1294 mg/L and limit of quantitation (LOQ) was 0,4117 mg/L. The result of a level of linearity (LOL) was 50 mg/L and nitrate concentration 10 to 50 mg/L was linear with a level of confidence was 99%. The accuracy was determined through recovery value was 109.1907%. The precision value was observed using % relative standard deviation (%RSD) from repeatability and its result was 1.0886%. The tested performance criteria showed that the methodology was verified under the laboratory conditions.

  12. Passenger comfort during terminal-area flight maneuvers. M.S. Thesis.

    NASA Technical Reports Server (NTRS)

    Schoonover, W. E., Jr.

    1976-01-01

    A series of flight experiments was conducted to obtain passenger subjective responses to closely controlled and repeatable flight maneuvers. In 8 test flights, reactions were obtained from 30 passenger subjects to a wide range of terminal-area maneuvers, including descents, turns, decelerations, and combinations thereof. Analysis of the passenger rating variance indicated that the objective of a repeatable flight passenger environment was achieved. Multiple linear regression models developed from the test data were used to define maneuver motion boundaries for specified degrees of passenger acceptance.

  13. Drop-Weight Impact Test on U-Shape Concrete Specimens with Statistical and Regression Analyses

    PubMed Central

    Zhu, Xue-Chao; Zhu, Han; Li, Hao-Ran

    2015-01-01

    According to the principle and method of drop-weight impact test, the impact resistance of concrete was measured using self-designed U-shape specimens and a newly designed drop-weight impact test apparatus. A series of drop-weight impact tests were carried out with four different masses of drop hammers (0.875, 0.8, 0.675 and 0.5 kg). The test results show that the impact resistance results fail to follow a normal distribution. As expected, U-shaped specimens can predetermine the location of the cracks very well. It is also easy to record the cracks propagation during the test. The maximum of coefficient of variation in this study is 31.2%; it is lower than the values obtained from the American Concrete Institute (ACI) impact tests in the literature. By regression analysis, the linear relationship between the first-crack and ultimate failure impact resistance is good. It can suggested that a minimum number of specimens is required to reliably measure the properties of the material based on the observed levels of variation. PMID:28793540

  14. Preliminary results on predation of gypsy moth egg masses in Slovakia

    Treesearch

    Marek Turcani; Andrew Liebhold; Michael McManus; Julius Novotny

    2003-01-01

    Predation of gypsy moth egg masses was studied in Slovakia from 1999-2002. Predation on naturally laid egg masses was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. We also investigated the role of egg mass predation in gypsy moth population dynamics. The relative contribution of...

  15. The Influence of Socioeconomic, Parental, and District Factors on the 2013 MCAS Grade 4 Language Arts and Mathematics Scores

    ERIC Educational Resources Information Center

    Caldwell, Dale G.

    2017-01-01

    This correlational, explanatory study utilized multiple linear and hierarchical regression to examine the predictive power of socioeconomic, parental and district factors on the total percentage of students who scored Proficient or Advanced Proficient on the 2013 MCAS Grade 4 language arts and mathematics test. The population for this study…

  16. What Do School Report Cards Really Tell Us? (An Analysis of the Relationships among Factors Commonly Reported in School District Report Cards).

    ERIC Educational Resources Information Center

    Bobbett, Gordon C.; And Others

    The relationships among factors reported on school district (SD) report cards were studied for 121 Tennessee SDs. The report cards provided data on student outcomes (achievement test scores) and SD characteristics. Relationships were studied through linear regression, Pearson product moment correlation, and Guttman's partial correlation. Six…

  17. An Examination of Pennsylvania's Classroom Diagnostic Testing as a Predictive Model of Pennsylvania System of School Assessment Performance

    ERIC Educational Resources Information Center

    Matsanka, Christopher

    2017-01-01

    The purpose of this non-experimental quantitative study was to investigate the relationship between Pennsylvania's Classroom Diagnostic Tools (CDT) interim assessments and the state-mandated Pennsylvania System of School Assessment (PSSA) and to create linear regression equations that could be used as models to predict student performance on the…

  18. The Relationship of Bole Diameters and Crown Widths of Seven Bottomland Hardwood Species

    Treesearch

    John K. Francis

    1988-01-01

    Diameters, heights, and eight crown radii per tree were measured on 75 individuals from each of seven bottomland hardwood species in Mississippi. It was determined that the seven species could not be described by a single regression equation. Crown class was tested to see whether it significantly influenced the slope or intercept of the linear relationship. Three of...

  19. 3D Mapping of Language Networks in Clinical and Pre-Clinical Alzheimer's Disease

    ERIC Educational Resources Information Center

    Apostolova, Liana G.; Lu, Po; Rogers, Steve; Dutton, Rebecca A.; Hayashi, Kiralee M.; Toga, Arthur W.; Cummings, Jeffrey L.; Thompson, Paul M.

    2008-01-01

    We investigated the associations between Boston naming and the animal fluency tests and cortical atrophy in 19 probable AD and 5 multiple domain amnestic mild cognitive impairment patients who later converted to AD. We applied a surface-based computational anatomy technique to MRI scans of the brain and then used linear regression models to detect…

  20. Associations among Child Care, Family, and Behavior Outcomes in a Nation-Wide Sample of Preschool-Aged Children

    ERIC Educational Resources Information Center

    Romano, Elisa; Kohen, Dafna; Findlay, Leanne C.

    2010-01-01

    Canadian data based on maternal reports for a nationally representative sample of 4,521 4-5-year-olds were used to examine associations among child care, family factors, and behaviors in preschool-aged children. Linear regressions testing for direct and moderated associations indicated that regulated home-based care was associated with less…

  1. Examining the Influence of Selected Factors on Perceived Co-Op Work-Term Quality from a Student Perspective

    ERIC Educational Resources Information Center

    Drewery, David; Nevison, Colleen; Pretti, T. Judene; Cormier, Lauren; Barclay, Sage; Pennaforte, Antoine

    2016-01-01

    This study discusses and tests a conceptual model of co-op work-term quality from a student perspective. Drawing from an earlier exploration of co-op students' perceptions of work-term quality, variables related to role characteristics, interpersonal dynamics, and organizational elements were used in a multiple linear regression analysis to…

  2. Alcohol consumption and its related harms in The Netherlands since 1960: relationships with planned and unplanned factors.

    PubMed

    Knibbe, Ronald A; Derickx, Mieke; Allamani, Allaman; Massini, Giulia

    2014-10-01

    to establish which unplanned (social developments) and planned (alcohol policy measures) factors are related to per capita consumption and alcohol-related harms in the Netherlands. linear regression was used to establish which of the planned and unplanned factors were most strongly connected with alcohol consumption and harms. Artificial Neural Analysis (ANN) was used to inspect the interconnections between all variables. mothers age at birth was most strongly associated with increase in consumption. The ban on selling alcoholic beverages at petrol station was associated with a decrease in consumption. The linear regression of harms did not show any relation between alcohol policy measures and harms. The ANN-analyses indicate a very high interconnectedness between all variables allowing no causal inferences. Exceptions are the relation between price of beer and wine and the consumption of these beverages and the relation between a decrease in transport mortality and the increased use of breathalyzers tests and a restriction of paracommercial selling. unplanned factors are most strongly associated with per capita consumption and harms. ANN-analysis indicates that price of alcoholic beverages, breath testing, and restriction of sales may have had some influence. The study's limitations are noted.

  3. Measurement Consistency from Magnetic Resonance Images

    PubMed Central

    Chung, Dongjun; Chung, Moo K.; Durtschi, Reid B.; Lindell, R. Gentry; Vorperian, Houri K.

    2010-01-01

    Rationale and Objectives In quantifying medical images, length-based measurements are still obtained manually. Due to possible human error, a measurement protocol is required to guarantee the consistency of measurements. In this paper, we review various statistical techniques that can be used in determining measurement consistency. The focus is on detecting a possible measurement bias and determining the robustness of the procedures to outliers. Materials and Methods We review correlation analysis, linear regression, Bland-Altman method, paired t-test, and analysis of variance (ANOVA). These techniques were applied to measurements, obtained by two raters, of head and neck structures from magnetic resonance images (MRI). Results The correlation analysis and the linear regression were shown to be insufficient for detecting measurement inconsistency. They are also very sensitive to outliers. The widely used Bland-Altman method is a visualization technique so it lacks the numerical quantification. The paired t-test tends to be sensitive to small measurement bias. On the other hand, ANOVA performs well even under small measurement bias. Conclusion In almost all cases, using only one method is insufficient and it is recommended to use several methods simultaneously. In general, ANOVA performs the best. PMID:18790405

  4. Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies.

    PubMed

    Rojas, Florencia D; Córdoba, Susana B; de Los Ángeles Sosa, María; Zalazar, Laura C; Fernández, Mariana S; Cattana, María E; Alegre, Liliana R; Carrillo-Muñoz, Alfonso J; Giusiano, Gustavo E

    2017-02-01

    All Malassezia species are lipophilic; thus, modifications are required in susceptibility testing methods to ensure their growth. Antifungal susceptibility of Malassezia species using agar and broth dilution methods has been studied. Currently, few tests using disc diffusion methods are being performed. The aim was to evaluate the in vitro susceptibility of Malassezia yeast against antifungal agents using broth microdilution and disc diffusion methods, then to compare both methodologies. Fifty Malassezia isolates were studied. Microdilution method was performed as described in reference document and agar diffusion test was performed using antifungal tablets and discs. To support growth, culture media were supplemented. To correlate methods, linear regression analysis and categorical agreement was determined. The strongest linear association was observed for fluconazole and miconazole. The highest agreement between both methods was observed for itraconazole and voriconazole and the lowest for amphotericin B and fluconazole. Although modifications made to disc diffusion method allowed to obtain susceptibility data for Malassezia yeast, variables cannot be associated through a linear correlation model, indicating that inhibition zone values cannot predict MIC value. According to the results, disc diffusion assay may not represent an alternative to determine antifungal susceptibility of Malassezia yeast. © 2016 Blackwell Verlag GmbH.

