33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Temperature range test. 159.115 Section 159.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a...
Intermediate Temperature Water Heat Pipe Tests
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.
2005-01-01
Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
Verification of the Multi-Axial, Temperature and Time Dependent (MATT) Failure Criterion
NASA Technical Reports Server (NTRS)
Richardson, David E.; Macon, David J.
2005-01-01
An extensive test and analytical effort has been completed by the Space Shuttle's Reusable Solid Rocket Motor (KSKM) nozzle program to characterize the failure behavior of two epoxy adhesives (TIGA 321 and EA946). As part of this effort, a general failure model, the "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. In the initial development of this failure criterion, tests were conducted to provide validation of the theory under a wide range of test conditions. The purpose of this paper is to present additional verification of the MATT failure criterion, under new loading conditions for the adhesives TIGA 321 and EA946. In many cases, the loading conditions involve an extrapolation from the conditions under which the material models were originally developed. Testing was conducted using three loading conditions: multi-axial tension, torsional shear, and non-uniform tension in a bondline condition. Tests were conducted at constant and cyclic loading rates ranging over four orders of magnitude. Tests were conducted under environmental conditions of primary interest to the RSRM program. The temperature range was not extreme, but the loading ranges were extreme (varying by four orders of magnitude). It should be noted that the testing was conducted at temperatures below the glass transition temperature of the TIGA 321 adhesive. However for the EA946, the testing was conducted at temperatures that bracketed the glass transition temperature.
Effects of Temperature on the Performance and Stability of Recent COTS Silicon Oscillators
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
Silicon oscillators have lately emerged to serve as potential replacement for crystal and ceramic resonators to provide timing and clock signals in electronic systems. These semiconductor-based devices, including those that are based on MEMS technology, are reported to be resistant to vibration and shock (an important criteria for systems to be deployed in space), immune to EMI, consume very low current, require few or no external components, and cover a wide range of frequency for analog and digital circuits. In this work, the performance of five recently-developed COTS silicon oscillator chips from different manufacturers was determined within a temperature range that extended beyond the individual specified range of operation. In addition, restart capability at extreme temperatures, i.e. power switched on while the device was soaking at extreme (hot or cold) temperature, and the effects of thermal cycling under a wide temperature range on the operation of these silicon oscillators were also investigated. Performance characterization of each oscillator was obtained in terms of its output frequency, duty cycle, rise and fall times, and supply current at specific test temperatures. The five different oscillators tested operated beyond their specified temperature region, with some displaying excellent stability throughout the whole test temperature range. Others experienced some instability at certain temperature test points as evidenced by fluctuation in the output frequency. Recovery from temperature-induced changes took place when excessive temperatures were removed. It should also be pointed out that all oscillators were able to restart at the extreme test temperatures and to withstand the limited thermal cycling without undergoing any significant changes in their characteristics. In addition, no physical damage was observed in the packaging material of any of these silicon oscillators due to extreme temperature exposure and thermal cycling. It is recommended that additional and more comprehensive testing under long term cycling be carried out to fully establish the reliability of these devices and to determine their suitability for use in space exploration missions under extreme temperature conditions.
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operability test; temperature range. 159.119 Section 159.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.119...
40 CFR 1066.831 - Exhaust emission test procedures for aggressive driving.
Code of Federal Regulations, 2014 CFR
2014-07-01
... has not remained in an area where ambient temperatures were within the range specified for testing since the previous FTP or HFET. (2) Keep ambient temperatures within the ranges specified for test... the driving schedules specified in this paragraph (b)(3)(ii). You may ask us to use a particular...
Remote Measurement of Atmospheric Temperatures By Raman Lidar
NASA Technical Reports Server (NTRS)
Salzman, Jack A.; Coney, Thom A.
