NASA Astrophysics Data System (ADS)
Han, Qiguo; Zhu, Kai; Shi, Wenming; Wu, Kuayu; Chen, Kai
2018-02-01
In order to solve the problem of low voltage ride through(LVRT) of the major auxiliary equipment’s variable-frequency drive (VFD) in thermal power plant, the scheme of supercapacitor paralleled in the DC link of VFD is put forward, furthermore, two solutions of direct parallel support and voltage boost parallel support of supercapacitor are proposed. The capacitor values for the relevant motor loads are calculated according to the law of energy conservation, and they are verified by Matlab simulation. At last, a set of test prototype is set up, and the test results prove the feasibility of the proposed schemes.
Refining and end use study of coal liquids II - linear programming analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, C.; Tam, S.
1995-12-31
A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for themore » petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.« less
NASA Astrophysics Data System (ADS)
Ying, Wu; Yong-lu, Zhong; Guo-mingi, Yin
2018-06-01
On account of nine commonly used coals in a Jiangxi Power Plant,two kinds of coal were selected to be applied in coal co-firing test through industrial analysis,elementary analysis and thermogravimetric analysis of coal.During the coal co-firing test,two load points were selected,three coal mixtures were prepared.Moreover,under each coal blending scheme, the optimal oxygen content was obtained by oxygen varying test. At last,by measuring the boiler efficiency and coal consumption of power supply in different coal co-firing schemes, the recommended coal co-firing scheme was obtained.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1992-01-01
The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.
Principles for supplying virus-tested material.
Varveri, Christina; Maliogka, Varvara I; Kapari-Isaia, Theodora
2015-01-01
Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world. © 2015 Elsevier Inc. All rights reserved.
Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model
NASA Astrophysics Data System (ADS)
Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-01-01
This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.
Research on Fault Characteristics and Line Protections Within a Large-scale Photovoltaic Power Plant
NASA Astrophysics Data System (ADS)
Zhang, Chi; Zeng, Jie; Zhao, Wei; Zhong, Guobin; Xu, Qi; Luo, Pandian; Gu, Chenjie; Liu, Bohan
2017-05-01
Centralized photovoltaic (PV) systems have different fault characteristics from distributed PV systems due to the different system structures and controls. This makes the fault analysis and protection methods used in distribution networks with distributed PV not suitable for a centralized PV power plant. Therefore, a consolidated expression for the fault current within a PV power plant under different controls was calculated considering the fault response of the PV array. Then, supported by the fault current analysis and the on-site testing data, the overcurrent relay (OCR) performance was evaluated in the collection system of an 850 MW PV power plant. It reveals that the OCRs at downstream side on overhead lines may malfunction. In this case, a new relay scheme was proposed using directional distance elements. In the PSCAD/EMTDC, a detailed PV system model was built and verified using the on-site testing data. Simulation results indicate that the proposed relay scheme could effectively solve the problems under variant fault scenarios and PV plant output levels.
Towards a national certification scheme for Rubus in the United States
USDA-ARS?s Scientific Manuscript database
Guidelines for a National Certification Scheme for Rubus in the United States have been drafted and are being evaluated in states with a tradition of Rubus propagation. The major components of the guidelines describe the procedures for propagating, testing and maintaining plants at four successive s...
Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D
2017-05-01
Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.
Daniel C. Laughlin; Jessica J. Leppert; Margaret M. Moore; Carolyn Hull Sieg
2010-01-01
Plants are multifaceted organisms that have evolved ecological strategies for sustaining populations in resource-limited environments (Grime 1979; Craine 2009). Plant strategies can be quantified by measuring functional traits (Grime et al. 1997; Reich et al. 2003), which are the properties of plants that impact plant fitness (Violle et al. 2008) and ecosystem...
NASA Astrophysics Data System (ADS)
Nuraeni, E.; Rahmat, A.
2018-05-01
Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.
Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.
ERIC Educational Resources Information Center
Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.
During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…
Plant-based insect repellents: a review of their efficacy, development and testing
2011-01-01
Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as “safe” in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field. PMID:21411012
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard
Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a largermore » reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.« less
Simulations of forest mortality in Colorado River basin
NASA Astrophysics Data System (ADS)
Wei, L.; Xu, C.; Johnson, D. J.; Zhou, H.; McDowell, N.
2017-12-01
The Colorado River Basin (CRB) had experienced multiple severe forest mortality events under the recent changing climate. Such forest mortality events may have great impacts on ecosystem services and water budget of the watershed. It is hence important to estimate and predict the forest mortality in the CRB with climate change. We simulated forest mortality in the CRB with a model of plant hydraulics within the FATES (the Functionally Assembled Terrestrial Ecosystem Simulator) coupled to the DOE Earth System model (ACME: Accelerated Climate Model of Energy) at a 0.5 x 0.5 degree resolution. Moreover, we incorporated a stable carbon isotope (δ13C) module to ACME(FATE) and used it as a new predictor of forest mortality. The δ13C values of plants with C3 photosynthetic pathway (almost all trees are C3 plants) can indicate the water stress plants experiencing (the more intensive stress, the less negative δ13C value). We set a δ13C threshold in model simulation, above which forest mortality initiates. We validate the mortality simulations with field data based on Forest Inventory and Analysis (FIA) data, which were aggregated into the same spatial resolution as the model simulations. Different mortality schemes in the model (carbon starvation, hydraulic failure, and δ13C) were tested and compared. Each scheme demonstrated its strength and the plant hydraulics module provided more reliable simulations of forest mortality than the earlier ACME(FATE) version. Further testing is required for better forest mortality modelling.
Potential applications of the white rot fungus Pleurotus in bioregenerative life support systems
NASA Astrophysics Data System (ADS)
Manukovsky, N. S.; Kovalev, V. S.; Yu, Ch.; Gurevich, Yu. L.; Liu, H.
Earlier we demonstrated the possibility of using soil-like substrate SLS for plant cultivation in bioregenerative life support systems BLSS We suggest dividing the process of SLS bioregeneration at BLSS conditions into two stages At the first stage plant residues should be used for growing of white rot fungus Pleurotus ostreatus Pleurotus florida etc The fruit bodies could be used as food Spent mushroom compost is carried in SLS and treated by microorganisms and worms at the second stage The possibility of extension of human food ration is only one of the reasons for realization of the suggested two-stage SLS regeneration scheme people s daily consumption of mushrooms is limited to 200 -250 g of wet weight or 20 -25 g of dry weight Multiple tests showed what is more important is that inclusion of mushrooms into the system cycle scheme contributes through various mechanisms to the more stable functioning of vegetative cenosis in general Taking into account the given experimental data we determined the scheme of mushroom module material balance The technological peculiarities of mushroom cultivation at BLSS conditions are being discussed
Li, Xingang; Li, Jia; Sui, Hong; He, Lin; Cao, Xingtao; Li, Yonghong
2018-07-05
Soil remediation has been considered as one of the most difficult pollution treatment tasks due to its high complexity in contaminants, geological conditions, usage, urgency, etc. The diversity in remediation technologies further makes quick selection of suitable remediation schemes much tougher even the site investigation has been done. Herein, a sustainable decision support hierarchical model has been developed to select, evaluate and determine preferred soil remediation schemes comprehensively based on modified analytic hierarchy process (MAHP). This MAHP method combines competence model and the Grubbs criteria with the conventional AHP. It not only considers the competence differences among experts in group decision, but also adjusts the big deviation caused by different experts' preference through sample analysis. This conversion allows the final remediation decision more reasonable. In this model, different evaluation criteria, including economic effect, environmental effect and technological effect, are employed to evaluate the integrated performance of remediation schemes followed by a strict computation using above MAHP. To confirm the feasibility of this developed model, it has been tested by a benzene workshop contaminated site in Beijing coking plant. Beyond soil remediation, this MAHP model would also be applied in other fields referring to multi-criteria group decision making. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.
2016-05-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
NASA Astrophysics Data System (ADS)
Hearst, Anthony A.
Complex planting schemes are common in experimental crop fields and can make it difficult to extract plots of interest from high-resolution imagery of the fields gathered by Unmanned Aircraft Systems (UAS). This prevents UAS imagery from being applied in High-Throughput Precision Phenotyping and other areas of agricultural research. If the imagery is accurately geo-registered, then it may be possible to extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. Future work will focus on further enhancing the plot extraction accuracy through additional image processing techniques so that it becomes sufficiently accurate for all practical purposes in agricultural research and potentially other areas of research.
Performance characteristics of an adaptive controller based on least-mean-square filters
NASA Technical Reports Server (NTRS)
Mehta, Rajiv S.; Merhav, Shmuel J.
1986-01-01
A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.
Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model
NASA Technical Reports Server (NTRS)
Barata, Raquel A.; Drewry, Darren
2012-01-01
The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.
NASA Astrophysics Data System (ADS)
Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J. P.; Peng, S.; De Weirdt, M.; Verbeeck, H.
2014-06-01
This study analyzes the performance of the two soil hydrology schemes of the land surface model ORCHIDEE in estimating Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29-year period 1980-2008. A simple 2-layer scheme with a bucket topped by an evaporative layer is compared to an 11-layer diffusion scheme. The soil schemes are coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components are compared with several data sets at sub-basin scale. The use of the 11-layer soil diffusion scheme does not significantly change the Amazonian water budget simulation when compared to the 2-layer soil scheme (+3.1 and -3.0% in evapotranspiration and river discharge, respectively). However, the higher water-holding capacity of the soil and the physically based representation of runoff and drainage in the 11-layer soil diffusion scheme result in more dynamic soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11-layer scheme also results in increased dry-season evapotranspiration (+0.5 mm d-1, +17%) and improves river discharge simulation in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin is sustained during the whole dry season with the 11-layer soil diffusion scheme, whereas the 2-layer scheme limits it after only 2 dry months. Lower plant drought stress simulated by the 11-layer soil diffusion scheme leads to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based on eddy covariance and satellite greenness measurements. A dry-season length between 4 and 7 months over the entire Amazon Basin is found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil schemes. On average, the multilayer soil diffusion scheme provides little improvement in simulated hydrology over the wet tropical Amazonian sub-basins, but a more significant improvement is found over the drier sub-basins. The use of a multilayer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon Basin where longer dry seasons and more severe droughts are expected in the next century.
Study on the hydraulic characteristics of side inlet/outlet by physical model test
NASA Astrophysics Data System (ADS)
Kong, Bo; Ye, Fei; Hu, Qiu-yue; Zhang, Jing
2017-04-01
The hydraulic characteristics at the side inlet/outlet of pumped storage plants were studied by physical model test. The gravity similarity rule was adopted and head loss coefficients under pumped and power conditions were given. The flow distribution under both conditions was studied. Scheme of changing the separation pier section area proportion for minimizing velocity uneven coefficient was brought forward and the cause of test error was researched. Vortex evaluation and observation were studied under the pumped condition at normal and dead reservoir water levels.
ERIC Educational Resources Information Center
Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.
During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This guide…
Plant-based vaccines for Alzheimer's disease: an overview.
Rosales-Mendoza, Sergio; Rubio-Infante, Néstor; Zarazúa, Sergio; Govea-Alonso, Dania O; Martel-Gallegos, Guadalupe; Moreno-Fierros, Leticia
2014-03-01
Plants are considered advantageous platforms for biomanufacturing recombinant vaccines. This constitutes a field of intensive research and some plant-derived vaccines are expected to be marketed in the near future. In particular, plant-based production of immunogens targeting molecules with implications on the pathology of Alzheimer's has been explored over the last decade. These efforts involve targeting amyloid beta and β-secretase with several immunogen configurations that have been evaluated in test animals. The results of these developments are analyzed in this review. Perspectives on the topic are identified, such as exploring additional antigen configurations and adjuvants in order to improve immunization schemes, characterizing in detail the elicited immune responses, and immunological considerations in the achievement of therapeutic humoral responses via mucosal immunization. Safety concerns related to these therapies will also be discussed.
Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system
NASA Astrophysics Data System (ADS)
Keane, R. J.; Plant, R. S.; Tennant, W. J.
2015-12-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
Social Constructivism: Botanical Classification Schemes of Elementary School Children.
ERIC Educational Resources Information Center
Tull, Delena
The assertion that there is a social component to children's construction of knowledge about natural phenomena is supported by evidence from an examination of children's classification schemes for plants. An ethnographic study was conducted with nine sixth grade children in central Texas. The children classified plants in the outdoors, in a…
Zhang, Yifei; Kang, Jian
2017-11-01
The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cycle of a closed gas-turbine plant with a gas-dynamic energy-separation device
NASA Astrophysics Data System (ADS)
Leontiev, A. I.; Burtsev, S. A.
2017-09-01
The efficiency of closed gas-turbine space-based plants is analyzed. The weight-size characteristics of closed gas-turbine plants are shown in many respects as determined by the refrigerator-radiator parameters. The scheme of closed gas-turbine plants with a gas-dynamic temperature-stratification device is proposed, and a calculation model is developed. This model shows that the cycle efficiency decreases by 2% in comparison with that of the closed gas-turbine plants operating by the traditional scheme with increasing temperature at the output from the refrigerator-radiator by 28 K and decreasing its area by 13.7%.
Quine, C P; Watts, K
2009-01-01
Habitat fragmentation is the focus of much conservation concern and associated research. In some countries, such as Britain, the main phase of fragmentation occurred centuries ago and the focus of conservation management is now on restoration and recovery. Scenario studies have suggested that spatial targeting is preferable if landscape scale restoration is to be achieved, and that this should bring greater benefits than site-focussed activities but this has rarely been tested in practice. In Britain, woodland expansion has been encouraged through a number of financial incentives, which have evolved from instruments that encouraged almost any addition to the potential woodland resource, to grant schemes that have set out to restore connectivity to remnant ancient woodland. This study assessed the degree of de-fragmentation achieved by woodland expansion on the Isle of Wight and in particular the success of spatial targeting of new woodland planting implemented through grant aid in the JIGSAW (Joining and Increasing Grant Scheme for Ancient Woodland) scheme. Five steps in the re-development of broad-leaved woodland were tested using eight indicators - six commonly used landscape metrics, and two ecologically scaled indicators derived from application of least-cost network evaluation. Only half of the measures indicated de-fragmentation over the whole sequence of five steps. However, the spatial targeting did appear successful, when compared to equivalent untargeted grant-aided woodland expansion, and resulted in positive change to six of the eight indicators. We discuss the utility of the indicators and ways in which future targeting could be supported by their application.
NASA Astrophysics Data System (ADS)
Lesmana, E.; Chaerani, D.; Khansa, H. N.
2018-03-01
Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method
Belowground Controls on the Dynamics of Plant Communities
NASA Astrophysics Data System (ADS)
Sivandran, G.
2013-12-01
Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. These rooting strategies also dictate the competitive outcomes within plant communities. A dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically-based, distributed ecohydrologic model). The dynamic rooting scheme allows vegetation the freedom to alter its rooting profile in response to changes in rainfall and soil conditions, in a way that more closely mimics observed phenotypic plasticity. A simple competition-colonization model was combined with the new dynamic root scheme to explore the role of root adaptability in plant competition and landscape evolution in semi-arid environments. The influence of model representation of rooting strategy on the long term plant community composition
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
Use of naturally growing aquatic plants for wastewater purification.
Zimmels, Y; Kirzhner, F; Roitman, S
2004-01-01
This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.
NASA Astrophysics Data System (ADS)
Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.
2017-06-01
In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.
Plant hydraulic diversity buffers forest ecosystem responses to drought
NASA Astrophysics Data System (ADS)
Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.
2017-12-01
Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Vira, Julius; Bocquet, Marc; Sofiev, Mikhail; Saunier, Olivier
2011-06-01
In the event of an accidental atmospheric release of radionuclides from a nuclear power plant, accurate real-time forecasting of the activity concentrations of radionuclides is required by the decision makers for the preparation of adequate countermeasures. The accuracy of the forecast plume is highly dependent on the source term estimation. On several academic test cases, including real data, inverse modelling and data assimilation techniques were proven to help in the assessment of the source term. In this paper, a semi-automatic method is proposed for the sequential reconstruction of the plume, by implementing a sequential data assimilation algorithm based on inverse modelling, with a care to develop realistic methods for operational risk agencies. The performance of the assimilation scheme has been assessed through the intercomparison between French and Finnish frameworks. Two dispersion models have been used: Polair3D and Silam developed in two different research centres. Different release locations, as well as different meteorological situations are tested. The existing and newly planned surveillance networks are used and realistically large multiplicative observational errors are assumed. The inverse modelling scheme accounts for strong error bias encountered with such errors. The efficiency of the data assimilation system is tested via statistical indicators. For France and Finland, the average performance of the data assimilation system is strong. However there are outlying situations where the inversion fails because of a too poor observability. In addition, in the case where the power plant responsible for the accidental release is not known, robust statistical tools are developed and tested to discriminate candidate release sites.
A simple language to script and simulate breeding schemes: the breeding scheme language
USDA-ARS?s Scientific Manuscript database
It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...
Hierarchical Control Scheme for Improving Transient Voltage Recovery of a DFIG-Based WPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol
Modern grid codes require that wind power plants (WPPs) inject reactive power according to the voltage dip at a point of interconnection (POI). This requirement helps to support a POI voltage during a fault. However, if a fault is cleared, the POI and wind turbine generator (WTG) voltages are likely to exceed acceptable levels unless the WPP reduces the injected reactive power quickly. This might deteriorate the stability of a grid by allowing the disconnection of WTGs to avoid any damage. This paper proposes a hierarchical control scheme of a doubly-fed induction generator (DFIG)-based WPP. The proposed scheme aims tomore » improve the reactive power injecting capability during the fault and suppress the overvoltage after the fault clearance. To achieve the former, an adaptive reactive power-to-voltage scheme is implemented in each DFIG controller so that a DFIG with a larger reactive power capability will inject more reactive power. To achieve the latter, a washout filter is used to capture a high frequency component contained in the WPP voltage, which is used to remove the accumulated values in the proportional-integral controllers. Test results indicate that the scheme successfully supports the grid voltage during the fault, and recovers WPP voltages without exceeding the limit after the fault clearance.« less
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller
2013-01-01
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847
Maximizing sinter plant operating flexibility through emissions trading and air modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schewe, G.J.; Wagner, J.A.; Heron, T.
1998-12-31
This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less
Development and design of photovoltaic power prediction system
NASA Astrophysics Data System (ADS)
Wang, Zhijia; Zhou, Hai; Cheng, Xu
2018-02-01
In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.
NASA Astrophysics Data System (ADS)
Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng
2018-02-01
Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.
Carbon footprint assessment of Western Australian Groundwater Recycling Scheme
NASA Astrophysics Data System (ADS)
Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.
2017-04-01
This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.
Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.
Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K
2017-04-01
This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.
New Techniques For The Improvement Of The ICRH System ELM Tolerance On JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Blackman, T.; Walden, A.; Nightingale, M.; Whitehurst, A.; Durodie, F.; Jet Efda Contributors
2003-12-01
Two complementary improvements to the ELM tolerance of the existing A2 antennas on JET are being assessed. The use of external conjugate-T matching of straps of adjacent antenna arrays could reduce the VSWR levels at RF amplifier output during fast load perturbations. The scheme under consideration uses coaxial line-stretchers (trombones) for tuning the conjugate-T to low resistive impedance (3-6 Ohm) with subsequent stub/trombone circuit impedance transformation to 30 Ohms. Another technique is to modify the RF plant protection system logic to reduce the high VSWR trip duration to an absolute minimum corresponding to a typical ELM response (˜1-2ms) without compromising the plant safety. Both projects are presently being tested and could increase the average power delivered by RF plant into ELMy plasmas at JET.
In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.
Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung
2015-08-19
In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.
In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation
Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung
2015-01-01
In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395
Water and Plant Cells: Notes on a Teaching Scheme for O-Level.
ERIC Educational Resources Information Center
Grenville, H. W.
1983-01-01
Offers suggestions for teaching some aspects of water economy in plants. These include diffusion/osmosis, water transport, the part played by turgor in structural support, and its implications for plant organs or whole plants. Several practical demonstrations/experiments are also described. (JN)
Development of an establishment scheme for a DGVM
NASA Astrophysics Data System (ADS)
Song, Xiang; Zeng, Xiaodong; Zhu, Jiawen; Shao, Pu
2016-07-01
Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling establishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.
NASA Astrophysics Data System (ADS)
Barnuevo, Abner; Asaeda, Takashi; Sanjaya, Kelum; Kanesaka, Yoshikazu; Fortes, Miguel
2017-11-01
Mangrove rehabilitation programs received much attention in the past decades as a response to widespread global degradation. While the documented successes and failures of mangrove rehabilitation accomplishments were varied, the objective and scheme is common, mainly focused on planting and creating monospecific plantations. This study assessed the structural development and complexity of the large-scale plantations in the central part of Philippines and compared it with the adjacent natural stand as reference. Our study showed that planted forest in both sites had lower structural complexity than the reference natural forest. Between sites, secondary succession in the monospecific plantation in Banacon Island was inhibited as reflected by low regeneration potential, whereas recruitment and colonization of non-planted species was promoted in Olango Island. Even 60 years after the forest was created in Banacon Island, it still lacked the understory of young cohorts which together comprise the regeneration potential that can supposedly add to the structural complexity. Although a potential seed source from adjacent natural forest is available, recruitment and colonization of non-planted species did not progress. MDS analysis of tree density data showed clustering of planted forest from the natural stand. The average SIMPER dissimilarity was 79.9% and the species with highest contributions were R. stylosa (74.6%), S. alba (11.1%) and A. marina (10.6%). Within the natural forest, the same species had the highest dissimilarity contribution, whereas in the planted forest, only R. stylosa contributed the highest dissimilarity. The same trend was also revealed in the MDS ordination analysis of diameter at breast height (DBH). A one-way ANOSIM permutation test of the density and DBH showed a significant difference between the planted and natural forests. Thus, as part of silviculture management intervention, the current practices of mangrove reforestation needs to be reviewed and evaluated to determine the trajectories of its conservation objectives to achieve the best outcome and functionality of the restored habitat.
1987-08-01
synthesis gas from the gasification plant. This scheme was modified by changing the hydrogen generation step. Instead of the cryogenic separation it...Affairs ASD/PA) and is releasable to the National Technical Information Service NTIS). At NTIS, it will be available to the general public, including...58 Modified El Paso By-Products Schem 158 59 Modified El Paso Economics 158 60 Non-Hydrotreating El Paso Scheme 162 61 Non-Hydrotreating El Paso
Development of Algorithms for Control of Humidity in Plant Growth Chambers
NASA Technical Reports Server (NTRS)
Costello, Thomas A.
2003-01-01
Algorithms were developed to control humidity in plant growth chambers used for research on bioregenerative life support at Kennedy Space Center. The algorithms used the computed water vapor pressure (based on measured air temperature and relative humidity) as the process variable, with time-proportioned outputs to operate the humidifier and de-humidifier. Algorithms were based upon proportional-integral-differential (PID) and Fuzzy Logic schemes and were implemented using I/O Control software (OPTO-22) to define and download the control logic to an autonomous programmable logic controller (PLC, ultimate ethernet brain and assorted input-output modules, OPTO-22), which performed the monitoring and control logic processing, as well the physical control of the devices that effected the targeted environment in the chamber. During limited testing, the PLC's successfully implemented the intended control schemes and attained a control resolution for humidity of less than 1%. The algorithms have potential to be used not only with autonomous PLC's but could also be implemented within network-based supervisory control programs. This report documents unique control features that were implemented within the OPTO-22 framework and makes recommendations regarding future uses of the hardware and software for biological research by NASA.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
Flexible $$I_{Q}\\!\\!-\\!\\!V$$ Scheme of a DFIG for Rapid Voltage Regulation of a Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Park, Jung -Wook
This paper proposes a flexible reactive current-to-voltage (I Q-V) scheme of a doubly-fed induction generator (DFIG) for the rapid voltage regulation of a wind power plant (WPP). In the proposed scheme, the WPP controller dispatches different voltage set points to the DFIGs depending on their rotor voltage margins. The DFIGs inject different reactive power with the flexible I Q-V schemes implemented in the rotor-side and grid-side converters. The I Q-V characteristic, which consists of the gain and width of a linear band and I Q capability, varies with time depending on the I Q capability of the converters and amore » voltage dip at the point of interconnection (POI). To increase the I Q capability during a fault, the active current is reduced in proportion to a voltage dip. If the I Q capability and/or the POI voltage dip are large, the I Q-V gain is set to be high, thereby providing rapid voltage regulation. To avoid an overvoltage after the fault clearance, a rapid I Q reduction scheme is implemented in the WPP and DFIG controllers. The performance of the proposed flexible scheme was verified under scenarios with various disturbances. In conclusion, the proposed scheme can help increase wind power penetration without jeopardizing voltage stability.« less
Flexible $$I_{Q}\\!\\!-\\!\\!V$$ Scheme of a DFIG for Rapid Voltage Regulation of a Wind Power Plant
Kim, Jinho; Muljadi, Eduard; Park, Jung -Wook; ...
2017-04-28
This paper proposes a flexible reactive current-to-voltage (I Q-V) scheme of a doubly-fed induction generator (DFIG) for the rapid voltage regulation of a wind power plant (WPP). In the proposed scheme, the WPP controller dispatches different voltage set points to the DFIGs depending on their rotor voltage margins. The DFIGs inject different reactive power with the flexible I Q-V schemes implemented in the rotor-side and grid-side converters. The I Q-V characteristic, which consists of the gain and width of a linear band and I Q capability, varies with time depending on the I Q capability of the converters and amore » voltage dip at the point of interconnection (POI). To increase the I Q capability during a fault, the active current is reduced in proportion to a voltage dip. If the I Q capability and/or the POI voltage dip are large, the I Q-V gain is set to be high, thereby providing rapid voltage regulation. To avoid an overvoltage after the fault clearance, a rapid I Q reduction scheme is implemented in the WPP and DFIG controllers. The performance of the proposed flexible scheme was verified under scenarios with various disturbances. In conclusion, the proposed scheme can help increase wind power penetration without jeopardizing voltage stability.« less
Lichtenberg, Elinor M; Kennedy, Christina M; Kremen, Claire; Batáry, Péter; Berendse, Frank; Bommarco, Riccardo; Bosque-Pérez, Nilsa A; Carvalheiro, Luísa G; Snyder, William E; Williams, Neal M; Winfree, Rachael; Klatt, Björn K; Åström, Sandra; Benjamin, Faye; Brittain, Claire; Chaplin-Kramer, Rebecca; Clough, Yann; Danforth, Bryan; Diekötter, Tim; Eigenbrode, Sanford D; Ekroos, Johan; Elle, Elizabeth; Freitas, Breno M; Fukuda, Yuki; Gaines-Day, Hannah R; Grab, Heather; Gratton, Claudio; Holzschuh, Andrea; Isaacs, Rufus; Isaia, Marco; Jha, Shalene; Jonason, Dennis; Jones, Vincent P; Klein, Alexandra-Maria; Krauss, Jochen; Letourneau, Deborah K; Macfadyen, Sarina; Mallinger, Rachel E; Martin, Emily A; Martinez, Eliana; Memmott, Jane; Morandin, Lora; Neame, Lisa; Otieno, Mark; Park, Mia G; Pfiffner, Lukas; Pocock, Michael J O; Ponce, Carlos; Potts, Simon G; Poveda, Katja; Ramos, Mariangie; Rosenheim, Jay A; Rundlöf, Maj; Sardiñas, Hillary; Saunders, Manu E; Schon, Nicole L; Sciligo, Amber R; Sidhu, C Sheena; Steffan-Dewenter, Ingolf; Tscharntke, Teja; Veselý, Milan; Weisser, Wolfgang W; Wilson, Julianna K; Crowder, David W
2017-11-01
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes. © 2017 John Wiley & Sons Ltd.
Reevaluating the conceptual framework for applied research on host-plant resistance.
Stout, Michael J
2013-06-01
Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book, Insect Resistance in Crop Plants. Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis), antibiosis, and tolerance. The weaknesses of this framework are discussed. In particular, this trichotomous framework does not encompass all known mechanisms of resistance, and the antixenosis and antibiosis categories are ambiguous and inseparable in practice. These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants. A dichotomous scheme is proposed as a replacement, with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury), and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories. The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants. A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs. © 2012 Institute of Zoology, Chinese Academy of Sciences.
Gilioli, G; Schrader, G; Baker, R H A; Ceglarska, E; Kertész, V K; Lövei, G; Navajas, M; Rossi, V; Tramontini, S; van Lenteren, J C
2014-01-15
The current methods to assess the environmental impacts of plant pests differ in their approaches and there is a lack of the standardized procedures necessary to provide accurate and consistent results, demonstrating the complexity of developing a commonly accepted scheme for this purpose. By including both the structural and functional components of the environment threatened by invasive alien species (IAS), in particular plant pests, we propose an environmental risk assessment scheme that addresses this complexity. Structural components are investigated by evaluating the impacts of the plant pest on genetic, species and landscape diversity. Functional components are evaluated by estimating how plant pests modify ecosystem services in order to determine the extent to which an IAS changes the functional traits that influence ecosystem services. A scenario study at a defined spatial and temporal resolution is then used to explore how an IAS, as an exogenous driving force, may trigger modifications in the target environment. The method presented here provides a standardized approach to generate comparable and reproducible results for environmental risk assessment as a component of Pest Risk Analysis. The method enables the assessment of overall environmental risk which integrates the impacts on different components of the environment and their probabilities of occurrence. The application of the proposed scheme is illustrated by evaluating the environmental impacts of the invasive citrus long-horn beetle, Anoplophora chinensis. © 2013.
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1984-01-01
A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.
Wilderness ecology: a method of sampling and summarizing data for plant community classification.
Lewis F. Ohmann; Robert R. Ream
1971-01-01
Presents a flexible sampling scheme that researchers and land managers may use in surveying and classifying plant communities of forest lands. Includes methods, data sheets, and computer summarization printouts.
Self-learning fuzzy controllers based on temporal back propagation
NASA Technical Reports Server (NTRS)
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
Kelley, Steven E
1989-08-01
Sexually and asexually derived tillers of Anthoxanthum odoratum were planted directly in the field to test the hypothesis that competition among groups of sexual and asexual siblings favors the maintenance of sexual reproduction in populations. The results showed a substantial fitness advantage for sexual tillers. However, in contrast with the models, the advantage of sex did not increase with increasing numbers of colonists in the patch, there were multiple survivors among colonists, and an advantage was observed even for singly planted tillers. When a truncation-selection scheme was imposed ex post facto on the data, the relative performance of sexual tillers was similar to that predicted by the Bulmer (1980) model, suggesting that sib-competition models fail due to the violation of the assumption of truncation selection. The advantage of sex was not correlated with the presence of other species, total percentage cover, or species diversity, although sites where sex was favored were physically clustered. © 1989 The Society for the Study of Evolution.
Grosser, J W; Gmitter, F G; Chandler, J L
1988-01-01
Intergeneric somatic hybrid plants between 'Hamlin' sweet orange [Citrus sinensis (L.) Osbeck] and 'Flying Dragon' trifoliate orange (Poncirus trifoliata Raf.) were regenerated following protoplast fusion. 'Hamlin' protoplasts, isolated from an habituated embryogenic suspension culture, were fused chemically with 'Flying Dragon' protoplasts isolated from juvenile leaf tissue. The hybrid selection scheme was based on complementation of the regenerative ability of the 'Hamlin' protoplasts with the subsequent expression of the trifoliate leaf character of 'Flying Dragon.' Hybrid plants were regenerated via somatic embryogenesis and multiplied organogenically. Hybrid morphology was intermediate to that of the parents. Chromosome counts indicated that the hybrids were allotetraploids (2n=4x=36). Malate dehydrogenase (MDH) isozyme patterns confirmed the hybrid nature of the regenerated plants. These genetically unique somatic hybrid plants will be evaluated for citrus rootstock potential. The cell fusion, selection, and regeneration scheme developed herein should provide a general means to expand the germplasm base of cultivated Citrus by intergeneric hybridization with related sexually incompatible genera.
NASA Astrophysics Data System (ADS)
Al-Gburi, A.; Freeman, C. T.; French, M. C.
2018-06-01
This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.
NASA Astrophysics Data System (ADS)
He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.
2016-12-01
Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with observations for OCS, implicating that OCS could provide independent constraint in joint inversion. Optimization makes less total GPP and Re but more NEE, when testing with prior CO2 fluxes from two biosphere models. This study gives an in-depth insight into the role of joint atmospheric OCS and CO2 observations in constraining CO2 fluxes.
Examination of Spectral Transformations on Spectral Mixture Analysis
NASA Astrophysics Data System (ADS)
Deng, Y.; Wu, C.
2018-04-01
While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.
Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Park, Jung-Wook
This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allowsmore » DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability.« less
Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
Kahi, A K; Hirooka, H
2005-09-01
Deterministic simulation was used to evaluate 10 breeding schemes for genetic gain and profitability and in the context of maximizing returns from investment in Japanese Black cattle breeding. A breeding objective that integrated the cow-calf and feedlot segments was considered. Ten breeding schemes that differed in the records available for use as selection criteria were defined. The schemes ranged from one that used carcass traits currently available to Japanese Black cattle breeders (Scheme 1) to one that also included linear measurements and male and female reproduction traits (Scheme 10). The latter scheme represented the highest level of performance recording. In all breeding schemes, sires were chosen from the proportion selected during the first selection stage (performance testing), modeling a two-stage selection process. The effect on genetic gain and profitability of varying test capacity and number of progeny per sire and of ultrasound scanning of live animals was examined for all breeding schemes. Breeding schemes that selected young bulls during performance testing based on additional individual traits and information on carcass traits from their relatives generated additional genetic gain and profitability. Increasing test capacity resulted in an increase in genetic gain in all schemes. Profitability was optimal in Scheme 2 (a scheme similar to Scheme 1, but selection of young bulls also was based on information on carcass traits from their relatives) to 10 when 900 to 1,000 places were available for performance testing. Similarly, as the number of progeny used in the selection of sires increased, genetic gain first increased sharply and then gradually in all schemes. Profit was optimal across all breeding schemes when sires were selected based on information from 150 to 200 progeny. Additional genetic gain and profitability were generated in each breeding scheme with ultrasound scanning of live animals for carcass traits. Ultrasound scanning of live animals was more important than the addition of any other traits in the selection criteria. These results may be used to provide guidance to Japanese Black cattle breeders.
Significant parent-of-origin effects in cucumber
USDA-ARS?s Scientific Manuscript database
Cucumber is a useful plant to study organellar effects because chloroplasts are maternally and mitochondria paternally transmitted. We produced doubled haploids (DH) from divergent cucumber populations, generated reciprocal crosses in a diallel mating scheme, measured weights of plants approximately...
Mixed biodiversity benefits of agri-environment schemes in five European countries.
Kleijn, D; Baquero, R A; Clough, Y; Díaz, M; De Esteban, J; Fernández, F; Gabriel, D; Herzog, F; Holzschuh, A; Jöhl, R; Knop, E; Kruess, A; Marshall, E J P; Steffan-Dewenter, I; Tscharntke, T; Verhulst, J; West, T M; Yela, J L
2006-03-01
Agri-environment schemes are an increasingly important tool for the maintenance and restoration of farmland biodiversity in Europe but their ecological effects are poorly known. Scheme design is partly based on non-ecological considerations and poses important restrictions on evaluation studies. We describe a robust approach to evaluate agri-environment schemes and use it to evaluate the biodiversity effects of agri-environment schemes in five European countries. We compared species density of vascular plants, birds, bees, grasshoppers and crickets, and spiders on 202 paired fields, one with an agri-environment scheme, the other conventionally managed. In all countries, agri-environment schemes had marginal to moderately positive effects on biodiversity. However, uncommon species benefited in only two of five countries and species listed in Red Data Books rarely benefited from agri-environment schemes. Scheme objectives may need to differentiate between biodiversity of common species that can be enhanced with relatively simple modifications in farming practices and diversity or abundance of endangered species which require more elaborate conservation measures.
Advanced multivariable control of a turboexpander plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altena, D.; Howard, M.; Bullin, K.
1998-12-31
This paper describes an application of advanced multivariable control on a natural gas plant and compares its performance to the previous conventional feed-back control. This control algorithm utilizes simple models from existing plant data and/or plant tests to hold the process at the desired operating point in the presence of disturbances and changes in operating conditions. The control software is able to accomplish this due to effective handling of process variable interaction, constraint avoidance and feed-forward of measured disturbances. The economic benefit of improved control lies in operating closer to the process constraints while avoiding significant violations. The South Texasmore » facility where this controller was implemented experienced reduced variability in process conditions which increased liquids recovery because the plant was able to operate much closer to the customer specified impurity constraint. An additional benefit of this implementation of multivariable control is the ability to set performance criteria beyond simple setpoints, including process variable constraints, relative variable merit and optimizing use of manipulated variables. The paper also details the control scheme applied to the complex turboexpander process and some of the safety features included to improve reliability.« less
Overview of the preliminary design of the ITER plasma control system
NASA Astrophysics Data System (ADS)
Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.
2017-12-01
An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.
Guinard, Jérémy; Latreille, Anne; Guérin, Fabien; Poussier, Stéphane
2016-01-01
ABSTRACT Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations. IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-evolving loci, may be a tool of choice for field experimental evolution and spatial genetics studies. PMID:28003195
A Guide to Systematic Planning for Vocational and Technical Schools. Research 22.
ERIC Educational Resources Information Center
Meckley, Richard F.; And Others
A school planning scheme involving 46 principle activities which occur over a 38-month period is presented. This scheme was developed for individuals responsible for the planning of vocational and technical schools, i.e., supervisors, state staff, university school plant planners, architects, and local school administrators. The activities…
Condensed tannins: A proposed route to 2R,3R-(2,3-cis)-proanthocyanidins
Richard W. Hemingway; Peter E. Laks
1985-01-01
Roux,1 Haslam,2-4 and Stafford5-8 have proposed differing biogenetic schemes for the formation of proanthocyanidins (condensed tannins) in plants. All three schemes suffer from difficulties in explaining the formation of the 2R,3R-(2,3-cis)-proanthocyanidins that predominate in...
Pittmann, Timo; Steinmetz, Heidrun
2017-01-01
This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants. PMID:28952533
Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro
2018-04-17
Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.
Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.
Tai, Xiaonan; Mackay, D Scott; Anderegg, William R L; Sperry, John S; Brooks, Paul D
2017-01-01
Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Haapalainen, Minna L; Wang, Jinhui; Latvala, Satu; Lehtonen, Mikko T; Pirhonen, Minna; Nissinen, Anne I
2018-03-30
'Candidatus Liberibacter solanacearum' (CLso) haplotype C is associated with disease in carrots and transmitted by the carrot psyllid Trioza apicalis. To identify possible other sources and vectors of this pathogen in Finland, samples were taken of wild plants within and near the carrot fields, the psyllids feeding on these plants, parsnips growing next to carrots, and carrot seeds. For analyzing the genotype of the CLso positive samples, a multi-locus sequence typing (MLST) scheme was developed. CLso haplotype C was detected in 11% of the Trioza anthrisci samples, in 35% of the Anthriscus sylvestris plants with discoloration, and in parsnips showing leaf discoloration. MLST revealed that the CLso in T. anthrisci and most A. sylvestris plants represent different strains than the bacteria found in T. apicalis and the cultivated plants. CLso haplotype D was detected in two of the 34 carrot seed lots tested, but was not detected in the plants grown from these seeds. Phylogenetic analysis by UPGMA clustering suggested that the haplotype D is more closely related to the haplotype A than to C. A novel, sixth haplotype of CLso, most closely related to A and D, was found in the psyllid Trioza urticae and stinging nettle (Urtica dioica, Urticaceae), and named as haplotype U.
NASA Astrophysics Data System (ADS)
Christoffersen, B. O.; Xu, C.; Fisher, R.; Fyllas, N.; Gloor, M.; Fauset, S.; Galbraith, D.; Koven, C.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; Meir, P.; McDowell, N. G.
2016-12-01
A major challenge of Earth System Models (ESMs) is to capture the diversity of individual-level responses to changes in water availability. Yet, decades of research in plant physiological ecology have given us a means to quantify central tendencies and variances of plant hydraulic traits. If ESMs possessed the relevant hydrodynamic process structure, these traits could be incorporated into improved predictions of community- and ecosystem-level processes such as tree mortality. We present a model of plant hydraulics in which all parameters are biologically-interpretable and measurable traits, such as turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs). We applied this scheme to tropical forests by incorporating it into both an individual-based model `Trait Forest Simulator' (TFS) and the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES; derived from CLM(ED)), and explore the consequences of variability in plant hydraulic traits on simulated leaf water potential, a potentially powerful predictor of tree mortality. We show that, independent of the difference between P50,gs and P50,x, or the hydraulic safety margin (HSM), diversity in hydraulic traits can increase or decrease whole-ecosystem resistance to hydraulic failure, and thus ecosystem-level responses to drought. Key uncertainties remaining concern how coordination and trade-offs in hydraulic traits are parameterized. We conclude that inclusion of such a physiologically-based plant hydraulics scheme in ESMs will greatly improve the capability of ESMs to predict functional trait filtering within ecosystems in responding to environmental change.
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.
1987-01-01
A concept for optimally designing output feedback controllers for plants whose dynamics exhibit gross changes over their operating regimes was developed. This was to formulate the design problem in such a way that the implemented feedback gains vary as the output of a dynamical system whose independent variable is a scalar parameterization of the plant operating point. The results of this effort include derivation of necessary conditions for optimality for the general problem formulation, and for several simplified cases. The question of existence of a solution to the design problem was also examined, and it was shown that the class of gain variation schemes developed are capable of achieving gain variation histories which are arbitrarily close to the unconstrained gain solution for each point in the plant operating range. The theory was implemented in a feedback design algorithm, which was exercised in a numerical example. The results are applicable to the design of practical high-performance feedback controllers for plants whose dynamics vary significanly during operation. Many aerospace systems fall into this category.
Talati, Shuchi; Zhai, Haibo; Morgan, M Granger
2016-12-06
Using data on the coal-fired electric generating units (EGUs) in Texas we assess the economic feasibility of retrofitting existing units with carbon capture and sequestration (CCS) in order to comply with the Clean Power Plan's rate-based emission standards under an emission trading scheme. CCS with 90% capture is shown to be more economically attractive for a range of existing units than purchasing emission rate credits (ERCs) from a trading market at an average credit price above $28 per MWh under the final state standard and $35 per MWh under the final national standard. The breakeven ERC trading prices would decrease significantly if the captured CO 2 were sold for use in enhanced oil recovery, making CCS retrofits viable at lower trading prices. The combination of ERC trading and CO 2 use can greatly reinforce economic incentives and market demands for CCS and hence accelerate large-scale deployment, even under scenarios with high retrofit costs. Comparing the levelized costs of electricity generation between CCS retrofits and new renewable plants under the ERC trading scheme, retrofitting coal-fired EGUs with CCS may be significantly cheaper than new solar plants under some market conditions.
Hardman, Chloe J; Harrison, Dominic P G; Shaw, Pete J; Nevard, Tim D; Hughes, Brin; Potts, Simon G; Norris, Ken
2016-02-01
Restoration and maintenance of habitat diversity have been suggested as conservation priorities in farmed landscapes, but how this should be achieved and at what scale are unclear. This study makes a novel comparison of the effectiveness of three wildlife-friendly farming schemes for supporting local habitat diversity and species richness on 12 farms in England.The schemes were: (i) Conservation Grade (Conservation Grade: a prescriptive, non-organic, biodiversity-focused scheme), (ii) organic agriculture and (iii) a baseline of Entry Level Stewardship (Entry Level Stewardship: a flexible widespread government scheme). Conservation Grade farms supported a quarter higher habitat diversity at the 100-m radius scale compared to Entry Level Stewardship farms. Conservation Grade and organic farms both supported a fifth higher habitat diversity at the 250-m radius scale compared to Entry Level Stewardship farms. Habitat diversity at the 100-m and 250-m scales significantly predicted species richness of butterflies and plants. Habitat diversity at the 100-m scale also significantly predicted species richness of birds in winter and solitary bees. There were no significant relationships between habitat diversity and species richness for bumblebees or birds in summer.Butterfly species richness was significantly higher on organic farms (50% higher) and marginally higher on Conservation Grade farms (20% higher), compared with farms in Entry Level Stewardship. Organic farms supported significantly more plant species than Entry Level Stewardship farms (70% higher) but Conservation Grade farms did not (10% higher). There were no significant differences between the three schemes for species richness of bumblebees, solitary bees or birds. Policy implications . The wildlife-friendly farming schemes which included compulsory changes in management, Conservation Grade and organic, were more effective at increasing local habitat diversity and species richness compared with the less prescriptive Entry Level Stewardship scheme. We recommend that wildlife-friendly farming schemes should aim to enhance and maintain high local habitat diversity, through mechanisms such as option packages, where farmers are required to deliver a combination of several habitats.
Economics of internal and external energy storage in solar power plant operation
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1977-01-01
A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.
Lai, Huafang; Chen, Qiang
2012-01-01
Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can established for processing virus-like particles (VLP) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality. PMID:22134876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonsalves, C.; Xue, B.; Yepes, M.
1994-03-01
A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500more » mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.« less
NASA Astrophysics Data System (ADS)
Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit
2017-07-01
In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.
Multichannel feedforward control schemes with coupling compensation for active sound profiling
NASA Astrophysics Data System (ADS)
Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.
2017-05-01
Active sound profiling includes a number of control techniques that enables the equalization, rather than the mere reduction, of acoustic noise. Challenges may rise when trying to achieve distinct targeted sound profiles simultaneously at multiple locations, e.g., within a vehicle cabin. This paper introduces distributed multichannel control schemes for independently tailoring structural borne sound reaching a number of locations within a cavity. The proposed techniques address the cross interactions amongst feedforward active sound profiling units, which compensate for interferences of the primary sound at each location of interest by exchanging run-time data amongst the control units, while attaining the desired control targets. Computational complexity, convergence, and stability of the proposed multichannel schemes are examined in light of the physical system at which they are implemented. The tuning performance of the proposed algorithms is benchmarked with the centralized and pure-decentralized control schemes through computer simulations on a simplified numerical model, which has also been subjected to plant magnitude variations. Provided that the representation of the plant is accurate enough, the proposed multichannel control schemes have been shown as the only ones that properly deliver targeted active sound profiling tasks at each error sensor location. Experimental results in a 1:3-scaled vehicle mock-up further demonstrate that the proposed schemes are able to attain reductions of more than 60 dB upon periodic disturbances at a number of positions, while resolving cross-channel interferences. Moreover, when the sensor/actuator placement is found as defective at a given frequency, the inclusion of a regularization parameter in the cost function is seen to not hinder the proper operation of the proposed compensation schemes, at the time that it assures their stability, at the expense of losing control performance.
Impact of subsidies on cancer genetic testing uptake in Singapore.
Li, Shao-Tzu; Yuen, Jeanette; Zhou, Ke; Binte Ishak, Nur Diana; Chen, Yanni; Met-Domestici, Marie; Chan, Sock Hoai; Tan, Yee Pin; Allen, John Carson; Lim, Soon Thye; Soo, Khee Chee; Ngeow, Joanne
2017-04-01
Previous reports cite high costs of clinical cancer genetic testing as main barriers to patient's willingness to test. We report findings of a pilot study that evaluates how different subsidy schemes impact genetic testing uptake and total cost of cancer management. We included all patients who attended the Cancer Genetics Service at the National Cancer Centre Singapore (January 2014-May 2016). Two subsidy schemes, the blanket scheme (100% subsidy to all eligible patients), and the varied scheme (patients received 50%-100% subsidy dependent on financial status) were compared. We estimated total spending on cancer management from government's perspective using a decision model. 445 patients were included. Contrasting against the blanket scheme, the varied scheme observed a higher attendance of patients (34 vs 8 patients per month), of which a higher proportion underwent genetic testing (5% vs 38%), while lowering subsidy spending per person (S$1098 vs S$1161). The varied scheme may potentially save cost by reducing unnecessary cancer surveillance when first-degree relatives uptake rate is above 36%. Provision of subsidy leads to a considerable increase in genetic testing uptake rate. From the government's perspective, subsidising genetic testing may potentially reduce total costs on cancer management. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong
2015-01-01
The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
Wang, Yong; Zhang, Guang J.
2016-09-29
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Zhang, Guang J.
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
NASA Astrophysics Data System (ADS)
Dutton, Kenneth
Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.
A computationally efficient scheme for the non-linear diffusion equation
NASA Astrophysics Data System (ADS)
Termonia, P.; Van de Vyver, H.
2009-04-01
This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.
Barbosa, Julierme Z; Motta, Antonio C V; Consalter, Rangel; Poggere, Giovana C; Santin, Delmar; Wendling, Ivar
2018-01-01
Native to subtropical region of South America, yerba mate is responsive to P under some conditions, but the degree of influence of genetic and soil on the growth and composition of the leaf is unknown. The aim of study was to evaluate plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to P application in acid soils. In greenhouse condition, two yerba mate clone seedlings were grown (210 days) in pots, each clone in a completely randomized design in factorial scheme (with and without P; four acid soils). The elemental composition of leaves and the growth of plants were determined. Phosphorus promoted plant growth, but this was not accompanied by increased P in leaf tissue in all conditions tested. The P effect on the elemental composition varied: decrease/null (N, K, Mg, Mn, Cu, Ni, B, Mo, Al, Cd); increase/null (C/N, C, Ca, Fe, V); increase/decrease/null (Zn, Ba, Pb) and; null (Cr). The soils affect the elemental composition of the leaves, especially Mn, with accumulation greater than 1000 mg kg-1. The Ba, Pb, Al and Zn in the leaves varied among clones. Yerba mate response to P was affected by edaphic and plant factors.
The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.
Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj
2018-02-01
Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.
ERIC Educational Resources Information Center
Ingham, Donald
1995-01-01
Describes a long-term scheme to develop a pond, nature trail, and tree-planting project (in Cornwall, England). The project was designed by teams of students. Plans included a large pond, meadow area, sequential cuttings of school fields to encourage insects, butterfly garden, extensive tree plantings (including a dwindling native species), and a…
Udugama, Isuru A; Wolfenstetter, Florian; Kirkpatrick, Robert; Yu, Wei; Young, Brent R
2017-07-01
In this work we have developed a novel, robust practical control structure to regulate an industrial methanol distillation column. This proposed control scheme is based on a override control framework and can manage a non-key trace ethanol product impurity specification while maintaining high product recovery. For comparison purposes, a MPC with a discrete process model (based on step tests) was also developed and tested. The results from process disturbance testing shows that, both the MPC and the proposed controller were capable of maintaining both the trace level ethanol specification in the distillate (X D ) and high product recovery (β). Closer analysis revealed that the MPC controller has a tighter X D control, while the proposed controller was tighter in β control. The tight X D control allowed the MPC to operate at a higher X D set point (closer to the 10ppm AA grade methanol standard), allowing for savings in energy usage. Despite the energy savings of the MPC, the proposed control scheme has lower installation and running costs. An economic analysis revealed a multitude of other external economic and plant design factors, that should be considered when making a decision between the two controllers. In general, we found relatively high energy costs favour MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Qu, Jianhua; Meng, Xianlin; Hu, Qi; You, Hong
2016-02-01
Sudden water source pollution resulting from hazardous materials has gradually become a major threat to the safety of the urban water supply. Over the past years, various treatment techniques have been proposed for the removal of the pollutants to minimize the threat of such pollutions. Given the diversity of techniques available, the current challenge is how to scientifically select the most desirable alternative for different threat degrees. Therefore, a novel two-stage evaluation system was developed based on a circulation-correction improved Group-G1 method to determine the optimal emergency treatment technology scheme, considering the areas of contaminant elimination in both drinking water sources and water treatment plants. In stage 1, the threat degree caused by the pollution was predicted using a threat evaluation index system and was subdivided into four levels. Then, a technique evaluation index system containing four sets of criteria weights was constructed in stage 2 to obtain the optimum treatment schemes corresponding to the different threat levels. The applicability of the established evaluation system was tested by a practical cadmium-contaminated accident that occurred in 2012. The results show this system capable of facilitating scientific analysis in the evaluation and selection of emergency treatment technologies for drinking water source security.
Diversity and classification of mycorrhizal associations.
Brundrett, Mark
2004-08-01
Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.
Macova, Miroslava; Toze, Simon; Hodgers, Leonie; Mueller, Jochen F; Bartkow, Michael; Escher, Beate I
2011-08-01
A bioanalytical test battery was used for monitoring organic micropollutants across an indirect potable reuse scheme testing sites across the complete water cycle from sewage to drinking water to assess the efficacy of different treatment barriers. The indirect potable reuse scheme consists of seven treatment barriers: (1) source control, (2) wastewater treatment plant, (3) microfiltration, (4) reverse osmosis, (5) advanced oxidation, (6) natural environment in a reservoir and (7) drinking water treatment plant. Bioanalytical results provide complementary information to chemical analysis on the sum of micropollutants acting together in mixtures. Six endpoints targeting the groups of chemicals with modes of toxic action of particular relevance for human and environmental health were included in the evaluation: genotoxicity, estrogenicity (endocrine disruption), neurotoxicity, phytotoxicity, dioxin-like activity and non-specific cell toxicity. The toxicity of water samples was expressed as toxic equivalent concentrations (TEQ), a measure that translates the effect of the mixtures of unknown and potentially unidentified chemicals in a water sample to the effect that a known reference compound would cause. For each bioassay a different representative reference compound was selected. In this study, the TEQ concept was applied for the first time to the umuC test indicative of genotoxicity using 4-nitroquinoline as the reference compound for direct genotoxicity and benzo[a]pyrene for genotoxicity after metabolic activation. The TEQ were observed to decrease across the seven treatment barriers in all six selected bioassays. Each bioassay showed a differentiated picture representative for a different group of chemicals and their mixture effect. The TEQ of the samples across the seven barriers were in the same order of magnitude as seen during previous individual studies in wastewater and advanced water treatment plants and reservoirs. For the first time a benchmarking was performed that allows direct comparison of different treatment technologies and covers several orders of magnitude of TEQ from highly contaminated sewage to drinking water with TEQ close or below the limit of detection. Detection limits of the bioassays were decreased in comparison to earlier studies by optimizing sample preparation and test protocols, and were comparable to or lower than the quantification limits of the routine chemical analysis, which allowed monitoring of the presence and removal of micropollutants post Barrier 2 and in drinking water. The results obtained by bioanalytical tools were reproducible, robust and consistent with previous studies assessing the effectiveness of the wastewater and advanced water treatment plants. The results of this study indicate that bioanalytical results expressed as TEQ are useful to assess removal efficiency of micropollutants throughout all treatment steps of water recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
CHP dominates Dutch energy plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffs, E.
For much of the last fifteen years, the Netherlands has been the main market for industrial CHP schemes, thanks to an enlightened program of legislation which has placed emphasis on energy efficiency and rational use of indigenous natural gas reserves. Since 1980, district heating in the Netherlands has been essentially confined to new housing developments and large institutional heat consumers in existing cities. Today a system of capital grants for CHP has stimulated a new wave of much larger industrial CHP schemes in which the utilities are coming in as joint venture partners with a designated steam host. In factmore » the government is unwittingly dictating the design of the plants, since to qualify for grant aid, the proposed plant must have an overall efficiency of at least 60%, and the higher the value the bigger the grant. The major beneficiary in the current round of orders for CHP schemes has been ABB STAL with their 25-MW Type GT 10. 3 figs., 1 tab.« less
Optimized conditions for selective gold flotation by ToF-SIMS and ToF-LIMS
NASA Astrophysics Data System (ADS)
Chryssoulis, S. L.; Dimov, S. S.
2004-06-01
This work describes a comprehensive characterization of the factors controlling the floatability of free gold from flotation test using reagents (collectors) at plant concentration levels. A relationship between the collectors loadings on gold particles and their surface composition has been established. The findings of this study show that silver activates gold flotation and there is a strong correlation between the surface concentration of silver and the loading of certain collectors. The organic surface analysis was done by ToF-SIMS while the inorganic surface analysis was carried out by time-of-flight laser ionization mass spectrometry (ToF-LIMS). The developed testing protocol based on ToF-LIMS and ToF-SIMS complementary surface analysis allows for optimization of the flotation scheme and hence improved gold recovery.
Phytoremediation of landfill leachate.
Jones, D L; Williamson, K L; Owen, A G
2006-01-01
Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.
Switching moving boundary models for two-phase flow evaporators and condensers
NASA Astrophysics Data System (ADS)
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Water Extraction from Coal-Fired Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings
2006-06-30
The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the powermore » plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.« less
Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
Nendza, Monika; Müller, Martin; Wenzel, Andrea
2017-03-22
Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR predictions.
1980-03-01
throttle torque capability. Various schemes are under development to reduce this disadvantage. These schemes include reducing compressor and turbine rotor...inertia, using a pelton wheel or burners, electronic feedback systems, and variable area turbocharging. Other turbocharging disadvantages include...around the turbine ) and using exhaust augmenters or combustors (wasteful of fuel, costly, and complex), and the variable area turbocharger (VAT). An
Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinsik; Jang, Gilsoo; Muljadi, Eduard
For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases duringmore » inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control.« less
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Alex; Banta, Larry; Tucker, David
2010-08-01
This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant componentsmore » is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.« less
A feasibility test to estimate the duration of phytoextraction of heavy metals from polluted soils.
Japenga, J; Koopmans, G F; Song, J; Römkens, P F A M
2007-01-01
The practical applicability of heavy metal (HM) phytoextraction depends heavily on its duration. Phytoextraction duration is the main cost factorfor phytoextraction, both referring to recurring economic costs during phytoextraction and to the cost of the soil having no economic value during phytoextraction. An experiment is described here, which is meant as a preliminary feasibility test before starting a phytoextraction scheme in practice, to obtain a more realistic estimate of the phytoextraction duration of a specific HM-polluted soil. In the experiment, HM-polluted soil is mixed at different ratios with unpolluted soil of comparable composition to mimic the gradual decrease of the HM content in the target HM-polluted soil during phytoextraction. After equilibrating the soil mixtures, one cropping cycle is carried out with the plant species of interest. At harvest, the adsorbed HM contents in the soil and the HM contents in the plant shoots are determined. The adsorbed HM contents in the soil are then related to the HM contents in the plant shoots by a log-log linear relationship that can then be used to estimate the phytoextraction duration of a specific HM-polluted soil. This article describes and evaluates the merits of such a feasibility experiment. Potential drawbacks regarding the accuracy of the described approach are discussed and a greenhouse-field extrapolation procedure is proposed.
Quantum annealing correction with minor embedding
NASA Astrophysics Data System (ADS)
Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.
2015-10-01
Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.
IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
William M. Bond; Salih Ersayin
2007-03-30
This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency ofmore » individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern Minnesota, and future proposals are pending with non-taconite mineral processing applications.« less
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2010-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.
A test data compression scheme based on irrational numbers stored coding.
Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan
2014-01-01
Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.
NASA Astrophysics Data System (ADS)
Yetzer, Kenneth H.
A new one-dimensional (1D) soil-vegetation-atmospheric transport (SVAT) scheme is coupled to a nonlocal turbulence closure model in order to simulate the interactions between a forested canopy and the planetary boundary layer. The SVAT consists of mechanistic models for both physiological (photosynthesis, stomatal conductance and soil/root and bole respiration) and micrometeorological (radiative transfer and surface energy exchanges) processes. The turbulence closure model is a first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993; Inclan et al., 1995) which includes the effects of form drag, wake turbulence, and interference to vertical mixing by the plant elements. The submodel that accounts for radiative transfer inside the forest has been taken from Norman (1979) and Baldocchi (1989). It includes the effect of varying mean leaf inclination angle with height and it also accounts for leaf clumping The photosynthesis submodel is taken from Nikolov and others (1995). It accounts for both differences between shaded and sunlit leaves and the variation of photosynthetic capacity with height. The model was tested with data obtained from a deciduous forest in Pennsylvania. The results show reasonable agreement with the observations. They also demonstrate the model's ability to simulate phenomena that is characteristic of tall canopies like forests, including counter gradient-fluxes and local wind speed maxima in the trunk space.
A time delay controller for magnetic bearings
NASA Technical Reports Server (NTRS)
Youcef-Toumi, K.; Reddy, S.
1991-01-01
The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity.
A Regional Decision Support Scheme for Pest Risk Analysis in Southeast Asia.
Soliman, T; MacLeod, A; Mumford, J D; Nghiem, T P L; Tan, H T W; Papworth, S K; Corlett, R T; Carrasco, L R
2016-05-01
A key justification to support plant health regulations is the ability of quarantine services to conduct pest risk analyses (PRA). Despite the supranational nature of biological invasions and the close proximity and connectivity of Southeast Asian countries, PRAs are conducted at the national level. Furthermore, some countries have limited experience in the development of PRAs, which may result in inadequate phytosanitary responses that put their plant resources at risk to pests vectored via international trade. We review existing decision support schemes for PRAs and, following international standards for phytosanitary measures, propose new methods that adapt existing practices to suit the unique characteristics of Southeast Asia. Using a formal written expert elicitation survey, a panel of regional scientific experts was asked to identify and rate unique traits of Southeast Asia with respect to PRA. Subsequently, an expert elicitation workshop with plant protection officials was conducted to verify the potential applicability of the developed methods. Rich biodiversity, shortage of trained personnel, social vulnerability, tropical climate, agriculture-dependent economies, high rates of land-use change, and difficulties in implementing risk management options were identified as challenging Southeast Asian traits. The developed methods emphasize local Southeast Asian conditions and could help support authorities responsible for carrying out PRAs within the region. These methods could also facilitate the creation of other PRA schemes in low- and middle-income tropical countries. © 2016 Society for Risk Analysis.
Phytoremediation of landfill leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.L.; Williamson, K.L.; Owen, A.G.
Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate applicationmore » and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parini, Mauro; Acuna, Jorge A.; Laudiano, Michele
1996-01-24
The first 55 MW power plant at Miravalles started operation in March, 1994. During the first few months of production, a gradual increase in chloride content was observed in some production wells. The cause was assumed to be a rapid return of injectate from two in.jection wells located fairly near to the main production area. A tracer test was performed and showed a relatively rapid breakthrough, confirming the assumption made. Numerical modeling was then carried out to try to reproduce the observed behavior. The reservoir was modelled with an idealized three-dimensional network of fractures embedded into a low permeability matrix.more » The “two waters” feature of TOUGH2 simulator was used. The numerical simulation showed good agreement with observations. A “porous medium” model with equivalent hydraulic characteristics was unable to reproduce the observations. The fractured model, when applied to investigate the mid and long term expected behavior, indicated a reservoir cooling risk associated to the present injection scheme. Work is currently underway to modify this scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parini, M.; Laudiano, M.; Acuna, J.A.
1996-12-31
The first 55 MW power plant at Miravalles started operation in March, 1994. During the first few months of production, a gradual increase in chloride content was observed in some production wells. The cause was assumed to be a rapid return of injectate from two injection wells located fairly near to the main production area. A tracer test was performed and showed a relatively rapid breakthrough, confirming the assumption made. Numerical modeling was then carried out to try to reproduce the observed behavior. The reservoir was modelled with an idealized three-dimensional network of fractures embedded into a low permeability matrix.more » The {open_quotes}two waters{close_quotes} feature of TOUGH2 simulator was used. The numerical simulation showed good agreement with observations. A {open_quotes}porous medium{close_quotes} model with equivalent hydraulic characteristics was unable to reproduce the observations. The fractured model, when applied to investigate the mid and long term expected behavior, indicated a reservoir cooling risk associated to the present injection scheme. Work is currently underway to modify this scheme.« less
The Use of Microwave Incineration to Process Biological Wastes
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)
1994-01-01
The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Kent, James
2015-01-01
The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.
Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...
2016-01-01
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
NASA Astrophysics Data System (ADS)
Zhu, Y.; Ren, L.; Lü, H.
2017-12-01
On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.
Tests of high-resolution simulations over a region of complex terrain in Southeast coast of Brazil
NASA Astrophysics Data System (ADS)
Chou, Sin Chan; Luís Gomes, Jorge; Ristic, Ivan; Mesinger, Fedor; Sueiro, Gustavo; Andrade, Diego; Lima-e-Silva, Pedro Paulo
2013-04-01
The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997. The model has gone through upgrades along these years. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain where it can rise from sea level up to about 1000 m. Accurate near-surface wind direction and magnitude are needed for the power plant emergency plan. Besides, the region suffers from frequent events of floods and landslides, therefore accurate local forecasts are required for disaster warnings. The objective of this work is to carry out a series of numerical experiments to test and evaluate high resolution simulations in this complex area. Verification of model runs uses observations taken from the nuclear power plant and higher resolution reanalyses data. The runs were tested in a period when flow was predominately forced by local conditions and in a period forced by frontal passage. The Eta Model was configured initially with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The series of experiments consists of replacing surface layer stability function, adjusting cloud microphysics scheme parameters, further increasing vertical and horizontal resolutions. By replacing the stability function for the stable conditions substantially increased the katabatic winds and verified better against the tower wind data. Precipitation produced by the model was excessive in the region. Increasing vertical resolution to 60 layers caused a further increase in precipitation production. This excessive precipitation was reduced by adjusting some parameters in the cloud microphysics scheme. Precipitation overestimate still occurs and further tests are still necessary. The increase of horizontal resolution to 1 km required adjusting model diffusion parameters and refining divergence calculations. Available observations in the region for a thorough evaluation is a major constraint.
Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista.
Scamardella, J M
1999-12-01
In the wake of Darwin's evolutionary ideas, mid-nineteenth century naturalists realized the shortcomings of the long established two-kingdom system of organismal classification. Placement in a natural scheme of Protozoa, Protophyta, Phytozoa and Bacteria, microorganisms that exhibited plant-like and animal-like characteristics but obviously differed in organization from larger plants and animals, challenged traditional classification. The attempts of naturalists to classify these organisms outside the constraints of the plant and animal kingdoms led to concepts of additional kingdoms (Protozoa, Protista, Protoctista, etc.) to accommodate the nature of these organisms as not true plants or animals.
Disturbance observer based pitch control of wind turbines for disturbance rejection
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Chen, Xu; Tang, Jiong
2016-04-01
In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.