  5. Application of Multiregressive Linear Models, Dynamic Kriging Models and Neural Network Models to Predictive Maintenance of Hydroelectric Power Systems

    NASA Astrophysics Data System (ADS)

    Lucifredi, A.; Mazzieri, C.; Rossi, M.

    2000-05-01

    Since the operational conditions of a hydroelectric unit can vary within a wide range, the monitoring system must be able to distinguish between the variations of the monitored variable caused by variations of the operation conditions and those due to arising and progressing of failures and misoperations. The paper aims to identify the best technique to be adopted for the monitoring system. Three different methods have been implemented and compared. Two of them use statistical techniques: the first, the linear multiple regression, expresses the monitored variable as a linear function of the process parameters (independent variables), while the second, the dynamic kriging technique, is a modified technique of multiple linear regression representing the monitored variable as a linear combination of the process variables in such a way as to minimize the variance of the estimate error. The third is based on neural networks. Tests have shown that the monitoring system based on the kriging technique is not affected by some problems common to the other two models e.g. the requirement of a large amount of data for their tuning, both for training the neural network and defining the optimum plane for the multiple regression, not only in the system starting phase but also after a trivial operation of maintenance involving the substitution of machinery components having a direct impact on the observed variable. Or, in addition, the necessity of different models to describe in a satisfactory way the different ranges of operation of the plant. The monitoring system based on the kriging statistical technique overrides the previous difficulties: it does not require a large amount of data to be tuned and is immediately operational: given two points, the third can be immediately estimated; in addition the model follows the system without adapting itself to it. The results of the experimentation performed seem to indicate that a model based on a neural network or on a linear multiple regression is not optimal, and that a different approach is necessary to reduce the amount of work during the learning phase using, when available, all the information stored during the initial phase of the plant to build the reference baseline, elaborating, if it is the case, the raw information available. A mixed approach using the kriging statistical technique and neural network techniques could optimise the result.

  6. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Bi, Peng; Hiller, Janet

    2008-01-01

    This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

  7. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  8. A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery - part II: an illustrative example.

    PubMed

    Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo

    2007-11-22

    Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.

  9. [Polar S810 as an alternative resource to the use of the electrocardiogram in the 4-second exercise test].

    PubMed

    Pimentel, Alan Santos; Alves, Eduardo da Silva; Alvim, Rafael de Oliveira; Nunes, Rogério Tasca; Costa, Carlos Magno Amaral; Lovisi, Júlio Cesar Moraes; Perrout de Lima, Jorge Roberto

    2010-05-01

    The 4-second exercise test (T4s) evaluates the cardiac vagal tone during the initial heart rate (HR) transient at sudden dynamic exercise, through the identification of the cardiac vagal index (CVI) obtained from the electrocardiogram (ECG). To evaluate the use of the Polar S810 heart rate monitor (HRM) as an alternative resource to the use of the electrocardiogram in the 4-second exercise test. In this study, 49 male individuals (25 +/- 20 years, 176 +/-12 cm, 74 +/- 6 kg) underwent the 4-second exercise test. The RR intervals were recorded simultaneously by ECG and HRM. We calculated the mean and the standard deviation of the last RR interval of the pre-exercise period, or of the first RR interval of the exercise period, whichever was longer (RRB), of the shortest RR interval of the exercise period (RRC), and of the CVI obtained by ECG and HRM. We used the Student t-test for dependent samples (p < or 0.05) to test the significance of the differences between means. To identify the correlation between the ECG and the HRM, we used the linear regression to calculate the Pearson's correlation coefficient and the strategy proposed by Bland and Altman. Linear regression showed r(2) of 0.9999 for RRB, 0.9997 for RRC, and 0.9996 for CVI. Bland e Altman strategy presented standard deviation of 0.92 ms for RRB, 0.86 ms for RRC, and 0.002 for CVI. Polar S810 HRM was more efficient in the application of T4s compared to the ECG.

  10. HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION

    PubMed Central

    Mukherjee, Rajarshi; Pillai, Natesh S.; Lin, Xihong

    2015-01-01

    In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which does not occur in the case of Gaussian linear regression. We derive the detection boundary as a function of two components: a design matrix sparsity index and signal strength, each of which is a function of the sparsity of the alternative. For any alternative, if the design matrix sparsity index is too high, any test is asymptotically powerless irrespective of the magnitude of signal strength. For binary design matrices with the sparsity index that is not too high, our results are parallel to those in the Gaussian case. In this context, we derive detection boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the theoretical results using simulation studies. PMID:26246645

  11. A new statistical approach to climate change detection and attribution

    NASA Astrophysics Data System (ADS)

    Ribes, Aurélien; Zwiers, Francis W.; Azaïs, Jean-Marc; Naveau, Philippe

    2017-01-01

    We propose here a new statistical approach to climate change detection and attribution that is based on additive decomposition and simple hypothesis testing. Most current statistical methods for detection and attribution rely on linear regression models where the observations are regressed onto expected response patterns to different external forcings. These methods do not use physical information provided by climate models regarding the expected response magnitudes to constrain the estimated responses to the forcings. Climate modelling uncertainty is difficult to take into account with regression based methods and is almost never treated explicitly. As an alternative to this approach, our statistical model is only based on the additivity assumption; the proposed method does not regress observations onto expected response patterns. We introduce estimation and testing procedures based on likelihood maximization, and show that climate modelling uncertainty can easily be accounted for. Some discussion is provided on how to practically estimate the climate modelling uncertainty based on an ensemble of opportunity. Our approach is based on the " models are statistically indistinguishable from the truth" paradigm, where the difference between any given model and the truth has the same distribution as the difference between any pair of models, but other choices might also be considered. The properties of this approach are illustrated and discussed based on synthetic data. Lastly, the method is applied to the linear trend in global mean temperature over the period 1951-2010. Consistent with the last IPCC assessment report, we find that most of the observed warming over this period (+0.65 K) is attributable to anthropogenic forcings (+0.67 ± 0.12 K, 90 % confidence range), with a very limited contribution from natural forcings (-0.01± 0.02 K).

  12. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  13. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  14. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  15. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease

    PubMed Central

    Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G

    2006-01-01

    Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639

  16. GIS Tools to Estimate Average Annual Daily Traffic

    DOT National Transportation Integrated Search

    2012-06-01

    This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...

  17. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  18. The effects of climate change on harp seals (Pagophilus groenlandicus).

    PubMed

    Johnston, David W; Bowers, Matthew T; Friedlaender, Ari S; Lavigne, David M

    2012-01-01

    Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.

  19. Is susceptibility to prenatal methylmercury exposure from fish consumption non-homogeneous? Tree-structured analysis for the Seychelles Child Development Study.

    PubMed

    Huang, Li-Shan; Myers, Gary J; Davidson, Philip W; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W; Cernichiari, Elsa; Shamlaye, Conrad F; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W

    2007-11-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age 9 years. The analyses for the most recent 9-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated non-linearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of 21 endpoints available at age 9 years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other 9-year endpoints that in the linear analysis had a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels.

  20. The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus)

    PubMed Central

    Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.; Lavigne, David M.

    2012-01-01

    Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data. PMID:22238591

  1. Estimating extent of mortality associated with the Douglas-fir beetle in the Central and Northern Rockies

    Treesearch

    Jose F. Negron; Willis C. Schaupp; Kenneth E. Gibson; John Anhold; Dawn Hansen; Ralph Thier; Phil Mocettini

    1999-01-01

    Data collected from Douglas-fir stands infected by the Douglas-fir beetle in Wyoming, Montana, Idaho, and Utah, were used to develop models to estimate amount of mortality in terms of basal area killed. Models were built using stepwise linear regression and regression tree approaches. Linear regression models using initial Douglas-fir basal area were built for all...

  2. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    PubMed

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  3. Analyzing Seasonal Variations in Suicide With Fourier Poisson Time-Series Regression: A Registry-Based Study From Norway, 1969-2007.

    PubMed

    Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo

    2015-08-01

    Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. A new approach to correct the QT interval for changes in heart rate using a nonparametric regression model in beagle dogs.

    PubMed

    Watanabe, Hiroyuki; Miyazaki, Hiroyasu

    2006-01-01

    Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.

  5. SU-F-T-130: [18F]-FDG Uptake Dose Response in Lung Correlates Linearly with Proton Therapy Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D; Titt, U; Mirkovic, D

    2016-06-15

    Purpose: Analysis of clinical outcomes in lung cancer patients treated with protons using 18F-FDG uptake in lung as a measure of dose response. Methods: A test case lung cancer patient was selected in an unbiased way. The test patient’s treatment planning and post treatment positron emission tomography (PET) were collected from picture archiving and communication system at the UT M.D. Anderson Cancer Center. Average computerized tomography scan was registered with post PET/CT through both rigid and deformable registrations for selected region of interest (ROI) via VelocityAI imaging informatics software. For the voxels in the ROI, a system that extracts themore » Standard Uptake Value (SUV) from PET was developed, and the corresponding relative biological effectiveness (RBE) weighted (both variable and constant) dose was computed using the Monte Carlo (MC) methods. The treatment planning system (TPS) dose was also obtained. Using histogram analysis, the voxel average normalized SUV vs. 3 different doses was obtained and linear regression fit was performed. Results: From the registration process, there were some regions that showed significant artifacts near the diaphragm and heart region, which yielded poor r-squared values when the linear regression fit was performed on normalized SUV vs. dose. Excluding these values, TPS fit yielded mean r-squared value of 0.79 (range 0.61–0.95), constant RBE fit yielded 0.79 (range 0.52–0.94), and variable RBE fit yielded 0.80 (range 0.52–0.94). Conclusion: A system that extracts SUV from PET to correlate between normalized SUV and various dose calculations was developed. A linear relation between normalized SUV and all three different doses was found.« less

  6. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations.