1973-01-01
The Raman shifted return of a lidar, or optical radar, system has been utilized to make atmospheric temperature measurements. These measurements were made along a horizontal path at temperatures between -20 C and +30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the Raman spectrum which were simultaneously sampled from a preset range. The lidar unit employed in this testing consisted of a 4 joule-10ppm laser operating at 694.3 nm, a 10-inch Schmidt-Cassegrain telescope, and a system of time-gated detection and signal processing electronics. The detection system processed three return signal wavelength intervals - two intervals along the rotational Raman scattered spectrum and one interval centered at the Rayleigh-Mie scattered wavelength. The wavelength intervals were resolved by using a pellicle beam splitter and three optical interference filters. Raman return samples were taken from one discrete range segment during each test shot and the signal intensities were displayed in digital format. The Rayleigh-Mie techniques. The test site utilized to evaluate this measurement technique encompassed a total path length of 200 meters. Major components of the test site included a trailer-van housing the lidar unit, a controlled environment test zone, and a beam terminator. The control zone which was located about 100 meters from the trailer was 12 meters in length, 2.4 meters in diameter, and was equipped with hinged doors at each end. The temperature of the air inside the zone could be either raised or lowered with respect to ambient air through the use of infrared heaters or a liquid-nitrogen cooling system. Conditions inside the zone were continuously monitored with a thermocouple rake assembly. The test path length was terminated by a 1.2 meter square array of energy absorbing cones and a flat black screen. Tests were initially conducted at strictly ambient conditions utilizing the normal outside air temperatures as a test parameter. These tests provided a calibration of the Raman intensity ratio as a function of' temperature for the particular optical-filter arrangement used in this system while also providing a test of' the theoretical prediction formulated in the design of the system. Later tests utilized zone temperatures above and below ambient to provide temperature gradient data. These tests indicate that ten shots, or one minute of' data acquisition, from a 100 meter range can provide absolute temperature measurements with an accuracy of + 30 C and a range resolution of about 5 meters. Because this measurement accuracy compares well with that predicted for this particular unit, it is suggested that a field-application system could be built with signif'icant improvements in both absolute accuracy and range.
Fatigue-environment interactions in a SiC/Ti-15-3 composite
NASA Technical Reports Server (NTRS)
Gayda, J.; Gabb, T. P.; Lerch, B. A.
1993-01-01
Load-controlled isothermal and nonisothermal fatigue lives of a (0-deg)s SiC/Ti-15-3 were evaluated at temperatures between 150 and 550 C and a target strain range of about 0.45 percent. In nonisothermal fatigue tests, load was first cycled at minimum temperature and then temperature was cycled at zero load. For fatigue tests with peak temperatures at or above 300 C, fatigue life was dramatically reduced compared to that at 150 C. The shortest life was produced by the nonisothermal test with the greatest temperature range (Delta T = 400 C) and highest peak temperature (T(max) = 550 C). Vacuum testing showed that much of the life reduction under isothermal and nonisothermal conditions was related to environmental effects, although the nature of the fatigue-environment interaction was decidedly different for the isothermal and nonisothermal test cycles which were studied.
Carnley, Mark V.
2015-01-01
The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.
40 CFR 1066.701 - Applicability and general provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Cold Temperature Test Procedures § 1066.701 Applicability and...) temperature range. (b) Do not apply the humidity correction factor in § 1066.615(a) for cold temperature...
Laminar flow studies of a low-temperature space radiator model using D-shaped tubes
NASA Technical Reports Server (NTRS)
Cintula, T. C.; Prok, G. M.; Johnston, D. B.
1972-01-01
Test results of a low-temperature space radiator model are presented. Radiator performance is evaluated with a low-thermal-conductivity fluid in laminar flow in D-shaped cross-section tubes. The test covered a Reynolds number range from 50 to 4500 and a fluid temperature range from 294 to 414 K (70 to 286 F). For low-temperature radiators, the fluid-to-surface temperature differential was predominately influenced by fluid temperature in laminar flow. Heat transfer and pressure drop for the radiator tube could be predicted within engineering accuracy from existing correlations.