NASA Technical Reports Server (NTRS)
Venuturmilli, Rajasekhar; Zhang, Yong; Chen, Lea-Der
2003-01-01
Enclosed flames are found in many industrial applications such as power plants, gas-turbine combustors and jet engine afterburners. A better understanding of the burner stability limits can lead to development of combustion systems that extend the lean and rich limits of combustor operations. This paper reports a fundamental study of the stability limits of co-flow laminar jet diffusion flames. A numerical study was conducted that used an adaptive mesh refinement scheme in the calculation. Experiments were conducted in two test rigs with two different fuels and diluted with three inert species. The numerical stability limits were compared with microgravity experimental data. Additional normal-gravity experimental results were also presented.
Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.
Belyaeva, O B; Litvin, F F
2015-12-01
This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlier, R.H.
1982-01-01
The various methods of extracting energy from the ocean are covered, along with information on what causes tides, how tides are used to generate electricity, and the locations of hundreds of potential sites for tidal power plants. The rehabilitation of old tide mills, new methods of building tidal power plants, and the plastic barrier scheme are described. A world-wide examination is provided of tidal power plant sites and the status of power projects in the US, France, the USSR, England, Canada, North and South Korea, Argentina, Australia, and India. (WHR)
[Reform and practice of teaching methods for culture of medicinal plant].
Si, Jinping; Zhu, Yuqiu; Liu, Jingjing; Bai, Yan; Zhang, Xinfeng
2012-02-01
Culture of pharmaceutical plant is a comprehensive multi-disciplinary theory, which has a long history of application. In order to improve the quality of this course, some reformation schemes have been carried out, including stimulating enthusiasm for learning, refining the basic concepts and theories, promoting the case study, emphasis on latest achievements, enhancing exercise in laboratory and planting base, and guiding students to do scientific and technological innovation. Meanwhile, the authors point out some teaching problems of this course.
Kördel, Werner; Bernhardt, Cornelia; Derz, Kerstin; Hund-Rinke, Kerstin; Harmsen, Joop; Peijnenburg, Willie; Comans, Rob; Terytze, Konstantin
2013-10-15
Nearly all publications dealing with availability or bioavailability of soil pollutants start with the following statement: the determination of total pollutant content will lead to an over-estimation of risk. However, an assessment of contaminated sites should be based on the determination of mobile fractions of pollutants, and the fractions with potential for mobilisation that threaten groundwater and surface water, and the actual and potential fractions available for uptake by plants, soil microflora and soil organisms. After reviewing the literature for method proposals concerning the determination of available/bioavailable fractions of contaminants with respect to leaching, plants, microorganisms (biodegradation) and soil organisms, we propose a testing and assessment scheme for contaminated sites. The proposal includes (i) already accepted and used methods, (ii) methods which are under standardisation, and (iii) methods for which development has just started in order to promote urgently needed research. Copyright © 2013 Elsevier B.V. All rights reserved.
George, D R; Smith, T J; Sparagano, O A E; Guy, J H
2008-08-17
The poultry red mite, Dermanyssus gallinae (De Geer) is a serious ectoparasitic pest of layer hens that can survive for long periods in the poultry house sub-structure without taking a blood meal from its host. The research undertaken in this study found that 'time since last blood meal' had a notable effect on how toxic a selection of plant essential oils were to D. gallinae under laboratory conditions. In general, the essential oils had a greater toxic effect on D. gallinae if mites had been starved of a blood meal for around 3 weeks, than if they had been more recently fed 3-13 days prior to tests. This result was consistent across the four essential oils used (thyme, palmarosa, caraway and juniper leaf). This suggests that plant essential oils may be of use in management schemes for D. gallinae, particularly if used to sanitise houses between flocks, when mites will have been starved.
Numerical solution of special ultra-relativistic Euler equations using central upwind scheme
NASA Astrophysics Data System (ADS)
Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul
2018-06-01
This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.
NASA Astrophysics Data System (ADS)
Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.
2017-11-01
At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier
2017-06-01
CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different temperatures, enabling low temperature heat recovery from the receiver and Gas Turbine exhaust gasses.
Wu, Yunna; Xu, Chuanbo; Ke, Yiming; Chen, Kaifeng; Xu, Hu
2017-12-15
For tidal range power plants to be sustainable, the environmental impacts caused by the implement of various tidal barrage schemes must be assessed before construction. However, several problems exist in the current researches: firstly, evaluation criteria of the tidal barrage schemes environmental impact assessment (EIA) are not adequate; secondly, uncertainty of criteria information fails to be processed properly; thirdly, correlation among criteria is unreasonably measured. Hence the contributions of this paper are as follows: firstly, an evaluation criteria system is established from three dimensions of hydrodynamic, biological and morphological aspects. Secondly, cloud model is applied to describe the uncertainty of criteria information. Thirdly, Choquet integral with respect to λ-fuzzy measure is introduced to measure the correlation among criteria. On the above bases, a multi-criteria decision-making decision framework for tidal barrage scheme EIA is established to select the optimal scheme. Finally, a case study demonstrates the effectiveness of the proposed framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Myhill, Elizabeth A.; Boss, Alan P.
1993-01-01
In Boss & Myhill (1992) we described the derivation and testing of a spherical coordinate-based scheme for solving the hydrodynamic equations governing the gravitational collapse of nonisothermal, nonmagnetic, inviscid, radiative, three-dimensional protostellar clouds. Here we discuss a Cartesian coordinate-based scheme based on the same set of hydrodynamic equations. As with the spherical coorrdinate-based code, the Cartesian coordinate-based scheme employs explicit Eulerian methods which are both spatially and temporally second-order accurate. We begin by describing the hydrodynamic equations in Cartesian coordinates and the numerical methods used in this particular code. Following Finn & Hawley (1989), we pay special attention to the proper implementations of high-order accuracy, finite difference methods. We evaluate the ability of the Cartesian scheme to handle shock propagation problems, and through convergence testing, we show that the code is indeed second-order accurate. To compare the Cartesian scheme discussed here with the spherical coordinate-based scheme discussed in Boss & Myhill (1992), the two codes are used to calculate the standard isothermal collapse test case described by Bodenheimer & Boss (1981). We find that with the improved codes, the intermediate bar-configuration found previously disappears, and the cloud fragments directly into a binary protostellar system. Finally, we present the results from both codes of a new test for nonisothermal protostellar collapse.
Friberg, Leif; Gasparini, Alessandro; Carrero, Juan Jesus
2018-04-01
Information about renal function is important for drug safety studies using administrative health databases. However, serum creatinine values are seldom available in these registries. Our aim was to develop and test a simple scheme for stratification of renal function without access to laboratory test results. Our scheme uses registry data about diagnoses, contacts, dialysis and drug use. We validated the scheme in the Stockholm CREAtinine Measurements (SCREAM) project using information on approximately 1.1 million individuals residing in the Stockholm County who underwent calibrated creatinine testing during 2006-11, linked with data about health care contacts and filled drug prescriptions. Estimated glomerular filtration rate (eGFR) was calculated with the CKD-EPI formula and used as the gold standard for validation of the scheme. When the scheme classified patients as having eGFR <30 mL/min/1.73 m 2 , it was correct in 93.5% of cases. The specificity of the scheme was close to 100% in all age groups. The sensitivity was poor, ranging from 68.2% in the youngest age quartile, down to 10.7% in the oldest age quartile. Age-related decline in renal function makes a large proportion of elderly patients fall into the chronic kidney disease (CKD) range without receiving CKD diagnoses, as this often is seen as part of normal ageing. In the absence of renal function tests, our scheme may be of value for identifying patients with moderate and severe CKD on the basis of diagnostic and prescription data for use in studies of large healthcare databases.
On-line determination of transient stability status using multilayer perceptron neural network
NASA Astrophysics Data System (ADS)
Frimpong, Emmanuel Asuming; Okyere, Philip Yaw; Asumadu, Johnson
2018-01-01
A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.
NASA Astrophysics Data System (ADS)
Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin
2018-09-01
A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.
Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows
NASA Astrophysics Data System (ADS)
Raman, Venkatramanan
A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.
Novel search algorithms for a mid-infrared spectral library of cotton contaminants.
Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A
2008-06-01
During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify correctly as many test spectra as the best standard algorithm without relying on human choice to select a standard algorithm to perform the searches.
Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria
NASA Astrophysics Data System (ADS)
Miura, Naoki; Sakai, Shinsuke
Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.
A pilot evaluation of two G-seat cueing schemes
NASA Technical Reports Server (NTRS)
Showalter, T. W.
1978-01-01
A comparison was made of two contrasting G-seat cueing schemes. The G-seat, an aircraft simulation subsystem, creates aircraft acceleration cues via seat contour changes. Of the two cueing schemes tested, one was designed to create skin pressure cues and the other was designed to create body position cues. Each cueing scheme was tested and evaluated subjectively by five pilots regarding its ability to cue the appropriate accelerations in each of four simple maneuvers: a pullout, a pushover, an S-turn maneuver, and a thrusting maneuver. A divergence of pilot opinion occurred, revealing that the perception and acceptance of G-seat stimuli is a highly individualistic phenomena. The creation of one acceptable G-seat cueing scheme was, therefore, deemed to be quite difficult.
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
Spray algorithm without interface construction
NASA Astrophysics Data System (ADS)
Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.
2012-05-01
This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.
Input preshaping with frequency domain information for flexible-link manipulator control
NASA Technical Reports Server (NTRS)
Tzes, Anthony; Englehart, Matthew J.; Yurkovich, Stephen
1989-01-01
The application of an input preshaping scheme to flexible manipulators is considered. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration free output. The robustness of the algorithm with respect to injected disturbances and modal frequency variations is not satisfactory and can be improved by convolving the input with a longer sequence of impulses. The incorporation of the preshaping scheme to a closed-loop plant, using acceleration feedback, offers satisfactory disturbance rejection due to feedback and cancellation of the flexible mode effects due to the preshaping. A frequency domain identification scheme is used to estimate the modal frequencies on-line and subsequently update the spacing between the impulses. The combined adaptive input preshaping scheme provides the fastest possible slew that results in a vibration free output.
NASA Astrophysics Data System (ADS)
Cai, Fu; Ming, Huiqing; Mi, Na; Xie, Yanbing; Zhang, Yushu; Li, Rongping
2017-04-01
As root water uptake (RWU) is an important link in the water and heat exchange between plants and ambient air, improving its parameterization is key to enhancing the performance of land surface model simulations. Although different types of RWU functions have been adopted in land surface models, there is no evidence as to which scheme most applicable to maize farmland ecosystems. Based on the 2007-09 data collected at the farmland ecosystem field station in Jinzhou, the RWU function in the Common Land Model (CoLM) was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer ( W x ) and whether the baseline cumulative root efficiency required for maximum plant transpiration ( W c ) is reached. The sensibility of the parameters of the optimization scheme was investigated, and then the effects of the optimized RWU function on water and heat flux simulation were evaluated. The results indicate that the model simulation was not sensitive to W x but was significantly impacted by W c . With the original model, soil humidity was somewhat underestimated for precipitation-free days; soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage; and sensible and latent heat fluxes were overestimated and underestimated, respectively, for years with relatively less precipitation, and both were simulated with high accuracy for years with relatively more precipitation. The optimized RWU process resulted in a significant improvement of CoLM's performance in simulating soil humidity, temperature, sensible heat, and latent heat, for dry years. In conclusion, the optimized RWU scheme available for the CoLM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.
Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing
2016-01-01
Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108
NASA Astrophysics Data System (ADS)
Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.
2013-06-01
This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.
Block, Annette; Debode, Frédéric; Grohmann, Lutz; Hulin, Julie; Taverniers, Isabel; Kluga, Linda; Barbau-Piednoir, Elodie; Broeders, Sylvia; Huber, Ingrid; Van den Bulcke, Marc; Heinze, Petra; Berben, Gilbert; Busch, Ulrich; Roosens, Nancy; Janssen, Eric; Žel, Jana; Gruden, Kristina; Morisset, Dany
2013-08-22
Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs' molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.
2013-01-01
Background Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. Description The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. Conclusions The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms. PMID:23965170
Modeling applications for precision agriculture in the California Central Valley
NASA Astrophysics Data System (ADS)
Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.
2017-12-01
Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield in California, especially with uncertain precipitation regimes.
Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte; Christensen, Thomas H
2014-06-01
A Life Cycle Assessment (LCA) of a municipal wastewater treatment plant (WWTP) was conducted to illustrate the effect of an emission inventory data collection scheme on the outcomes of an environmental impact assessment. Due to their burden in respect to data collection, LCAs often rely heavily on existing emission and operational data, which are gathered under either compulsory monitoring or reporting requirements under law. In this study, an LCA was conducted using three input data sources: Information compiled under compulsory disclosure requirements (the European Pollutant Release and Transfer Registry), compliance with national discharge limits, and a state-of-the-art emission data collection scheme conducted at the same WWTP. Parameter uncertainty for each collection scheme was assessed through Monte Carlo simulation. The comparison of the results confirmed that LCA results depend heavily on input data coverage. Due to the threshold on reporting value, the E-PRTR did not capture the impact for particulate matter emission, terrestrial acidification, or terrestrial eutrophication. While the current practice can capture more than 90% of non-carcinogenic human toxicity and marine eutrophication, an LCA based on the data collection scheme underestimates impact potential due to limitations of substance coverage. Besides differences between data collection schemes, the results showed that 3-13,500% of the impacts came from background systems, such as from the provisioning of fuel, electricity, and chemicals, which do not need to be disclosed currently under E-PRTR. The incidental release of pollutants was also assessed by employing a scenario-based approach, the results of which demonstrated that these non-routine emissions could increase overall WWTP greenhouse gas emissions by between 113 and 210%. Overall, current data collection schemes have the potential to provide standardized data collection and form the basis for a sound environmental impact assessment, but several improvements are recommended, including the additional collection of energy and chemical usage data, the elimination of a reporting threshold, the expansion of substance coverage, and the inclusion of non-point fugitive gas emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Richman, Susan D; Fairley, Jennifer; Butler, Rachel; Deans, Zandra C
2017-12-01
Evidence strongly indicates that extended RAS testing should be undertaken in mCRC patients, prior to prescribing anti-EGFR therapies. With more laboratories implementing testing, the requirement for External Quality Assurance schemes increases, thus ensuring high standards of molecular analysis. Data was analysed from 15 United Kingdom National External Quality Assessment Service (UK NEQAS) for Molecular Genetics Colorectal cancer external quality assurance (EQA) schemes, delivered between 2009 and 2016. Laboratories were provided annually with nine colorectal tumour samples for genotyping. Information on methodology and extent of testing coverage was requested, and scores given for genotyping, interpretation and clerical accuracy. There has been a sixfold increase in laboratory participation (18 in 2009 to 108 in 2016). For RAS genotyping, fewer laboratories now use Roche cobas®, pyrosequencing and Sanger sequencing, with more moving to next generation sequencing (NGS). NGS is the most commonly employed technology for BRAF and PIK3CA mutation screening. KRAS genotyping errors were seen in ≤10% laboratories, until the 2014-2015 scheme, when there was an increase to 16.7%, corresponding to a large increase in scheme participants. NRAS genotyping errors peaked at 25.6% in the first 2015-2016 scheme but subsequently dropped to below 5%. Interpretation and clerical accuracy scores have been consistently good throughout. Within this EQA scheme, we have observed that the quality of molecular analysis for colorectal cancer has continued to improve, despite changes in the required targets, the volume of testing and the technologies employed. It is reassuring to know that laboratories clearly recognise the importance of participating in EQA schemes.
A comparison of two multi-variable integrator windup protection schemes
NASA Technical Reports Server (NTRS)
Mattern, Duane
1993-01-01
Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.
Genetic progress in multistage dairy cattle breeding schemes using genetic markers.
Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P
2005-04-01
The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A QTL explaining 5% of the additive genetic variance allowed a 35% reduction in the number of progeny tested bulls, while maintaining genetic response at the level of the base scheme. Genetic progress was up to 31.3% higher for schemes with increased embryo production and selection of embryos based on QTL information. The challenge for breeding organizations is to find the optimum breeding program with regard to additional genetic progress and additional (or reduced) cost.
Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco.
Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N; Marshall, David; Hancock, Robert D; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire
2011-12-01
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.
Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W
Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire
2011-01-01
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465
NASA Astrophysics Data System (ADS)
Guo, Qiaona; Huang, Jiangwei
2018-02-01
In this paper, the finite element software FEFLOW is used to simulate the seepage field of the interlayer staggered zone C2 in the basalt of Jinsha River Basin. The influence of the interlayer staggered zone C2 on the building is analyzed. Combined with the waterproof effect of current design scheme of anti-seepage curtain, the seepage field in the interlayer staggered zone C2 is discussed under different design schemes. The optimal design scheme of anti-seepage curtain is put forward. The results showed that the case four can effectively reduce the head and hydraulic gradient of underground powerhouse area, and improve the groundwater seepage field in the plant area.
Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ku, R. T.
1972-01-01
The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.
A cancelable biometric scheme based on multi-lead ECGs.
Peng-Tzu Chen; Shun-Chi Wu; Jui-Hsuan Hsieh
2017-07-01
Biometric technologies offer great advantages over other recognition methods, but there are concerns that they may compromise the privacy of individuals. In this paper, an electrocardiogram (ECG)-based cancelable biometric scheme is proposed to relieve such concerns. In this scheme, distinct biometric templates for a given beat bundle are constructed via "subspace collapsing." To determine the identity of any unknown beat bundle, the multiple signal classification (MUSIC) algorithm, incorporating a "suppression and poll" strategy, is adopted. Unlike the existing cancelable biometric schemes, knowledge of the distortion transform is not required for recognition. Experiments with real ECGs from 285 subjects are presented to illustrate the efficacy of the proposed scheme. The best recognition rate of 97.58 % was achieved under the test condition N train = 10 and N test = 10.
Myoelectric hand prosthesis force control through servo motor current feedback.
Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini
2009-10-01
This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
Hu, Rui
2017-03-27
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
NASA Technical Reports Server (NTRS)
Smith, D. R.; Leslie, F. W.
1984-01-01
The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a successive correction type scheme for the analysis of surface meteorological data. The scheme is subjected to a series of experiments to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple pass technique increases the accuracy of the analysis. Furthermore, the tests suggest appropriate values for the analysis parameters in resolving disturbances for the data set used in this investigation.
Scheme, Erik J; Englehart, Kevin B
2013-07-01
When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.
Simplified two-dimensional microwave imaging scheme using metamaterial-loaded Vivaldi antenna
NASA Astrophysics Data System (ADS)
Johari, Esha; Akhter, Zubair; Bhaskar, Manoj; Akhtar, M. Jaleel
2017-03-01
In this paper, a highly efficient, low-cost scheme for two-dimensional microwave imaging is proposed. To this end, the AZIM (anisotropic zero index metamaterial) cell-loaded Vivaldi antenna is designed and tested as effective electromagnetic radiation beam source required in the microwave imaging scheme. The designed antenna is first individually tested in the anechoic chamber, and its directivity along with the radiation pattern is obtained. The measurement setup for the imaging here involves a vector network analyzer, the AZIM cell-loaded ultra-wideband Vivaldi antenna, and other associated microwave components. The potential of the designed antenna for the microwave imaging is tested by first obtaining the two-dimensional reflectivity images of metallic samples of different shapes placed in front of the antenna, using the proposed scheme. In the next step, these sets of samples are hidden behind wooden blocks of different thicknesses and the reflectivity image of the test media is reconstructed by using the proposed scheme. Finally, the reflectivity images of various dielectric samples (Teflon, Plexiglas, permanent magnet moving coil) along with the copper sheet placed on a piece of cardboard are reconstructed by using the proposed setup. The images obtained for each case are plotted and compared with the actual objects, and a close match is observed which shows the applicability of the proposed scheme for through-wall imaging and the detection of concealed objects.
Perfect Detection of Spikes in the Linear Sub-threshold Dynamics of Point Neurons
Krishnan, Jeyashree; Porta Mana, PierGianLuca; Helias, Moritz; Diesmann, Markus; Di Napoli, Edoardo
2018-01-01
Spiking neuronal networks are usually simulated with one of three main schemes: the classical time-driven and event-driven schemes, and the more recent hybrid scheme. All three schemes evolve the state of a neuron through a series of checkpoints: equally spaced in the first scheme and determined neuron-wise by spike events in the latter two. The time-driven and the hybrid scheme determine whether the membrane potential of a neuron crosses a threshold at the end of the time interval between consecutive checkpoints. Threshold crossing can, however, occur within the interval even if this test is negative. Spikes can therefore be missed. The present work offers an alternative geometric point of view on neuronal dynamics, and derives, implements, and benchmarks a method for perfect retrospective spike detection. This method can be applied to neuron models with affine or linear subthreshold dynamics. The idea behind the method is to propagate the threshold with a time-inverted dynamics, testing whether the threshold crosses the neuron state to be evolved, rather than vice versa. Algebraically this translates into a set of inequalities necessary and sufficient for threshold crossing. This test is slower than the imperfect one, but can be optimized in several ways. Comparison confirms earlier results that the imperfect tests rarely miss spikes (less than a fraction 1/108 of missed spikes) in biologically relevant settings. PMID:29379430
Overview of the preliminary design of the ITER plasma control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snipes, J. A.; Albanese, R.; Ambrosino, G.
An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less
Overview of the preliminary design of the ITER plasma control system
Snipes, J. A.; Albanese, R.; Ambrosino, G.; ...
2017-09-11
An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less
Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.
Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni
2014-05-01
Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosey, F.E.
1996-01-01
This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors thatmore » efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.« less
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
LevelScheme: A level scheme drawing and scientific figure preparation system for Mathematica
NASA Astrophysics Data System (ADS)
Caprio, M. A.
2005-09-01
LevelScheme is a scientific figure preparation system for Mathematica. The main emphasis is upon the construction of level schemes, or level energy diagrams, as used in nuclear, atomic, molecular, and hadronic physics. LevelScheme also provides a general infrastructure for the preparation of publication-quality figures, including support for multipanel and inset plotting, customizable tick mark generation, and various drawing and labeling tasks. Coupled with Mathematica's plotting functions and powerful programming language, LevelScheme provides a flexible system for the creation of figures combining diagrams, mathematical plots, and data plots. Program summaryTitle of program:LevelScheme Catalogue identifier:ADVZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVZ Operating systems:Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux Programming language used:Mathematica 4 Number of bytes in distributed program, including test and documentation:3 051 807 Distribution format:tar.gz Nature of problem:Creation of level scheme diagrams. Creation of publication-quality multipart figures incorporating diagrams and plots. Method of solution:A set of Mathematica packages has been developed, providing a library of level scheme drawing objects, tools for figure construction and labeling, and control code for producing the graphics.
NASA Astrophysics Data System (ADS)
Popescu, Mihaela; Shyy, Wei; Garbey, Marc
2005-12-01
In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; Chao, Winston C.; Sud, Y. C.; Walker, G. K.
1994-01-01
A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of the scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem.
NASA Astrophysics Data System (ADS)
Ismail, Firas B.; Thiruchelvam, Vinesh
2013-06-01
Steam condenser is one of the most important equipment in steam power plants. If the steam condenser trips it may lead to whole unit shutdown, which is economically burdensome. Early condenser trips monitoring is crucial to maintain normal and safe operational conditions. In the present work, artificial intelligent monitoring systems specialized in condenser outages has been proposed and coded within the MATLAB environment. The training and validation of the system has been performed using real operational measurements captured from the control system of selected steam power plant. An integrated plant data preparation scheme for condenser outages with related operational variables has been proposed. Condenser outages under consideration have been detected by developed system before the plant control system"
Recycling plant, human and animal wastes to plant nutrients in a closed ecological system
NASA Technical Reports Server (NTRS)
Meissner, H. P.; Modell, M.
1979-01-01
The essential minerals for plant growth are nitrogen, phosphorous, potassium (macronutrients), calcium, magnesium, sulfur (secondary nutrients), iron, manganese, boron, copper, zinc, chlorine, sodium, and molybdenum (micronutrients). The first step in recycling wastes will undoubtedly be oxidation of carbon and hydrogen to CO2 and H2O. Transformation of minerals to plant nutrients depends upon the mode of oxidation to define the state of the nutrients. For the purpose of illustrating the type of processing required, ash and off-gas compositions of an incineration process were assumed and subsequent processing requirements were identified. Several processing schemes are described for separating out sodium chloride from the ash, leading to reformulation of a nutrient solution which should be acceptable to plants.
Gas-to-gasoline plant half complete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, B.
New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less
NASA Astrophysics Data System (ADS)
Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping
2010-10-01
We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.
Multi-scale Eulerian model within the new National Environmental Modeling System
NASA Astrophysics Data System (ADS)
Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko
2010-05-01
The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.
Dini, Leigh; Frean, John
2012-01-01
Performance in proficiency testing (PT) schemes is an objective measure of a laboratory's best performance. We examined the performance of participants in two parasitology PT schemes in South Africa from 2004 through 2010. The average rates of acceptable scores over the period were 58% and 66% for the stool and blood parasite schemes, respectively. In our setting, participation in PT alone is insufficient to improve performance; a policy that provides additional resources and training seems necessary. PMID:22814470
NASA Technical Reports Server (NTRS)
Wolf, R. A.; Kamide, Y.
1983-01-01
Advanced techniques considered by Kamide et al. (1981) seem to have the potential for providing observation-based high time resolution pictures of the global ionospheric current and electric field patterns for interesting events. However, a reliance on the proposed magnetogram-inversion schemes for the deduction of global ionospheric current and electric field patterns requires proof that reliable results are obtained. 'Theoretical' tests of the accuracy of the magnetogram inversion schemes have, therefore, been considered. The present investigation is concerned with a test, involving the developed KRM algorithm and the Rice Convection Model (RCM). The test was successful in the sense that there was overall agreement between electric fields and currents calculated by the RCM and KRM schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y. S.; Dick, J. W.; Tetirick, C. W.
2006-07-01
The construction permit for Taipower's Lungmen Nuclear Units 1 and 2, two ABWR plants, was issued on March 17, 1999[1], The construction of these units is progressing actively at site. The digital I and C system supplied by GE, which is designated as the Distributed Control and Information System (DCIS) in this project, is being implemented primarily at one vendor facility. In order to ensure the reliability, safety and availability of the DCIS, it is required to comprehensively test the whole DCIS in factory. This article describes the test requirements and acceptance criteria for functional testing of the Non-Safety Distributedmore » Control and Information system (DCIS) for Taiwan Power's Lungmen Units 1 and 2 GE selected Invensys as the equipment supplier for this Non-Safety portion of DCIS. The DCIS system of the Lungmen Units is a physically distributed control system. Field transmitters are connected to hard I/O terminal inputs on the Invensys I/A system. Once the signal is digitized on FBMs (Field Bus Modules) in Remote Multiplexing Units (RMUs), the signal is passed into an integrated control software environment. Control is based on the concept of compounds and blocks where each compound is a logical collection of blocks that performs a control function. Each point identified by control compound and block can be individually used throughout the DCIS system by referencing its unique name. In the Lungmen Project control logic and HSI (Human System Interface) requirements are divided into individual process systems called MPLs (Master Parts List). Higher-level Plant Computer System (PCS) algorithms access control compounds and blocks in these MPLs to develop functions. The test requirements and acceptance criteria for the DCIS system of the Lungmen Project are divided into three general categories (see 1,2,3 below) of verification, which in turn are divided into several specific tests: 1. DCIS System Physical Checks a) RMU Test - To confirm that the hard I/O database is installed on the DCIS and is physically addressed correctly. Test process is injecting a signal at each DCIS hard I/O terminal boundary and verifying correct receipt on the DCIS. b) DCIS Network Stress Test - Confirms system viability under extreme high load conditions beyond the plant could ever experience. Load conditions include alarm showers on the DCIS system to emulate plant upsets. c) System Hardware Configuration Test - These are typical checks of the DCIS system hardware including fault reporting, redundancy, and normal computer functions. d) Performance Test - Test confirms high level hardware and system capability attributes such as control system time response, 'cold start' reboots, and processor loading e) Electromagnetic compatibility tests - To verify the electromagnetic viability of the system and individual components 2. Implementation of Plant Systems and Systems Integration a) MPL Logic Tests -To confirm control functions implemented to system logic performs as expected, and that parameters are passed correctly between system control schemes. b) Data Link (Gateway) Tests- To verify third party interfaces to the DCIS. c) Plant Computer System (PCS) Logic Tests- Tests to verify that higher-level PCS logic is correctly implemented, performs as expected, and parameters are passed correctly between PCS sub-systems and MPL systems. Included the PCS sub-systems, Safety Parameter Display System, Historian, Alarms, Maintenance monitoring etc. 3. Unique Third Party Interfacing and Integration into the DCIS The set of controls for Automatic Power Regulation, Feedwater, and Recirculation Flow are specific in that these systems are implemented on third party Triple Modular Redundant (TMR) hardware, which was connected to the DCIS and are tested via full simulation. The TMR system is supplied by GE Control Solutions on the Mark Vie platform. (authors)« less
NASA Technical Reports Server (NTRS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2016-01-01
In this paper, we present the recent enhancement of the Open National Combustion Code (OpenNCC) and apply the OpenNCC to model a realistic combustor configuration (Energy Efficient Engine (E3)). First, we perform a series of validation tests for the newly-implemented advection upstream splitting method (AUSM) and the extended version of the AUSM-family schemes (AUSM+-up). Compared with the analytical/experimental data of the validation tests, we achieved good agreement. In the steady-state E3 cold flow results using the Reynolds-averaged Navier-Stokes(RANS), we find a noticeable difference in the flow fields calculated by the two different numerical schemes, the standard Jameson- Schmidt-Turkel (JST) scheme and the AUSM scheme. The main differences are that the AUSM scheme is less numerical dissipative and it predicts much stronger reverse flow in the recirculation zone. This study indicates that two schemes could show different flame-holding predictions and overall flame structures.
A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for
NASA Technical Reports Server (NTRS)
2001-01-01
A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.
This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for
NASA Technical Reports Server (NTRS)
2001-01-01
This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.
Elgenaidi, Walid; Newe, Thomas; O'Connell, Eoin; Toal, Daniel; Dooly, Gerard
2016-12-21
There has been a significant increase in the proliferation and implementation of Wireless Sensor Networks (WSNs) in different disciplines, including the monitoring of maritime environments, healthcare systems, and industrial sectors. It has now become critical to address the security issues of data communication while considering sensor node constraints. There are many proposed schemes, including the scheme being proposed in this paper, to ensure that there is a high level of security in WSNs. This paper presents a symmetric security scheme for a maritime coastal environment monitoring WSN. The scheme provides security for travelling packets via individually encrypted links between authenticated neighbors, thus avoiding a reiteration of a global rekeying process. Furthermore, this scheme proposes a dynamic update key based on a trusted node configuration, called a leader node, which works as a trusted third party. The technique has been implemented in real time on a Waspmote test bed sensor platform and the results from both field testing and indoor bench testing environments are discussed in this paper.
Elgenaidi, Walid; Newe, Thomas; O’Connell, Eoin; Toal, Daniel; Dooly, Gerard
2016-01-01
There has been a significant increase in the proliferation and implementation of Wireless Sensor Networks (WSNs) in different disciplines, including the monitoring of maritime environments, healthcare systems, and industrial sectors. It has now become critical to address the security issues of data communication while considering sensor node constraints. There are many proposed schemes, including the scheme being proposed in this paper, to ensure that there is a high level of security in WSNs. This paper presents a symmetric security scheme for a maritime coastal environment monitoring WSN. The scheme provides security for travelling packets via individually encrypted links between authenticated neighbors, thus avoiding a reiteration of a global rekeying process. Furthermore, this scheme proposes a dynamic update key based on a trusted node configuration, called a leader node, which works as a trusted third party. The technique has been implemented in real time on a Waspmote test bed sensor platform and the results from both field testing and indoor bench testing environments are discussed in this paper. PMID:28009834
Dollet, M; Sturm, N R; Campbell, D A
2001-03-01
The arbitrary genus Phytomonas includes a biologically diverse group of kinetoplastids that live in a wide variety of plant environments. To understand better the subdivisions within the phytomonads and the variability within groups, the exon, intron and non-transcribed spacer sequences of the spliced leader RNA gene were compared among isolates of the phloem-restricted members. A total of 29 isolates associated with disease in coconut, oil palm and red ginger (Alpinia purpurata, Zingibreaceae) were examined, all originating from plantations in South America and the Caribbean over a 12-year period. Analysis of non-transcribed spacer sequences revealed 2 main groups, I and II; group II could be further subdivided into 2 subgroups, IIa and Ilb. Three classes of spliced leader (SL) RNA gene were seen, with SLI corresponding to group I, SLIIa to group lIa, and SLIIb to group IIb. Two isolates showed some characteristics of both major groups. Group-specific oligonucleotide probes for hybridization studies were tested, and a multiplex amplification scheme was devised to allow direct differentiation between the 2 major groups of phloem-restricted Phytomonas. These results provide tools for diagnostic and molecular epidemiology of plant trypanosomes that are pathogenic for commercially important flowers and palms.
NASA Technical Reports Server (NTRS)
Hiser, L. L.; Herrera, W. R.