    PubMed

    Lin, Lei; Wang, Qian; Sadek, Adel W

    2016-06-01

    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean absolute percentage error (MAPE). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  8. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  9. Bayesian Correction for Misclassification in Multilevel Count Data Models.

    PubMed

    Nelson, Tyler; Song, Joon Jin; Chin, Yoo-Mi; Stamey, James D

    2018-01-01

    Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical response is proposed. Models with a single diagnostic test and with multiple diagnostic tests are considered. Simulation studies show the ability of the proposed model to appropriately account for the misclassification by reducing bias and improving performance of interval estimators. A real data example further demonstrated the consequences of ignoring the misclassification. Ignoring misclassification yielded a model that indicated there was a significant, positive impact on the number of children of females who observed spousal abuse between their parents. When the misclassification was accounted for, the relationship switched to negative, but not significant. Ignoring misclassification in standard linear and generalized linear models is well known to lead to biased results. We provide an approach to extend misclassification modeling to the important area of hierarchical generalized linear models.

  10. A comparison of several methods of solving nonlinear regression groundwater flow problems

    USGS Publications Warehouse

    Cooley, Richard L.

    1985-01-01

    Computational efficiency and computer memory requirements for four methods of minimizing functions were compared for four test nonlinear-regression steady state groundwater flow problems. The fastest methods were the Marquardt and quasi-linearization methods, which required almost identical computer times and numbers of iterations; the next fastest was the quasi-Newton method, and last was the Fletcher-Reeves method, which did not converge in 100 iterations for two of the problems. The fastest method per iteration was the Fletcher-Reeves method, and this was followed closely by the quasi-Newton method. The Marquardt and quasi-linearization methods were slower. For all four methods the speed per iteration was directly related to the number of parameters in the model. However, this effect was much more pronounced for the Marquardt and quasi-linearization methods than for the other two. Hence the quasi-Newton (and perhaps Fletcher-Reeves) method might be more efficient than either the Marquardt or quasi-linearization methods if the number of parameters in a particular model were large, although this remains to be proven. The Marquardt method required somewhat less central memory than the quasi-linearization metilod for three of the four problems. For all four problems the quasi-Newton method required roughly two thirds to three quarters of the memory required by the Marquardt method, and the Fletcher-Reeves method required slightly less memory than the quasi-Newton method. Memory requirements were not excessive for any of the four methods.

  11. Enhancement of partial robust M-regression (PRM) performance using Bisquare weight function

    NASA Astrophysics Data System (ADS)

    Mohamad, Mazni; Ramli, Norazan Mohamed; Ghani@Mamat, Nor Azura Md; Ahmad, Sanizah

    2014-09-01

    Partial Least Squares (PLS) regression is a popular regression technique for handling multicollinearity in low and high dimensional data which fits a linear relationship between sets of explanatory and response variables. Several robust PLS methods are proposed to accommodate the classical PLS algorithms which are easily affected with the presence of outliers. The recent one was called partial robust M-regression (PRM). Unfortunately, the use of monotonous weighting function in the PRM algorithm fails to assign appropriate and proper weights to large outliers according to their severity. Thus, in this paper, a modified partial robust M-regression is introduced to enhance the performance of the original PRM. A re-descending weight function, known as Bisquare weight function is recommended to replace the fair function in the PRM. A simulation study is done to assess the performance of the modified PRM and its efficiency is also tested in both contaminated and uncontaminated simulated data under various percentages of outliers, sample sizes and number of predictors.

  12. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  13. Net analyte signal-based simultaneous determination of ethanol and water by quartz crystal nanobalance sensor.

    PubMed

    Mirmohseni, A; Abdollahi, H; Rostamizadeh, K

    2007-02-28

    Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 microg mL(-1) for ethanol and 7.01-28.07 microg mL(-1) for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.

  14. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  15. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach

    NASA Astrophysics Data System (ADS)

    Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew

    2017-05-01

    This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.

  16. Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.

    PubMed

    Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam

    2017-11-01

    The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.

  17. Comparing a single case to a control group - Applying linear mixed effects models to repeated measures data.

    PubMed

    Huber, Stefan; Klein, Elise; Moeller, Korbinian; Willmes, Klaus

    2015-10-01

    In neuropsychological research, single-cases are often compared with a small control sample. Crawford and colleagues developed inferential methods (i.e., the modified t-test) for such a research design. In the present article, we suggest an extension of the methods of Crawford and colleagues employing linear mixed models (LMM). We first show that a t-test for the significance of a dummy coded predictor variable in a linear regression is equivalent to the modified t-test of Crawford and colleagues. As an extension to this idea, we then generalized the modified t-test to repeated measures data by using LMMs to compare the performance difference in two conditions observed in a single participant to that of a small control group. The performance of LMMs regarding Type I error rates and statistical power were tested based on Monte-Carlo simulations. We found that starting with about 15-20 participants in the control sample Type I error rates were close to the nominal Type I error rate using the Satterthwaite approximation for the degrees of freedom. Moreover, statistical power was acceptable. Therefore, we conclude that LMMs can be applied successfully to statistically evaluate performance differences between a single-case and a control sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Increasing body mass index z-score is continuously associated with complications of overweight in children, even in the healthy weight range.

    PubMed

    Bell, Lana M; Byrne, Sue; Thompson, Alisha; Ratnam, Nirubasini; Blair, Eve; Bulsara, Max; Jones, Timothy W; Davis, Elizabeth A

    2007-02-01

    Overweight/obesity in children is increasing. Incidence data for medical complications use arbitrary cutoff values for categories of overweight and obesity. Continuous relationships are seldom reported. The objective of this study is to report relationships of child body mass index (BMI) z-score as a continuous variable with the medical complications of overweight. This study is a part of the larger, prospective cohort Growth and Development Study. Children were recruited from the community through randomly selected primary schools. Overweight children seeking treatment were recruited through tertiary centers. Children aged 6-13 yr were community-recruited normal weight (n = 73), community-recruited overweight (n = 53), and overweight treatment-seeking (n = 51). Medical history, family history, and symptoms of complications of overweight were collected by interview, and physical examination was performed. Investigations included oral glucose tolerance tests, fasting lipids, and liver function tests. Adjusted regression was used to model each complication of obesity with age- and sex-specific child BMI z-scores entered as a continuous dependent variable. Adjusted logistic regression showed the proportion of children with musculoskeletal pain, obstructive sleep apnea symptoms, headaches, depression, anxiety, bullying, and acanthosis nigricans increased with child BMI z-score. Adjusted linear regression showed BMI z-score was significantly related to systolic and diastolic blood pressure, insulin during oral glucose tolerance test, total cholesterol, high-density lipoprotein, triglycerides, and alanine aminotransferase. Child's BMI z-score is independently related to complications of overweight and obesity in a linear or curvilinear fashion. Children's risks of most complications increase across the entire range of BMI values and are not defined by thresholds.

  19. [Stature estimation for Sichuan Han nationality female based on X-ray technology with measurement of lumbar vertebrae].

    PubMed

    Qing, Si-han; Chang, Yun-feng; Dong, Xiao-ai; Li, Yuan; Chen, Xiao-gang; Shu, Yong-kang; Deng, Zhen-hua

    2013-10-01

    To establish the mathematical models of stature estimation for Sichuan Han female with measurement of lumbar vertebrae by X-ray to provide essential data for forensic anthropology research. The samples, 206 Sichuan Han females, were divided into three groups including group A, B and C according to the ages. Group A (206 samples) consisted of all ages, group B (116 samples) were 20-45 years old and 90 samples over 45 years old were group C. All the samples were examined lumbar vertebrae through CR technology, including the parameters of five centrums (L1-L5) as anterior border, posterior border and central heights (x1-x15), total central height of lumbar spine (x16), and the real height of every sample. The linear regression analysis was produced using the parameters to establish the mathematical models of stature estimation. Sixty-two trained subjects were tested to verify the accuracy of the mathematical models. The established mathematical models by hypothesis test of linear regression equation model were statistically significant (P<0.05). The standard errors of the equation were 2.982-5.004 cm, while correlation coefficients were 0.370-0.779 and multiple correlation coefficients were 0.533-0.834. The return tests of the highest correlation coefficient and multiple correlation coefficient of each group showed that the highest accuracy of the multiple regression equation, y = 100.33 + 1.489 x3 - 0.548 x6 + 0.772 x9 + 0.058 x12 + 0.645 x15, in group A were 80.6% (+/- lSE) and 100% (+/- 2SE). The established mathematical models in this study could be applied for the stature estimation for Sichuan Han females.

  20. Meta-analysis of congenitally missing teeth in the permanent dentition: Prevalence, variations across ethnicities, regions and time.