NASA Technical Reports Server (NTRS)
Curren, A. N.
1978-01-01
A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.
Application of headspace for research volatile organic compounds emitted from building materials
NASA Astrophysics Data System (ADS)
Kultys, Beata; Waląg, Karolina
2018-01-01
Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC) emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C) and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.
Correlation of Mixture Temperature Data Obtained from Bare Intake-manifold Thermocouples
NASA Technical Reports Server (NTRS)
White, H. Jack; Gammon, Goldie L
1946-01-01
A relatively simple equation has been found to express with fair accuracy, variation in manifold-charge temperature with charge in engine operating conditions. This equation and associated curves have been checked by multi cylinder-engine data, both test stand and flight, over a wide range of operating conditions. Average mixture temperatures, predicted by the equations of this report, agree reasonably well with results within the same range of carburetor-air temperatures from laboratories and test stands other than the NACA.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.
1973-01-01
An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.
40 CFR 1066.105 - Ambient controls and vehicle cooling fans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... range of ambient temperature and humidity. Use good engineering judgment to maintain relatively uniform temperatures throughout the test cell before testing. You are generally not required to maintain uniform temperatures throughout the test cell while the vehicle is running due to the heat generated by the vehicle...
Knies, Jennifer L.; Kingsolver, Joel G.
2013-01-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reaction(s) over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using datasets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range, and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics is rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence. PMID:20528477
Knies, Jennifer L; Kingsolver, Joel G
2010-08-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.
Accelerated Testing Of Photothermal Degradation Of Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow
1989-01-01
Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.
Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures
NASA Technical Reports Server (NTRS)
Chapman, P.
1982-01-01
Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.
An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal
NASA Astrophysics Data System (ADS)
Gallagher, Morgan Leo
Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)
Report on FY15 Two-Bar Thermal Ratcheting Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Jetter, Robert I; Baird, Seth T
2015-06-22
Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits andmore » creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from ASME Code committees that the proposed EPP methodology should also apply to other Subsection NH materials throughout their allowed temperature range. To support these objectives, two suites of tests have been accomplished during this reporting period. One suite addresses the issue of the response of Alloy 617 at a lower temperature with tests in range of 500 800oC and a few at 350 650°C. The other suite addresses the response of SS316H up to its current maximum allowed temperature of 1500°F (815°C) In the two-bar test methodology, the two bars can be viewed as specimens taken out of a tubular component across the wall thickness representing the inner wall element and the outer wall element respectively. The two bars are alternately heated and cooled under sustained axial loading to generate ratcheting. A sustained hold time is introduced at the hot extreme of the cycle to capture the accelerated ratcheting and strain accumulation due to creep. Since the boundary conditions are a combination of strain control and load control it is necessary to use two coupled servo-controlled testing machines to achieve the key features of the two-bar representation of actual component behavior. Two-bar thermal ratcheting test results with combinations of applied mean stresses, transient temperature difference and heating and cooling rates were recorded. Tests performed at heating and cooling rates of 30°C/min are comparable to a strain rate of 10 ⁻⁵/sec. At high mean stresses in tension the direction of ratcheting was in-phase with the load, e.g. tensile strain ratcheting under high tensile loading; however, at lower loads, strain ratcheting in compression was observed under net tensile mean stresses. The strain accumulation was proportional to the applied thermal load. However, there was a narrow range of applied load in which the high applied thermal loading did not result in significant strain accumulation. Unfortunately, when the proposed EPP strain limit evaluation rules were applied to the loading history for the two-bar configuration, the predicted narrow range of low strain accumulation did not coincide with the experimental data. However, by the use of inelastic analysis in conjunction with an analytic experiment it was possible to show that the EPP strain limit code case rules could be applied to high temperature structures where the stress and temperature is not uniform throughout which is the general case. Interestingly, the suite of tests on Alloy 617 at the lower temperature range of 500°C to 800oC showed good agreement with the proposed EPP strain limit rules with a much wider band of applied load that exhibited minimal ratcheting. The four tests conducted at the lower temperature range of 350°C to 650°C showed no ratcheting. The suite of tests on SS316H at a temperature range of 515°C to 815°C resembled the results from the tests on Alloy 617 at 650°C to 950°C. Both exhibited a narrow band of applied load wher...« less
Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack D. Law; Troy G. Garn; David H. Meikrantz
2009-09-01
Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperaturemore » profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed« less