1973-01-01
A search was made of NASA developed technology and commercial technology for process control sensors and instrumentation which would be applicable to the operation of municipal sewage treatment plants. Several notable items were found from which process control concepts were formulated that incorporated these items into systems to automatically operate municipal sewage treatment plants. A preliminary design of the most promising concept was developed into a process control scheme for an activated sludge treatment plant. This design included process control mechanisms for maintaining constant food to sludge mass (F/M) ratio, and for such unit processes as primary sedimentation, sludge wastage, and underflow control from the final clarifier.
PSK Shift Timing Information Detection Using Image Processing and a Matched Filter
2009-09-01
phase shifts are enhanced. Develop, design, and test the resulting phase shift identification scheme. xx Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme. Develop, design, and test an optional analysis window overlapping technique to improve phase
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Direct model reference adaptive control of a flexible robotic manipulator
NASA Technical Reports Server (NTRS)
Meldrum, D. R.
1985-01-01
Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wheeler, M J; Mason, R H; Steunenberg, K; Wagstaff, M; Chou, C; Bertram, A K
2015-05-14
Ice nucleation on mineral dust particles is known to be an important process in the atmosphere. To accurately implement ice nucleation on mineral dust particles in atmospheric simulations, a suitable theory or scheme is desirable to describe laboratory freezing data in atmospheric models. In the following, we investigated ice nucleation by supermicron mineral dust particles [kaolinite and Arizona Test Dust (ATD)] in the immersion mode. The median freezing temperature for ATD was measured to be approximately -30 °C compared with approximately -36 °C for kaolinite. The freezing results were then used to test four different schemes previously used to describe ice nucleation in atmospheric models. In terms of ability to fit the data (quantified by calculating the reduced chi-squared values), the following order was found for ATD (from best to worst): active site, pdf-α, deterministic, single-α. For kaolinite, the following order was found (from best to worst): active site, deterministic, pdf-α, single-α. The variation in the predicted median freezing temperature per decade change in the cooling rate for each of the schemes was also compared with experimental results from other studies. The deterministic model predicts the median freezing temperature to be independent of cooling rate, while experimental results show a weak dependence on cooling rate. The single-α, pdf-α, and active site schemes all agree with the experimental results within roughly a factor of 2. On the basis of our results and previous results where different schemes were tested, the active site scheme is recommended for describing the freezing of ATD and kaolinite particles. We also used our ice nucleation results to determine the ice nucleation active site (INAS) density for the supermicron dust particles tested. Using the data, we show that the INAS densities of supermicron kaolinite and ATD particles studied here are smaller than the INAS densities of submicron kaolinite and ATD particles previously reported in the literature.
Panepinto, D; Zanetti, M C
2018-03-01
This study proposes a multi-step approach to evaluating the environmental and economic aspects of a thermal treatment plant with an energy-recovery configuration. In order to validate the proposed approach, the Turin incineration plant was analyzed, and the potential of the incinerator and several different possible connections to the district heating network were then considered. Both local and global environmental balances were defined. The global-scale results provided information on carbon dioxide emissions, while the local-scale results were used as reference values for the implementation of a Gaussian model that could evaluate the actual concentrations of pollutants released into the atmosphere. The economic aspects were then analyzed, and a correspondence between the environmental and economic advantages defined. The results showed a high energy efficiency for the combined production of heat and electricity, and the opportunity to minimize environmental impacts by including cogeneration in a district heating scheme. This scheme showed an environmental advantage, whereas the electricity-only configuration showed an economic advantage. A change in the thermal energy price (specifically, to 40 €/MWh), however, would make it possible to obtain both environmental and economic advantages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie
2017-10-01
The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.
Numerical experiments on the accuracy of ENO and modified ENO schemes
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1990-01-01
Further numerical experiments are made assessing an accuracy degeneracy phenomena. A modified essentially non-oscillatory (ENO) scheme is proposed, which recovers the correct order of accuracy for all the test problems with smooth initial conditions and gives comparable results with the original ENO schemes for discontinuous problems.
Feasibility study: Liquid hydrogen plant, 30 tons per day
NASA Technical Reports Server (NTRS)
1975-01-01
The design considerations of the plant are discussed in detail along with management planning, objective schedules, and cost estimates. The processing scheme is aimed at ultimate use of coal as the basic raw material. For back-up, and to provide assurance of a dependable and steady supply of hydrogen, a parallel and redundant facility for gasifying heavy residual oil will be installed. Both the coal and residual oil gasifiers will use the partial oxidation process.
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.
Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Benchmarking wastewater treatment plants under an eco-efficiency perspective.
Lorenzo-Toja, Yago; Vázquez-Rowe, Ian; Amores, María José; Termes-Rifé, Montserrat; Marín-Navarro, Desirée; Moreira, María Teresa; Feijoo, Gumersindo
2016-10-01
The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Astashev, M. E.; Belosludtsev, K. N.; Kharakoz, D. P.
2014-05-01
One of the most accurate methods for measuring the compressibility of liquids is resonance measurement of sound velocity in a fixed-length interferometer. This method combines high sensitivity, accuracy, and small sample volume of the test liquid. The measuring principle is to study the resonance properties of a composite resonator that contains a test liquid sample. Ealier, the phase-locked loop (PLL) scheme was used for this. In this paper, we propose an alternative measurement scheme based on digital analysis of harmonic signals, describe the implementation of this scheme using commercially available data acquisition modules, and give examples of test measurements with accuracy evaluations of the results.
Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests
NASA Astrophysics Data System (ADS)
Toth, G.; Keppens, R.; Botchev, M. A.
1998-04-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.
Preliminary studies for a beam-generated plasma neutralizer test in NIO1
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.
2017-08-01
The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.
Thomas, J.A
2005-01-01
Conservative estimates suggest that 50–90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1–100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10–30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies, bumblebees, hoverflies and ants. Given institutional backing, similar projects could be employed internationally and standardized. Finally, a range of schemes designed to monitor change in communities of aquatic macro-invertebrates is described. Although designed to use invertebrates as a bio-indicator of water quality for human use, these programmes could be extended to monitor the 2010 biodiversity targets of the World Summit on Sustainable Development. PMID:15814349
Thomas, J A
2005-02-28
Conservative estimates suggest that 50-90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1-100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10-30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies, bumblebees, hoverflies and ants. Given institutional backing, similar projects could be employed internationally and standardized. Finally, a range of schemes designed to monitor change in communities of aquatic macro-invertebrates is described. Although designed to use invertebrates as a bio-indicator of water quality for human use, these programmes could be extended to monitor the 2010 biodiversity targets of the World Summit on Sustainable Development.
Impact of Multiple Environmental Stresses on Wetland Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Muneepeerakul, C. P.; Tamea, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.
2009-12-01
This research quantifies the impacts of climate change on the dynamics of wetland vegetation under the effect of multiple stresses, such as drought, water-logging, shade and nutrients. The effects of these stresses are investigated through a mechanistic model that captures the co-evolving nature between marsh emergent plant species and their resources (water, nitrogen, light, and oxygen). The model explicitly considers the feedback mechanisms between vegetation, light and nitrogen dynamics as well as the specific dynamics of plant leaves, rhizomes, and roots. Each plant species is characterized by three independent traits, namely leaf nitrogen (N) content, specific leaf area, and allometric carbon (C) allocation to rhizome storage, which govern the ability to gain and maintain resources as well as to survive in a particular multi-stressed environment. The modeling of plant growth incorporates C and N into the construction of leaves and roots, whose amount of new biomass is determined by the dynamic plant allocation scheme. Nitrogen is internally recycled between pools of plants, litter, humus, microbes, and mineral N. The N dynamics are modeled using a parallel scheme, with the major modifications being the calculation of the aerobic and anoxic periods and the incorporation of the anaerobic processes. A simple hydrologic model with stochastic rainfall is used to describe the water level dynamics and the soil moisture profile. Soil water balance is evaluated at the daily time scale and includes rainfall, evapotranspiration and lateral flow to/from an external water body, with evapotranspiration loss equal to the potential value, governed by the daily average condition of atmospheric water demand. The resulting feedback dynamics arising from the coupled system of plant-soil-microbe are studied in details and species’ fitnesses in the 3-D trait space are compared across various rainfall patterns with different mean and fluctuations. The model results are then compared with those from experiments and field studies reported in the literature, providing insights about the physiological features that enable plants to thrive in different wetland environments and climate regimes.
A prolonged outbreak of ornithosis in duck processors.
Newman, C. P.; Palmer, S. R.; Kirby, F. D.; Caul, E. O.
1992-01-01
In 1985 an outbreak of ornithosis affected 13 of 80 (16%) workers in a duck-processing plant. New employees were three times more likely to become cases than established employees. The highest attack rate was in those on the production line. Following the outbreak, an occupational health scheme was set up to monitor the health of new recruits to the company. Serological evidence of recent infection was demonstrated in 18 of 37 (49%) new employees tested in the first 3 months of employment. Five (14%) also had clinical evidence of ornithosis. Veterinary investigation of the ducks demonstrated a high proportion with asymptomatic chlamydial infection. It is suggested that ornithosis may be more common in duck processors than is currently supposed. Strategies to reduce occupational risks are discussed. PMID:1547838
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Total Variation Diminishing (TVD) schemes of uniform accuracy
NASA Technical Reports Server (NTRS)
Hartwich, PETER-M.; Hsu, Chung-Hao; Liu, C. H.
1988-01-01
Explicit second-order accurate finite-difference schemes for the approximation of hyperbolic conservation laws are presented. These schemes are nonlinear even for the constant coefficient case. They are based on first-order upwind schemes. Their accuracy is enhanced by locally replacing the first-order one-sided differences with either second-order one-sided differences or central differences or a blend thereof. The appropriate local difference stencils are selected such that they give TVD schemes of uniform second-order accuracy in the scalar, or linear systems, case. Like conventional TVD schemes, the new schemes avoid a Gibbs phenomenon at discontinuities of the solution, but they do not switch back to first-order accuracy, in the sense of truncation error, at extrema of the solution. The performance of the new schemes is demonstrated in several numerical tests.
NASA Astrophysics Data System (ADS)
Siswantyo, Sepha; Susanti, Bety Hayat
2016-02-01
Preneel-Govaerts-Vandewalle (PGV) schemes consist of 64 possible single-block-length schemes that can be used to build a hash function based on block ciphers. For those 64 schemes, Preneel claimed that 4 schemes are secure. In this paper, we apply length extension attack on those 4 secure PGV schemes which use RC5 algorithm in its basic construction to test their collision resistance property. The attack result shows that the collision occurred on those 4 secure PGV schemes. Based on the analysis, we indicate that Feistel structure and data dependent rotation operation in RC5 algorithm, XOR operations on the scheme, along with selection of additional message block value also give impact on the collision to occur.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
NASA Astrophysics Data System (ADS)
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
An alternate lining scheme for solar ponds - Results of a liner test rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, P.; Kishore, V.V.N.
1990-01-01
Solar pond lining schemes consisting of combinations of clays and Low Density Polyethylene (LDPE) films have been experimentally evaluated by means of a Solar Pond Liner Test Rig. Results indicate that LDPE film sandwiched between two layers of clay can be effectively used for lining solar ponds.
Mangrove plantation over a limestone reef - Good for the ecology?
NASA Astrophysics Data System (ADS)
Asaeda, Takashi; Barnuevo, Abner; Sanjaya, Kelum; Fortes, Miguel D.; Kanesaka, Yoshikazu; Wolanski, Eric
2016-05-01
There have been efforts to restore degraded tropical and subtropical mangrove forests. While there have been many failures, there have been some successes but these were seldom evaluated to test to what level the created mangrove wetlands reproduce the characteristics of the natural ecosystem and thus what ecosystem services they can deliver. We provide such a detailed assessment for the case of Olango and Banacon Islands in the Philippines where the forest was created over a limestone reef where mangroves did not exist in one island but they covered most of the other island before deforestation in the 1940s and 1950s. The created forest appears to have reached a steady state after 60 years. As is typical of mangrove rehabilitation efforts worldwide, planting was limited to a single Rhizophora species. While a forest has been created, it does not mimic a natural forest. There is a large difference between the natural and planted forests in terms of forest structure and species diversity, and tree density. The high density of planted trees excludes importing other species from nearby natural forests; therefore the planted forest remains mono-specific even after several decades and shows no sign of mimicking the characteristics of a natural forest. The planted forests provided mangrove propagules that invaded nearby natural forests. The planted forest has also changed the substratum from sandy to muddy. The outline of the crown of the planted forest has become smooth and horizontal, contrary to that of a natural forest, and this changes the local landscape. Thus we recommend that future mangrove restoration schemes should modify their methodology in order to plant several species, maintain sufficient space between trees for growth, include the naturally dominant species, and create tidal creeks, in order to reproduce in the rehabilitated areas some of the key ecosystem characteristics of natural mangrove forests.
Dispersion-relation-preserving finite difference schemes for computational acoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1993-01-01
Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.
Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi
2017-01-01
A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancing Vocabulary Acquisition through Reading: A Hierarchy of Text-Related Exercise Types.
ERIC Educational Resources Information Center
Wesche, M.; Paribakht, T. Sima
This paper describes a classification scheme developed to examine the effects of extensive reading on primary and second language vocabulary acquisition and reports on an experiment undertaken to test the model scheme. The classification scheme represents a hypothesized hierarchy of the degree and type of mental processing required by various…
NASA Astrophysics Data System (ADS)
Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.
2014-12-01
The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.
Review on how proficiency testing needs in Brazil are supplied by accredited providers by Cgcre
NASA Astrophysics Data System (ADS)
Moura, M. H.; Borges, R. M. H.
2015-01-01
Proficiency testing schemes are an important tool to quality assurance in measurement as well as a tool to harmonization of multilateral recognition arrangements for accreditation. The General Coordination for Accreditation (Cgcre) of INMETRO developed a new program to accredit proficiency testing providers according with the International Standard ISO/IEC 17043. This work presents a review on needs for proficiency testing schemes in Brazil and assesses how these needs are supplied by accredited providers.
NASA Astrophysics Data System (ADS)
MacArt, Jonathan F.; Mueller, Michael E.
2016-12-01
Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.
Bartlett, John M S; Ibrahim, Merdol; Jasani, Bharat; Morgan, John M; Ellis, Ian; Kay, Elaine; Magee, Hilary; Barnett, Sarah; Miller, Keith
2007-07-01
Trastuzumab provides clinical benefit for advanced and early breast cancer patients whose tumours over-express or have gene amplification of the HER2 oncogene. The UK National External Quality Assessment Scheme (NEQAS) for immunohistochemical testing was established to assess and improve the quality of HER2 immunohistochemical testing. However, until recently, no provision was available for HER2 fluorescence in situ hybridisation (FISH) testing. A pilot scheme was set up to review the performance of FISH testing in clinical diagnostic laboratories. FISH was performed in 6 reference and 31 participating laboratories using a cell line panel with known HER2 status. Using results from reference laboratories as a criterion for acceptable performance, 60% of all results returned by participants were appropriate and 78% either appropriate or acceptable. However, 22.4% of results returned were deemed inappropriate, including 13 cases (4.2%) where a misdiagnosis would have been made had these been clinical specimens. The results of three consecutive runs show that both reference laboratories and a proportion of routine clinical diagnostic (about 25%) centres can consistently achieve acceptable quality control of HER2 testing. Data from a significant proportion of participating laboratories show that further steps are required, including those taken via review of performance under schemes such as NEQAS, to improve quality of HER2 testing by FISH in the "real world".
Automatic control of solar power plants
NASA Astrophysics Data System (ADS)
Ermakov, V. S.; Dubilovich, V. M.
1982-02-01
The automatic control of the heliostat field of a 200-MW solar power plant is discussed. The advantages of the decentralized control principle with the solution of a number of individual problems in a single control center are emphasized. The basic requirements on heliostat construction are examined, and possible functional schemes for the automatic control of a heliostat field are described. It is proposed that groups of heliostats can be controlled from a single center and on the basis of a single algorithm.
Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris
2017-12-15
Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Refining of plant oils to chemicals by olefin metathesis.
Chikkali, Samir; Mecking, Stefan
2012-06-11
Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seasonal thermal storage: Swedish practice, developments and cost projections
NASA Astrophysics Data System (ADS)
Margen, P.
1981-06-01
The types of heat store being developed in Sweden for seasonal storage of heat are discussed. This type of storage allows summer excess heat from industrial waste heat plants, garbage burning plants and future central solar heat stations to be stored for winter use on district heating networks. Whereas above ground steel or concrete tanks are usually too expensive insulated earth pits, uninsulated rock caverns and deep ground schemes using rock or clay promise to achieve sufficiently low costs to justify storage when supplied with free or cheap summer treat. For all these concepts demonstration plants were or are being built in Sweden.
Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.
NASA Astrophysics Data System (ADS)
Gaffney, Kevin P.; Aghaei, Faranak; Battiste, James; Zheng, Bin
2017-03-01
Detection of residual brain tumor is important to evaluate efficacy of brain cancer surgery, determine optimal strategy of further radiation therapy if needed, and assess ultimate prognosis of the patients. Brain MR is a commonly used imaging modality for this task. In order to distinguish between residual tumor and surgery induced scar tissues, two sets of MRI scans are conducted pre- and post-gadolinium contrast injection. The residual tumors are only enhanced in the post-contrast injection images. However, subjective reading and quantifying this type of brain MR images faces difficulty in detecting real residual tumor regions and measuring total volume of the residual tumor. In order to help solve this clinical difficulty, we developed and tested a new interactive computer-aided detection scheme, which consists of three consecutive image processing steps namely, 1) segmentation of the intracranial region, 2) image registration and subtraction, 3) tumor segmentation and refinement. The scheme also includes a specially designed and implemented graphical user interface (GUI) platform. When using this scheme, two sets of pre- and post-contrast injection images are first automatically processed to detect and quantify residual tumor volume. Then, a user can visually examine segmentation results and conveniently guide the scheme to correct any detection or segmentation errors if needed. The scheme has been repeatedly tested using five cases. Due to the observed high performance and robustness of the testing results, the scheme is currently ready for conducting clinical studies and helping clinicians investigate the association between this quantitative image marker and outcome of patients.
Simultaneous detoxification, saccharification, and ethanol fermentation of weak-acid hydrolyzates
USDA-ARS?s Scientific Manuscript database
Lignocellulosic feedstocks can be prepared for ethanol fermentation by pre-treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and opens up the plant cell wall fibers for subsequent enzymatic saccharification. The acid catalyzed reaction scheme is sequential whereby rele...
Diallel crossing among doubled haploids of cucumber reveals significant reciprocal-cross differences
USDA-ARS?s Scientific Manuscript database
Cucumber is an excellent plant for studying organellar effects on phenotypes because chloroplasts show maternal and mitochondria paternal transmission. We produced doubled haploids (DH) from divergent cucumber populations, generated reciprocal crosses in a diallel mating scheme, measured fresh and d...
Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR
NASA Astrophysics Data System (ADS)
Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.
2016-08-01
Reliable power control for stabilizing the spatial oscillations is quite important for ensuring the safe operation of a modern pressurized heavy water reactor (PHWR), since these spatial oscillations can cause “flux tilting” in the reactor core. In this paper, a decentralized fuzzy model predictive control (DFMPC) is proposed for spatial control of PHWR. Due to the load dependent dynamics of the nuclear power plant, fuzzy modeling is used to approximate the nonlinear process. A fuzzy Lyapunov function and “quasi-min-max” strategy is utilized in designing the DFMPC, to reduce the conservatism. The plant-wide stability is achieved by the asymptotically positive realness constraint (APRC) for this decentralized MPC. The solving optimization problem is based on a receding horizon scheme involving the linear matrix inequalities (LMIs) technique. Through dynamic simulations, it is demonstrated that the designed DFMPC can effectively suppress spatial oscillations developed in PHWR, and further, shows the advantages over the typical parallel distributed compensation (PDC) control scheme.
RootGraph: a graphic optimization tool for automated image analysis of plant roots
Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.
2015-01-01
This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880
Trust and British Gas partner in EPC scheme.
Bevan, Patrick
2015-02-01
In late August last year the St George's Healthcare NHS Trust in south-west London signed what the Trust's Estates and Facilities team described as 'a historic partnership' with British Gas for a £12 m Energy Performance Contract energy reduction scheme--via which the energy company has guaranteed to deliver £1.1 m in annual savings over the next 15 years. The agreement will see British Gas replace four 35-year-old gas-powered steam boilers and an ageing CHP plant in the boiler house at the Trust's main acute facility, the StGeorge's Hospital in Tooting, and upgrade some of the associated infrastructure. British Gas will also maintain the new plant to ensure that the projected savings are achieved while the Trust owns the new assets. The Trust should gain financially--via lower energy costs and carbon emissions, while estates personnel will be better able to complete the many other estate maintenance issues that would otherwise be contracted out at one of London's biggest acute hospitals.
Sutherland, Devon J; Stearman, G Kim; Wells, Martha J M
2003-01-01
The transport and fate of pesticides applied to ornamental plant nursery crops are not well documented. Methodology for analysis of soil and water runoff samples concomitantly containing the herbicides simazine (1-chloro-4,6-bis(ethylamino)-s-triazine) and 2,4-D ((2,4-dichlorophenoxy)acetic acid) was developed in this research to investigate the potential for runoff and leaching from ornamental nursery plots. Solid-phase extraction was used prior to analysis by gas chromatography and liquid chromatography. Chromatographic results were compared with determination by enzyme-linked immunoassay analysis. The significant analytical contributions of this research include (1) the development of a scheme using chromatographic mode sequencing for the fractionation of simazine and 2,4-D, (2) optimization of the homogeneous derivatization of 2,4-D using the methylating agent boron trifluoride in methanol as an alternative to in situ generation of diazomethane, and (3) the practical application of these techniques to field samples.
The terminator "toy" chemistry test: A simple tool to assess errors in transport schemes
Lauritzen, P. H.; Conley, A. J.; Lamarque, J. -F.; ...
2015-05-04
This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X+X → X 2) and dissociation (X 2 → X+X). This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum Xmore » T = X+2X 2 should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics) coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.« less
An investigation of error characteristics and coding performance
NASA Technical Reports Server (NTRS)
Ebel, William J.; Ingels, Frank M.
1993-01-01
The first year's effort on NASA Grant NAG5-2006 was an investigation to characterize typical errors resulting from the EOS dorn link. The analysis methods developed for this effort were used on test data from a March 1992 White Sands Terminal Test. The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a convolutional inner code versus a Reed Solomon only code scheme has been investigated as well as the effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types. The work effort consisted of development of software that allows simulation studies with the appropriate coding schemes plus either simulated data with errors or actual data with errors. The software program is entitled Communication Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and interleavers.
An Improved Flame Test for Qualitative Analysis Using a Multichannel UV-Visible Spectrophotometer
ERIC Educational Resources Information Center
Blitz, Jonathan P.; Sheeran, Daniel J.; Becker, Thomas L.
2006-01-01
Qualitative analysis schemes are used in undergraduate laboratory settings as a way to introduce equilibrium concepts and logical thinking. The main component of all qualitative analysis schemes is a flame test, as the color of light emitted from certain elements is distinctive and a flame photometer or spectrophotometer in each laboratory is…
Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.
1988-01-01
The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.
Examination of Secondary School Seventh Graders' Proof Skills and Proof Schemes
ERIC Educational Resources Information Center
Sen, Ceylan; Guler, Gursel
2015-01-01
The aim of this study is to examine current proof making skills of secondary school seventh graders using proof schemes. Data of the study were collected in two phases. Initially, Proof Schemes Test, which was developed by the researchers, was administrated to 250 seventh grade students from eight secondary schools, which were chosen randomly. The…
Algorithms for Efficient Computation of Transfer Functions for Large Order Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Giesy, Daniel P.
1998-01-01
An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, still-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open- and closed-loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, the present method was up to two orders of magnitude faster than a traditional method. The present method generally showed good to excellent accuracy throughout the range of test frequencies, while traditional methods gave adequate accuracy for lower frequencies, but generally deteriorated in performance at higher frequencies with worst case errors being many orders of magnitude times the correct values.
Chanona, J; Ribes, J; Seco, A; Ferrer, J
2006-01-01
This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.
Little, R; Wheeler, K; Edge, S
2017-02-11
This paper examines farmer attitudes towards the development of a voluntary risk-based trading scheme for cattle in England as a risk mitigation measure for bovine tuberculosis (bTB). The research reported here was commissioned to gather evidence on the type of scheme that would have a good chance of success in improving the information farmers receive about the bTB risk of cattle they buy. Telephone interviews were conducted with a stratified random sample of 203 cattle farmers in England, splitting the interviews equally between respondents in the high-risk area and low-risk area for bTB. Supplementary interviews and focus groups with farmers were also carried out across the risk areas. Results suggest a greater enthusiasm for a risk-based trading scheme in low-risk areas compared with high-risk areas and among members of breed societies and cattle health schemes. Third-party certification of herds by private vets or the Animal and Plant Health Agency were regarded as the most credible source, with farmer self-certification being favoured by sellers, but being regarded as least credible by buyers. Understanding farmers' attitudes towards voluntary risk-based trading is important to gauge likely uptake, understand preferences for information provision and to assist in monitoring, evaluating and refining the scheme once established. British Veterinary Association.
NASA Astrophysics Data System (ADS)
Corbin, A. E.; Timmermans, J.; Hauser, L.; Bodegom, P. V.; Soudzilovskaia, N. A.
2017-12-01
There is a growing demand for accurate land surface parameterization from remote sensing (RS) observations. This demand has not been satisfied, because most estimation schemes apply 1) a single-sensor single-scale approach, and 2) require specific key-variables to be `guessed'. This is because of the relevant observational information required to accurately retrieve parameters of interest. Consequently, many schemes assume specific variables to be constant or not present; subsequently leading to more uncertainty. In this aspect, the MULTIscale SENTINEL land surface information retrieval Platform (MULTIPLY) was created. MULTIPLY couples a variety of RS sources with Radiative Transfer Models (RTM) over varying spectral ranges using data-assimilation to estimate geophysical parameters. In addition, MULTIPLY also uses prior information about the land surface to constrain the retrieval problem. This research aims to improve the retrieval of plant biophysical parameters through the use of priors of biophysical parameters/plant traits. Of particular interest are traits (physical, morphological or chemical trait) affecting individual performance and fitness of species. Plant traits that are able to be retrieved via RS and with RTMs include traits such as leaf-pigments, leaf water, LAI, phenols, C/N, etc. In-situ data for plant traits that are retrievable via RS techniques were collected for a meta-analysis from databases such as TRY, Ecosis, and individual collaborators. Of particular interest are the following traits: chlorophyll, carotenoids, anthocyanins, phenols, leaf water, and LAI. ANOVA statistics were generated for each traits according to species, plant functional groups (such as evergreens, grasses, etc.), and the trait itself. Afterwards, traits were also compared using covariance matrices. Using these as priors, MULTIPLY was is used to retrieve several plant traits in two validation sites in the Netherlands (Speulderbos) and in Finland (Sodankylä). Initial comparisons show significant improved results over non-a priori based retrievals.
Reuse of process water in a waste-to-energy plant: An Italian case of study.
Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela
2015-09-01
The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nendza, Monika; Kühne, Ralph; Lombardo, Anna; Strempel, Sebastian; Schüürmann, Gerrit
2018-03-01
Aquatic bioconcentration factors (BCFs) are critical in PBT (persistent, bioaccumulative, toxic) and risk assessment of chemicals. High costs and use of more than 100 fish per standard BCF study (OECD 305) call for alternative methods to replace as much in vivo testing as possible. The BCF waiving scheme is a screening tool combining QSAR classifications based on physicochemical properties related to the distribution (hydrophobicity, ionisation), persistence (biodegradability, hydrolysis), solubility and volatility (Henry's law constant) of substances in water bodies and aquatic biota to predict substances with low aquatic bioaccumulation (nonB, BCF<2000). The BCF waiving scheme was developed with a dataset of reliable BCFs for 998 compounds and externally validated with another 181 substances. It performs with 100% sensitivity (no false negatives), >50% efficacy (waiving potential), and complies with the OECD principles for valid QSARs. The chemical applicability domain of the BCF waiving scheme is given by the structures of the training set, with some compound classes explicitly excluded like organometallics, poly- and perfluorinated compounds, aromatic triphenylphosphates, surfactants. The prediction confidence of the BCF waiving scheme is based on applicability domain compliance, consensus modelling, and the structural similarity with known nonB and B/vB substances. Compounds classified as nonB by the BCF waiving scheme are candidates for waiving of BCF in vivo testing on fish due to low concern with regard to the B criterion. The BCF waiving scheme supports the 3Rs with a possible reduction of >50% of BCF in vivo testing on fish. If the target chemical is outside the applicability domain of the BCF waiving scheme or not classified as nonB, further assessments with in silico, in vitro or in vivo methods are necessary to either confirm or reject bioaccumulative behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.
A COMPLETE DISPOSAL-RECYCLE SCHEME FOR AGRICULTURAL SOLID WASTES
This investigation applied the anaerobic process to the production of methane gas and a stabilized sludge from cow manure and farm clippings in laboratory pilot plants as well as a full-scale (2,000 gal.) digester system. The quantity and quality of gas produced, the biochemical ...
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
A simple algorithm to improve the performance of the WENO scheme on non-uniform grids
NASA Astrophysics Data System (ADS)
Huang, Wen-Feng; Ren, Yu-Xin; Jiang, Xiong
2018-02-01
This paper presents a simple approach for improving the performance of the weighted essentially non-oscillatory (WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifth-order WENO-JS (WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202-228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable. The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On non-uniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime, the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.
Development and feasibility testing of the Pediatric Emergency Discharge Interaction Coding Scheme.
Curran, Janet A; Taylor, Alexandra; Chorney, Jill; Porter, Stephen; Murphy, Andrea; MacPhee, Shannon; Bishop, Andrea; Haworth, Rebecca
2017-08-01
Discharge communication is an important aspect of high-quality emergency care. This study addresses the gap in knowledge on how to describe discharge communication in a paediatric emergency department (ED). The objective of this feasibility study was to develop and test a coding scheme to characterize discharge communication between health-care providers (HCPs) and caregivers who visit the ED with their children. The Pediatric Emergency Discharge Interaction Coding Scheme (PEDICS) and coding manual were developed following a review of the literature and an iterative refinement process involving HCP observations, inter-rater assessments and team consensus. The coding scheme was pilot-tested through observations of HCPs across a range of shifts in one urban paediatric ED. Overall, 329 patient observations were carried out across 50 observational shifts. Inter-rater reliability was evaluated in 16% of the observations. The final version of the PEDICS contained 41 communication elements. Kappa scores were greater than .60 for the majority of communication elements. The most frequently observed communication elements were under the Introduction node and the least frequently observed were under the Social Concerns node. HCPs initiated the majority of the communication. Pediatric Emergency Discharge Interaction Coding Scheme addresses an important gap in the discharge communication literature. The tool is useful for mapping patterns of discharge communication between HCPs and caregivers. Results from our pilot test identified deficits in specific areas of discharge communication that could impact adherence to discharge instructions. The PEDICS would benefit from further testing with a different sample of HCPs. © 2017 The Authors. Health Expectations Published by John Wiley & Sons Ltd.
Yu, Sam Wai-Kam
2008-01-01
In 2000, the Hong Kong government introduced the first compulsory retirement saving scheme intended to protect the entire workforce, the Mandatory Provident Fund (MPF). Prior to the introduction of this scheme, the government's main measure for giving financial protection to retirees was the Comprehensive Social Security Assistance (CSSA) scheme, which is a noncontributory, means-tested financial assistance scheme. This paper studies the government's attempt to introduce the MPF on top of the CSSA scheme as a means to illustrate how governments might address their financial responsibilities in providing pension schemes by adopting both the residual strategy-centered reform approach and the collaborative strategy-centered reform approach. The former approach is concerned with developing noncontributory schemes using residual strategies, and the latter is concerned with developing contributory schemes using collaborative strategies. The paper shows the difficulties involved in carrying out these two reform approaches simultaneously.
A Continuing Search for a Near-Perfect Numerical Flux Scheme. Part 1; [AUSM+
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1994-01-01
While enjoying demonstrated improvement in accuracy, efficiency, and robustness over existing schemes, the Advection Upstream Splitting Scheme (AUSM) was found to have some deficiencies in extreme cases. This recent progress towards improving the AUSM while retaining its advantageous features is described. The new scheme, termed AUSM+, features: unification of velocity and Mach number splitting; exact capture of a single stationary shock; and improvement in accuracy. A general construction of the AUSM+ scheme is layed out and then focus is on the analysis of the a scheme and its mathematical properties, heretofore unreported. Monotonicity and positivity are proved, and a CFL-like condition is given for first and second order schemes and for generalized curvilinear co-ordinates. Finally, results of numerical tests on many problems are given to confirm the capability and improvements on a variety of problems including those failed by prominent schemes.
Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder
2016-03-15
Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed in genetically modified crops. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain.