    PubMed

    Rakhshan, Vahid; Rakhshan, Hamid

    2015-09-01

    Congenitally missing teeth (CMT) are of concern to many fields of dentistry. Only a few reviews have been published in this regard. The aim was to analyze the literature on CMT in the permanent dentition, excluding the third molars, and to identify potential links with ethnicity, geographical regions, and time. A total of 118 reports on CMT were collected by two authors by interrogating databases. Sample homogeneity, publication bias, publication year (in Caucasian and Mongoloid samples, and in general), ethnicities, and geography of CMT prevalence were statistically analyzed using a Q-test, Egger regression, linear regression, a Spearman coefficient, Kruskal-Wallis, a Dunn post-hoc (α = 0.05), and a Mann-Whitney U test (α = 0.0125, α = 0.0071). The mean CMT prevalence was 6.53% ± 3.33%. There were significant geographic differences in CMT rates (P = 0.0001, Kruskal-Wallis) and between ethnicities (P = 0.0002, Kruskal-Wallis). According to the Mann-Whitney U test (α = 0.0071), eastern Asians (P = 0.0008) and Europeans (marginally significant, P = 0.0128) showed an elevated prevalence, while Western Asians (P = 0.0001) and Americans (marginally significant, P = 0.0292) had lower prevalence rates. Compared with other ethnicities, Mongoloids showed higher prevalence (P = 0.0009) while Asian Caucasians showed lower rates (P = 0.0005, Mann-Whitney U, α = 0.0125). The year of publication was not significantly correlated with any of the subsamples studied (P > 0.3, linear regression). Clinicians should be vigilant in the assessment of CMT in Mongoloids. No increase of this condition was detected during the last century. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.

  1. Interaction Models for Functional Regression.

    PubMed

    Usset, Joseph; Staicu, Ana-Maria; Maity, Arnab

    2016-02-01

    A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

  2. pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.

    PubMed

    Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian

    2017-09-29

    Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .

  3. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm.

    PubMed

    Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu

    2015-04-01

    An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®

  4. Identifying cytokine predictors of cognitive functioning in breast cancer survivors up to 10 years post chemotherapy using machine learning.

    PubMed

    Henneghan, Ashley M; Palesh, Oxana; Harrison, Michelle; Kesler, Shelli R

    2018-07-15

    The purpose of this study is to explore 13 cytokine predictors of chemotherapy-related cognitive impairment (CRCI) in breast cancer survivors (BCS) 6 months to 10 years after chemotherapy completion using a multivariate, non-parametric approach. Cross sectional data collection included completion of a survey, cognitive testing, and non-fasting blood from 66 participants. Data were analyzed using random forest regression to identify the most significant predictors for each of the cognitive test scores. A different cytokine profile predicted each cognitive test. Adjusted R 2 for each model ranged from 0.71-0.77 (p's < 9.50 -10 ). The relationships between all the cytokine predictors and cognitive test scores were non-linear. Our findings are unique to the field of CRCI and suggest non-linear cytokine specificity to neural networks underlying cognitive functions assessed in this study. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-02-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.

  6. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: Application to Epigenome-Wide Association Studies.

    PubMed

    Guillaume, Bryan; Wang, Changqing; Poh, Joann; Shen, Mo Jun; Ong, Mei Lyn; Tan, Pei Fang; Karnani, Neerja; Meaney, Michael; Qiu, Anqi

    2018-06-01

    Statistical inference on neuroimaging data is often conducted using a mass-univariate model, equivalent to fitting a linear model at every voxel with a known set of covariates. Due to the large number of linear models, it is challenging to check if the selection of covariates is appropriate and to modify this selection adequately. The use of standard diagnostics, such as residual plotting, is clearly not practical for neuroimaging data. However, the selection of covariates is crucial for linear regression to ensure valid statistical inference. In particular, the mean model of regression needs to be reasonably well specified. Unfortunately, this issue is often overlooked in the field of neuroimaging. This study aims to adopt the existing Confounder Adjusted Testing and Estimation (CATE) approach and to extend it for use with neuroimaging data. We propose a modification of CATE that can yield valid statistical inferences using Principal Component Analysis (PCA) estimators instead of Maximum Likelihood (ML) estimators. We then propose a non-parametric hypothesis testing procedure that can improve upon parametric testing. Monte Carlo simulations show that the modification of CATE allows for more accurate modelling of neuroimaging data and can in turn yield a better control of False Positive Rate (FPR) and Family-Wise Error Rate (FWER). We demonstrate its application to an Epigenome-Wide Association Study (EWAS) on neonatal brain imaging and umbilical cord DNA methylation data obtained as part of a longitudinal cohort study. Software for this CATE study is freely available at http://www.bioeng.nus.edu.sg/cfa/Imaging_Genetics2.html. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  8. Comparison of Mental Toughness and Power Test Performances in High-Level Kickboxers by Competitive Success.

    PubMed

    Slimani, Maamer; Miarka, Bianca; Briki, Walid; Cheour, Foued

    2016-06-01

    Kickboxing is a high-intensity intermittent striking combat sport, which is characterized by complex skills and tactical key actions with short duration. The present study compared and verified the relationship between mental toughness (MT), countermovement jump (CMJ) and medicine ball throw (MBT) power tests by outcomes of high-level kickboxers during National Championship. Thirty two high-level male kickboxers (winner = 16 and loser = 16: 21.2 ± 3.1 years, 1.73 ± 0.07 m, and 70.2 ± 9.4 kg) were analyzed using the CMJ, MBT tests and sports mental toughness questionnaire (SMTQ; based in confidence, constancy and control subscales), before the fights of the 2015 national championship (16 bouts). In statistical analysis, Mann-Withney test and a multiple linear regression were used to compare groups and to observe relationships, respectively, P ≤ 0.05. The present results showed significant differences between losers vs. winners, respectively, of total MT (7(7;8) vs. 11(10.2;11), confidence (3(3;3) vs. 4(4;4)), constancy (2(2;2) vs. 3(3;3)), control (2(2;3) vs. 4(4;4)) subscales and MBT (4.1(4;4.3) vs. 4.6(4.4;4.8)). The multiple linear regression showed a strong associations between MT results and outcome (r = 0.89), MBT (r = 0.84) and CMJ (r = 0.73). The findings suggest that MT will be more predictive of performance in those sports and in the outcome of competition.

  9. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?

    PubMed

    Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J; Ma, Keping

    2013-01-01

    Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.

  10. Scoring and staging systems using cox linear regression modeling and recursive partitioning.

    PubMed

    Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H

    2006-01-01

    Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.

  11. The relationship between psychological distress and baseline sports-related concussion testing.

    PubMed

    Bailey, Christopher M; Samples, Hillary L; Broshek, Donna K; Freeman, Jason R; Barth, Jeffrey T

    2010-07-01

    This study examined the effect of psychological distress on neurocognitive performance measured during baseline concussion testing. Archival data were utilized to examine correlations between personality testing and computerized baseline concussion testing. Significantly correlated personality measures were entered into linear regression analyses, predicting baseline concussion testing performance. Suicidal ideation was examined categorically. Athletes underwent testing and screening at a university athletic training facility. Participants included 47 collegiate football players 17 to 19 years old, the majority of whom were in their first year of college. Participants were administered the Concussion Resolution Index (CRI), an internet-based neurocognitive test designed to monitor and manage both at-risk and concussed athletes. Participants took the Personality Assessment Inventory (PAI), a self-administered inventory designed to measure clinical syndromes, treatment considerations, and interpersonal style. Scales and subscales from the PAI were utilized to determine the influence psychological distress had on the CRI indices: simple reaction time, complex reaction time, and processing speed. Analyses revealed several significant correlations among aspects of somatic concern, depression, anxiety, substance abuse, and suicidal ideation and CRI performance, each with at least a moderate effect. When entered into a linear regression, the block of combined psychological symptoms accounted for a significant amount of baseline CRI performance, with moderate to large effects (r = 0.23-0.30). When examined categorically, participants with suicidal ideation showed significantly slower simple reaction time and complex reaction time, with a similar trend on processing speed. Given the possibility of obscured concussion deficits after injury, implications for premature return to play, and the need to target psychological distress outright, these findings heighten the clinical importance of screening for psychological distress during baseline and post-injury concussion evaluations.

  12. [A study on city motor vehicle emission factors by tunnel test].

    PubMed

    Wang, B; Zhang, Y; Zhu, C; Yu, K; Chan, L; Chan, Z

    2001-03-01

    Applying the principle of tunnel test to run a typical across-river tunnel test in Guangzhou city, 48 h-online-monitor data include pollutant concentration, traffic activity and meteorological data were gained. The average motor vehicle emission factors of NOx, CO, SO2, PM10 and HC were calculated using mass balance which are 1.379, 15.404, 0.142, 0.637, 1.857 g/km. vehicle respectively. Based on that, combined emission factors of 8 types of city vehicles were calculated using linear regression. The result basically showed the character and level of motor vehicle emission in Chinese city.

  13. Estimation of Compaction Parameters Based on Soil Classification

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.

    2018-02-01

    Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.