40 CFR 1065.530 - Emission test sequence.
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature continuously to verify that it remains within the pre-test temperature range as specified in... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...
40 CFR 1065.530 - Emission test sequence.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature continuously to verify that it remains within the pre-test temperature range as specified in... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...
40 CFR 1065.530 - Emission test sequence.
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature continuously to verify that it remains within the pre-test temperature range as specified in... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...
NASA Astrophysics Data System (ADS)
Mueller, Richard N.; Howard, J. Lawrence; Sikorra, Charles F.; Swegle, Allan R.
Commercial strain gages were evaluated for proposed strain measurement on a Rene 41 honeycomb test panel to be subjected to temperatures from -423 F to +1600 F. Foil strain gages of three different temperature compensations, a weldable strain gage, and a capacitive strain gage, were tested to determine characteristics of apparent strain, strain sensitivity, and temperature operational limits under stabilized temperature and several heating and cooling temperature rates. Test results show that strain measurement over the total temperature range can be made using a combination of gages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power, D V
1978-06-01
Initial efforts to develop, test, and evaluate counterflow recuperator designs are reported for the High Temperature Range Recuperator project. Potential materials to withstand glass furnace exhaust environments at temperatures up to 2800/sup 0/F were evaluated on the bases of material properties, fabrication capability, and relative performance in the flue environment of a day tank glass furnace. Polycrystalline alumina (Vistal), reaction sintered silicon carbide (KT and NC 430), chemically vapor deposited silicon carbide (CVD) and sintered alpha silicon carbide proved most satisfactory in the material temperature range of 2300/sup 0/F to 2800/sup 0/F. Relatively pure alumina (AD 998 and AD 94),more » mullite and cordierite were most satisfactory in the material temperature range of 1700/sup 0/F to 2300/sup 0/F. Recuperator designs were evaluated on the bases of cold air flow tests on laboratory models, fabricability, and calculated thermomechanical stress under expected operating conditions. Material strengths are shown to be greater than expected stresses by factors ranging from 2.6 for KT silicon carbide to 16 for cordierite. Recuperator test sections were fabricated from KT silicon carbide and subjected to thermal stress conditions in excess of twice the expected operating conditions with no deterioration or failure evident. A test section was subjected to the thermal shock of instant transfer between room temperature and a 2000/sup 0/F furnace without damage. Economic analysis based on calculated heat transfer indicates a recuperator system of this design and using currently available materials would have a payback period of 2.3 years.« less
NASA Technical Reports Server (NTRS)
Wright, J. P.; Wilson, D. E.
1976-01-01
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.
Temperature Effect of Low Velocity Impact Resistance of Glass/epoxy Laminates
NASA Astrophysics Data System (ADS)
Kang, Ki-Weon; Kim, Heung-Seob; Chung, Tae-Jin; Koh, Seung-Kee
This paper aims to evaluate the effect of temperature on impact damage resistance of glass/epoxy laminates. A series of impact tests were performed using an instrumented impact-testing machine at temperature ranging from -40°C to +80°C. The resulting impact damage was measured using back light method. The impact resistance parameters were employed to understand the damage resistance. It was observed that temperature has a little effect on the impact responses of composite laminates. The damage resistance of glass/epoxy laminates is somewhat deteriorated at two opposite extremes of the studied temperature range and this behavior is likely due to the property change of glass/epoxy laminates under extreme temperatures
Cryogenic Temperature Effects on Performance of Polymer Composites
NASA Technical Reports Server (NTRS)
Hui, David; Dutta, P. K.