Banks, R F; Baldasano, J M
2016-12-01
Here we analyze the impact of four planetary boundary-layer (PBL) parametrization schemes from the Weather Research and Forecasting (WRF) numerical weather prediction model on simulations of meteorological variables and predicted pollutant concentrations from an air quality forecast system (AQFS). The current setup of the Spanish operational AQFS, CALIOPE, is composed of the WRF-ARW V3.5.1 meteorological model tied to the Yonsei University (YSU) PBL scheme, HERMES v2 emissions model, CMAQ V5.0.2 chemical transport model, and dust outputs from BSC-DREAM8bv2. We test the performance of the YSU scheme against the Assymetric Convective Model Version 2 (ACM2), Mellor-Yamada-Janjic (MYJ), and Bougeault-Lacarrère (BouLac) schemes. The one-day diagnostic case study is selected to represent the most frequent synoptic condition in the northeast Iberian Peninsula during spring 2015; regional recirculations. It is shown that the ACM2 PBL scheme performs well with daytime PBL height, as validated against estimates retrieved using a micro-pulse lidar system (mean bias=-0.11km). In turn, the BouLac scheme showed WRF-simulated air and dew point temperature closer to METAR surface meteorological observations. Results are more ambiguous when simulated pollutant concentrations from CMAQ are validated against network urban, suburban, and rural background stations. The ACM2 scheme showed the lowest mean bias (-0.96μgm -3 ) with respect to surface ozone at urban stations, while the YSU scheme performed best with simulated nitrogen dioxide (-6.48μgm -3 ). The poorest results were with simulated particulate matter, with similar results found with all schemes tested. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Bravo, R.; Pinacci, P.; Trifilo, R.
1998-07-01
This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plantmore » fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.« less
European consensus conference for external quality assessment in molecular pathology.
van Krieken, J H; Siebers, A G; Normanno, N
2013-08-01
Molecular testing of tumor samples to guide treatment decisions is of increasing importance. Several drugs have been approved for treatment of molecularly defined subgroups of patients, and the number of agents requiring companion diagnostics for their prescription is expected to rapidly increase. The results of such testing directly influence the management of individual patients, with both false-negative and false-positive results being harmful for patients. In this respect, external quality assurance (EQA) programs are essential to guarantee optimal quality of testing. There are several EQA schemes available in Europe, but they vary in scope, size and execution. During a conference held in early 2012, medical oncologists, pathologists, geneticists, molecular biologists, EQA providers and representatives from pharmaceutical industries developed a guideline to harmonize the standards applied by EQA schemes in molecular pathology. The guideline comprises recommendations on the organization of an EQA scheme, defining the criteria for reference laboratories, requirements for EQA test samples and the number of samples that are needed for an EQA scheme. Furthermore, a scoring system is proposed and consequences of poor performance are formulated. Lastly, the contents of an EQA report, communication of the EQA results, EQA databases and participant manual are given.
Conditional equivalence testing: An alternative remedy for publication bias
Gustafson, Paul
2018-01-01
We introduce a publication policy that incorporates “conditional equivalence testing” (CET), a two-stage testing scheme in which standard NHST is followed conditionally by testing for equivalence. The idea of CET is carefully considered as it has the potential to address recent concerns about reproducibility and the limited publication of null results. In this paper we detail the implementation of CET, investigate similarities with a Bayesian testing scheme, and outline the basis for how a scientific journal could proceed to reduce publication bias while remaining relevant. PMID:29652891
Photosynthesis sensitivity to climate change in land surface models
NASA Astrophysics Data System (ADS)
Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo
2016-04-01
Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.
Pandeya, Devendra; López-Arredondo, Damar L; Janga, Madhusudhana R; Campbell, LeAnne M; Estrella-Hernández, Priscila; Bagavathiannan, Muthukumar V; Herrera-Estrella, Luis; Rathore, Keerti S
2018-06-04
Weeds, which have been the bane of agriculture since the beginning of civilization, are managed manually, mechanically, and, more recently, by chemicals. However, chemical control options are rapidly shrinking due to the recent rise in the number of herbicide-resistant weeds in crop fields, with few alternatives on the horizon. Therefore, there is an urgent need for alternative weed suppression systems to sustain crop productivity while reducing our dependence on herbicides and tillage. Such a development will also allay some of the negative perceptions associated with the use of herbicide-resistance genes and heavy dependence on herbicides. Transgenic plants expressing the bacterial phosphite dehydrogenase ( ptxD ) gene gain an ability to convert phosphite (Phi) into orthophosphate [Pi, the metabolizable form of phosphorus (P)]. Such plants allow for a selective fertilization scheme, based on Phi as the sole source of P for the crop, while offering an effective alternative for suppressing weed growth. Here, we show that, when P is supplied in the form of Phi, ptxD -expressing cotton ( Gossypium hirsutum L.) plants outcompete, in both artificial substrates and natural soils from agricultural fields, three different monocot and dicot weed species intentionally introduced in the experiments, as well as weeds naturally present in the tested soils. Importantly, the ptxD /Phi system proved highly efficacious in inhibiting the growth of glyphosate-resistant Palmer amaranth. With over 250 weed species resistant to currently available herbicides, ptxD -transgenic plants fertilized with Phi could provide an effective alternative to suppressing the growth of these weeds while providing adequate nutrition to the crop. Copyright © 2018 the Author(s). Published by PNAS.
A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.
2008-12-01
Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).
Rationale for constructing waste-disposal plants at existing enterprises
NASA Astrophysics Data System (ADS)
Strelkov, Alexander; Teplykh, Svetlana; Gorshkalev, Pavel; Proshina, Elizaveta
2017-10-01
The Federal State Statistics Service of the Republic of Tatarstan collected data on registered organizations involved in the fabrication and dyeing of fur. This paper describes wastewater characteristic of an existing enterprise, LLC “Melita”. This enterprise is a factory of a complete technology cycle, with the process starting from fur manufacture and design to implementation. Maximum capacity of the factory is 1800 skins per day, (excluding fur), and its average productivity is 1000 skins per day. Thorough examination of possible methods and schemes for wastewater from fur production purification showed that it is most reasonable to use technology schemes which included the structures of mechanical, physico-chemical and biological purification. As a result, the study provided a new technological scheme for industrial wastewater purification. This scheme offers using chloride barium and sodium hydrocarbons complex as reagents. For LLC “Melita”, the wastewater absorbing pond is the Volga River. Water quality indicators are taken according to the data of the FGBU “Hydrometeorology and Environmental Monitoring Office”. The research also calculates allowable discharge rates and environmental charges in the city sewer networks and ponds.
NASA Astrophysics Data System (ADS)
Ugon, B.; Nandong, J.; Zang, Z.
2017-06-01
The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.
Energy harvesting schemes for building interior environment monitoring
NASA Astrophysics Data System (ADS)
Zylka, Pawel; Pociecha, Dominik
2016-11-01
A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).
A Lactuca universal hybridizer, and its use in creation of fertile interspecific somatic hybrids.
Chupeau, M C; Maisonneuve, B; Bellec, Y; Chupeau, Y
1994-10-28
A Lactuca sativa cv. Ardente line heterozygous for a gene encoding resistance to kanamycin, a positive and dominant trait, was crossed with cv. Girelle, which is heterozygous for a recessive albinism marker. The resulting seeds yielded 25% albino seedlings, of which 50% were also resistant to kanamycin. Such plantlets (KR, a) grown in vitro were used for preparation of universal hybridizer protoplasts, since green buds that can develop on kanamycin containing-medium should result from fusion with any wild-type protoplast. To test the practicability of this selection scheme, we fused L. sativa KR, a protoplasts with protoplasts derived from various wild Lactuca as well as various other related species. Protoplast-derived cell colonies were selected for resistance to kanamycin at the regeneration stage. Green buds were regenerated after fusion with protoplasts of L. tatarica and of L. perennis. So far, 9 interspecific hybrid plants have been characterized morphologically. In addition, random amplified polymorphic DNA (RAPD) analysis with selected primers confirmed that these plants are indeed interspecific hybrids. Some plants are female-fertile and production of backcross progenies with L. sativa is in progress. Since many desirable traits such as resistances to viruses, bacteria and fungi (Bremia lactucae) have been characterized in wild Lactuca species, the use of somatic hybridization in breeding programmes now appears a practical possibility.
NASA Astrophysics Data System (ADS)
Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva
2018-02-01
Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.
An improved snow scheme for the ECMWF land surface model: Description and offline validation
Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder
2010-01-01
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...
Comparative Study on High-Order Positivity-preserving WENO Schemes
NASA Technical Reports Server (NTRS)
Kotov, Dmitry V.; Yee, Helen M.; Sjogreen, Bjorn Axel
2013-01-01
The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more di cult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium ow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case (LeVeque & Yee 1990) as well as for the case consisting of two species and one reaction (Wang et al. 2012). For further information concerning this issue see (LeVeque & Yee 1990; Griffiths et al. 1992; Lafon & Yee 1996; Yee et al. 2012). This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, C.Y.J.; Bossert, J.E.; Winterkamp, J.
1993-10-01
One of the objectives of the DOE ARM Program is to improve the parameterization of clouds in general circulation models (GCMs). The approach taken in this research is two fold. We first examine the behavior of cumulus parameterization schemes by comparing their performance against the results from explicit cloud simulations with state-of-the-art microphysics. This is conducted in a two-dimensional (2-D) configuration of an idealized convective system. We then apply the cumulus parameterization schemes to realistic three-dimensional (3-D) simulations over the western US for a case with an enormous amount of convection in an extended period of five days. In themore » 2-D idealized tests, cloud effects are parameterized in the ``parameterization cases`` with a coarse resolution, whereas each cloud is explicitly resolved by the ``microphysics cases`` with a much finer resolution. Thus, the capability of the parameterization schemes in reproducing the growth and life cycle of a convective system can then be evaluated. These 2-D tests will form the basis for further 3-D realistic simulations which have the model resolution equivalent to that of the next generation of GCMs. Two cumulus parameterizations are used in this research: the Arakawa-Schubert (A-S) scheme (Arakawa and Schubert, 1974) used in Kao and Ogura (1987) and the Kuo scheme (Kuo, 1974) used in Tremback (1990). The numerical model used in this research is the Regional Atmospheric Modeling System (RAMS) developed at Colorado State University (CSU).« less
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O.; Hansen, A. B.; Kaas, E.; Kent, J.; Lamarque, J.-F.; Prather, M. J.; Reinert, D.; Shashkin, V. V.; Skamarock, W. C.; Sørensen, B.; Taylor, M. A.; Tolstykh, M. A.
2013-09-01
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent, The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data-sets are made available to facilitate the process of model evaluation and scheme intercomparison.
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O.; Hansen, A. B.; Kaas, E.; Kent, J.; Lamarque, J.-F.; Prather, M. J.; Reinert, D.; Shashkin, V. V.; Skamarock, W. C.; Sørensen, B.; Taylor, M. A.; Tolstykh, M. A.
2014-01-01
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison.
Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N
2012-01-01
The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.
Bartlett, John M S; Ibrahim, Merdol; Jasani, Bharat; Morgan, John M; Ellis, Ian; Kay, Elaine; Magee, Hilary; Barnett, Sarah; Miller, Keith
2007-01-01
Background and Aims Trastuzumab provides clinical benefit for advanced and early breast cancer patients whose tumours over‐express or have gene amplification of the HER2 oncogene. The UK National External Quality Assessment Scheme (NEQAS) for immunohistochemical testing was established to assess and improve the quality of HER2 immunohistochemical testing. However, until recently, no provision was available for HER2 fluorescence in situ hybridisation (FISH) testing. A pilot scheme was set up to review the performance of FISH testing in clinical diagnostic laboratories. Methods FISH was performed in 6 reference and 31 participating laboratories using a cell line panel with known HER2 status. Results Using results from reference laboratories as a criterion for acceptable performance, 60% of all results returned by participants were appropriate and 78% either appropriate or acceptable. However, 22.4% of results returned were deemed inappropriate, including 13 cases (4.2%) where a misdiagnosis would have been made had these been clinical specimens. Conclusions The results of three consecutive runs show that both reference laboratories and a proportion of routine clinical diagnostic (about 25%) centres can consistently achieve acceptable quality control of HER2 testing. Data from a significant proportion of participating laboratories show that further steps are required, including those taken via review of performance under schemes such as NEQAS, to improve quality of HER2 testing by FISH in the “real world”. PMID:16963466
NASA Technical Reports Server (NTRS)
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.
Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P
2015-07-01
Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Computer-Aided Diagnostic (CAD) Scheme by Use of Contralateral Subtraction Technique
NASA Astrophysics Data System (ADS)
Nagashima, Hiroyuki; Harakawa, Tetsumi
We developed a computer-aided diagnostic (CAD) scheme for detection of subtle image findings of acute cerebral infarction in brain computed tomography (CT) by using a contralateral subtraction technique. In our computerized scheme, the lateral inclination of image was first corrected automatically by rotating and shifting. The contralateral subtraction image was then derived by subtraction of reversed image from original image. Initial candidates for acute cerebral infarctions were identified using the multiple-thresholding and image filtering techniques. As the 1st step for removing false positive candidates, fourteen image features were extracted in each of the initial candidates. Halfway candidates were detected by applying the rule-based test with these image features. At the 2nd step, five image features were extracted using the overlapping scale with halfway candidates in interest slice and upper/lower slice image. Finally, acute cerebral infarction candidates were detected by applying the rule-based test with five image features. The sensitivity in the detection for 74 training cases was 97.4% with 3.7 false positives per image. The performance of CAD scheme for 44 testing cases had an approximate result to training cases. Our CAD scheme using the contralateral subtraction technique can reveal suspected image findings of acute cerebral infarctions in CT images.
A new family of high-order compact upwind difference schemes with good spectral resolution
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.
2007-12-01
This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.
NASA Astrophysics Data System (ADS)
Roux Oliveira, Tiago; Jacoud Peixoto, Alessandro; Hsu, Liu
2015-09-01
This paper addresses the design of a sliding mode controller for a class of high-order uncertain nonlinear plants with unmatched state-dependent nonlinearities and unknown sign of the high frequency gain, i.e., the control direction is assumed unknown. Differently from most previous studies, the control direction is allowed to switch its sign. We show that it is possible to obtain global exact tracking using only output-feedback by coupling a relay periodic switching function with a norm state observer. One significant advantage of the new scheme is its robustness and improved transient response under arbitrary changes of the control direction which have been theoretically demonstrated for jump variations and successfully tested by simulations. The proposed controller is also evaluated with a DC motor control experiment.
NASA Astrophysics Data System (ADS)
Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.
2015-10-01
Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.
High Order Schemes in BATS-R-US: Is it OK to Simplify Them?
NASA Astrophysics Data System (ADS)
Tóth, G.; Chen, Y.; van der Holst, B.; Daldorff, L. K. S.
2014-09-01
We describe a number of high order schemes and their simplified variants that have been implemented into the University of Michigan global magnetohydrodynamics code BATS-R-US. We compare the various schemes with each other and the legacy 2nd order TVD scheme for various test problems and two space physics applications. We find that the simplified schemes are often quite competitive with the more complex and expensive full versions, despite the fact that the simplified versions are only high order accurate for linear systems of equations. We find that all the high order schemes require some fixes to ensure positivity in the space physics applications. On the other hand, they produce superior results as compared with the second order scheme and/or produce the same quality of solution at a much reduced computational cost.
Error reduction program: A progress report
NASA Technical Reports Server (NTRS)
Syed, S. A.
1984-01-01
Five finite differences schemes were evaluated for minimum numerical diffusion in an effort to identify and incorporate the best error reduction scheme into a 3D combustor performance code. Based on this evaluated, two finite volume method schemes were selected for further study. Both the quadratic upstream differencing scheme (QUDS) and the bounded skew upstream differencing scheme two (BSUDS2) were coded into a two dimensional computer code and their accuracy and stability determined by running several test cases. It was found that BSUDS2 was more stable than QUDS. It was also found that the accuracy of both schemes is dependent on the angle that the streamline make with the mesh with QUDS being more accurate at smaller angles and BSUDS2 more accurate at larger angles. The BSUDS2 scheme was selected for extension into three dimensions.
Internet SCADA Utilizing API's as Data Source
NASA Astrophysics Data System (ADS)
Robles, Rosslin John; Kim, Haeng-Kon; Kim, Tai-Hoon
An Application programming interface or API is an interface implemented by a software program that enables it to interact with other software. Many companies provide free API services which can be utilized in Control Systems. SCADA is an example of a control system and it is a system that collects data from various sensors at a factory, plant or in other remote locations and then sends this data to a central computer which then manages and controls the data. In this paper, we designed a scheme for Weather Condition in Internet SCADA Environment utilizing data from external API services. The scheme was designed to double check the weather information in SCADA.
Cascade generalized predictive control strategy for boiler drum level.
Xu, Min; Li, Shaoyuan; Cai, Wenjian
2005-07-01
This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.
[Review of dynamic global vegetation models (DGVMs)].
Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun
2014-01-01
Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.
EFFECT OF RECYCLING THERMOPHILICALLY DIGESTED SLUDGE ON THE ACTIVATED SLUDGE PROCESS
A full-scale investigation was undertaken at Chicago's Hanover Park Water Reclamation Plant (WRP) to study whether the net sludge production from the WRP could be reduced by implementing a scheme developed by W. Torpey et al. (1984). n this process, sludge is withdrawn from a the...
USDA-ARS?s Scientific Manuscript database
Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...
Oxygen-enriched air for MHD power plants
NASA Technical Reports Server (NTRS)
Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.
1979-01-01
Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.
Comparison of the AUSM(+) and H-CUSP Schemes for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Liou, Meng-Sing
2003-01-01
Many turbomachinery CFD codes use second-order central-difference (C-D) schemes with artificial viscosity to control point decoupling and to capture shocks. While C-D schemes generally give accurate results, they can also exhibit minor numerical problems including overshoots at shocks and at the edges of viscous layers, and smearing of shocks and other flow features. In an effort to improve predictive capability for turbomachinery problems, two C-D codes developed by Chima, RVCQ3D and Swift, were modified by the addition of two upwind schemes: the AUSM+ scheme developed by Liou, et al., and the H-CUSP scheme developed by Tatsumi, et al. Details of the C-D scheme and the two upwind schemes are described, and results of three test cases are shown. Results for a 2-D transonic turbine vane showed that the upwind schemes eliminated viscous layer overshoots. Results for a 3-D turbine vane showed that the upwind schemes gave improved predictions of exit flow angles and losses, although the HCUSP scheme predicted slightly higher losses than the other schemes. Results for a 3-D supersonic compressor (NASA rotor 37) showed that the AUSM+ scheme predicted exit distributions of total pressure and temperature that are not generally captured by C-D codes. All schemes showed similar convergence rates, but the upwind schemes required considerably more CPU time per iteration.
Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers
NASA Astrophysics Data System (ADS)
Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.
2018-04-01
The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized-coal thermal power plants, as a result of which they become single-fuel.
Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes
NASA Astrophysics Data System (ADS)
Mitra, Sumit
With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with novel Lagrangean-type and subset-type cuts to strengthen the relaxation. Second, an enhanced cross-decomposition scheme that integrates Benders decomposition and Lagrangean decomposition on a scenario basis. To demonstrate the effectiveness of our developed methodology, we provide several industrial case studies throughout the thesis.
NASA Astrophysics Data System (ADS)
Zhou, S.; Tai, A. P. K.; Lombardozzi, D.
2016-12-01
Apart from being an important greenhouse gas, tropospheric ozone is a significant air pollutant that is shown to have harmful effects both on human health and vegetation. Ozone damages vegetation mainly through reducing plant photosynthesis and stomatal conductance. Meanwhile, ozone is also strongly dependent on vegetation via various biogeochemical and physical processes. These interdependences between ozone and vegetation would constitute feedback mechanisms that can potentially alter ozone concentration itself, and should be considered in future climate and air quality projections. In this study, we first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM), and simulate the relative changes in leaf area indices (LAI) and stomatal conductance for three plant groups (consolidated from 15 plant functional types) at various prescribed ozone levels (from 0 ppb to 100 ppb). We find that all plant groups suffer the greatest decreases in LAI and stomatal conductance in regions with their greatest abundance, and grasses and crops show the most severe damage from ozone exposure compared with broadleaf and needleleaf groups, with an LAI reduction of as much as 50% in some areas even at an ozone level of 30 ppb. Using the CLM-simulated results, we develop a semi-empirical parameterization scheme to link prescribed ozone levels to the spatially varying simulated relative changes in LAI and stomatal conductance at model steady state. We implement the scheme in the GEOS-Chem chemical transport model so that ozone-vegetation chemical coupling via ozone dry deposition and biogenic volatile organic compound (VOC) emissions can be simulated online. Model simulations indicate that ozone effect on stomatal conductance (which modifies dry deposition) appears to be the dominant feedback pathway influencing surface ozone, whereas ozone-mediated LAI changes (which affects biogenic VOC emissions) appear to play a lesser role. This work is the first attempt to account for online ozone-vegetation coupling in a chemical transport model, with important ramifications for more realistic assessment of ozone air quality under a constantly evolving climate and land cover.
Effectiveness of vegetation-based biodiversity offset metrics as surrogates for ants.
Hanford, Jayne K; Crowther, Mathew S; Hochuli, Dieter F
2017-02-01
Biodiversity offset schemes are globally popular policy tools for balancing the competing demands of conservation and development. Trading currencies for losses and gains in biodiversity value at development and credit sites are usually based on several vegetation attributes combined to yield a simple score (multimetric), but the score is rarely validated prior to implementation. Inaccurate biodiversity trading currencies are likely to accelerate global biodiversity loss through unrepresentative trades of losses and gains. We tested a model vegetation multimetric (i.e., vegetation structural and compositional attributes) typical of offset trading currencies to determine whether it represented measurable components of compositional and functional biodiversity. Study sites were located in remnant patches of a critically endangered ecological community in western Sydney, Australia, an area representative of global conflicts between conservation and expanding urban development. We sampled ant fauna composition with pitfall traps and enumerated removal by ants of native plant seeds from artificial seed containers (seed depots). Ants are an excellent model taxon because they are strongly associated with habitat complexity, respond rapidly to environmental change, and are functionally important at many trophic levels. The vegetation multimetric did not predict differences in ant community composition or seed removal, despite underlying assumptions that biodiversity trading currencies used in offset schemes represent all components of a site's biodiversity value. This suggests that vegetation multimetrics are inadequate surrogates for total biodiversity value. These findings highlight the urgent need to refine existing offsetting multimetrics to ensure they meet underlying assumptions of surrogacy. Despite the best intentions, offset schemes will never achieve their goal of no net loss of biodiversity values if trades are based on metrics unrepresentative of total biodiversity. © 2016 Society for Conservation Biology.
Klimyuk, Victor; Pogue, Gregory; Herz, Stefan; Butler, John; Haydon, Hugh
2014-01-01
This review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin's Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.
Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D
2010-01-01
Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.
Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems
NASA Astrophysics Data System (ADS)
Sinclair, A. N.; Safavi, V.; Honarvar, F.
2011-06-01
Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.
(NH4)2SO4 recovery from liquid side streams.
Boehler, Marc Anton; Heisele, Alexander; Seyfried, Alexander; Grömping, Markus; Siegrist, Hansruedi
2015-05-01
Two methods of recovering nitrogen from liquid side streams are presented in this paper. The first method was demonstrated at an ammonia stripping plant treating 5-7 m(3)/h sludge water at the wastewater treatment plant (WWTP) Kloten-Opfikon (CH). In addition to the usual stripping and scrubbing columns, a third column had been added in order strip CO₂, thus reducing the NaOH-demand of the subsequent ammonia stripping. At first, just the stripping plant was put into operation and optimized without any pre-treatment of the supernatant. Next, the CO₂-stripper column was activated and optimized by gas measurements to minimize free ammonia losses, heat losses, and energy consumption. Key operational aspects of the plant were evaluated. Finally, up to 1.4 m(3)/h source-separated urine was successfully fed into the stripping facility. The second ammonia removal method using hydrophobic hollow fiber membranes was tested in two small pilot systems by different manufacturers in 2012 and 2013 at WWTP Neugut. In this technology, free ammonia gas in the sludge liquid diffuses at pH >9.3 from the sludge liquid through the air-filled pores of the microporous hydrophobic membrane into concentrated sulfuric acid flowing through the hollow fibers, forming ammonium sulfate. The small pore size and the hydrophobic nature of the membrane prevent the liquid phase from entering into the pores due to the surface tension effect. Practical experience regarding operational parameters like wastewater flow rate, pH, temperature, ammonia concentration, fouling and precipitations processes, optimal flow schemes, and process configurations was collected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaodong; Xia, Yidong; Luo, Hong
A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less
Liu, Xiaodong; Xia, Yidong; Luo, Hong; ...
2016-10-05
A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less
Synthesis of nonlinear control strategies from fuzzy logic control algorithms
NASA Technical Reports Server (NTRS)
Langari, Reza
1993-01-01
Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.
New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics
NASA Astrophysics Data System (ADS)
Voronine, Dmitri; Scully, Rob; Sanders, Virgil
2014-03-01
Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.
Practical scheme for optimal measurement in quantum interferometric devices
NASA Astrophysics Data System (ADS)
Takeoka, Masahiro; Ban, Masashi; Sasaki, Masahide
2003-06-01
We apply a Kennedy-type detection scheme, which was originally proposed for a binary communications system, to interferometric sensing devices. We show that the minimum detectable perturbation of the proposed system reaches the ultimate precision bound which is predicted by quantum Neyman-Pearson hypothesis testing. To provide concrete examples, we apply our interferometric scheme to phase shift detection by using coherent and squeezed probe fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio
2005-09-15
We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.
Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping
NASA Technical Reports Server (NTRS)
Suresh, A.; Huynh, H. T.
1997-01-01
A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
A soft-hard combination-based cooperative spectrum sensing scheme for cognitive radio networks.
Do, Nhu Tri; An, Beongku
2015-02-13
In this paper we propose a soft-hard combination scheme, called SHC scheme, for cooperative spectrum sensing in cognitive radio networks. The SHC scheme deploys a cluster based network in which Likelihood Ratio Test (LRT)-based soft combination is applied at each cluster, and weighted decision fusion rule-based hard combination is utilized at the fusion center. The novelties of the SHC scheme are as follows: the structure of the SHC scheme reduces the complexity of cooperative detection which is an inherent limitation of soft combination schemes. By using the LRT, we can detect primary signals in a low signal-to-noise ratio regime (around an average of -15 dB). In addition, the computational complexity of the LRT is reduced since we derive the closed-form expression of the probability density function of LRT value. The SHC scheme also takes into account the different effects of large scale fading on different users in the wide area network. The simulation results show that the SHC scheme not only provides the better sensing performance compared to the conventional hard combination schemes, but also reduces sensing overhead in terms of reporting time compared to the conventional soft combination scheme using the LRT.
Application of the implicit MacCormack scheme to the PNS equations
NASA Technical Reports Server (NTRS)
Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.
1983-01-01
The two-dimensional parabolized Navier-Stokes equations are solved using MacCormack's (1981) implicit finite-difference scheme. It is shown that this method for solving the parabolized Navier-Stokes equations does not require the inversion of block tridiagonal systems of algebraic equations and allows the original explicit scheme to be employed in those regions where implicit treatment is not needed. The finite-difference algorithm is discussed and the computational results for two laminar test cases are presented. Results obtained using this method for the case of a flat plate boundary layer are compared with those obtained using the conventional Beam-Warming scheme, as well as those obtained from a boundary layer code. The computed results for a more severe test of the method, the hypersonic flow past a 15 deg compression corner, are found to compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.
Strategies for implementing genomic selection for feed efficiency in dairy cattle breeding schemes.
Wallén, S E; Lillehammer, M; Meuwissen, T H E
2017-08-01
Alternative genomic selection and traditional BLUP breeding schemes were compared for the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and achievable selection accuracy were studied for milk yield and residual feed intake, as a measure of feed efficiency. When including feed efficiency in genomic BLUP schemes, it was possible to achieve high selection accuracies for genomic selection, and all genomic BLUP schemes gave better genetic gain for feed efficiency than BLUP using a pedigree relationship matrix. However, introducing a second trait in the breeding goal caused a reduction in the genetic gain for milk yield. When using contracted test herds with genotyped and feed efficiency recorded cows as a reference population, adding an additional 4,000 new heifers per year to the reference population gave accuracies that were comparable to a male reference population that used progeny testing with 250 daughters per sire. When the test herd consisted of 500 or 1,000 cows, lower genetic gain was found than using progeny test records to update the reference population. It was concluded that to improve difficult to record traits, the use of contracted test herds that had additional recording (e.g., measurements required to calculate feed efficiency) is a viable option, possibly through international collaborations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Implementation of the high-order schemes QUICK and LECUSSO in the COMMIX-1C Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, K.; Sun, J.G.; Sha, W.T.
Multidimensional analysis computer programs based on the finite volume method, such as COMMIX-1C, have been commonly used to simulate thermal-hydraulic phenomena in engineering systems such as nuclear reactors. In COMMIX-1C, the first-order schemes with respect to both space and time are used. In many situations such as flow recirculations and stratifications with steep gradient of velocity and temperature fields, however, high-order difference schemes are necessary for an accurate prediction of the fields. For these reasons, two second-order finite difference numerical schemes, QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and LECUSSO (Local Exact Consistent Upwind Scheme of Second Order), have beenmore » implemented in the COMMIX-1C computer code. The formulations were derived for general three-dimensional flows with nonuniform grid sizes. Numerical oscillation analyses for QUICK and LECUSSO were performed. To damp the unphysical oscillations which occur in calculations with high-order schemes at high mesh Reynolds numbers, a new FRAM (Filtering Remedy and Methodology) scheme was developed and implemented. To be consistent with the high-order schemes, the pressure equation and the boundary conditions for all the conservation equations were also modified to be of second order. The new capabilities in the code are listed. Test calculations were performed to validate the implementation of the high-order schemes. They include the test of the one-dimensional nonlinear Burgers equation, two-dimensional scalar transport in two impinging streams, von Karmann vortex shedding, shear driven cavity flow, Couette flow, and circular pipe flow. The calculated results were compared with available data; the agreement is good.« less
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Marshall Sanderson
2006-06-01
This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasingmore » the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more significant percentage of the mercury detected was in the oxidized form, particularly from the stack near the product discharge end of the kiln. However, this represented a very small percentage of the overall mercury loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podoshvedov, Sergey A.; Kim, Jaewan
2006-09-15
We suggest an all-optical scheme to generate entangled superposition of a single photon with macroscopic entangled states for testing macroscopic realism. The scheme consists of source of single photons, a Mach-Zehnder interferometer in routes of which a system of coupled-down converters with type-I phase matching is inserted, and a beam splitter for the other auxiliary modes of the scheme. We use quantization of the pumping modes, depletion of the coherent states passing through the system, and interference effect in the pumping modes in the process of erasing which-path information of the single-photon on exit from the Mach-Zehnder interferometer. We showmore » the macroscopic fields of the output superposition are distinguishable states. This scheme generates macroscopic entangled state that violates Bell's inequality. Moreover, the detailed analysis concerning change of amplitudes of entangled superposition by means of repeating this process many times is accomplished. We show our scheme works without photon number resolving detection and it is robust to detector inefficiency.« less
Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations
Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul
2015-01-01
The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.
Chatterjee, Subhadeep; Almeida, Rodrigo P P; Lindow, Steven
2008-01-01
Diseases caused by Xylella fastidiosa have attained great importance worldwide as the pathogen and its insect vectors have been disseminated. Since this is the first plant pathogenic bacterium for which a complete genome sequence was determined, much progress has been made in understanding the process by which it spreads within the xylem vessels of susceptible plants as well as the traits that contribute to its acquisition and transmission by sharpshooter vectors. Although this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty acid signal molecule to coordinate virulence gene expression, the traits that it utilizes to cause disease and the manner in which they are regulated differ substantially from those of related plant pathogens. Its complex lifestyle as both a plant and insect colonist involves traits that are in conflict with these stages, thus apparently necessitating the use of a gene regulatory scheme that allows cells expressing different traits to co-occur in the plant.
Fast High Resolution Volume Carving for 3D Plant Shoot Reconstruction
Scharr, Hanno; Briese, Christoph; Embgenbroich, Patrick; Fischbach, Andreas; Fiorani, Fabio; Müller-Linow, Mark
2017-01-01
Volume carving is a well established method for visual hull reconstruction and has been successfully applied in plant phenotyping, especially for 3d reconstruction of small plants and seeds. When imaging larger plants at still relatively high spatial resolution (≤1 mm), well known implementations become slow or have prohibitively large memory needs. Here we present and evaluate a computationally efficient algorithm for volume carving, allowing e.g., 3D reconstruction of plant shoots. It combines a well-known multi-grid representation called “Octree” with an efficient image region integration scheme called “Integral image.” Speedup with respect to less efficient octree implementations is about 2 orders of magnitude, due to the introduced refinement strategy “Mark and refine.” Speedup is about a factor 1.6 compared to a highly optimized GPU implementation using equidistant voxel grids, even without using any parallelization. We demonstrate the application of this method for trait derivation of banana and maize plants. PMID:29033961
A New Built-in Self Test Scheme for Phase-Locked Loops Using Internal Digital Signals
NASA Astrophysics Data System (ADS)
Kim, Youbean; Kim, Kicheol; Kim, Incheol; Kang, Sungho
Testing PLLs (phase-locked loops) is becoming an important issue that affects both time-to-market and production cost of electronic systems. Though a PLL is the most common mixed-signal building block, it is very difficult to test due to internal analog blocks and signals. In this paper, we propose a new PLL BIST (built-in self test) using the distorted frequency detector that uses only internal digital signals. The proposed BIST does not need to load any analog nodes of the PLL. Therefore, it provides an efficient defect-oriented structural test scheme, reduced area overhead, and improved test quality compared with previous approaches.