  14. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    PubMed

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p < 0.001). Our linear regression equation was quite different from that of the Alc-Derived Average Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  15. The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; de Boeck, Paul

    2012-01-01

    The Graded Response Model (GRM; Samejima, "Estimation of ability using a response pattern of graded scores," Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, [theta], to underlie the ordinal item scores (Takane & de Leeuw in…

  16. Prediction of Student Performance in Academic and Military Learning Environment: Use of Multiple Linear Regression Predictive Model and Hypothesis Testing

    ERIC Educational Resources Information Center

    Khan, Wasi Z.; Al Zubaidy, Sarim

    2017-01-01

    The variance in students' academic performance in a civilian institute and in a military technological institute could be linked to the environment of the competition available to the students. The magnitude of talent, domain of skills and volume of efforts students put are identical in both type of institutes. The significant factor is the…

  17. Effects of water suspension and wet-dry cycling on fertility of Douglas-fir pollen.

    Treesearch

    Donald L. Copes; Nan C. Vance

    2000-01-01

    Studies were made to determine how long Douglas-fir pollen remains viable after suspension in cool water form 0 to 34 days. Linear regression analysis of in vivo and in vitro tests indicated that filled seed efficiency and pollen viability, respectively, decreased about 3 percent per day. The relation may have been nonlinear the first 6 days, as little decrease...

  18. The relationship between environmental amenities and changing human settlement patterns between 1980 and 2000 in the Midwestern USA

    Treesearch

    Eric J. Gustafson; Volker C. Radeloff; Robert Potts

    2005-01-01

    Natural resource amenities may be an attractor as people decide where they will live and invest in property. In the American Midwest these amenities range from lakes to forests to pastoral landscapes, depending on the ecological province. We used simple linear regression models to test the hypotheses that physiographic, land cover (composition and spatial pattern),...

  19. Preliminary results on predation of gypsy moth pupae during a period of latency in Slovakia

    Treesearch

    Marek Turcani; Andrew M. Liebhold; Michael McManus; J& #250; lius Novotn& #253

    2003-01-01

    Predation of gypsy moth pupae was studied from 2000 -2003 in Slovakia. Predation on artificially reared pupae was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. The role of pupal predation in gypsy moth population dynamics was also investigated. The relative importance of predation of...

  20. Monitoring Idaho fescue grasslands in the Big Horn Mountains, Wyoming, with a modified robel pole

    Treesearch

    Daniel W. Uresk; Thomas M. Juntti

    2008-01-01

    The reliability of monitoring visual obstruction and estimating standing herbage with a modified Robel pole was examined for high-elevation meadows in sedimentary soils on the Bighorn National Forest, Wyoming. Our objectives were to (1) test a modified pole graduated with 1.27-cm (0.5-inch) bands for estimating standing herbage based on linear regression of visual...

  1. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  2. A simplified competition data analysis for radioligand specific activity determination.

    PubMed

    Venturino, A; Rivera, E S; Bergoc, R M; Caro, R A

    1990-01-01

    Non-linear regression and two-step linear fit methods were developed to determine the actual specific activity of 125I-ovine prolactin by radioreceptor self-displacement analysis. The experimental results obtained by the different methods are superposable. The non-linear regression method is considered to be the most adequate procedure to calculate the specific activity, but if its software is not available, the other described methods are also suitable.

  3. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions

    PubMed Central

    Fernandes, Bruno J. T.; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366

  4. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  5. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    PubMed Central

    Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman

    2011-01-01

    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626

  6. RRegrs: an R package for computer-aided model selection with multiple regression models.

    PubMed

    Tsiliki, Georgia; Munteanu, Cristian R; Seoane, Jose A; Fernandez-Lozano, Carlos; Sarimveis, Haralambos; Willighagen, Egon L

    2015-01-01

    Predictive regression models can be created with many different modelling approaches. Choices need to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model reproducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling and exhibit a need for standardization of these methodologies in order to assist model selection and speed up the process of predictive model development. A tool accessible to all users, irrespectively of their statistical knowledge, would be valuable if it tests several simple and complex regression models and validation schemes, produce unified reports, and offer the option to be integrated into more extensive studies. Additionally, such methodology should be implemented as a free programming package, in order to be continuously adapted and redistributed by others. We propose an integrated framework for creating multiple regression models, called RRegrs. The tool offers the option of ten simple and complex regression methods combined with repeated 10-fold and leave-one-out cross-validation. Methods include Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso regression, and Support Vector Machines Recursive Feature Elimination. The new framework is an automated fully validated procedure which produces standardized reports to quickly oversee the impact of choices in modelling algorithms and assess the model and cross-validation results. The methodology was implemented as an open source R package, available at https://www.github.com/enanomapper/RRegrs, by reusing and extending on the caret package. The universality of the new methodology is demonstrated using five standard data sets from different scientific fields. Its efficiency in cheminformatics and QSAR modelling is shown with three use cases: proteomics data for surface-modified gold nanoparticles, nano-metal oxides descriptor data, and molecular descriptors for acute aquatic toxicity data. The results show that for all data sets RRegrs reports models with equal or better performance for both training and test sets than those reported in the original publications. Its good performance as well as its adaptability in terms of parameter optimization could make RRegrs a popular framework to assist the initial exploration of predictive models, and with that, the design of more comprehensive in silico screening applications.Graphical abstractRRegrs is a computer-aided model selection framework for R multiple regression models; this is a fully validated procedure with application to QSAR modelling.

  7. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    NASA Astrophysics Data System (ADS)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  9. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.

    2016-01-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

  10. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    dos Santos, T. S.; Mendes, D.; Torres, R. R.

    2015-08-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.

  11. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substitured benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.

  12. Factors associated to quality of life in active elderly.

    PubMed

    Alexandre, Tiago da Silva; Cordeiro, Renata Cereda; Ramos, Luiz Roberto

    2009-08-01

    To analyze whether quality of life in active, healthy elderly individuals is influenced by functional status and sociodemographic characteristics, as well as psychological parameters. Study conducted in a sample of 120 active elderly subjects recruited from two open universities of the third age in the cities of São Paulo and São José dos Campos (Southeastern Brazil) between May 2005 and April 2006. Quality of life was measured using the abbreviated Brazilian version of the World Health Organization Quality of Live (WHOQOL-bref) questionnaire. Sociodemographic, clinical and functional variables were measured through crossculturally validated assessments by the Mini Mental State Examination, Geriatric Depression Scale, Functional Reach, One-Leg Balance Test, Timed Up and Go Test, Six-Minute Walk Test, Human Activity Profile and a complementary questionnaire. Simple descriptive analyses, Pearson's correlation coefficient, Student's t-test for non-related samples, analyses of variance, linear regression analyses and variance inflation factor were performed. The significance level for all statistical tests was set at 0.05. Linear regression analysis showed an independent correlation without colinearity between depressive symptoms measured by the Geriatric Depression Scale and four domains of the WHOQOL-bref. Not having a conjugal life implied greater perception in the social domain; developing leisure activities and having an income over five minimum wages implied greater perception in the environment domain. Functional status had no influence on the Quality of Life variable in the analysis models in active elderly. In contrast, psychological factors, as assessed by the Geriatric Depression Scale, and sociodemographic characteristics, such as marital status, income and leisure activities, had an impact on quality of life.

  13. Omnibus risk assessment via accelerated failure time kernel machine modeling.

    PubMed

    Sinnott, Jennifer A; Cai, Tianxi

    2013-12-01

    Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. © 2013, The International Biometric Society.

  14. Nonparametric evaluation of quantitative traits in population-based association studies when the genetic model is unknown.

    PubMed

    Konietschke, Frank; Libiger, Ondrej; Hothorn, Ludwig A

    2012-01-01

    Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.

  15. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  16. Alzheimer's Disease Detection by Pseudo Zernike Moment and Linear Regression Classification.

    PubMed

    Wang, Shui-Hua; Du, Sidan; Zhang, Yin; Phillips, Preetha; Wu, Le-Nan; Chen, Xian-Qing; Zhang, Yu-Dong

    2017-01-01

    This study presents an improved method based on "Gorji et al. Neuroscience. 2015" by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Estimating the effects of wages on obesity.

    PubMed

    Kim, DaeHwan; Leigh, John Paul

    2010-05-01

    To estimate the effects of wages on obesity and body mass. Data on household heads, aged 20 to 65 years, with full-time jobs, were drawn from the Panel Study of Income Dynamics for 2003 to 2007. The Panel Study of Income Dynamics is a nationally representative sample. Instrumental variables (IV) for wages were created using knowledge of computer software and state legal minimum wages. Least squares (linear regression) with corrected standard errors were used to estimate the equations. Statistical tests revealed both instruments were strong and tests for over-identifying restrictions were favorable. Wages were found to be predictive (P < 0.05) of obesity and body mass in regressions both before and after applying IVs. Coefficient estimates suggested stronger effects in the IV models. Results are consistent with the hypothesis that low wages increase obesity prevalence and body mass.

  18. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    PubMed

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  19. Prediction of rainfall anomalies during the dry to wet transition season over the Southern Amazonia using machine learning tools

    NASA Astrophysics Data System (ADS)

    Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.

    2017-12-01

    Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have shown potential to improve real-time seasonal rainfall predictions in the future.

  20. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  1. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  2. A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery.

    PubMed

    Shirk, Steven D; Mitchell, Meghan B; Shaughnessy, Lynn W; Sherman, Janet C; Locascio, Joseph J; Weintraub, Sandra; Atri, Alireza

    2011-11-11

    With the recent publication of new criteria for the diagnosis of preclinical Alzheimer's disease (AD), there is a need for neuropsychological tools that take premorbid functioning into account in order to detect subtle cognitive decline. Using demographic adjustments is one method for increasing the sensitivity of commonly used measures. We sought to provide a useful online z-score calculator that yields estimates of percentile ranges and adjusts individual performance based on sex, age and/or education for each of the neuropsychological tests of the National Alzheimer's Coordinating Center Uniform Data Set (NACC, UDS). In addition, we aimed to provide an easily accessible method of creating norms for other clinical researchers for their own, unique data sets. Data from 3,268 clinically cognitively-normal older UDS subjects from a cohort reported by Weintraub and colleagues (2009) were included. For all neuropsychological tests, z-scores were estimated by subtracting the raw score from the predicted mean and then dividing this difference score by the root mean squared error term (RMSE) for a given linear regression model. For each neuropsychological test, an estimated z-score was calculated for any raw score based on five different models that adjust for the demographic predictors of SEX, AGE and EDUCATION, either concurrently, individually or without covariates. The interactive online calculator allows the entry of a raw score and provides five corresponding estimated z-scores based on predictions from each corresponding linear regression model. The calculator produces percentile ranks and graphical output. An interactive, regression-based, normative score online calculator was created to serve as an additional resource for UDS clinical researchers, especially in guiding interpretation of individual performances that appear to fall in borderline realms and may be of particular utility for operationalizing subtle cognitive impairment present according to the newly proposed criteria for Stage 3 preclinical Alzheimer's disease.