2003-01-01
The objective of this study is to evaluate the low temperature behavior of polymer composites down to the cryogenic temperature range. This would be accomplished by study of its behavior in several ways. First we would study the microfracture growth by observing the acoustic emission as the temperature is lowered. We would also note any damage growth by ultrasonic velocity testing applying the pulse echo method. Effects of such low temperature would then be studied by examining the shear properties by the short beam shear test, and also the fracture toughness properties over a wide range of strain rate and temperature. At present these studies are continuing. The limited data obtained from these studies are reported in this report.
Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.
2010-01-01
For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Chapman, A. J.
1973-01-01
Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.
NASA Astrophysics Data System (ADS)
Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Start A.; Toloczko, Mychailo B.
2014-01-01
The temperature dependence of fracture toughness in HT9 steel irradiated to 3-145 dpa at 380-503 °C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm × 3 mm × 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 °C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180-200 MPa √{m} at 350-450 °C, and then decreased with the test temperature. At an irradiation temperature ⩾430 °C, the fracture toughness was nearly unchanged up to about 450 °C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.
Voss, Frank D.; Curran, Christopher A.; Mastin, Mark C.
2008-01-01
A mechanistic water-temperature model was constructed by the U.S. Geological Survey for use by the Bureau of Reclamation for studying the effect of potential water management decisions on water temperature in the Yakima River between Roza and Prosser, Washington. Flow and water temperature data for model input were obtained from the Bureau of Reclamation Hydromet database and from measurements collected by the U.S. Geological Survey during field trips in autumn 2005. Shading data for the model were collected by the U.S. Geological Survey in autumn 2006. The model was calibrated with data collected from April 1 through October 31, 2005, and tested with data collected from April 1 through October 31, 2006. Sensitivity analysis results showed that for the parameters tested, daily maximum water temperature was most sensitive to changes in air temperature and solar radiation. Root mean squared error for the five sites used for model calibration ranged from 1.3 to 1.9 degrees Celsius (?C) and mean error ranged from ?1.3 to 1.6?C. The root mean squared error for the five sites used for testing simulation ranged from 1.6 to 2.2?C and mean error ranged from 0.1 to 1.3?C. The accuracy of the stream temperatures estimated by the model is limited by four errors (model error, data error, parameter error, and user error).
Analysis of Screen Channel LAD Bubble Point Tests in Liquid Methane at Elevated Temperature
NASA Technical Reports Server (NTRS)
Hartwig, Jason; McQuillen, John
2012-01-01
This paper examines the effect of varying the liquid temperature and pressure on the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid methane using gaseous helium across a wide range of elevated pressures and temperatures. Testing of a 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenic Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 105 to 160K and 0.0965 - 1.78 MPa. Bubble point is shown to be a strong function of the liquid temperature and a weak function of the amount of subcooling at the LAD screen. The model predicts well for saturated liquid but under predicts the subcooled data.
EXPERIMENTAL INVESTIGATION OF DEFROST USING WARM LIQUID REFRIGERANT
This paper reports the results from laboratory tests of a low-temperature supermarket refrigeration system with two open and two reach-in display cases. Tests were performed at condensing temperatures ranging from 10 to 40 C and at an evaporating temperature of -34 C. The perfo...
Testing methods and techniques: Environmental testing: A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
Various devices and techniques are described for testing hardware and components in four special environments: low temperature, high temperature, high pressure, and vibration. Items ranging from an automatic calibrator for pressure transducers to a fixture for testing the susceptibility of materials to ignition by electric spark are included.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.
2000-01-01
Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.