PROGRESS IN DESIGN OF THE INSTRUMENTATION AND CONTROL OF THE TOKAMAK COOLING WATER SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; DeVan, Bill; Ashburn, David
This paper discusses progress in the design of the control, interlock and safety systems of the Tokamak Cooling Water System (TCWS) for the ITER fusion reactor. The TCWS instrumentation and control (I&C) is one of approximately 200 separate plant I&C systems (e.g., vacuum system I&C, magnets system I&C) that interface to a common central I&C system through standardized networks. Several aspects of the I&C are similar to the I&C of fission-based power plants. However, some of the unique features of the ITER fusion reactor and the TCWS (e.g., high quasi-static magnetic field, need for baking and drying as well asmore » cooling operations), also demand some unique safety and qualification considerations. The paper compares the design strategy/guidelines of the TCWS I&C and the I&C of conventional nuclear power plants. Issues such as safety classifications, independence between control and safety systems, sensor sharing, redundancy, voting schemes, and qualification methodologies are discussed. It is concluded that independence and separation requirements are similar in both designs. However, the voting schemes for safety systems in nuclear power plants typically use 2oo4 (i.e., 4 divisions of safety I&C, any 2 of which is sufficient to trigger a safety action), while 2oo3 voting logic - within each of 2 independent trains - is used in the TCWS I&C. It is also noted that 2oo3 voting is also acceptable in nuclear power plants if adequate risk assessment and reliability is demonstrated. Finally, while qualification requirements provide similar guidance [e.g., both IEC 60780 (invoked in ITER-space), and IEEE 323 (invoked in fission power plant space) provide similar guidance], an important qualification consideration is the susceptibility of I&C to the magnetic fields of ITER. Also, the radiation environments are different. In the case of magnetic fields the paper discusses some options that are being considered.« less
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2015-01-01
The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries
WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions
NASA Astrophysics Data System (ADS)
Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.
2011-02-01
The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.
On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron
2004-01-01
We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifth-order WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge-Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of the approximations.
On resilience studies of system detection and recovery techniques against stealthy insider attacks
NASA Astrophysics Data System (ADS)
Wei, Sixiao; Zhang, Hanlin; Chen, Genshe; Shen, Dan; Yu, Wei; Pham, Khanh D.; Blasch, Erik P.; Cruz, Jose B.
2016-05-01
With the explosive growth of network technologies, insider attacks have become a major concern to business operations that largely rely on computer networks. To better detect insider attacks that marginally manipulate network traffic over time, and to recover the system from attacks, in this paper we implement a temporal-based detection scheme using the sequential hypothesis testing technique. Two hypothetical states are considered: the null hypothesis that the collected information is from benign historical traffic and the alternative hypothesis that the network is under attack. The objective of such a detection scheme is to recognize the change within the shortest time by comparing the two defined hypotheses. In addition, once the attack is detected, a server migration-based system recovery scheme can be triggered to recover the system to the state prior to the attack. To understand mitigation of insider attacks, a multi-functional web display of the detection analysis was developed for real-time analytic. Experiments using real-world traffic traces evaluate the effectiveness of Detection System and Recovery (DeSyAR) scheme. The evaluation data validates the detection scheme based on sequential hypothesis testing and the server migration-based system recovery scheme can perform well in effectively detecting insider attacks and recovering the system under attack.
AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perego, A.; Cabezón, R. M.; Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de
We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmannmore » transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.« less
Benchmarking and the laboratory
Galloway, M; Nadin, L
2001-01-01
This article describes how benchmarking can be used to assess laboratory performance. Two benchmarking schemes are reviewed, the Clinical Benchmarking Company's Pathology Report and the College of American Pathologists' Q-Probes scheme. The Clinical Benchmarking Company's Pathology Report is undertaken by staff based in the clinical management unit, Keele University with appropriate input from the professional organisations within pathology. Five annual reports have now been completed. Each report is a detailed analysis of 10 areas of laboratory performance. In this review, particular attention is focused on the areas of quality, productivity, variation in clinical practice, skill mix, and working hours. The Q-Probes scheme is part of the College of American Pathologists programme in studies of quality assurance. The Q-Probes scheme and its applicability to pathology in the UK is illustrated by reviewing two recent Q-Probe studies: routine outpatient test turnaround time and outpatient test order accuracy. The Q-Probes scheme is somewhat limited by the small number of UK laboratories that have participated. In conclusion, as a result of the government's policy in the UK, benchmarking is here to stay. Benchmarking schemes described in this article are one way in which pathologists can demonstrate that they are providing a cost effective and high quality service. Key Words: benchmarking • pathology PMID:11477112
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
NASA Technical Reports Server (NTRS)
Koch, Steven E.; Mcqueen, Jeffery T.
1987-01-01
A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.
Technical and technological solution for vegetal bio-stimulants obtaining
NASA Astrophysics Data System (ADS)
Anghelache, D. G.; Diaconescu, I.; Pătraşcu, R.
2017-08-01
The paper presents a modern technology for bio fertilizers resulted from waste plant mass after harvesting crops Experimental products were obtained rich in nutrients, but unstable in terms of existing microorganisms. Therefore, they conducted further studies to obtaining bio fungicide herb, so in all investigations undertaken so far in the laboratory, were able to conclude that the introduction of medicinal plant extracts with fungicidal effect into the bio fertilizers obtained by degradation of plant material post-harvest can get various bio-stimulants with nourishing effect upon the plants. Following this technology the paper’s objective is to identify a flux scheme for experimental equipment which can produce as final outcome this type of bio-stimulant. Also, in this work, this equipment will be chosen and will be designed following and obeying to the request of every step of the above technology.
Exergetic analysis of autonomous power complex for drilling rig
NASA Astrophysics Data System (ADS)
Lebedev, V. A.; Karabuta, V. S.
2017-10-01
The article considers the issue of increasing the energy efficiency of power equipment of the drilling rig. At present diverse types of power plants are used in power supply systems. When designing and choosing a power plant, one of the main criteria is its energy efficiency. The main indicator in this case is the effective efficiency factor calculated by the method of thermal balances. In the article, it is suggested to use the exergy method to determine energy efficiency, which allows to perform estimations of the thermodynamic perfection degree of the system by the example of a gas turbine plant: relative estimation (exergetic efficiency factor) and an absolute estimation. An exergetic analysis of the gas turbine plant operating in a simple scheme was carried out using the program WaterSteamPro. Exergy losses in equipment elements are calculated.
Energy Systems Integration News | Energy Systems Integration Facility |
Control of Power Electronics in AC Systems and Microgrids. These courses will be part of a Professional Master's Program in Power Electronics offered through the university. Get more information on the program Scheme for the Voltage Control of a DFIG-Based Wind Power Plant, IEEE Transactions on Power Electronics
The Urban Environment. A Teacher's Guide, Grades K-3.
ERIC Educational Resources Information Center
Busch, Phyllis S.
Sixty-three learning activities comprise this curriculum guide to conservation education designed for elementary students. The activities enable the teacher to relate the urban child's immediate environment to the ecological problems which confront our world. Four conceptual schemes are used for each of the four grades, K-3: Living things (plants,…
21st International Conference on DNA Computing and Molecular Programming
2016-05-24
ratio [24], which allows plants to ration starch reserves during seasonally changing nights . 28 N. Dalchau et al. We specify the division problem...design of leak- resistant DSD systems. T his motif forms t he basis of a number of DSD schemes t hat do not rely on toehold sequestration alone to prevent
Liu, Yun; Li, Hong; Sun, Sida; Fang, Sheng
2017-09-01
An enhanced air dispersion modelling scheme is proposed to cope with the building layout and complex terrain of a typical Chinese nuclear power plant (NPP) site. In this modelling, the California Meteorological Model (CALMET) and the Stationary Wind Fit and Turbulence (SWIFT) are coupled with the Risø Mesoscale PUFF model (RIMPUFF) for refined wind field calculation. The near-field diffusion coefficient correction scheme of the Atmospheric Relative Concentrations in the Building Wakes Computer Code (ARCON96) is adopted to characterize dispersion in building arrays. The proposed method is evaluated by a wind tunnel experiment that replicates the typical Chinese NPP site. For both wind speed/direction and air concentration, the enhanced modelling predictions agree well with the observations. The fraction of the predictions within a factor of 2 and 5 of observations exceeds 55% and 82% respectively in the building area and the complex terrain area. This demonstrates the feasibility of the new enhanced modelling for typical Chinese NPP sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sivandran, Gajan; Bras, Rafael L.
2013-06-01
Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.
NASA Astrophysics Data System (ADS)
Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Huntingford, C.; Cox, P. M.
2011-09-01
The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.
Measurement and analysis of chatter in a compliant model of a drillstring equipped with a PDC bit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.A.; Raymond, D.W.
1999-11-09
Typical laboratory testing of Polycrystalline Diamond Compact (PDC) bits is performed on relatively rigid setups. Even in hard rock, PDC bits exhibit reasonable life using such testing schemes. Unfortunately, field experience indicates otherwise. In this paper, the authors show that introducing compliance in testing setups provides better simulation of actual field conditions. Using such a scheme, they show that chatter can be severe even in softer rock, such as sandstone, and very destructive to the cutters in hard rock, such as sierra white granite.
Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map
2014-01-01
We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Chris
2013-01-01
Five different central difference schemes, based on a conservative differencing form of the Kennedy and Gruber skew-symmetric scheme, were compared with six different upwind schemes based on primitive variable reconstruction and the Roe flux. These eleven schemes were tested on a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem and a turbulent channel flow problem. The central schemes were generally very accurate and stable, provided the grid stretching rate was kept below 10%. As near-DNS grid resolutions, the results were comparable to reference DNS calculations. At coarser grid resolutions, the need for an LES SGS model became apparent. There was a noticeable improvement moving from CD-2 to CD-4, and higher-order schemes appear to yield clear benefits on coarser grids. The UB-7 and CU-5 upwind schemes also performed very well at near-DNS grid resolutions. The UB-5 upwind scheme does not do as well, but does appear to be suitable for well-resolved DNS. The UF-2 and UB-3 upwind schemes, which have significant dissipation over a wide spectral range, appear to be poorly suited for DNS or LES.
Multi-version software reliability through fault-avoidance and fault-tolerance
NASA Technical Reports Server (NTRS)
Vouk, Mladen A.; Mcallister, David F.
1989-01-01
A number of experimental and theoretical issues associated with the practical use of multi-version software to provide run-time tolerance to software faults were investigated. A specialized tool was developed and evaluated for measuring testing coverage for a variety of metrics. The tool was used to collect information on the relationships between software faults and coverage provided by the testing process as measured by different metrics (including data flow metrics). Considerable correlation was found between coverage provided by some higher metrics and the elimination of faults in the code. Back-to-back testing was continued as an efficient mechanism for removal of un-correlated faults, and common-cause faults of variable span. Software reliability estimation methods was also continued based on non-random sampling, and the relationship between software reliability and code coverage provided through testing. New fault tolerance models were formulated. Simulation studies of the Acceptance Voting and Multi-stage Voting algorithms were finished and it was found that these two schemes for software fault tolerance are superior in many respects to some commonly used schemes. Particularly encouraging are the safety properties of the Acceptance testing scheme.
Städler, Thomas; Haubold, Bernhard; Merino, Carlos; Stephan, Wolfgang; Pfaffelhuber, Peter
2009-01-01
Using coalescent simulations, we study the impact of three different sampling schemes on patterns of neutral diversity in structured populations. Specifically, we are interested in two summary statistics based on the site frequency spectrum as a function of migration rate, demographic history of the entire substructured population (including timing and magnitude of specieswide expansions), and the sampling scheme. Using simulations implementing both finite-island and two-dimensional stepping-stone spatial structure, we demonstrate strong effects of the sampling scheme on Tajima's D (DT) and Fu and Li's D (DFL) statistics, particularly under specieswide (range) expansions. Pooled samples yield average DT and DFL values that are generally intermediate between those of local and scattered samples. Local samples (and to a lesser extent, pooled samples) are influenced by local, rapid coalescence events in the underlying coalescent process. These processes result in lower proportions of external branch lengths and hence lower proportions of singletons, explaining our finding that the sampling scheme affects DFL more than it does DT. Under specieswide expansion scenarios, these effects of spatial sampling may persist up to very high levels of gene flow (Nm > 25), implying that local samples cannot be regarded as being drawn from a panmictic population. Importantly, many data sets on humans, Drosophila, and plants contain signatures of specieswide expansions and effects of sampling scheme that are predicted by our simulation results. This suggests that validating the assumption of panmixia is crucial if robust demographic inferences are to be made from local or pooled samples. However, future studies should consider adopting a framework that explicitly accounts for the genealogical effects of population subdivision and empirical sampling schemes. PMID:19237689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, M.L.
1995-09-01
The United States used the Marshall Islands for its nuclear weapons program testing site from 1946 to 1958. The BRAVO test was detonated at Bikini Atoll on March 1, 1954. Due to shifting wind conditions at the time of the nuclear detonation, many of the surrounding Atolls became contaminated with fallout (radionuclides carried by the wind currents). Lawrence Livermore National Laboratory`s (LLNL) Marshall Islands Project has been responsible for the collecting, processing, and analyzing of food crops, vegetation, soil, water, animals, and marine species to characterize the radionuclides in the environment, and to estimate dose at atolls that may havemore » been contaminated. Tropical agriculture experiments reducing the uptake of {sup 137}Cs have been conducted on Bikini Atoll. The Marshall Islands field team and laboratory processing team play an important role in the overall scheme of the Marshall Islands Dose Assessment and Radioecology Project. This report gives a general description of the Marshall Islands field sampling and laboratory processing procedures currently used by our staff.« less
NASA Technical Reports Server (NTRS)
Hixson, M. M.; Bauer, M. E.; Davis, B. J.
1979-01-01
The effect of sampling on the accuracy (precision and bias) of crop area estimates made from classifications of LANDSAT MSS data was investigated. Full-frame classifications of wheat and non-wheat for eighty counties in Kansas were repetitively sampled to simulate alternative sampling plants. Four sampling schemes involving different numbers of samples and different size sampling units were evaluated. The precision of the wheat area estimates increased as the segment size decreased and the number of segments was increased. Although the average bias associated with the various sampling schemes was not significantly different, the maximum absolute bias was directly related to sampling unit size.
NASA Astrophysics Data System (ADS)
Faridatussafura, Nurzaka; Wandala, Agie
2018-05-01
The meteorological model WRF-ARW version 3.8.1 is used for simulating the heavy rainfall in Semarang that occurred on February 12th, 2015. Two different convective schemes and two different microphysics scheme in a nested configuration were chosen. The sensitivity of those schemes in capturing the extreme weather event has been tested. GFS data were used for the initial and boundary condition. Verification on the twenty-four hours accumulated rainfall using GSMaPsatellite data shows that Kain-Fritsch convective scheme and Lin microphysics scheme is the best combination scheme among the others. The combination also gives the highest success ratio value in placing high intensity rainfall area. Based on the ROC diagram, KF-Lin shows the best performance in detecting high intensity rainfall. However, the combination still has high bias value.
Audio signal encryption using chaotic Hénon map and lifting wavelet transforms
NASA Astrophysics Data System (ADS)
Roy, Animesh; Misra, A. P.
2017-12-01
We propose an audio signal encryption scheme based on the chaotic Hénon map. The scheme mainly comprises two phases: one is the preprocessing stage where the audio signal is transformed into data by the lifting wavelet scheme and the other in which the transformed data is encrypted by chaotic data set and hyperbolic functions. Furthermore, we use dynamic keys and consider the key space size to be large enough to resist any kind of cryptographic attacks. A statistical investigation is also made to test the security and the efficiency of the proposed scheme.
NASA Astrophysics Data System (ADS)
Ise, T.; Litton, C. M.; Giardina, C. P.; Ito, A.
2009-12-01
Plant partitioning of carbon (C) to above- vs. belowground, to growth vs. respiration, and to short vs. long lived tissues exerts a large influence on ecosystem structure and function with implications for the global C budget. Importantly, outcomes of process-based terrestrial vegetation models are likely to vary substantially with different C partitioning algorithms. However, controls on C partitioning patterns remain poorly quantified, and studies have yielded variable, and at times contradictory, results. A recent meta-analysis of forest studies suggests that the ratio of net primary production (NPP) and gross primary production (GPP) is fairly conservative across large scales. To illustrate the effect of this unique meta-analysis-based partitioning scheme (MPS), we compared an application of MPS to a terrestrial satellite-based (MODIS) GPP to estimate NPP vs. two global process-based vegetation models (Biome-BGC and VISIT) to examine the influence of C partitioning on C budgets of woody plants. Due to the temperature dependence of maintenance respiration, NPP/GPP predicted by the process-based models increased with latitude while the ratio remained constant with MPS. Overall, global NPP estimated with MPS was 17 and 27% lower than the process-based models for temperate and boreal biomes, respectively, with smaller differences in the tropics. Global equilibrium biomass of woody plants was then calculated from the NPP estimates and tissue turnover rates from VISIT. Since turnover rates differed greatly across tissue types (i.e., metabolically active vs. structural), global equilibrium biomass estimates were sensitive to the partitioning scheme employed. The MPS estimate of global woody biomass was 7-21% lower than that of the process-based models. In summary, we found that model output for NPP and equilibrium biomass was quite sensitive to the choice of C partitioning schemes. Carbon use efficiency (CUE; NPP/GPP) by forest biome and the globe. Values are means for 2001-2006.
Karl, M; Svendby, T; Walker, S-E; Velken, A S; Castell, N; Solberg, S
2015-09-15
Carbon capture and storage (CCS) is a technological solution that can reduce the amount of carbon dioxide (CO2) emissions from the use of fossil fuel in power plants and other industries. A leading method today is amine based post-combustion capture, in which 2-aminoethanol (MEA) is one of the most studied absorption solvents. In this process, amines are released to the atmosphere through evaporation and entrainment from the CO2 absorber column. Modelling is a key instrument for simulating the atmospheric dispersion and chemical transformation of MEA, and for projections of ground-level air concentrations and deposition rates. In this study, the Weather Research and Forecasting model inline coupled with chemistry, WRF-Chem, was applied to quantify the impact of using a comprehensive MEA photo-oxidation sequence compared to using a simplified MEA scheme. Main discrepancies were found for iminoethanol (roughly doubled in the detailed scheme) and 2-nitro aminoethanol, short MEA-nitramine (reduced by factor of two in the detailed scheme). The study indicates that MEA emissions from a full-scale capture plant can modify regional background levels of isocyanic acid. Predicted atmospheric concentrations of isocyanic acid were however below the limit value of 1 ppbv for ambient exposure. The dependence of the formation of hazardous compounds in the OH-initiated oxidation of MEA on ambient level of nitrogen oxides (NOx) was studied in a scenario without NOx emissions from a refinery area in the vicinity of the capture plant. Hourly MEA-nitramine peak concentrations higher than 40 pg m(-3) did only occur when NOx mixing ratios were above 2 ppbv. Therefore, the spatial variability and temporal variability of levels of OH and NOx need to be taken into account in the health risk assessment. The health risk due to direct emissions of nitrosamines and nitramines from full-scale CO2 capture should be investigated in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling surface trapped river plumes: A sensitivity study
Hyatt, Jason; Signell, Richard P.
2000-01-01
To better understand the requirements for realistic regional simulation of river plumes in the Gulf of Maine, we test the sensitivity of the Blumberg-Mellor hydrodynamic model to choice of advection scheme, grid resolution, and wind, using idealized geometry and forcing. The test case discharges 1500 m3/s of fresh water into a uniform 32 psu ocean along a straight shelf at 43?? north. The water depth is 15 m at the coast and increases linearly to 190 m at a distance 100 km offshore. Constant discharge runs are conducted in the presence of ambient alongshore current and with and without periodic alongshore wind forcing. Advection methods tested are CENTRAL, UPWIND, the standard Smolarkiewicz MPDATA and a recursive MPDATA scheme. For the no-wind runs, the UPWIND advection scheme performs poorly for grid resolutions typically used in regional simulations (grid spacing of 1-2 km, comparable to or slightly less than the internal Rossby radius, and vertical resolution of 10% of the water column), damping out much of the plume structure. The CENTRAL difference scheme also has problems when wind forcing is neglected, and generates too much structure, shedding eddies of numerical origin. When a weak 5 cm/s ambient current is present in the no-wind case, both the CENTRAL and standard MPDATA schemes produce a false fresh- and dense-water source just upstream of the river inflow due to a standing two-grid length oscillation in the salinity field. The recursive MPDATA scheme completely eliminates the false dense water source, and produces results closest to the grid-converged solution. The results are shown to be very sensitive to vertical grid resolution, and the presence of wind forcing dramatically changes the nature of the plume simulations. The implication of these idealized tests for realistic simulations is discussed, as well as ramifications on previous studies of idealized plume models.
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2017-08-07
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Hwang, Min; Muljadi, Eduard
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
The optimization on flow scheme of helium liquefier with genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Liu, L. Q.
2017-01-01
There are several ways to organize the flow scheme of the helium liquefiers, such as arranging the expanders in parallel (reverse Brayton stage) or in series (modified Brayton stages). In this paper, the inlet mass flow and temperatures of expanders in Collins cycle are optimized using genetic algorithm (GA). Results show that maximum liquefaction rate can be obtained when the system is working at the optimal parameters. However, the reliability of the system is not well due to high wheel speed of the first turbine. Study shows that the scheme in which expanders are arranged in series with heat exchangers between them has higher operation reliability but lower plant efficiency when working at the same situation. Considering both liquefaction rate and system stability, another flow scheme is put forward hoping to solve the dilemma. The three configurations are compared from different aspects, they are respectively economic cost, heat exchanger size, system reliability and exergy efficiency. In addition, the effect of heat capacity ratio on heat transfer efficiency is discussed. A conclusion of choosing liquefier configuration is given in the end, which is meaningful for the optimal design of helium liquefier.
Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...
2017-04-18
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
The mimetic finite difference method for the Landau–Lifshitz equation
Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich
2017-01-01
The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less
The mimetic finite difference method for the Landau–Lifshitz equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich
The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-01
Several new turboexpander gas-plant schemes offer two advantages over conventional processes: they can recover over 85% of the natural gas stream's ethane while handling higher inlet CO/sub 2/ concentrations without freezing - this saves considerable costs by allowing smaller CO/sub 2/ removal units or eliminating the need for them entirely, and the liquids recovery system requires no more external horsepower and in many cases, even less; this maximized the quantity of liquids recovered per unit of energy input, thus further lowering costs. The economic benefits associated with the proved plant designs make the processes attractive even for inlet gas streamsmore » containing little or no CO/sub 2/.« less
A New Time-Space Accurate Scheme for Hyperbolic Problems. 1; Quasi-Explicit Case
NASA Technical Reports Server (NTRS)
Sidilkover, David
1998-01-01
This paper presents a new discretization scheme for hyperbolic systems of conservations laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity capturing capabilities and accuracy of the scheme are verified by a set of numerical tests.
Dynamic Restarting Schemes for Eigenvalue Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Simon, Horst D.
1999-03-10
In studies of restarted Davidson method, a dynamic thick-restart scheme was found to be excellent in improving the overall effectiveness of the eigen value method. This paper extends the study of the dynamic thick-restart scheme to the Lanczos method for symmetric eigen value problems and systematically explore a range of heuristics and strategies. We conduct a series of numerical tests to determine their relative strength and weakness on a class of electronic structure calculation problems.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Membrane filtration of olive mill wastewater and exploitation of its fractions.
Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C
2007-04-01
Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.
Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.
Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav
2013-01-01
The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usman, Yasir; Kim, Jinho; Muljadi, Eduard
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
Moens, F
1990-01-01
Unless scarce resources can be mobilized and used efficiently, health for all by the year 2000 will remain a vain attempt. Innovative financing schemes exploring increased cost recovery from the users of the health system are explored throughout the world. In Bwamanda, Zaire, a community financing scheme for hospital care was developed through the application of operations research. A preference heuristic with considerable involvement of health providers and the community was used to identify the type of financing scheme and resulted in a pre-paid health plan, while a mathematical model was developed to determine the premiums to charge. The implementation of the health plant is briefly described. An evaluation of the effects of the pre-paid plan on the accessibility and equity of health care, as well as on the financial sustainability of the hospital, is presented and discussed: a steadily increasing membership of the health plan illustrates its appropriateness, while a doubling of the cost recovery of the hospital's operating costs after two years seems promising; the hospitalization rate of members of the health plan was significantly higher than for non-members. These findings suggest that a health zone may be an appropriate level for the organization of a regional pre-paid health plan. Problems of equity, full cost recovery, and replicability of the financing scheme are discussed.
Experimental investigation of an astronaut maneuvering scheme.
NASA Technical Reports Server (NTRS)
Kane, T. R.; Headrick, M. R.; Yatteau, J. D.
1972-01-01
A new concept for astronaut maneuvering in space is proposed, and an experimental study undertaken to test this concept is described. The series of experiments performed appear to promise advantages over previously proposed schemes in terms of propellant economy, system weight, reliability, and safety. The simulation tests established the feasibility of the proposed maneuvering concept by showing that test subjects were able to place their bodies sufficiently near the reference position to avoid excessive angular momentum build-up; no difficulties were encountered in selecting self-rotation maneuvers suitable for effecting desired changes in orientation; and the execution of these maneuvers produced predicted reorientations without tiring the test subject significantly.
Quaternion normalization in additive EKF for spacecraft attitude determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.
1991-01-01
This work introduces, examines, and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter (EKF) to spacecraft attitude determination, which is based on vector measurements. Two new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstrate the performance of all three schemes. A fourth scheme is suggested for future research. Although the schemes were tested for spacecraft attitude determination, the conclusions are general and hold for attitude determination of any three dimensional body when based on vector measurements, and use an additive EKF for estimation, and the quaternion for specifying the attitude.
A robust watermarking scheme using lifting wavelet transform and singular value decomposition
NASA Astrophysics Data System (ADS)
Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh
2017-01-01
The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
NASA Astrophysics Data System (ADS)
Thanh, Mai Duc
2014-06-01
We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.
Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach.
Koch, Christiane; Jeschke, Jonathan M; Overbeck, Gerhard E; Kollmann, Johannes
2016-09-01
Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.
Cryogenic Controls for Fermilab's Srf Cavities and Test Facility
NASA Astrophysics Data System (ADS)
Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.
2008-03-01
A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.
Linear and nonlinear properties of numerical methods for the rotating shallow water equations
NASA Astrophysics Data System (ADS)
Eldred, Chris
The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal-pentagonal icosahedral grids and cubed-sphere grids are presented. Finally, some remarks and thoughts about the suitability of these two schemes as the basis for atmospheric dynamical development are given.
Investigating the scale-adaptivity of a shallow cumulus parameterization scheme with LES
NASA Astrophysics Data System (ADS)
Brast, Maren; Schemann, Vera; Neggers, Roel
2017-04-01
In this study we investigate the scale-adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone. The Eddy-Diffusivity Multiple Mass-Flux (or ED(MF)n ) scheme is a bin-macrophysics scheme, in which subgrid transport is formulated in terms of discretized size densities. While scale-adaptivity in the ED-component is achieved using a pragmatic blending approach, the MF-component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented in a large-eddy simulation (LES) model, replacing the original subgrid-scheme for turbulent transport. LES thus plays the role of a non-hydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary-layer gray zone. In this range convective cumulus clouds are partially resolved. We find that at high resolutions the clouds and the turbulent transport are predominantly resolved by the LES, and the transport represented by ED(MF)n is small. This partitioning changes towards coarser resolutions, with the representation of shallow cumulus clouds becoming exclusively carried by the ED(MF)n. The way the partitioning changes with grid-spacing matches the results of previous LES studies, suggesting some scale-adaptivity is captured. Sensitivity studies show that a scale-inadaptive ED component stays too active at high resolutions, and that the results are fairly insensitive to the number of transporting updrafts in the ED(MF)n scheme. Other assumptions in the scheme, such as the distribution of updrafts across sizes and the value of the area fraction covered by updrafts, are found to affect the location of the gray zone.
Frickmann, H; Schwarz, N G; Hahn, A; Ludyga, A; Warnke, P; Podbielski, A
2018-05-01
Success of methicillin-resistant Staphylococcus aureus (MRSA) decolonization procedures is usually verified by control swabs of the colonized body region. This prospective controlled study compared a single-day regimen with a well-established 3-day scheme for noninferiority and adherence to the testing scheme. Two sampling schemes for screening MRSA patients of a single study cohort at a German tertiary-care hospital 2 days after decolonization were compared regarding their ability to identify MRSA colonization in throat or nose. In each patient, three nose and three throat swabs were taken at 3- to 4-hour intervals during screening day 1, and in the same patients once daily on days 1, 2 and 3. Swabs were analysed using chromogenic agar and broth enrichment. The study aimed to investigate whether the single-day swabbing scheme is not inferior to the 3-day scheme with a 15% noninferiority margin. One hundred sixty patients were included, comprising 105 and 101 patients with results on all three swabs for decolonization screening of the nose and throat, respectively. Noninferiority of the single-day swabbing scheme was confirmed for both pharyngeal and nasal swabs, with 91.8% and 89% agreement, respectively. The absolute difference of positivity rates between the swabbing regimens was 0.025 (-0.082, 0.131) for the nose and 0.006 (-0.102, 0.114) (95% confidence interval) for the pharynx as calculated with McNemar's test for matched or paired data. Compliance with the single-day scheme was better, with 12% lacking second-day swabs and 27% lacking third-day swabs from the nostrils. The better adherence to the single-day screening scheme with noninferiority suggests its implementation as the new gold standard. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.
Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit
2014-10-01
This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.; ...
2016-11-07
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
Fault-tolerant Greenberger-Horne-Zeilinger paradox based on non-Abelian anyons.
Deng, Dong-Ling; Wu, Chunfeng; Chen, Jing-Ling; Oh, C H
2010-08-06
We propose a scheme to test the Greenberger-Horne-Zeilinger paradox based on braidings of non-Abelian anyons, which are exotic quasiparticle excitations of topological states of matter. Because topological ordered states are robust against local perturbations, this scheme is in some sense "fault-tolerant" and might close the detection inefficiency loophole problem in previous experimental tests of the Greenberger-Horne-Zeilinger paradox. In turn, the construction of the Greenberger-Horne-Zeilinger paradox reveals the nonlocal property of non-Abelian anyons. Our results indicate that the non-Abelian fractional statistics is a pure quantum effect and cannot be described by local realistic theories. Finally, we present a possible experimental implementation of the scheme based on the anyonic interferometry technologies.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
NASA Astrophysics Data System (ADS)
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.
2017-09-01
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C-LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem / Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; ...
2017-09-22
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less
Kariuki, C M; Brascamp, E W; Komen, H; Kahi, A K; van Arendonk, J A M
2017-03-01
In developing countries minimal and erratic performance and pedigree recording impede implementation of large-sized breeding programs. Small-sized nucleus programs offer an alternative but rely on their economic performance for their viability. We investigated the economic performance of 2 alternative small-sized dairy nucleus programs [i.e., progeny testing (PT) and genomic selection (GS)] over a 20-yr investment period. The nucleus was made up of 453 male and 360 female animals distributed in 8 non-overlapping age classes. Each year 10 active sires and 100 elite dams were selected. Populations of commercial recorded cows (CRC) of sizes 12,592 and 25,184 were used to produce test daughters in PT or to create a reference population in GS, respectively. Economic performance was defined as gross margins, calculated as discounted revenues minus discounted costs following a single generation of selection. Revenues were calculated as cumulative discounted expressions (CDE, kg) × 0.32 (€/kg of milk) × 100,000 (size commercial population). Genetic superiorities, deterministically simulated using pseudo-BLUP index and CDE, were determined using gene flow. Costs were for one generation of selection. Results show that GS schemes had higher cumulated genetic gain in the commercial cow population and higher gross margins compared with PT schemes. Gross margins were between 3.2- and 5.2-fold higher for GS, depending on size of the CRC population. The increase in gross margin was mostly due to a decreased generation interval and lower running costs in GS schemes. In PT schemes many bulls are culled before selection. We therefore also compared 2 schemes in which semen was stored instead of keeping live bulls. As expected, semen storage resulted in an increase in gross margins in PT schemes, but gross margins remained lower than those of GS schemes. We conclude that implementation of small-sized GS breeding schemes can be economically viable for developing countries. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Report on Pairing-based Cryptography.
Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily
2015-01-01
This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.
Report on Pairing-based Cryptography
Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily
2015-01-01
This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST’s position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435
Sanjeevi, Sathish K P; Zarghami, Ahad; Padding, Johan T
2018-04-01
Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.
Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks
Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan
2016-10-17
We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less
Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan
We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less
NASA Astrophysics Data System (ADS)
Sanjeevi, Sathish K. P.; Zarghami, Ahad; Padding, Johan T.
2018-04-01
Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.