  3. Temperature preference of the white perch, Morone americana, collected in the Wicomico River, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W. Jr.; Hocutt, C.H.; Stauffer, J.R. Jr.

    1979-06-01

    Temperature preference tests were conducted on fresh water white perch (Morone americana), collected from the Wicomico River, Maryland. Collection temperature was 27/sup 0/C and acclimation temperatures used in temperature preference tests were 6, 12, 18, 24, 30, and 33/sup 0/C. The following methods were used to determine the final temperature preference:linear regression, quadratic equation, and eyeball plots. Recorded final temperature preference values were 28.9, 29.3, and 30.6/sup 0/C using each method respectively.

  4. Specialization Agreements in the Council for Mutual Economic Assistance

    DTIC Science & Technology

    1988-02-01

    proportions to stabilize variance (S. Weisberg, Applied Linear Regression , 2nd ed., John Wiley & Sons, New York, 1985, p. 134). If the dependent...27, 1986, p. 3. Weisberg, S., Applied Linear Regression , 2nd ed., John Wiley & Sons, New York, 1985, p. 134. Wiles, P. J., Communist International

  5. Radio Propagation Prediction Software for Complex Mixed Path Physical Channels

    DTIC Science & Technology

    2006-08-14

    63 4.4.6. Applied Linear Regression Analysis in the Frequency Range 1-50 MHz 69 4.4.7. Projected Scaling to...4.4.6. Applied Linear Regression Analysis in the Frequency Range 1-50 MHz In order to construct a comprehensive numerical algorithm capable of

  6. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    EPA Science Inventory

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  7. Data Transformations for Inference with Linear Regression: Clarifications and Recommendations

    ERIC Educational Resources Information Center

    Pek, Jolynn; Wong, Octavia; Wong, C. M.

    2017-01-01

    Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…

  8. USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES

    EPA Science Inventory

    The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...

  9. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  10. Simple and multiple linear regression: sample size considerations.

    PubMed

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Predicting story goodness performance from cognitive measures following traumatic brain injury.

    PubMed

    Lê, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-05-01

    This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Lê, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. One hundred sixty-seven individuals with TBI participated in the study. Story retellings were analyzed using the SGI protocol. Three cognitive measures--Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001) Sorting Test, Wechsler Memory Scale--Third Edition (WMS-III; Wechsler, 1997) Working Memory Primary Index (WMI), and WMS-III Immediate Memory Primary Index (IMI)--were entered into a multiple linear regression model for each discourse measure. Two sets of regression analyses were performed, the first with the Sorting Test as the first predictor and the second with it as the last. The first set of regression analyses identified the Sorting Test and IMI as the only significant predictors of performance on measures of the SGI. The second set identified all measures as significant predictors when evaluating each step of the regression function. The cognitive variables predicted performance on the SGI measures, although there were differences in the amount of explained variance. The results (a) suggest that storytelling ability draws on a number of underlying skills and (b) underscore the importance of using discrete cognitive tasks rather than broad cognitive indices to investigate the cognitive substrates of discourse.

  12. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.

    PubMed

    Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M

    2017-06-01

    Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.

  13. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    PubMed Central

    Jiang, Feng; Han, Ji-zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods. PMID:29623088

  14. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    PubMed

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  15. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey.

    PubMed

    Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa

    2016-01-01

    The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Cross-sectional study. Twenty-three female ice hockey players aged 15-25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Regression models (adj R (2)) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time-consuming laboratory assessments if the purpose is to gain knowledge about key performance characteristics of skating.

  16. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey

    PubMed Central

    Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa

    2016-01-01

    Objectives The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Design Cross-sectional study. Methods Twenty-three female ice hockey players aged 15–25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Results Regression models (adj R2) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Conclusion Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time-consuming laboratory assessments if the purpose is to gain knowledge about key performance characteristics of skating. PMID:27574474

  17. Analytical performance of the Hologic Aptima HBV Quant Assay and the COBAS Ampliprep/COBAS TaqMan HBV test v2.0 for the quantification of HBV DNA in plasma samples.

    PubMed

    Schønning, Kristian; Johansen, Kim; Nielsen, Lone Gilmor; Weis, Nina; Westh, Henrik

    2018-07-01

    Quantification of HBV DNA is used for initiating and monitoring antiviral treatment. Analytical test performance consequently impacts treatment decisions. To compare the analytical performance of the Aptima HBV Quant Assay (Aptima) and the COBAS Ampliprep/COBAS TaqMan HBV Test v2.0 (CAPCTMv2) for the quantification of HBV DNA in plasma samples. The performance of the two tests was compared on 129 prospective plasma samples, and on 63 archived plasma samples of which 53 were genotyped. Linearity of the two assays was assessed on dilutions series of three clinical samples (Genotype B, C, and D). Bland-Altman analysis of 120 clinical samples, which quantified in both tests, showed an average quantification bias (Aptima - CAPCTMv2) of -0.19 Log IU/mL (SD: 0.33 Log IU/mL). A single sample quantified more than three standard deviations higher in Aptima than in CAPCTMv2. Only minor differences were observed between genotype A (N = 4; average difference -0.01 Log IU/mL), B (N = 8; -0.13 Log IU/mL), C (N = 8; -0.31 Log IU/mL), D (N = 25; -0.22 Log IU/mL), and E (N = 7; -0.03 Log IU/mL). Deming regression showed that the two tests were excellently correlated (slope of the regression line 1.03; 95% CI: 0.998-1.068). Linearity of the tests was evaluated on dilution series and showed an excellent correlation of the two tests. Both tests were precise with %CV less than 3% for HBV DNA ≥3 Log IU/mL. The Aptima and CAPCTMv2 tests are highly correlated, and both tests are useful for monitoring patients chronically infected with HBV. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Visual associations cued recall A Paradigm for Measuring Episodic Memory Decline in Alzheimer's Disease.

    PubMed

    Meyer, Sascha R A; Spaan, Pauline E J; Boelaarts, Leo; Ponds, Rudolf W H M; Schmand, Ben; de Jonghe, Jos F M

    2016-09-01

    Repeated measurements of episodic memory are needed for monitoring amnestic mild cognitive impairment (aMCI) and mild Alzheimer's disease (AD). Most episodic memory tests may pose a challenge to patients, even when they are in the milder stages of the disease. This cross-sectional study compared floor effects of the Visual Association Test (VAT) and the Rey Auditory Verbal Learning Test (RAVLT) in healthy elderly controls and in patients with aMCI or AD (N = 125). A hierarchical multiple regression analysis was used to examine whether linear or quadratic trends best fitted the data of cognitive test performance across global cognitive impairment. Results showed that VAT total scores decreased linearly across the range of global cognitive impairment, whereas RAVLT total scores showed a quadratic trend, with total scores levelling off for 90% of aMCI patients and 94% of AD patients. We conclude that the VAT shows few if any floor effects in patients with aMCI and mild AD and is therefore a potentially promising cognitive test for monitoring episodic memory impairment.

  19. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    PubMed Central

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  20. Analysis of Binary Adherence Data in the Setting of Polypharmacy: A Comparison of Different Approaches

    PubMed Central

    Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.

    2009-01-01

    Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358

  1. Genetic Programming Transforms in Linear Regression Situations

    NASA Astrophysics Data System (ADS)

    Castillo, Flor; Kordon, Arthur; Villa, Carlos

    The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.

  2. Naval Research Logistics Quarterly. Volume 28. Number 3,

    DTIC Science & Technology

    1981-09-01

    denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions

  3. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    NASA Astrophysics Data System (ADS)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  4. Pass rates on the American Board of Family Medicine Certification Exam by residency location and size.

    PubMed

    Falcone, John L; Middleton, Donald B

    2013-01-01

    The Accreditation Council for Graduate Medical Education (ACGME) sets residency performance standards for the American Board of Family Medicine Certification Examination. This study aims are to describe the compliance of residency programs with ACGME standards and to determine whether residency pass rates depend on program size and location. In this retrospective cohort study, residency performance from 2007 to 2011 was compared with the ACGME performance standards. Simple linear regression was performed to see whether program pass rates were dependent on program size. Regional differences in performance were compared with χ(2) tests, using an α level of 0.05. Of 429 total residency programs, there were 205 (47.8%) that violate ACGME performance standards. Linear regression showed that program pass rates were positively correlated and dependent on program size (P < .001). The median pass rate per state was 86.4% (interquartile range, 82.0-90.8. χ(2) Tests showed that states in the West performed higher than the other 3 US Census Bureau Regions (all P < .001). Approximately half of the family medicine training programs do not meet the ACGME examination performance standards. Pass rates are associated with residency program size, and regional variation occurs. These findings have the potential to affect ACGME policy and residency program application patterns.