A Wide Range Temperature Sensor Using SOI Technology
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad
2009-01-01
Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S
2014-01-01
The temperature dependence of fracture toughness in HT9 steel irradiated to 3 145 dpa at 380 503 C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm 3mm 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperaturemore » than the irradiation dose. At an irradiation temperature <430 C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180 200 MPa ffiffiffiffiffi m p at 350 450 C, and then decreased with the test temperature. At an irradiation temperatureP430 C, the fracture toughness was nearly unchanged up to about 450 C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.« less
Time and temperature dependent modulus of pyrrone and polyimide moldings
NASA Technical Reports Server (NTRS)
Lander, L. L.
1972-01-01
A method is presented by which the modulus obtained from a stress relaxation test can be used to estimate the modulus which would be obtained from a sonic vibration test. The method was applied to stress relaxation, sonic vibration, and high speed stress-strain data which was obtained on a flexible epoxy. The modulus as measured by the three test methods was identical for identical test times, and a change of test temperature was equivalent to a shift in the logarithmic time scale. An estimate was then made of the dynamic modulus of moldings of two Pyrrones and two polyimides, using stress relaxation data and the method of analysis which was developed for the epoxy. Over the common temperature range (350 to 500 K) in which data from both types of tests were available, the estimated dynamic modulus value differed by only a few percent from the measured value. As a result, it is concluded that, over the 500 to 700 K temperature range, the estimated dynamic modulus values are accurate.
High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels
NASA Technical Reports Server (NTRS)
Canada, G. S.
1974-01-01
Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.
Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hartl, J. H.
1980-01-01
Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.
NASA Astrophysics Data System (ADS)
Chung, T. E.; Kalantary, M. R.; Faulkner, R. G.; Boutard, J.-L.
1992-09-01
Strain-controlled low cycle fatigue tests (with and without tensile hold) were performed on type 316L stainless steel over the temperature range 20-200°C. The results indicate that for strain ranges of less than 1%, the fatigue life was temperature independent. By contrast, for strain ranges of 1% or more, fatigue life decreased significantly as temperature was increased from 20 to approximately 50°C. It then increased with further increases in temperature until approximately 100°C and beyond when it became relatively temperature insensitive. Fatigue life at all temperatures was reduced with the superimposition of a speak tension hold of 50 s. A model based on the temperature-assisted diffusion of interstitial carbon atoms is proposed to explain the phenomenon.
Investigation of hot cracking resistance of 2205 duplex steel
NASA Astrophysics Data System (ADS)
Adamiec, J.; Ścibisz, B.
2010-02-01
Austenitic duplex steel of the brand 2205 according to Avesta Sheffield is used for welded constructions (pipelines, tanks) in the petrol industry, chemical industry and food industry. It is important to know the range of high-temperature brittleness in designing welding technology for constructions made of this steel type. There is no data in literature concerning this issue. High-temperature brittleness tests using the simulator of heat flow device Gleeble 3800 were performed. The tests results allowed the evaluation of the characteristic temperatures in the brittleness temperature range during the joining of duplex steels, specifically the nil-strength temperature (NST) and nil-ductility temperatures (NDT) during heating, the strength and ductility recovery temperatures (DRT) during cooling, the Rfparameter (Rf = (Tliquidus - NDT)/NDT) describing the duplex steel inclination for hot cracking, and the brittleness temperature range (BTR). It has been stated that, for the examined steel, this range is wide and amounts to ca. 90 °C. The joining of duplex steels with the help of welding techniques creates a significant risk of hot cracks. After analysis of the DTA curves a liquidus temperature of TL = 1465 °C and a solidus temperature of TS = 1454 °C were observed. For NST a mean value was assumed, in which the cracks appeared for six samples; the temperature was 1381 °C. As the value of the NDT temperature 1367 °C was applied while for DRT the assumed temperature was 1375 °C. The microstructure of the fractures was observed using a Hitachi S-3400N scanning electron microscope (SEM). The analyses of the chemical composition were performed using an energy-dispersive X-ray spectrometer (EDS), Noran System Six of Thermo Fisher Scientific. Essential differences of fracture morphology type over the brittle temperature range were observed and described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.