NASA Technical Reports Server (NTRS)
Chang, Shih-Hung
1991-01-01
Two approaches are used to extend the essentially non-oscillatory (ENO) schemes to treat conservation laws with stiff source terms. One approach is the application of the Strang time-splitting method. Here the basic ENO scheme and the Harten modification using subcell resolution (SR), ENO/SR scheme, are extended this way. The other approach is a direct method and a modification of the ENO/SR. Here the technique of ENO reconstruction with subcell resolution is used to locate the discontinuity within a cell and the time evolution is then accomplished by solving the differential equation along characteristics locally and advancing in the characteristic direction. This scheme is denoted ENO/SRCD (subcell resolution - characteristic direction). All the schemes are tested on the equation of LeVeque and Yee (NASA-TM-100075, 1988) modeling reacting flow problems. Numerical results show that these schemes handle this intriguing model problem very well, especially with ENO/SRCD which produces perfect resolution at the discontinuity.
Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye
2003-10-01
A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
NASA Astrophysics Data System (ADS)
Elsayed Yousef, Ahmed; Ehsan, M. Azhar; Almazroui, Mansour; Assiri, Mazen E.; Al-Khalaf, Abdulrahman K.
2017-02-01
A new closure and a modified detrainment for the simplified Arakawa-Schubert (SAS) cumulus parameterization scheme are proposed. In the modified convective scheme which is named as King Abdulaziz University (KAU) scheme, the closure depends on both the buoyancy force and the environment mean relative humidity. A lateral entrainment rate varying with environment relative humidity is proposed and tends to suppress convection in a dry atmosphere. The detrainment rate also varies with environment relative humidity. The KAU scheme has been tested in a single column model (SCM) and implemented in a coupled global climate model (CGCM). Increased coupling between environment and clouds in the KAU scheme results in improved sensitivity of the depth and strength of convection to environmental humidity compared to the original SAS scheme. The new scheme improves precipitation simulation with better representations of moisture and temperature especially during suppressed convection periods. The KAU scheme implemented in the Seoul National University (SNU) CGCM shows improved precipitation over the tropics. The simulated precipitation pattern over the Arabian Peninsula and Northeast African region is also improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Christopher; Randall, David
The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restrictedmore » to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Lastly, detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.« less
Access-in-turn test architecture for low-power test application
NASA Astrophysics Data System (ADS)
Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun
2017-03-01
This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.
NASA Astrophysics Data System (ADS)
Herman, A. B.
2013-12-01
Principal attention is focused on phytostratigraphy and comparative palaeofloristics of the Anadyr-Koryak (AKSR) and Northern Alaska (NASR) subregions of the North Pacific Region. The high-resolution Upper Albian-Paleocene phytostratigraphic schemes of these subregions are based on perceived stages of their floral evolution. In the AKSR the scheme includes seven subdivisions of subregional extent: the Early Ginter (upper Albian), Grebenka (upper Albian-Cenomanian-lower Turonian), Penzhina (upper Turonian), Kaivayam (Coniacian), Barykov (Santonian-lower to ?middle Campanian), Gornorechenian (?upper Campanian-lower Maastrichtian), and Koryak (lower to upper Maastrichtian-?Danian) phytostratigraphic horizons. The phytostratigraphic scheme of the NASR includes three subregional phytostratigraphic horizons and five plant-bearing beds. These are the Kukpowruk (?lower to middle-?upper Albian), Niakogon (upper Albian-Cenomanian), Kaolak (Turonian) horizons and beds with the Tuluvak (Coniacian), Early Kogosukruk (upper Santonian-Campanian), Late Kogosukruk (Campanian-Maastrichtian), Early Sagwon (Danian-Selandian), and Late Sagwon (Selandian-Thanetian) floras. The comparative analysis of coeval (or close in age) floras distinguished in the AKSR and NASR shows that they are either similar to each other (floras Early Ginter and Kukpowruk, Grebenka and Niakogon, Penzhina and Kaolak, Koryak and Early Sagwon) or different in systematic composition (floras Kaivayam and Tuluvak, Gornorechenian and Kogosukruk). Similarities between the floras imply that plant assemblages of two subregions evolved under comparable climatic conditions and freely intercommunicated via the Bering Land Bridge during the Albian-Turonian and terminal Maastrichtian-Paleocene. Floras of the AKSR and NASR, which are of different composition, existed in particular intervals of geological history when trans-Beringian plant migrations were limited or even ceased because of palaeoclimatic difference between the subregions. Floras of the AKSR and NASR survived crisis at the Cretaceous-Paleogene boundary without essential evolutionary consequence which does not support a hypothesis of a global ecological crisis at this boundary. From the analysis of the Arctic end-Cretaceous flora and palaeoclimate we conclude that the large Northern Alaskan dinosaurs were driven by lack of resources (food and shelter) to migrate 1200-1300 kilometres to the South to find forage, warmer temperatures and better light conditions before winter set in. A scenario of the Albian-Late Cretaceous florogenesis in the North Pacific Region is proposed. A primary driver of Albian-Late Cretaceous florogenesis was the gradual invasion by novel angiosperm-rich plant communities into the Asiatic continental interiors and a replacement of pre-existing vegetation dominated by ancient ferns and gymnosperms. Plant fossils representing Mesophytic and Cenophytic communities usually do not mix in the individual assemblages.
NASA Astrophysics Data System (ADS)
Eldred, Christopher; Randall, David
2017-02-01
The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.
NASA Astrophysics Data System (ADS)
Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin
2018-01-01
The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.
A Simple Qualitative Analysis Scheme for Several Environmentally Important Elements
ERIC Educational Resources Information Center
Lambert, Jack L.; Meloan, Clifton E.
1977-01-01
Describes a scheme that uses precipitation, gas evolution, complex ion formation, and flame tests to analyze for the following ions: Hg(I), Hg(II), Sb(III), Cr(III), Pb(II), Sr(II), Cu(II), Cd(II), As(III), chloride, nitrate, and sulfate. (MLH)
The Best Ideas Come from Teachers like You!
ERIC Educational Resources Information Center
Instructor, 2007
2007-01-01
Several teachers share their ideas for classroom activities. These include: (1) combining science and art on Earth Day; (2) implementing an inexpensive incentive scheme to get students to bring their signed papers back to school on time; (3) involving students in a virtual zoo; (4) planting real grass in Easter Bunny baskets; and (5) creating own…
USDA-ARS?s Scientific Manuscript database
Phytophthora capsici has been documented as a pathogen on a wide variety of vegetable crops in the family Solanaceae, Cucurbitaceae, Fabaceae, and plants belonging to 23 other families. Phytophthora fruit rot of watermelons caused by P. capsici is particularly severe in southeastern U.S where optima...
Best Hiding Capacity Scheme for Variable Length Messages Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bajaj, Ruchika; Bedi, Punam; Pal, S. K.
Steganography is an art of hiding information in such a way that prevents the detection of hidden messages. Besides security of data, the quantity of data that can be hidden in a single cover medium, is also very important. We present a secure data hiding scheme with high embedding capacity for messages of variable length based on Particle Swarm Optimization. This technique gives the best pixel positions in the cover image, which can be used to hide the secret data. In the proposed scheme, k bits of the secret message are substituted into k least significant bits of the image pixel, where k varies from 1 to 4 depending on the message length. The proposed scheme is tested and results compared with simple LSB substitution, uniform 4-bit LSB hiding (with PSO) for the test images Nature, Baboon, Lena and Kitty. The experimental study confirms that the proposed method achieves high data hiding capacity and maintains imperceptibility and minimizes the distortion between the cover image and the obtained stego image.
Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.
Mulaveesala, Ravibabu; Venkata Ghali, Subbarao
2011-05-01
This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.
Aerodynamic optimization by simultaneously updating flow variables and design parameters
NASA Technical Reports Server (NTRS)
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
NASA Astrophysics Data System (ADS)
Aichi, M.; Tokunaga, T.
2006-12-01
In the fields that experienced both significant drawdown/land subsidence and the recovery of groundwater potential, temporal change of the effective stress in the clayey layers is not simple. Conducting consolidation tests of core samples is a straightforward approach to know the pre-consolidation stress. However, especially in the urban area, the cost of boring and the limitation of sites for boring make it difficult to carry out enough number of tests. Numerical simulation to reproduce stress history can contribute to selecting boring sites and to complement the results of the laboratory tests. To trace the effective stress profile in the clayey layers by numerical simulation, discretization in the clayey layers should be fine. At the same time, the size of the modeled domain should be large enough to calculate the effect of regional groundwater extraction. Here, we developed a new scheme to reduce memory consumption based on domain decomposition technique. A finite element model of coupled groundwater flow and land subsidence is used for the local model, and a finite difference groundwater flow model is used for the regional model. The local model is discretized to fine mesh in the clayey layers to reproduce the temporal change of pore pressure in the layers while the regional model is discretized to relatively coarse mesh to reproduce the effect of the regional groundwater extraction on the groundwater flow. We have tested this scheme by comparing the results obtained from this scheme with those from the finely gridded model for the entire calculation domain. The difference between the results of these models was small enough and our new scheme can be used for the practical problem.
Short-Term Effects of Different Loading Schemes in Fitness-Related Resistance Training.
Eifler, Christoph
2016-07-01
Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880-1889, 2016-The purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes. The investigation was designed as a longitudinal field-test study. Two hundred healthy mature subjects with at least 12 months' experience in resistance training were randomized in 4 samples of 50 subjects each. Gender distribution was homogenous in all samples. Training effects were quantified by 10 repetition maximum (10RM) and 1 repetition maximum (1RM) testing (pre-post-test design). Over a period of 6 weeks, a standardized resistance training protocol with 3 training sessions per week was realized. Testing and training included 8 resistance training exercises in a standardized order. The following loading schemes were randomly matched to each sample: constant load (CL) with constant volume of repetitions, increasing load (IL) with decreasing volume of repetitions, decreasing load (DL) with increasing volume of repetitions, daily changing load (DCL), and volume of repetitions. For all loading schemes, significant strength gains (p < 0.001) could be noted for all resistance training exercises and both dependent variables (10RM, 1RM). In all cases, DCL obtained significantly higher strength gains (p < 0.001) than CL, IL, and DL. There were no significant differences in strength gains between CL, IL, and DL. The present data indicate that resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL. Considering that DCL is widely unknown in fitness-related resistance training, the present data indicate, there is potential for improving resistance training in commercial fitness clubs.
NASA Astrophysics Data System (ADS)
Savin, Andrei V.; Smirnov, Petr G.
2018-05-01
Simulation of collisional dynamics of a large ensemble of monodisperse particles by the method of discrete elements is considered. Verle scheme is used for integration of the equations of motion. Non-conservativeness of the finite-difference scheme is discovered depending on the time step, which is equivalent to a pure-numerical energy source appearance in the process of collision. Compensation method for the source is proposed and tested.
The Impact of Microphysics on Intensity and Structure of Hurricanes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shi, Jainn; Lang, Steve; Peters-Lidard, Christa
2006-01-01
During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WFW is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WFW model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WW to examine the impact of six different cloud microphysical schemes on hurricane track, intensity and rainfall forecast. We are also performing the inline tracer calculation to comprehend the physical processes @e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes.
Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.
Bolsunovsky, Alexander
2011-09-01
The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.
Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J
2014-02-01
A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu; ...
2017-11-03
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
Rizwan, Muhammad; Meunier, Jean-Dominique; Miche, Hélène; Keller, Catherine
2012-03-30
Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha(-1). ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat. Copyright © 2012 Elsevier B.V. All rights reserved.
Charge Management in LISA Pathfinder: The Continuous Discharging Experiment
NASA Astrophysics Data System (ADS)
Ewing, Becca Elizabeth
2018-01-01
Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.
Kolle, Susanne N; Rey Moreno, Maria Cecilia; Mayer, Winfried; van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert
2015-07-01
The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury( and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations. 2015 FRAME.
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Noiseless Vlasov-Poisson simulations with linearly transformed particles
Pinto, Martin C.; Sonnendrucker, Eric; Friedman, Alex; ...
2014-06-25
We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts of using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development ofmore » Denavit's Forward Semi-Lagrangian (FSL) scheme (Denavit, 1972 [8]). However, it has recently been established (Campos Pinto, 2012 [20]) that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Lastly, benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.« less
NASA Astrophysics Data System (ADS)
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...
Normanno, Nicola; Pinto, Carmine; Castiglione, Francesca; Fenizia, Francesca; Barberis, Massimo; Marchetti, Antonio; Fontanini, Gabriella; De Rosa, Gaetano; Taddei, Gian Luigi
2015-09-03
In 2014 the European Medicines Agency included exon 2, 3 and 4 KRAS and NRAS testing for the selection of metastatic colorectal cancer (mCRC) patients eligible for the therapy with anti-EGFR monoclonal antibodies. The Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytology (SIAPEC) organized an external quality assessment (EQA) scheme for CRC to evaluate inter-laboratory consistency and to ensure standardization of the results in the transition from KRAS to all-RAS testing. Ten formalin fixed paraffin embedded specimens including KRAS/NRAS (exons 2, 3, 4) and BRAF (codon 600) mutations were validated by three referral laboratories and sent to 88 participant centers. Molecular pathology sample reports were also requested to each laboratory. A board of assessors from AIOM and SIAPEC evaluated the results according to a predefined scoring system. The scheme was composed of two rounds. In the first round 36% of the 88 participants failed, with 23 centers having at least one false positive or false negative while 9 centers did not meet the deadline. The genotyping error rate was higher when Sanger sequencing was employed for testing as compared with pyrosequencing (3 vs 1.3%; p = 0.01; Pearson Chi Square test). In the second round, the laboratories improved their performance, with 23/32 laboratories passing the round. Overall, 79/88 participants passed the RAS EQA scheme. Standardized Human Genome Variation Society nomenclature was incorrectly used to describe the mutations identified and relevant variations were noticed in the genotype specification. The results of the Italian RAS EQA scheme indicate that the mutational analyses are performed with good quality in many Italian centers, although significant differences in the methods used were highlighted. The relatively high number of centers failing the first round underlines the fundamental role in continued education covered by EQA schemes.
Dynamics of moment neuronal networks.
Feng, Jianfeng; Deng, Yingchun; Rossoni, Enrico
2006-04-01
A theoretical framework is developed for moment neuronal networks (MNNs). Within this framework, the behavior of the system of spiking neurons is specified in terms of the first- and second-order statistics of their interspike intervals, i.e., the mean, the variance, and the cross correlations of spike activity. Since neurons emit and receive spike trains which can be described by renewal--but generally non-Poisson--processes, we first derive a suitable diffusion-type approximation of such processes. Two approximation schemes are introduced: the usual approximation scheme (UAS) and the Ornstein-Uhlenbeck scheme. It is found that both schemes approximate well the input-output characteristics of spiking models such as the IF and the Hodgkin-Huxley models. The MNN framework is then developed according to the UAS scheme, and its predictions are tested on a few examples.
Harvesting model uncertainty for the simulation of interannual variability
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2009-08-01
An innovative modeling strategy is introduced to account for uncertainty in the convective parameterization (CP) scheme of a coupled ocean-atmosphere model. The methodology involves calling the CP scheme several times at every given time step of the model integration to pick the most probable convective state. Each call of the CP scheme is unique in that one of its critical parameter values (which is unobserved but required by the scheme) is chosen randomly over a given range. This methodology is tested with the relaxed Arakawa-Schubert CP scheme in the Center for Ocean-Land-Atmosphere Studies (COLA) coupled general circulation model (CGCM). Relative to the control COLA CGCM, this methodology shows improvement in the El Niño-Southern Oscillation simulation and the Indian summer monsoon precipitation variability.
On digital cinema and watermarking
NASA Astrophysics Data System (ADS)
van Leest, Arno; Haitsma, Jaap; Kalker, Ton
2003-06-01
The illegal copying of movies in the cinema is now common practice. Although the quality is fairly low, the economic impact of these illegal copies can be enormous. Philips' digital cinema watermarking scheme is designed for the upcoming digital cinema format and will assist content owners and distributors with tracing the origin of illegal copies. In this paper we consider this watermarking scheme in more detail. A characteristic of this watermarking scheme is that it only exploits the temporal axis to insert a watermark. It is therefore inherently robust to geometrical distortions, a necessity for surviving illegal copying by camcorder recording. Moreover, the scheme resists frame rate conversions resulting from a frame rate mismatch between the camcorder and the projector. The watermarking scheme has been tested in a 'real' digital cinema environment with good results.
Presumptive identification of streptococci with a new test system.
Facklam, R R; Thacker, L G; Fox, B; Eriquez, L
1982-01-01
A test is described that could replace bacitracin susceptibility for presumptive identification of group A streptococci as well as 6.5% NaCl agar tolerance for presumptive identification of enterococcal streptococci. The L-pyrrolidonyl-beta-naphthylamide test, based on hydrolysis of pyrrolidonyl-beta-naphthylamide, was used in conjunction with the CAMP and bile-esculin tests to presumptively identify the streptococci. Among the beta-hemolytic streptococci; 98% of 50 group A, 98% of 46 group B, and 100% of 70 strains that were not group A, B, or D were correctly identified by the new presumptive test scheme. Among the non-beta-hemolytic streptococci; 96% of 74 group D enterococcal, 100% of 30 group D nonenterococcal, and 82% of 112 viridans strains were correctly identified by the new presumptive test scheme. PMID:7050157
Using provider performance incentives to increase HIV testing and counseling services in Rwanda.
de Walque, Damien; Gertler, Paul J; Bautista-Arredondo, Sergio; Kwan, Ada; Vermeersch, Christel; de Dieu Bizimana, Jean; Binagwaho, Agnès; Condo, Jeanine
2015-03-01
Paying for performance provides financial rewards to medical care providers for improvements in performance measured by utilization and quality of care indicators. In 2006, Rwanda began a pay for performance scheme to improve health services delivery, including HIV/AIDS services. Using a prospective quasi-experimental design, this study examines the scheme's impact on individual and couples HIV testing. We find a positive impact of pay for performance on HIV testing among married individuals (10.2 percentage points increase). Paying for performance also increased testing by both partners by 14.7 percentage point among discordant couples in which only one of the partners is an AIDS patient. Copyright © 2014. Published by Elsevier B.V.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Experimental circular quantum secret sharing over telecom fiber network.
Wei, Ke-Jin; Ma, Hai-Qiang; Yang, Jian-Hui
2013-07-15
We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
NASA Astrophysics Data System (ADS)
Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Cox, P. M.
2011-03-01
The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Past studies with JULES have demonstrated the important role of the land surface in the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of separately changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. There was a need to consolidate these and other advances into a single model code so as to be able to study interactions in a consistent manner. This paper describes the consolidation of these advances into the modelling of carbon fluxes and stores, in the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.
NASA Astrophysics Data System (ADS)
Kuppel, S.; Tetzlaff, D.; Maneta, M. P.; Soulsby, C.
2017-12-01
Stable water isotope tracing has been extensively used in a wide range of geographical environments as a means to understand the sources, flow paths and ages of water stored and exiting a landscape via evapotranspiration, surface runoff and/or stream flow. Comparisons of isotopic signatures of precipitation and water in streams, soils, groundwater and plant xylem facilitates the assessment of how plant water use may affect preferential hydrologic pathways, storage dynamics and transit times in the critical zone. While tracers are also invaluable for testing model structure and accuracy, in most cases the measured isotopic signatures have been used to guide the calibration of conceptual runoff models with simplified vegetation and energy balance representation, which lacks sufficient detail to constrain key ecohydrological controls on flow paths and water ages. Here, we use a physically-based, distributed ecohydrological model (EcH2O) which we have extended to track 2H and 18O (including fractionation processes), and water age. This work is part of the "VeWa" project which aims at understanding ecohydrological couplings across climatic gradients in the wider North, where the hydrological implications of projected environmental change are essentially unknown though expected to be high. EcH2O combines a hydrologic scheme with an explicit representation of plant growth and phenology while resolving the energy balance across the soil-vegetation-atmosphere continuum. We focus on a montane catchment in Scotland, where unique long-term, high resolution hydrometric, ecohydrological and isotopic data allows for extensive model testing and projections. Results show the importance of incorporating soil fractionation processes to explain stream isotope dynamics, particularly seasonal enrichment in this humid, energy-limited catchment. This generic process-based approach facilitates analysis of dynamics in isotopes, storage and ages for the different hydrological compartments (canopy to groundwater) and, in particular, the explicit partitioning between soil evaporation and plant transpiration. Our study clearly advances our understanding of dynamics in water storage, flux and age in northern ecosystems, integrating ecohydrology, unsaturated zone, surface water, and groundwater hydrology.
New high order schemes in BATS-R-US
NASA Astrophysics Data System (ADS)
Toth, G.; van der Holst, B.; Daldorff, L.; Chen, Y.; Gombosi, T. I.
2013-12-01
The University of Michigan global magnetohydrodynamics code BATS-R-US has long relied on the block-adaptive mesh refinement (AMR) to increase accuracy in regions of interest, and we used a second order accurate TVD scheme. While AMR can in principle produce arbitrarily accurate results, there are still practical limitations due to computational resources. To further improve the accuracy of the BATS-R-US code, recently, we have implemented a 4th order accurate finite volume scheme (McCorquodale and Colella, 2011}), the 5th order accurate Monotonicity Preserving scheme (MP5, Suresh and Huynh, 1997) and the 5th order accurate CWENO5 scheme (Capdeville, 2008). In the first implementation the high order accuracy is achieved in the uniform parts of the Cartesian grids, and we still use the second order TVD scheme at resolution changes. For spherical grids the new schemes are only second order accurate so far, but still much less diffusive than the TVD scheme. We show a few verification tests that demonstrate the order of accuracy as well as challenging space physics applications. The high order schemes are less robust than the TVD scheme, and it requires some tricks and effort to make the code work. When the high order scheme works, however, we find that in most cases it can obtain similar or better results than the TVD scheme on twice finer grids. For three dimensional time dependent simulations this means that the high order scheme is almost 10 times faster requires 8 times less storage than the second order method.
Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks
NASA Technical Reports Server (NTRS)
Scott, Robert C.
2000-01-01
NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.
A case study of dissolved air flotation for seasonal high turbidity water in Korea.
Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K
2004-01-01
A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme.
Goode, C; LeRoy, J; Allen, D G
2007-01-01
This study reports on a multivariate analysis of the moving bed biofilm reactor (MBBR) wastewater treatment system at a Canadian pulp mill. The modelling approach involved a data overview by principal component analysis (PCA) followed by partial least squares (PLS) modelling with the objective of explaining and predicting changes in the BOD output of the reactor. Over two years of data with 87 process measurements were used to build the models. Variables were collected from the MBBR control scheme as well as upstream in the bleach plant and in digestion. To account for process dynamics, a variable lagging approach was used for variables with significant temporal correlations. It was found that wood type pulped at the mill was a significant variable governing reactor performance. Other important variables included flow parameters, faults in the temperature or pH control of the reactor, and some potential indirect indicators of biomass activity (residual nitrogen and pH out). The most predictive model was found to have an RMSEP value of 606 kgBOD/d, representing a 14.5% average error. This was a good fit, given the measurement error of the BOD test. Overall, the statistical approach was effective in describing and predicting MBBR treatment performance.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
What Is the Reference? An Examination of Alternatives to the Reference Sources Used in IES TM-30-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.
A study was undertaken to document the role of the reference illuminant in the IES TM-30-15 method for evaluating color rendition. TM-30-15 relies on a relative reference scheme; that is, the reference illuminant and test source always have the same correlated color temperature (CCT). The reference illuminant is a Planckian radiator, model of daylight, or combination of those two, depending on the exact CCT of the test source. Three alternative reference schemes were considered: 1) either using all Planckian radiators or all daylight models; 2) using only one of ten possible illuminants (Planckian, daylight, or equal energy), regardless of themore » CCT of the test source; 3) using an off-Planckian reference illuminant (i.e., a source with a negative Duv). No reference scheme is inherently superior to another, with differences in metric values largely a result of small differences in gamut shape of the reference alternatives. While using any of the alternative schemes is more reasonable in the TM-30-15 evaluation framework than it was with the CIE CRI framework, the differences still ultimately manifest only as changes in interpretation of the results. References are employed in color rendering measures to provide a familiar point of comparison, not to establish an ideal source.« less
USDA-ARS?s Scientific Manuscript database
Winter-hardy faba bean (Vicia faba L.) from northern Europe is represented by a rather narrow gene pool. Limited selection gains for overwintering beyond a maximum of -25°C have restricted the adoption of this crop. Therefore, the faba bean collection maintained by the USDA-ARS National Plant Germpl...
USDA-ARS?s Scientific Manuscript database
As more phytoplasmas are discovered in emerging and re-emerging plant diseases worldwide, the scheme for classification of phytoplasmas into 16S rRNA gene RFLP (16Sr) groups and subgroups is experiencing an ongoing rapid expansion. Improper delineation or designation of new groups and subgroups can...
High effectiveness of tailored flower strips in reducing pests and crop plant damage.
Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H; Jacot, Katja
2015-09-07
Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle(CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity(8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less
Soybean Physiology Calibration in the Community Land Model
NASA Astrophysics Data System (ADS)
Drewniak, B. A.; Bilionis, I.; Constantinescu, E. M.
2014-12-01
With the large influence of agricultural land use on biophysical and biogeochemical cycles, integrating cultivation into Earth System Models (ESMs) is increasingly important. The Community Land Model (CLM) was augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. However, the strong nonlinearity of ESMs makes parameter fitting a difficult task. In this study, our goal is to calibrate ten of the CLM-Crop parameters for one crop type, soybean, in order to improve model projection of plant development and carbon fluxes. We used measurements of gross primary productivity, net ecosystem exchange, and plant biomass from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). Our scheme can perform model calibration using very few evaluations and, by exploiting parallelism, at a fraction of the time required by plain vanilla Markov Chain Monte Carlo (MCMC). We present the results from a twin experiment (self-validation) and calibration results and validation using real observations from an AmeriFlux tower site in the Midwestern United States, for the soybean crop type. The improved model will help researchers understand how climate affects crop production and resulting carbon fluxes, and additionally, how cultivation impacts climate.
Eldred, Christopher; Randall, David
2017-02-17
The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restrictedmore » to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Lastly, detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.« less
Upwind schemes and bifurcating solutions in real gas computations
NASA Technical Reports Server (NTRS)
Suresh, Ambady; Liou, Meng-Sing
1992-01-01
The area of high speed flow is seeing a renewed interest due to advanced propulsion concepts such as the National Aerospace Plane (NASP), Space Shuttle, and future civil transport concepts. Upwind schemes to solve such flows have become increasingly popular in the last decade due to their excellent shock capturing properties. In the first part of this paper the authors present the extension of the Osher scheme to equilibrium and non-equilibrium gases. For simplicity, the source terms are treated explicitly. Computations based on the above scheme are presented to demonstrate the feasibility, accuracy and efficiency of the proposed scheme. One of the test problems is a Chapman-Jouguet detonation problem for which numerical solutions have been known to bifurcate into spurious weak detonation solutions on coarse grids. Results indicate that the numerical solution obtained depends both on the upwinding scheme used and the limiter employed to obtain second order accuracy. For example, the Osher scheme gives the correct CJ solution when the super-bee limiter is used, but gives the spurious solution when the Van Leer limiter is used. With the Roe scheme the spurious solution is obtained for all limiters.
Watson, Wendy L; Kelly, Bridget; Hector, Debra; Hughes, Clare; King, Lesley; Crawford, Jennifer; Sergeant, John; Chapman, Kathy
2014-01-01
There is evidence that easily accessible, comprehensible and consistent nutrient information on the front of packaged foods could assist shoppers to make healthier food choices. This study used an online questionnaire of 4357 grocery shoppers to examine Australian shoppers' ability to use a range of front-of-pack labels to identify healthier food products. Seven different front-of-pack labelling schemes comprising variants of the Traffic Light labelling scheme and the Percentage Daily Intake scheme, and a star rating scheme, were applied to nine pairs of commonly purchased food products. Participants could also access a nutrition information panel for each product. Participants were able to identify the healthier product in each comparison over 80% of the time using any of the five schemes that provided information on multiple nutrients. No individual scheme performed significantly better in terms of shoppers' ability to determine the healthier product, shopper reliance on the 'back-of-pack' nutrition information panel, and speed of use. The scheme that provided information about energy only and a scheme with limited numerical information of nutrient type or content performed poorly, as did the nutrition information panel alone (control). Further consumer testing is necessary to determine the optimal format and content of an interpretive front-of-pack nutrition labelling scheme. Copyright © 2013 Elsevier Ltd. All rights reserved.
Power-grade butanol recovery and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noon, R.
1982-02-12
As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstratemore » and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.« less
Talebi, H A; Khorasani, K; Tafazoli, S
2009-01-01
This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.
Al-Rifai, Jawad H; Gabelish, Candace L; Schäfer, Andrea I
2007-10-01
The discovery that natural and synthetic chemicals, in the form of excreted hormones and pharmaceuticals, as well as a vast array of compounds with domestic and industrial applications, can enter the environment via wastewater treatment plants and cause a wide variety of environmental and health problems even at very low concentrations, suggests the need for improvement of water recycling. Three Australian wastewater recycling schemes, two of which employ reverse osmosis (RO) technology, the other applying ozonation and biological activated carbon filtration, have been studied for their ability to remove trace organic contaminants including 11 pharmaceutically active compounds and two non-steroidal estrogenic compounds. Contaminant concentrations were determined using a sensitive analytical method comprising solid phase extraction, derivatization and GC with MS using selected ion monitoring. In raw wastewater, concentrations of analgesics and non-steroidal anti-inflammatory medications were comparable to those found in wastewaters around the world. Remarkably, removal efficiencies for the three schemes were superior to literature values and RO was responsible for the greatest proportion of contaminant removal. The ability of RO membranes to concentrate many of the compounds was demonstrated and highlights the need for continued research into monitoring wastewater treatment, concentrate disposal, improved water recycling schemes and ultimately, safer water and a cleaner environment.
NASA Astrophysics Data System (ADS)
Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi
2018-06-01
Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.
Towards information-optimal simulation of partial differential equations.
Leike, Reimar H; Enßlin, Torsten A
2018-03-01
Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.
Estimation of light commercial vehicles dynamics by means of HIL-testbench simulation
NASA Astrophysics Data System (ADS)
Groshev, A.; Tumasov, A.; Toropov, E.; Sereda, P.
2018-02-01
The high level of active safety of vehicles is impossible without driver assistance electronic systems. Electronic stability control (ESC) system is one of them. Nowadays such systems are obligatory for installation on vehicles of different categories. The approval of active safety level of vehicles with ESC is possible by means of high speed road tests. The most frequently implemented tests are “fish hook” and “sine with dwell” tests. Such kind of tests provided by The Global technical regulation No. 8 are published by the United Nations Economic Commission for Europe as well as by ECE 13-11. At the same time, not only road tests could be used for estimation of vehicles dynamics. Modern software and hardware technologies allow imitating real tests with acceptable reliability and good convergence between real test data and simulation results. ECE 13-11 Annex 21 - Appendix 1 “Use Of The Dynamic Stability Simulation” regulates demands for special Simulation Test bench that could be used not only for preliminary estimation of vehicles dynamics, but also for official vehicles homologation. This paper describes the approach, proposed by the researchers from Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU, Russia) with support of engineers of United Engineering Center GAZ Group, as well as specialists of Gorky Automobile Plant. The idea of approach is to use the special HIL (hardware in the loop) -test bench, that consists of Real Time PC with Real Time Software and braking system components including electronic control unit (ECU) of ESC system. The HIL-test bench allows imitating vehicle dynamics in condition of “fish hook” and “sine with dwell” tests. The paper describes the scheme and structure of HIL-test bench and some peculiarities that should be taken into account during HIL-simulation.
Time cycle analysis and simulation of material flow in MOX process layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Saraswat, A.; Danny, K.M.
The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the helpmore » of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.« less
Implementing a warm cloud microphysics parameterization for convective clouds in NCAR CESM
NASA Astrophysics Data System (ADS)
Shiu, C.; Chen, Y.; Chen, W.; Li, J. F.; Tsai, I.; Chen, J.; Hsu, H.
2013-12-01
Most of cumulus convection schemes use simple empirical approaches to convert cloud liquid mass to rain water or cloud ice to snow e.g. using a constant autoconversion rate and dividing cloud liquid mass into cloud water and ice as function of air temperature (e.g. Zhang and McFarlane scheme in NCAR CAM model). There are few studies trying to use cloud microphysical schemes to better simulate such precipitation processes in the convective schemes of global models (e.g. Lohmann [2008] and Song, Zhang, and Li [2012]). A two-moment warm cloud parameterization (i.e. Chen and Liu [2004]) is implemented into the deep convection scheme of CAM5.2 of CESM model for treatment of conversion of cloud liquid water to rain water. Short-term AMIP type global simulations are conducted to evaluate the possible impacts from the modification of this physical parameterization. Simulated results are further compared to observational results from AMWG diagnostic package and CloudSAT data sets. Several sensitivity tests regarding to changes in cloud top droplet concentration (here as a rough testing for aerosol indirect effects) and changes in detrained cloud size of convective cloud ice are also carried out to understand their possible impacts on the cloud and precipitation simulations.
Multiple grid problems on concurrent-processing computers
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.
1986-01-01
Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.