  5. Analyses of Field Test Data at the Atucha-1 Spent Fuel Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S.

    A field test was conducted at the Atucha-1 spent nuclear fuel pools to validate a software package for gross defect detection that is used in conjunction with the inspection tool, Spent Fuel Neutron Counter (SFNC). A set of measurements was taken with the SFNC and the software predictions were compared with these data and analyzed. The data spanned a wide range of cooling times and a set of burnup levels leading to count rates from the several hundreds to around twenty per second. The current calibration in the software using linear fitting required the use of multiple calibration factors tomore » cover the entire range of count rates recorded. The solution to this was to use power regression data fitting to normalize the predicted response and derive one calibration factor that can be applied to the entire set of data. The resulting comparisons between the predicted and measured responses were generally good and provided a quantitative method of detecting missing fuel in virtually all situations. Since the current version of the software uses the linear calibration method, it would need to be updated with the new power regression method to make it more user-friendly for real time verification and fieldable for the range of responses that will be encountered.« less

  6. Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.

    PubMed

    Haoliang Yuan; Yuan Yan Tang

    2017-04-01

    Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.

  7. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  8. Age estimation standards for a Western Australian population using the coronal pulp cavity index.

    PubMed

    Karkhanis, Shalmira; Mack, Peter; Franklin, Daniel

    2013-09-10

    Age estimation is a vital aspect in creating a biological profile and aids investigators by narrowing down potentially matching identities from the available pool. In addition to routine casework, in the present global political scenario, age estimation in living individuals is required in cases of refugees, asylum seekers, human trafficking and to ascertain age of criminal responsibility. Thus robust methods that are simple, non-invasive and ethically viable are required. The aim of the present study is, therefore, to test the reliability and applicability of the coronal pulp cavity index method, for the purpose of developing age estimation standards for an adult Western Australian population. A total of 450 orthopantomograms (220 females and 230 males) of Australian individuals were analyzed. Crown and coronal pulp chamber heights were measured in the mandibular left and right premolars, and the first and second molars. These measurements were then used to calculate the tooth coronal index. Data was analyzed using paired sample t-tests to assess bilateral asymmetry followed by simple linear and multiple regressions to develop age estimation models. The most accurate age estimation based on simple linear regression model was with mandibular right first molar (SEE ±8.271 years). Multiple regression models improved age prediction accuracy considerably and the most accurate model was with bilateral first and second molars (SEE ±6.692 years). This study represents the first investigation of this method in a Western Australian population and our results indicate that the method is suitable for forensic application. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    PubMed

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  10. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models

    PubMed Central

    2011-01-01

    Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852

  11. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.

    PubMed

    Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M

    2017-04-01

    A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. No increase in small-solute transport in peritoneal dialysis patients treated without hypertonic glucose for fifty-four months.

    PubMed

    Pagniez, Dominique; Duhamel, Alain; Boulanger, Eric; Lessore de Sainte Foy, Celia; Beuscart, Jean-Baptiste

    2017-08-31

    Glucose is widely used as an osmotic agent in peritoneal dialysis (PD), but exerts untoward effects on the peritoneum. The potential protective effect of a reduced exposure to hypertonic glucose has never been investigated. The cohort of PD patients attending our center which tackled the challenge of a restricted use of hypertonic glucose solutions has been prospectively followed since 1992. Small-solute transport was assessed using an equivalent of the glucose peritoneal equilibration test after 6 months, and then every year. Study was stopped on July 1st, 2008, before use of biocompatible solutions. Repeated measures in patients treated with PD for 54 months were analyzed by using (1) the slopes of the linear regression for D 4 /D 0 ratios over time computed for each individual, and (2) a linear mixed model. In the study period, 44 patients were treated for a total of 2376 months, 2058 without hypertonic glucose. There was one episode of peritoneal infection every 18 patient-months. The mean of slopes of the linear regression for D 4 /D 0 ratios was found to be significantly positive (Student's test, p < .001) and the results of the mixed model reflected a similar significant increase for D 4 /D 0 ratios over time. These results reflected a significant decrease of small-solute transport. In this large series, minimizing the use of hypertonic glucose solutions was associated in patients on long term PD with an overall decrease of small-solute transport within 54 months, despite a high rate of peritoneal infection.

  13. Breakfast intake among adults with type 2 diabetes: is bigger better?

    PubMed Central

    Jarvandi, Soghra; Schootman, Mario; Racette, Susan B.

    2015-01-01

    Objective To assess the association between breakfast energy and total daily energy intake among individuals with type 2 diabetes. Design Cross-sectional study. Daily energy intake was computed from a 24-h dietary recall. Multiple regression models were used to estimate the association between daily energy intake (dependent variable) and quartiles of energy intake at breakfast (independent variable) expressed as either absolute or relative (% of total daily energy intake) terms. Orthogonal polynomial contrasts were used to test for linear and quadratic trends. Models were controlled for sex, age, race/ethnicity, body mass index, physical activity and smoking. In addition, we used separate multiple regression models to test the effect of quartiles of absolute and relative breakfast energy on intake at lunch, dinner, and snacks. Setting The 1999–2004 National Health and Nutrition Examination Survey (NHANES). Subjects Participants aged ≥ 30 years with self-reported history of diabetes (N = 1,146). Results Daily energy intake increased as absolute breakfast energy intake increased (linear trend, P < 0.0001; quadratic trend, P = 0.02), but decreased as relative breakfast energy intake increased (linear trend, P < 0.0001). In addition, while higher quartiles of absolute breakfast intake had no associations with energy intake at subsequent meals, higher quartiles of relative breakfast intake were associated with lower energy intake during all subsequent meals and snacks (P < 0.05). Conclusions Consuming a breakfast that provided less energy or comprised a greater proportion of daily energy intake was associated with lower total daily energy intake in adults with type 2 diabetes. PMID:25529061

  14. A screening system for smear-negative pulmonary tuberculosis using artificial neural networks.

    PubMed

    de O Souza Filho, João B; de Seixas, José Manoel; Galliez, Rafael; de Bragança Pereira, Basilio; de Q Mello, Fernanda C; Dos Santos, Alcione Miranda; Kritski, Afranio Lineu

    2016-08-01

    Molecular tests show low sensitivity for smear-negative pulmonary tuberculosis (PTB). A screening and risk assessment system for smear-negative PTB using artificial neural networks (ANNs) based on patient signs and symptoms is proposed. The prognostic and risk assessment models exploit a multilayer perceptron (MLP) and inspired adaptive resonance theory (iART) network. Model development considered data from 136 patients with suspected smear-negative PTB in a general hospital. MLP showed higher sensitivity (100%, 95% confidence interval (CI) 78-100%) than the other techniques, such as support vector machine (SVM) linear (86%; 95% CI 60-96%), multivariate logistic regression (MLR) (79%; 95% CI 53-93%), and classification and regression tree (CART) (71%; 95% CI 45-88%). MLR showed a slightly higher specificity (85%; 95% CI 59-96%) than MLP (80%; 95% CI 54-93%), SVM linear (75%, 95% CI 49-90%), and CART (65%; 95% CI 39-84%). In terms of the area under the receiver operating characteristic curve (AUC), the MLP model exhibited a higher value (0.918, 95% CI 0.824-1.000) than the SVM linear (0.796, 95% CI 0.651-0.970) and MLR (0.782, 95% CI 0.663-0.960) models. The significant signs and symptoms identified in risk groups are coherent with clinical practice. In settings with a high prevalence of smear-negative PTB, the system can be useful for screening and also to aid clinical practice in expediting complementary tests for higher risk patients. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Using Parametric Cost Models to Estimate Engineering and Installation Costs of Selected Electronic Communications Systems

    DTIC Science & Technology

    1994-09-01

    Institute of Technology, Wright- Patterson AFB OH, January 1994. 4. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 5...Technology, Wright-Patterson AFB OH 5 April 1994. 29. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 30. Office of

  16. An Evaluation of the Automated Cost Estimating Integrated Tools (ACEIT) System

    DTIC Science & Technology

    1989-09-01

    residual and it is described as the residual divided by its standard deviation (13:App A,17). Neter, Wasserman, and Kutner, in Applied Linear Regression Models...others. Applied Linear Regression Models. Homewood IL: Irwin, 1983. 19. Raduchel, William J. "A Professional’s Perspective on User-Friendliness," Byte

  17. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    ERIC Educational Resources Information Center

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  18. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  19. Fitting program for linear regressions according to Mahon (1996)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappitsch, Reto G.

    2018-01-09

    This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.

  20. How Robust Is Linear Regression with Dummy Variables?

    ERIC Educational Resources Information Center

    Blankmeyer, Eric

    2006-01-01

    Researchers in education and the social sciences make extensive use of linear regression models in which the dependent variable is continuous-valued while the explanatory variables are a combination of continuous-valued regressors and dummy variables. The dummies partition the sample into groups, some of which may contain only a few observations.…

  1. Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method

    ERIC Educational Resources Information Center

    Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev

    2018-01-01

    The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…

  2. On the null distribution of Bayes factors in linear regression

    USDA-ARS?s Scientific Manuscript database

    We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...

  3. Common pitfalls in statistical analysis: Linear regression analysis

    PubMed Central

    Aggarwal, Rakesh; Ranganathan, Priya

    2017-01-01

    In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis. PMID:28447022

  4. Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis☆

    PubMed Central

    Zisman, David A.; Ross, David J.; Belperio, John A.; Saggar, Rajan; Lynch, Joseph P.; Ardehali, Abbas; Karlamangla, Arun S.

    2007-01-01

    Summary Background Reliable, noninvasive approaches to the diagnosis of pulmonary hypertension in idiopathic pulmonary fibrosis are needed. We tested the hypothesis that the forced vital capacity to diffusing capacity ratio and room air resting pulse oximetry may be combined to predict mean pulmonary artery pressure (MPAP) in idiopathic pulmonary fibrosis. Methods Sixty-one idiopathic pulmonary fibrosis patients with available right-heart catheterization were studied. We regressed measured MPAP as a continuous variable on pulse oximetry (SpO2) and percent predicted forced vital capacity (FVC) to percent-predicted diffusing capacity ratio (% FVC/% DLco) in a multivariable linear regression model. Results Linear regression generated the following equation: MPAP = −11.9+0.272 × SpO2+0.0659 × (100−SpO2)2+3.06 × (% FVC/% DLco); adjusted R2 = 0.55, p<0.0001. The sensitivity, specificity, positive predictive and negative predictive value of model-predicted pulmonary hypertension were 71% (95% confidence interval (CI): 50–89%), 81% (95% CI: 68–92%), 71% (95% CI: 51–87%) and 81% (95% CI: 68–94%). Conclusions A pulmonary hypertension predictor based on room air resting pulse oximetry and FVC to diffusing capacity ratio has a relatively high negative predictive value. However, this model will require external validation before it can be used in clinical practice. PMID:17604151

  5. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  6. Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.

    PubMed

    Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen

    2017-11-01

    A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.

  7. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    NASA Astrophysics Data System (ADS)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  8. Two biased estimation techniques in linear regression: Application to aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  9. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    PubMed

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  10. Comparison of Mental Toughness and Power Test Performances in High-Level Kickboxers by Competitive Success

    PubMed Central

    Slimani, Maamer; Miarka, Bianca; Briki, Walid; Cheour, Foued

    2016-01-01

    Background Kickboxing is a high-intensity intermittent striking combat sport, which is characterized by complex skills and tactical key actions with short duration. Objectives The present study compared and verified the relationship between mental toughness (MT), countermovement jump (CMJ) and medicine ball throw (MBT) power tests by outcomes of high-level kickboxers during National Championship. Materials and Methods Thirty two high-level male kickboxers (winner = 16 and loser = 16: 21.2 ± 3.1 years, 1.73 ± 0.07 m, and 70.2 ± 9.4 kg) were analyzed using the CMJ, MBT tests and sports mental toughness questionnaire (SMTQ; based in confidence, constancy and control subscales), before the fights of the 2015 national championship (16 bouts). In statistical analysis, Mann-Withney test and a multiple linear regression were used to compare groups and to observe relationships, respectively, P ≤ 0.05. Results The present results showed significant differences between losers vs. winners, respectively, of total MT (7(7;8) vs. 11(10.2;11), confidence (3(3;3) vs. 4(4;4)), constancy (2(2;2) vs. 3(3;3)), control (2(2;3) vs. 4(4;4)) subscales and MBT (4.1(4;4.3) vs. 4.6(4.4;4.8)). The multiple linear regression showed a strong associations between MT results and outcome (r = 0.89), MBT (r = 0.84) and CMJ (r = 0.73). Conclusions The findings suggest that MT will be more predictive of performance in those sports and in the outcome of competition. PMID:27625755

  11. A novel multi-target regression framework for time-series prediction of drug efficacy.

    PubMed

    Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin

    2017-01-18

    Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task.

  12. A novel multi-target regression framework for time-series prediction of drug efficacy

    PubMed Central

    Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin

    2017-01-01

    Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task. PMID:28098186

  13. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.

  14. Predictors of college-student food security and fruit and vegetable intake differ by housing type.

    PubMed

    Mirabitur, Erica; Peterson, Karen E; Rathz, Colleen; Matlen, Stacey; Kasper, Nicole

    2016-10-01

    We assessed whether college-student characteristics associate with food security and fruit and vegetable (FV) intake and whether these associations differ in students in housing with and without food provision. 514 randomly-sampled students from a large, Midwestern, public university in 2012 and 2013 METHODS: Ordered logistic regression tested how student characteristics associate with food security. Linear regression tested how student characteristics associate with FV intake. Analyses were stratified by housing type - that is, housing with food provision (dormitory, fraternity/sorority house, cooperative) vs. housing without food provision. Only among those living in housing without food provision, males (p = 0.04), students without car access (p = 0.005), and those with marginal (p = 0.001) or low (p = 0.001) food security demonstrated lower FV intake. Housing with food provision may buffer the effects of student characteristics on food.

  15. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  16. Modeling the language learning strategies and English language proficiency of pre-university students in UMS: A case study

    NASA Astrophysics Data System (ADS)

    Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.

    2015-10-01

    This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.

  17. Detection of epistatic effects with logic regression and a classical linear regression model.

    PubMed

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  18. Applicability of Cameriere's and Drusini's age estimation methods to a sample of Turkish adults.

    PubMed

    Hatice, Boyacioglu Dogru; Nihal, Avcu; Nursel, Akkaya; Humeyra Ozge, Yilanci; Goksuluk, Dincer

    2017-10-01

    The aim of this study was to investigate the applicability of Drusini's and Cameriere's methods to a sample of Turkish people. Panoramic images of 200 individuals were allocated into two groups as study and test groups and examined by two observers. Tooth coronal indexes (TCI), which is the ratio between coronal pulp cavity height and crown height, were calculated in the mandibular first and second premolars and molars. Pulp/tooth area ratios (ARs) were calculated in the maxillary and mandibular canine teeth. Study group measurements were used to derive a regression model. Test group measurements were used to evaluate the accuracy of the regression model. Pearson's correlation coefficients and regression analysis were used. The correlations between TCIs and age were -0.230, -0.301, -0.344 and -0.257 for mandibular first premolar, second premolar, first molar and second molar, respectively. Those for the maxillary canine (MX) and mandibular canine (MN) ARs were -0.716 and -0.514, respectively. The MX ARs were used to build the linear regression model that explained 51.2% of the total variation, with a standard error of 9.23 years. The mean error of the estimates in test group was 8 years and age of 64% of the individuals were estimated with an error of <±10 years which is acceptable in forensic age prediction. The low correlation coefficients between age and TCI indicate that Drusini's method was not applicable to the estimation of age in a Turkish population. Using Cameriere's method, we derived a regression model.

  19. Learning effect and test-retest variability of pulsar perimetry.

    PubMed

    Salvetat, Maria Letizia; Zeppieri, Marco; Parisi, Lucia; Johnson, Chris A; Sampaolesi, Roberto; Brusini, Paolo

    2013-03-01

    To assess Pulsar Perimetry learning effect and test-retest variability (TRV) in normal (NORM), ocular hypertension (OHT), glaucomatous optic neuropathy (GON), and primary open-angle glaucoma (POAG) eyes. This multicenter prospective study included 43 NORM, 38 OHT, 33 GON, and 36 POAG patients. All patients underwent standard automated perimetry and Pulsar Contrast Perimetry using white stimuli modulated in phase and counterphase at 30 Hz (CP-T30W test). The learning effect and TRV for Pulsar Perimetry were assessed for 3 consecutive visual fields (VFs). The learning effect were evaluated by comparing results from the first session with the other 2. TRV was assessed by calculating the mean of the differences (in absolute value) between retests for each combination of single tests. TRV was calculated for Mean Sensitivity, Mean Defect, and single Mean Sensitivity for each 66 test locations. Influence of age, VF eccentricity, and loss severity on TRV were assessed using linear regression analysis and analysis of variance. The learning effect was not significant in any group (analysis of variance, P>0.05). TRV for Mean Sensitivity and Mean Defect was significantly lower in NORM and OHT (0.6 ± 0.5 spatial resolution contrast units) than in GON and POAG (0.9 ± 0.5 and 1.0 ± 0.8 spatial resolution contrast units, respectively) (Kruskal-Wallis test, P=0.04); however, the differences in NORM among age groups was not significant (Kruskal-Wallis test, P>0.05). Slight significant differences were found for the single Mean Sensitivity TRV among single locations (Duncan test, P<0.05). For POAG, TRV significantly increased with decreasing Mean Sensitivity and increasing Mean Defect (linear regression analysis, P<0.01). The Pulsar Perimetry CP-T30W test did not show significant learning effect in patients with standard automated perimetry experience. TRV for global indices was generally low, and was not related to patient age; it was only slightly affected by VF defect eccentricity, and significantly influenced by VF loss severity.

  20. Linear models for assessing mechanisms of sperm competition: the trouble with transformations.

    PubMed

    Eggert, Anne-Katrin; Reinhardt, Klaus; Sakaluk, Scott K

    2003-01-01

    Although sperm competition is a pervasive selective force shaping the reproductive tactics of males, the mechanisms underlying different patterns of sperm precedence remain obscure. Parker et al. (1990) developed a series of linear models designed to identify two of the more basic mechanisms: sperm lotteries and sperm displacement; the models can be tested experimentally by manipulating the relative numbers of sperm transferred by rival males and determining the paternity of offspring. Here we show that tests of the model derived for sperm lotteries can result in misleading inferences about the underlying mechanism of sperm precedence because the required inverse transformations may lead to a violation of fundamental assumptions of linear regression. We show that this problem can be remedied by reformulating the model using the actual numbers of offspring sired by each male, and log-transforming both sides of the resultant equation. Reassessment of data from a previous study (Sakaluk and Eggert 1996) using the corrected version of the model revealed that we should not have excluded a simple sperm lottery as a possible mechanism of sperm competition in decorated crickets, Gryllodes sigillatus.

Top