Mang, Andreas; Biros, George
2017-01-01
We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radisav Vidic; David Dzombak; Ming-Kai Hsieh
2009-06-30
This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater ismore » the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.« less
Testing scale-dependent effects of seminatural habitats on farmland biodiversity.
Dainese, Matteo; Luna, Diego Inclán; Sitzia, Tommaso; Marini, Lorenzo
2015-09-01
The effectiveness of conservation interventions for maximizing biodiversity benefits from agri-environment schemes (AESs) is expected to depend on the quantity of seminatural habitats in the surrounding landscape. To verify this hypothesis, we developed a hierarchical sampling design to assess the effects of field boundary type and cover of seminatural habitats in the landscape at two nested spatial scales. We sampled three types of field boundaries with increasing structural complexity (grass margin, simple hedgerow, complex hedgerow) in paired landscapes with the presence or absence of seminatural habitats (radius 0.5 km), that in turn, were nested within 15 areas with different proportions of seminatural habitats at a larger spatial scale (10 X 10 km). Overall, 90 field boundaries were sampled across a Mediterranean'region (northeastern Italy). We considered species richness response across three different taxonomic groups: vascular plants, butterflies, and tachinid flies. No interactions between type of field boundary and surrounding landscape were found at either 0.5 and 10 km, indicating that the quality of field boundary had the same effect irrespective of the cover of seminatural habitats. At the local scale, extended-width grass margins yielded higher plant species richness, while hedgerows yielded higher species richness of butterflies and tachinids. At the 0.5-km landscape scale, the effect of the proportion of seminatural habitats was neutral for plants and tachinids, while butterflies were positively related to the proportion of forest. At the 10-km landscape scale, only butterflies responded positively to the proportion of seminatural habitats. Our study confirmed the importance of testing multiple scales when considering species from different taxa and with different mobility. We showed that the quality of field boundaries at the local scale was an important factor in enhancing farmland biodiversity. For butterflies, AESs should focus particular attention on preservation'of forest patches in agricultural landscapes within 0.5 kin, as well as the conservation of seminatural habitats at a wider landscape scale.
Transcriptome-Mining for Single-Copy Nuclear Markers in Ferns
Rothfels, Carl J.; Larsson, Anders; Li, Fay-Wei; Sigel, Erin M.; Huiet, Layne; Burge, Dylan O.; Ruhsam, Markus; Graham, Sean W.; Stevenson, Dennis W.; Wong, Gane Ka-Shu; Korall, Petra; Pryer, Kathleen M.
2013-01-01
Background Molecular phylogenetic investigations have revolutionized our understanding of the evolutionary history of ferns—the second-most species-rich major group of vascular plants, and the sister clade to seed plants. The general absence of genomic resources available for this important group of plants, however, has resulted in the strong dependence of these studies on plastid data; nuclear or mitochondrial data have been rarely used. In this study, we utilize transcriptome data to design primers for nuclear markers for use in studies of fern evolutionary biology, and demonstrate the utility of these markers across the largest order of ferns, the Polypodiales. Principal Findings We present 20 novel single-copy nuclear regions, across 10 distinct protein-coding genes: ApPEFP_C, cryptochrome 2, cryptochrome 4, DET1, gapCpSh, IBR3, pgiC, SQD1, TPLATE, and transducin. These loci, individually and in combination, show strong resolving power across the Polypodiales phylogeny, and are readily amplified and sequenced from our genomic DNA test set (from 15 diploid Polypodiales species). For each region, we also present transcriptome alignments of the focal locus and related paralogs—curated broadly across ferns—that will allow researchers to develop their own primer sets for fern taxa outside of the Polypodiales. Analyses of sequence data generated from our genomic DNA test set reveal strong effects of partitioning schemes on support levels and, to a much lesser extent, on topology. A model partitioned by codon position is strongly favored, and analyses of the combined data yield a Polypodiales phylogeny that is well-supported and consistent with earlier studies of this group. Conclusions The 20 single-copy regions presented here more than triple the single-copy nuclear regions available for use in ferns. They provide a much-needed opportunity to assess plastid-derived hypotheses of relationships within the ferns, and increase our capacity to explore aspects of fern evolution previously unavailable to scientific investigation. PMID:24116189
A threshold-based fixed predictor for JPEG-LS image compression
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Chanteloup, Francoise; Lenton, Simon; Fetherston, James; Barratt, Monica J
2005-07-01
The effect on the cannabis market is one area of interest in the evaluation of the new 'prohibition with civil penalties' scheme for minor cannabis offences in WA. One goal of the scheme is to reduce the proportion of cannabis consumed that is supplied by large-scale suppliers that may also supply other drugs. As part of the pre-change phase of the evaluation, 100 regular (at least weekly) cannabis users were given a qualitative and quantitative interview covering knowledge and attitudes towards cannabis law, personal cannabis use, market factors, experience with the justice system and impact of legislative change. Some 85% of those who commented identified the changes as having little impact on their cannabis use. Some 89% of the 70 who intended to cultivate cannabis once the CIN scheme was introduced suggested they would grow cannabis within the two non-hydroponic plant-limit eligible for an infringement notice under the new law. Only 15% believed an increase in self-supply would undermine the large scale suppliers of cannabis in the market and allow some cannabis users to distance themselves from its unsavoury aspects. Only 11% said they would enter, or re-enter, the cannabis market as sellers as a result of the scheme introduction. Most respondents who commented believed that the impact of the legislative changes on the cannabis market would be negligible. The extent to which this happens will be addressed in the post-change phase of this research. Part of the challenge in assessing the impact of the CIN scheme on the cannabis market is that it is distinctly heterogeneous.
Wang, Jiajun; Li, Xiaoting; You, Ya; Xintong, Yang; Wang, Ying; Li, Qunxiang
2018-06-21
Mimicking the natural photosynthesis in green plants, artificial Z-scheme photocatalysis enables more efficient utilization of solar energy for photocatalytic water splitting. Most currently designed g-C3N4-based Z-scheme heterojunctions are usually based on metal-containing semiconductor photocatalysts, thus exploiting metal-free photocatalysts for Z-scheme water splitting is of huge interest. Herein, we propose two metal-free C3N/g-C3N4 heterojunctions with the C3N monolayer covering g-C3N4 sheet (monolayer or bilayer) and systematically explore their electronic structures, charge distributions and photocatalytic properties by performing extensive hybrid density functional calculations. We clearly reveal that the relative strong built-in electric fields around their respective interface regions, caused by the charge transfer from C3N monolayer to g-C3N4 monolayer or bilayer, result in the bands bending, renders the transfer of photogenerated carriers in these two heterojunctions following the Z-scheme instead of the type-II pathway. Moreover, the photogenerated electrons and holes in these two C3N/g-C3N4 heterojunctions not only can be efficiently separated, but also have strong redox abilities for water oxidation and reduction. Compared with the isolated g-C3N4 sheets, the light absorption in visible to near-infrared region are significantly enhanced in these proposed heterojunctions. These theoretical findings suggest that these proposed metal-free C3N/g-C3N4 heterojunctions are promising direct Z-scheme photocatalysts for solar water splitting. © 2018 IOP Publishing Ltd.
Persistence characterization and data calibration scheme for the RSS-NIR H2RG detector on SALT
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Eggen, Nathan; Wolf, Marsha; Jaehnig, Kurt; Kotulla, Ralf
2016-07-01
The University of Wisconsin Madison is building a NIR spectrograph (RSS-NIR) for the Southern African Large Telescope. The detector system uses a H2RG HdCdTe 1.7 μm cutoff array. We performed tests to measure and characterize the persistence of the detector to inform strategies to mitigate this effect. These tests use up-the- ramp group samples to get finer time resolution of the release of persistence. We share these test results. We also present preliminary results of the dependence of persistence on detector temperature. We conclude with an outline and assessment of a persistence calibration scheme.
Reply to communications by Fu et al. international journal of biometeorology
NASA Astrophysics Data System (ADS)
Wang, Huanjiong; Rutishauser, This; Tao, Zexing; Zhong, Shuying; Ge, Quansheng; Dai, Junhu
2016-12-01
Temperature sensitivity of plant phenology (ST) is a determining factor of as to what degree climate change impacts on plant species. Fu et al . (Int J Biometeorol 60:1611-1613, 2016) claimed that long long-term linear trends mask phenological shifts. However, the decreased and increased ST was both found in warming scenarios. The conceptual scheme telling the nonlinear relationship between spring temperature and leaf unfolding date proposed by Fu et al . (Int J Biometeorol 60:1611-1613, 2016) cannot be supported by observation data across Europe. Therefore, linking declined ST to climate warming is misleading, and future ST changes are more uncertain than they suggested.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less
Some results on numerical methods for hyperbolic conservation laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Huanan.
1989-01-01
This dissertation contains some results on the numerical solutions of hyperbolic conservation laws. (1) The author introduced an artificial compression method as a correction to the basic ENO schemes. The method successfully prevents contact discontinuities from being smeared. This is achieved by increasing the slopes of the ENO reconstructions in such a way that the essentially non-oscillatory property of the schemes is kept. He analyzes the non-oscillatory property of the new artificial compression method by applying it to the UNO scheme which is a second order accurate ENO scheme, and proves that the resulting scheme is indeed non-oscillatory. Extensive 1-Dmore » numerical results and some preliminary 2-D ones are provided to show the strong performance of the method. (2) He combines the ENO schemes and the centered difference schemes into self-adjusting hybrid schemes which will be called the localized ENO schemes. At or near the jumps, he uses the ENO schemes with the field by field decompositions, otherwise he simply uses the centered difference schemes without the field by field decompositions. The method involves a new interpolation analysis. In the numerical experiments on several standard test problems, the quality of the numerical results of this method is close to that of the pure ENO results. The localized ENO schemes can be equipped with the above artificial compression method. In this way, he dramatically improves the resolutions of the contact discontinuities at very little additional costs. (3) He introduces a space-time mesh refinement method for time dependent problems.« less
Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei
2017-04-01
Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.
The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu
2007-01-01
During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.
NASA Astrophysics Data System (ADS)
Chaouch, Naira; Temimi, Marouane; Weston, Michael; Ghedira, Hosni
2017-05-01
In this study, we intercompare seven different PBL schemes in WRF in the United Arab Emirates (UAE) and we assess their impact on the performance of the simulations. The study covered five fog events reported in 2014 at Abu Dhabi International Airport. The analysis of Synoptic conditions indicated that during all examined events, the UAE was under a high geopotential pressure and light wind that does not exceed 7 m/s at 850 hPa ( 1.5 km). Seven PBL schemes, namely, Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), Moller-Yamada Nakanishi and Niino (MYNN) level 2.5, Quasi-Normal Scale Elimination (QNSE-EDMF), Asymmetric Convective Model (ACM2), Grenier-Bretherton-McCaa (GBM) and MYNN level 3 were tested. In situ observations used in the model's assessment included radiosonde data from the Abu Dhabi International Airport and surface measurements of relative humidity (RH), dew point temperature, wind speed, and temperature profiles. Overall, all the tested PBL schemes showed comparable skills with relatively higher performance with the QNSE scheme. The average RH Root Mean Square Error (RMSE) and BIAS for all PBLs were 15.75% and - 9.07%, respectively, whereas the obtained RMSE and BIAS when QNSE was used were 14.65% and - 6.3% respectively. Comparable skills were obtained for the rest of the variables. Local PBL schemes showed better performance than non-local schemes. Discrepancies between simulated and observed values were higher at the surface level compared to high altitude values. The sensitivity to lead time showed that best simulation performances were obtained when the lead time varies between 12 and 18 h. In addition, the results of the simulations show that better performance is obtained when the starting condition is dry.
NASA Technical Reports Server (NTRS)
Wang, Shuguang; Sobel, Adam H.; Fridlind, Ann; Feng, Zhe; Comstock, Jennifer M.; Minnis, Patrick; Nordeen, Michele L.
2015-01-01
The recently completed CINDY/DYNAMO field campaign observed two Madden-Julian oscillation (MJO) events in the equatorial Indian Ocean from October to December 2011. Prior work has indicated that the moist static energy anomalies in these events grew and were sustained to a significant extent by radiative feedbacks. We present here a study of radiative fluxes and clouds in a set of cloud-resolving simulations of these MJO events. The simulations are driven by the large-scale forcing data set derived from the DYNAMO northern sounding array observations, and carried out in a doubly periodic domain using the Weather Research and Forecasting (WRF) model. Simulated cloud properties and radiative fluxes are compared to those derived from the S-PolKa radar and satellite observations. To accommodate the uncertainty in simulated cloud microphysics, a number of single-moment (1M) and double-moment (2M) microphysical schemes in the WRF model are tested. The 1M schemes tend to underestimate radiative flux anomalies in the active phases of the MJO events, while the 2M schemes perform better, but can overestimate radiative flux anomalies. All the tested microphysics schemes exhibit biases in the shapes of the histograms of radiative fluxes and radar reflectivity. Histograms of radiative fluxes and brightness temperature indicate that radiative biases are not evenly distributed; the most significant bias occurs in rainy areas with OLR less than 150 W/ cu sq in the 2M schemes. Analysis of simulated radar reflectivities indicates that this radiative flux uncertainty is closely related to the simulated stratiform cloud coverage. Single-moment schemes underestimate stratiform cloudiness by a factor of 2, whereas 2M schemes simulate much more stratiform cloud.
Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)
2000-01-01
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
High Order Schemes in Bats-R-US for Faster and More Accurate Predictions
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Gombosi, T. I.
2014-12-01
BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weixiong; Wang, Yaqi; DeHart, Mark D.
2016-09-01
In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can bemore » observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.« less
Re-formulation and Validation of Cloud Microphysics Schemes
NASA Astrophysics Data System (ADS)
Wang, J.; Georgakakos, K. P.
2007-12-01
The research focuses on improving quantitative precipitation forecasts by removing significant uncertainties in current cloud microphysics schemes embedded in models such as WRF and MM5 and cloud-resolving models such as GCE. Reformulation of several production terms in these microphysics schemes was found necessary. When estimating four graupel production terms involved in the accretion between rain, snow and graupel, current microphysics schemes assumes that all raindrops and snow particles are falling at their appropriate mass-weighted mean terminal velocities and thus analytic solutions are able to be found for these production terms. Initial analysis and tests showed that these approximate analytic solutions give significant and systematic overestimates of these terms, and, thus, become one of major error sources of the graupel overproduction and associated extreme radar reflectivity in simulations. These results are corroborated by several reports. For example, the analytic solution overestimates the graupel production by collisions between raindrops and snow by up to 230%. The structure of "pure" snow (not rimed) and "pure graupel" (completely rimed) in current microphysics schemes excludes intermediate forms between "pure" snow and "pure" graupel and thus becomes a significant reason of graupel overproduction in hydrometeor simulations. In addition, the generation of the same density graupel by both the freezing of supercooled water and the riming of snow may cause underestimation of graupel production by freezing. A parameterization scheme of the riming degree of snow is proposed and then a dynamic fallspeed-diameter relationship and density- diameter relationship of rimed snow is assigned to graupel based on the diagnosed riming degree. To test if these new treatments can improve quantitative precipitation forecast, the Hurricane Katrina and a severe winter snowfall event in the Sierra Nevada Range are selected as case studies. A series of control simulation and sensitivity tests was conducted for these two cases. Two statistical methods are used to compare simulated radar reflectivity by the model with that detected by ground-based and airborne radar at different height levels. It was found that the changes made in current microphysical schemes improve QPF and microphysics simulation significantly.
NASA Astrophysics Data System (ADS)
Tomaro, Robert F.
1998-07-01
The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.
On decentralized estimation. [for large linear systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Vukcevic, M. B.
1978-01-01
A multilevel scheme is proposed to construct decentralized estimators for large linear systems. The scheme is numerically attractive since only observability tests of low-order subsystems are required. Equally important is the fact that the constructed estimators are reliable under structural perturbations and can tolerate a wide range of nonlinearities in coupling among the subsystems.
Islands Unto Themselves: How Merit Pay Schemes May Undermine Positive Teacher Collaboration
ERIC Educational Resources Information Center
Brewer, T. Jameson; Myers, P. S.; Zhang, Michael
2015-01-01
Educational reforms have become the new policy mainstay in educational discourse and policy. Without doubt, "fixing" teachers and increasing student test scores have both been a large component of much of the reform rhetoric. Moreover, calls for implementing merit pay schemes have uniquely combined reformer's efforts to "fix"…
Investigation of television transmission using adaptive delta modulation principles
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1976-01-01
The results are presented of a study on the use of the delta modulator as a digital encoder of television signals. The computer simulation of different delta modulators was studied in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results were analyzed and then implemented in hardware to study its ability to encode real time motion pictures from an NTSC format television camera. The effects of channel errors on the delta modulated video signal were tested along with several error correction algorithms via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. Delta modulators were investigated which could achieve significant bandwidth reduction without regard to complexity or speed. The first scheme investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved the computer simulation of two dimensional delta modulator algorithms.
A proposed harmonized LPS molecular-subtyping scheme for Cronobacter species.
Yan, Qiongqiong; Jarvis, Karen G; Chase, Hannah R; Hébert, Karine; Trach, Larisa H; Lee, Chloe; Sadowski, Jennifer; Lee, Boram; Hwang, Seongeun; Sathyamoorthy, Venugopal; Mullane, Niall; Pava-Ripoll, Monica; Iversen, Carol; Pagotto, Franco; Fanning, Séamus; Tall, Ben D
2015-09-01
Cronobacter are opportunistic pathogens, which cause infections in all age groups. To aid the characterization of Cronobacter in foods and environments a harmonized LPS identification scheme for molecular serotyping is needed. To this end, we studied 409 Cronobacter isolates representing the seven Cronobacter species using two previously reported molecular serotyping schemes, described here as Mullane-Jarvis (M-J) and Sun schemes. PCR analysis revealed many overlapping results that were obtained when independently applying the two serotyping schemes. There were complete agreements between the two PCR schemes for Cronobacter sakazakii (Csak) O:1, Csak O:3, and Csak O:7 serotypes. However, only thirty-five of 41 Csak O:4 strains, identified using the M-J scheme, were PCR-positive with the Sun scheme primers. Also the Sun scheme Csak O:5 primers failed to identify this serotype in any of the C. sakazakii strains tested, but did recognize seven Cronobacter turicensis strains, which were identified as Ctur O:3 using the M-J scheme. Similarly, the Sun scheme Csak O:6 primers recognized 30 Cronobacter malonaticus O:2 strains identified with the M-J scheme, but failed to identify this serotype in any C. sakazakii strain investigated. In this report, these findings are summarized and a harmonized molecular-serotyping scheme is proposed which is predicated on the correct identification of Cronobacter species, prior to serotype determination. In summary, fourteen serotypes were identified using the combined protocol, which consists of Csak O:1-O:4, and Csak O:7; Cmal O:1-O:2; Cdub O:1-O:2, Cmuy O:1-O:2, Cuni O:1, as well as Ctur O:1 and Ctur O:3. Published by Elsevier Ltd.
Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu
2016-10-01
We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Comparitive Study of High-Order Positivity-Preserving WENO Schemes
NASA Technical Reports Server (NTRS)
Kotov, D. V.; Yee, H. C.; Sjogreen, B.
2014-01-01
In gas dynamics and magnetohydrodynamics flows, physically, the density ? and the pressure p should both be positive. In a standard conservative numerical scheme, however, the computed internal energy is The ideas of Zhang & Shu (2012) and Hu et al. (2012) precisely address the aforementioned issue. Zhang & Shu constructed a new conservative positivity-preserving procedure to preserve positive density and pressure for high-order Weighted Essentially Non-Oscillatory (WENO) schemes by the Lax-Friedrichs flux (WENO/LLF). In general, WENO/LLF is obtained by subtracting the kinetic energy from the total energy, resulting in a computed p that may be negative. Examples are problems in which the dominant energy is kinetic. Negative ? may often emerge in computing blast waves. In such situations the computed eigenvalues of the Jacobian will become imaginary. Consequently, the initial value problem for the linearized system will be ill posed. This explains why failure of preserving positivity of density or pressure may cause blow-ups of the numerical algorithm. The adhoc methods in numerical strategy which modify the computed negative density and/or the computed negative pressure to be positive are neither a conservative cure nor a stable solution. Conservative positivity-preserving schemes are more appropriate for such flow problems. too dissipative for flows such as turbulence with strong shocks computed in direct numerical simulations (DNS) and large eddy simulations (LES). The new conservative positivity-preserving procedure proposed in Hu et al. (2012) can be used with any high-order shock-capturing scheme, including high-order WENO schemes using the Roe's flux (WENO/Roe). The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more di cult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium ow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case as well as for the case consisting of two species and one reaction.. This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.
Magnetic-Force-Assisted Straightening of Bent Mild Steel Strip by Laser Irradiation
NASA Astrophysics Data System (ADS)
Dutta, Polash P.; Kalita, Karuna; Dixit, Uday S.; Liao, Hengcheng
2017-12-01
This study proposes a technique to straighten bent metallic strips with magnetic-force-assisted laser irradiation. Experiments were conducted for three different types of mechanically-bent mild strips. The first type was bent strips without any heat treatment. The second type was stress-relieved and third type was subcritical-annealed bent strips. These strips were straightened following different schemes of laser irradiation sequence to understand the performance of straightening. A parametric study was conducted by varying laser power and scanning speed. Micro-hardness, tensile test, Charpy impact test and microstructure after straightening were also studied. Different scanning schemes provided different microstructures and mechanical properties. Any serious deterioration in the quality of straightened strips was not noticed. Overall, subcritical-annealed bent strips provided the best performance in straightening. The proposed straightening scheme has potential of becoming an industrial practice.
Use of tannin anticorrosive reaction primer to improve traditional coating systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matamala, G.; Droguett, G.; Smeltzer, W.
1994-04-01
Different anticorrosive schemes applied over plain or previously shot-blasted surfaces of AISI 1010 (UNS G10100) steel plates were compared. Plates were painted with alkydic, vinylic, and epoxy anticorrosive schemes over metal treated previously with pine tannin reaction primer and over its own schemes without previous primer treatment. Anticorrosive tests were conducted in a salt fog chamber according to ASTM B 117-73. Rusting, blistering, and adhesion were assessed over time. The survey was complemented with potentiodynamic scanning tests in sodium chloride (NaCl) solution with a concentration equivalent to seawater. Corrosion currents were determined using Tafel and polarization resistance techniques. Results showedmore » the reaction primer inhibited corrosion by improving adherence. Advantages over traditional conversion primers formulated in a base of zinc chromate in phosphoric medium were evident.« less
A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Yang, Yeon-Mo; Kang, Won-Seok; Kim, Jin-Wook; An, Jinung
Recently, WSNs (Wireless Sensor Networks) with mobile robot is a growing technology that offer efficient communication services for anytime and anywhere applications. However, the tiny sensor node has very limited network resources due to its low battery power, low data rate, node mobility, and channel interference constraint between neighbors. Thus, in this paper, we proposed a tree based self-routing protocol for autonomous mobile robots based on beacon mode and implemented in real test-bed environments. The proposed scheme offers beacon based real-time scheduling for reliable association process between parent and child nodes. In addition, it supports smooth handover procedure by reducing flooding overhead of control packets. Throughout the performance evaluation by using a real test-bed system and simulation, we illustrate that our proposed scheme demonstrates promising performance for wireless sensor networks with mobile robots.
Kohli, Charu; Gupta, Kalika; Banerjee, Bratati; Ingle, Gopal Krishna
2017-05-01
World population of elderly is increasing at a fast pace. The number of elderly in India has increased by 54.77% in the last 15 years. A number of social security measures have been taken by Indian government. To assess awareness, utilization and barriers faced while utilizing social security schemes by elderly in a secondary care hospital situated in a rural area in Delhi, India. A cross-sectional study was conducted among 360 individuals aged 60 years and above in a secondary care hospital situated in a rural area in Delhi. A pre-tested, semi-structured schedule prepared in local language was used. Data was analysed using SPSS software (version 17.0). Chi-square test was used to observe any statistical association between categorical variables. The results were considered statistically significant if p-value was less than 0.05. A majority of study subjects were females (54.2%), Hindu (89.7%), married (60.3%) and were not engaged in any occupation (82.8%). Awareness about Indira Gandhi National Old Age Pension Scheme (IGNOAPS) was present among 286 (79.4%) and Annapurna scheme in 193 (53.6%) subjects. Among 223 subjects who were below poverty line, 179 (80.3%) were aware of IGNOAPS; while, 112 (50.2%) were utilizing the scheme. There was no association of awareness with education status, occupation, religion, family type, marital status and caste (p>0.05). Corruption and tedious administrative formalities were major barriers reported. Awareness generation, provision of information on how to approach the concerned authority for utilizing the scheme and ease of administrative procedures should be an integral part of any social security scheme or measure. In the present study, about 79.4% of elderly were aware and 45% of the eligible subjects were utilizing pension scheme. Major barriers reported in utilization of schemes were corruption and tedious administrative procedures.
Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...
2009-07-23
Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less
NASA Astrophysics Data System (ADS)
Xamán, J.; Zavala-Guillén, I.; Hernández-López, I.; Uriarte-Flores, J.; Hernández-Pérez, I.; Macías-Melo, E. V.; Aguilar-Castro, K. M.
2018-03-01
In this paper, we evaluated the convergence rate (CPU time) of a new mathematical formulation for the numerical solution of the radiative transfer equation (RTE) with several High-Order (HO) and High-Resolution (HR) schemes. In computational fluid dynamics, this procedure is known as the Normalized Weighting-Factor (NWF) method and it is adopted here. The NWF method is used to incorporate the high-order resolution schemes in the discretized RTE. The NWF method is compared, in terms of computer time needed to obtain a converged solution, with the widely used deferred-correction (DC) technique for the calculations of a two-dimensional cavity with emitting-absorbing-scattering gray media using the discrete ordinates method. Six parameters, viz. the grid size, the order of quadrature, the absorption coefficient, the emissivity of the boundary surface, the under-relaxation factor, and the scattering albedo are considered to evaluate ten schemes. The results showed that using the DC method, in general, the scheme that had the lowest CPU time is the SOU. In contrast, with the results of theDC procedure the CPU time for DIAMOND and QUICK schemes using the NWF method is shown to be, between the 3.8 and 23.1% faster and 12.6 and 56.1% faster, respectively. However, the other schemes are more time consuming when theNWFis used instead of the DC method. Additionally, a second test case was presented and the results showed that depending on the problem under consideration, the NWF procedure may be computationally faster or slower that the DC method. As an example, the CPU time for QUICK and SMART schemes are 61.8 and 203.7%, respectively, slower when the NWF formulation is used for the second test case. Finally, future researches to explore the computational cost of the NWF method in more complex problems are required.
Social Security Measures for Elderly Population in Delhi, India: Awareness, Utilization and Barriers
Kohli, Charu; Banerjee, Bratati; Ingle, Gopal Krishna
2017-01-01
Introduction World population of elderly is increasing at a fast pace. The number of elderly in India has increased by 54.77% in the last 15 years. A number of social security measures have been taken by Indian government. Aim To assess awareness, utilization and barriers faced while utilizing social security schemes by elderly in a secondary care hospital situated in a rural area in Delhi, India. Materials and Methods A cross-sectional study was conducted among 360 individuals aged 60 years and above in a secondary care hospital situated in a rural area in Delhi. A pre-tested, semi-structured schedule prepared in local language was used. Data was analysed using SPSS software (version 17.0). Chi-square test was used to observe any statistical association between categorical variables. The results were considered statistically significant if p-value was less than 0.05. Results A majority of study subjects were females (54.2%), Hindu (89.7%), married (60.3%) and were not engaged in any occupation (82.8%). Awareness about Indira Gandhi National Old Age Pension Scheme (IGNOAPS) was present among 286 (79.4%) and Annapurna scheme in 193 (53.6%) subjects. Among 223 subjects who were below poverty line, 179 (80.3%) were aware of IGNOAPS; while, 112 (50.2%) were utilizing the scheme. There was no association of awareness with education status, occupation, religion, family type, marital status and caste (p>0.05). Corruption and tedious administrative formalities were major barriers reported. Conclusion Awareness generation, provision of information on how to approach the concerned authority for utilizing the scheme and ease of administrative procedures should be an integral part of any social security scheme or measure. In the present study, about 79.4% of elderly were aware and 45% of the eligible subjects were utilizing pension scheme. Major barriers reported in utilization of schemes were corruption and tedious administrative procedures. PMID:28658811
Software error data collection and categorization
NASA Technical Reports Server (NTRS)
Ostrand, T. J.; Weyuker, E. J.
1982-01-01
Software errors detected during development of an interactive special purpose editor system were studied. This product was followed during nine months of coding, unit testing, function testing, and system testing. A new error categorization scheme was developed.
A Gas-Kinetic Scheme for Reactive Flows
NASA Technical Reports Server (NTRS)
Lian,Youg-Sheng; Xu, Kun
1998-01-01
In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation by assigning a new internal degree of freedom to the particle distribution function. The new variable can be also used to describe fluid trajectory for the nonreactive flows. Due to the gas-kinetic BGK model, the current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate the accuracy and robustness of the current kinetic method.
Computerized Detection of Lung Nodules by Means of “Virtual Dual-Energy” Radiography
Chen, Sheng; Suzuki, Kenji
2014-01-01
Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of “virtual dual-energy” (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated “extremely subtle” or “very subtle” by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially. PMID:23193306
Computerized detection of lung nodules by means of "virtual dual-energy" radiography.
Chen, Sheng; Suzuki, Kenji
2013-02-01
Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of "virtual dual-energy" (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated "extremely subtle" or "very subtle" by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially.
The Onset of a Novel Environmental Offset: A case study for diverse pollutant scheme in Australia.
NASA Astrophysics Data System (ADS)
Sengupta, A.; Arora, M.; Delbridge, N.; Pettigrove, V.; Feldman, D.
2014-12-01
Environmental offset schemes employ a crediting system to mitigate the impacts of pollutants. In this talk, we present a novel trade-off concept comparing diverse groups of pollutants: environmental flows, micropollutants (heavy metals, pesticides, estrogen compounds) and nutrients in a test watershed (Jacksons Creek), in the vicinity of Melbourne. A reservoir in the upper watershed, and a wastewater treatment plant (WTP) are the main sources of flow into Jacksons Creek. The current land use is a mix of agriculture, and rural, though rapid urbanization is anticipated with a 40% increase in the population by 2040. The creek is impacted by: 1) low flow, especially during dry periods (contribution from the reservoir drops dramatically), 2) nutrient enrichment (WTP and agricultural runoff), and 3) micropollutants-heavy metals (urban runoff), estrogenic compounds (WTP), and pesticides (agricultural runoff). In this offset framework, we evaluated current and future scenarios to identify the main stressor in Jacksons Creek. We collected monitoring data at 15 sites for separate 3 events. Then we developed a watershed model to assess sources of pollutant loads to the creek, using two different tools, Model for Urban Stormwater Improvement Conceptualisation (MUSIC) for the preliminary flow and water quality modeling, and eWater Source for integrated water resource management (IWRM), and a decision support system for stakeholders. Scenario analysis includes urbanization and population growth, and anticipated discharges from WTP and the reservoir. Measured nutrient concentrations were high for all sampling events. Micropollutants were detected at a concentration higher than the trigger value at several locations. Preliminary analysis shows that low flow is one of the major stressors in the creek causing elevated micropollutant and nutrient concentrations (non-point), and that discharge from the WTP is essential to maintain the minimum environmental flows, though nutrient enrichment downstream could occur. This study demonstrates an innovative case for evaluating net environmental benefits, and might hold important lessons for the design of offset schemes in comparable environments elsewhere.
Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.
Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique
2016-01-01
We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.
Poisoning by Herbs and Plants: Rapid Toxidromic Classification and Diagnosis.
Diaz, James H
2016-03-01
The American Association of Poison Control Centers has continued to report approximately 50,000 telephone calls or 8% of incoming calls annually related to plant exposures, mostly in children. Although the frequency of plant ingestions in children is related to the presence of popular species in households, adolescents may experiment with hallucinogenic plants; and trekkers and foragers may misidentify poisonous plants as edible. Since plant exposures have continued at a constant rate, the objectives of this review were (1) to review the epidemiology of plant poisonings; and (2) to propose a rapid toxidromic classification system for highly toxic plant ingestions for field use by first responders in comparison to current classification systems. Internet search engines were queried to identify and select peer-reviewed articles on plant poisonings using the key words in order to classify plant poisonings into four specific toxidromes: cardiotoxic, neurotoxic, cytotoxic, and gastrointestinal-hepatotoxic. A simple toxidromic classification system of plant poisonings may permit rapid diagnoses of highly toxic versus less toxic and nontoxic plant ingestions both in households and outdoors; direct earlier management of potentially serious poisonings; and reduce costly inpatient evaluations for inconsequential plant ingestions. The current textbook classification schemes for plant poisonings were complex in comparison to the rapid classification system; and were based on chemical nomenclatures and pharmacological effects, and not on clearly presenting toxidromes. Validation of the rapid toxidromic classification system as compared to existing chemical classification systems for plant poisonings will require future adoption and implementation of the toxidromic system by its intended users. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Bio-inspired adaptive feedback error learning architecture for motor control.
Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo
2012-10-01
This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).
An improved PCA method with application to boiler leak detection.
Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad
2005-07-01
Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.