2014-01-01
The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than themore » irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.« less
Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass/Kevlar Sandwich Composites
NASA Astrophysics Data System (ADS)
Halvorsen, Aaron; Salehi-Khojn, Amin; Mahinfalah, Mohammad; Nakhaei-Jazar, Reza
2006-11-01
Impact tests were performed on sandwich composites with Fiberglass and Fiberglass/Kevlar face sheets subjected to varied temperatures. A number of specimens were tested at -50 to 120 °C temperature range and at 20, 30, and 45 J low velocity energy levels. Impact properties of the sandwich composites that were evaluated include maximum normal and shear stresses, maximum energy absorption, non-dimensional parameters (AEMP, PI, and RD), and compression after impact strength. Composite specimens tested have a urethane foam filled honeycomb center sandwiched between a variation of four layered Fiberglass and Kevlar/Fiberglass face sheets in a thermoset polymer epoxy matrix. Results showed that the impact performance of these sandwich composites changed over the range of temperature considered and with the addition of a Kevlar layer.
NASA Astrophysics Data System (ADS)
Zbińkowski, Piotr; Zmywaczyk, Janusz; Koniorczyk, Piotr
2017-07-01
Phase-change materials (PCM) can be applied as a heat absorbing/releasing medium in passive cooling systems. Such systems can be used in cooling and temperature stabilization of electronic components, i.e., Li-ion batteries, photovoltaic modules or light emitting diodes (LED). In order to optimize heat transfer in passive cooling systems experimental studies of PCM thermophysical properties are necessary. A good PCM candidate for passive cooling systems may be paraffin waxes due to their relatively high latent heat of fusion (L 200 J.g-1), suitable for working of electronic devices range of melting temperatures (22 °C - 68 °C) and a reasonable price. However, their main drawback is a relatively low thermal conductivity k ranging from 0.148 W.m-1.K-1 to 0.358 W.m-1.K-1. In this paper were presented results of experimentally determined temperature characteristics of thermophysical parameters of four paraffin waxes industrially manufactured in Jasło/Poland by POLWAX. The density ρ of the test paraffin waxes determined at room temperature (20 °C) using a laboratory balance RADWAG X/60/220 comprised from 0.82 g.cm-3 to 0.94 g.cm-3. The thermal diffusivity κ of paraffin waxes was tested within temperature range from -50 °C to 30 °C every 20 °C interval using the NETZSCH LFA 467 HyperFlash. The test specimens having form of cylinder were 12.7 mm in diameter and 2.15 - 2.20 mm in height. Prior to the experiment the face and the back surface of each specimen were coated with a thin layer of graphite 33 having a thickness of several micrometers in accordance with the recommendation given by NETZSCH. The thermal diffusivity of the test paraffin waxes within temperature interval -40 °C - 20 °C was determined to be 0.083 mm2.s-1 to 0.216 mm2.s-1. Thermal effects and the apparent heat capacity cp of the tested materials were measured in the temperature range from -10 °C to 100 °C using the NETZSCH DSC 404 F1 Pegasus at 10 K.min-1 heating/cooling rates in an atmosphere of helium as an inert gas. Thermal degradation studies of the test specimens were carried out in TG/DTG analysis, using NETZSCH STA 2500 Regulus within temperature range from 30 °C - 800 °C. The results of the heat capacity obtained by using DSC method and determined from the LFA 467 thermal diffusivity measurements due to applying Pyroceram 9606 as a reference material of known thermophysical properties were compared with each other. The thermal conductivity k of the tested paraffin waxes was evaluated using a well-known relationship k = κ . ρ . cp. In the investigated temperature range from -40 °C to 20 °C the thermal conductivity of the test paraffin waxes was changing from 0.157 W.m-1.K-1 to 0.282 W.m-1.K-1. DSC investigations revealed that the phase-change transition connected with the melting of the test paraffin waxes was a two-step, and in case of LUXOLINA ST, it was a three-step process (solid-solid and then solid-liquid) within temperature range from 30 °C to 65 °C as determined from the onset. The current studies of determining thermophysical properties of some paraffin waxes are treated as a starting point for selecting the most adequate PCM candidate for passive cooling systems of high-power LED street lamp.
Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation
NASA Technical Reports Server (NTRS)
Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran
2007-01-01
Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.
Thermal-Interaction Matrix For Resistive Test Structure
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser
1990-01-01
Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.
2006-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.
NASA Technical Reports Server (NTRS)
Hanseth, E. J.
1981-01-01
A high temperature solar receiver was fabricated and tested in excess of 1370 C on an 11-meter-diameter test bed concentrator at the Jet Propulsion Laboratory Parabolic Dish Test Site, Edwards, California. The 60-kilowatt thermal receiver design utilizes state-of-the-art silicon carbide honeycomb matrix panels to receive and transfer the solar energy and mullite elements for thermal buffer storage. Solar tests were conducted with indicated air exit temperatures ranging from 885 C (1625 F) to 1427 C (2600 F), mass flow rates of 75 to 105 g/sec (0.16 to 0.23 lbm/sec), and pressures up to 265 kPa absolute (38.4 psia). Estimates of efficiency are 59.7% at 1120 C (2048 F) to 80.6% at 885 C (1625 F) when aperture spillage losses are considered separately. Results are presented which demonstrate the feasibility of this innovative receiver concept for point-focusing parabolic dish applications over a wide temperature range.
Portable Body Temperature Conditioner
2014-12-01
are homeothermic and require a narrow core body temperature range to maintain normal homeostasis. Currently, the most effective treatments for...for monitoring circulating water and patient body temperature . During breadboard testing the effectiveness of the air coil was found to be...blanket. Bath temperatures were set to 30°C, 15°C, and 10°C respectively. In order to develop a testing procedure for quantifying the effective
NASA Technical Reports Server (NTRS)
Kranz, M
1954-01-01
Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.
1977-01-01
Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.
NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities
NASA Technical Reports Server (NTRS)
Robinson, R. Craig
1999-01-01
The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-01-01
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398
Markle, Tricia M; Kozak, Kenneth H
2018-05-01
Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, H.M.; Pate, M.B.
1999-06-15
The report discusses miscibility, solubility, viscosity, and density data for the refrigerant hydrofluorocarbon (HFC)-236ea (or R-236ea) and four lubricants supplied by Exxon Corporation. The miscibility tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath, precisely controlled over a range of {minus}50 to 90 C. Critical solution temperatures obtained from the miscibility data are presented for each refrigerant/lubricant combination. Data for the R-236ea in each of the test lubricants have been collected for refrigerant concentrations of 10--90%. The raw data have been presented, and the results have been summarized.more » Solubility, viscosity, and density data were also obtained for R-236ea mixed with the same four oils for a refrigerant concentration range of 0--40 wt% refrigerant over a temperature range of 30--100 C.« less
Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the limited thermal cycling did not influence its characteristics and had no impact on its packaging as no structural or physical damage was observed.
EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingledecker, John P; Santella, Michael L; Wilson, Keely A
2008-01-01
Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate thesemore » materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.« less
Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results
NASA Technical Reports Server (NTRS)
Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.
1993-01-01
This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T.; Seiner, John M.
1991-01-01
The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.
Miniature sheathed thermocouples for turbine blade temperature measurement
NASA Technical Reports Server (NTRS)
Holanda, R.; Glawe, G. E.; Krause, L. N.
1974-01-01
An investigation was made of sheathed thermocouples for turbine blade temperature measurements. Tests were performed on the Chromel-Alumel sheathed thermocouples with both two-wire and single-wire configurations. Sheath diameters ranged from 0.25 to 0.76 mm, and temperatures ranged from 1080 to 1250 K. Both steady-state and thermal cycling tests were performed for times up to 450 hr. Special-order and commercial-grade thermocouples were tested. The tests showed that special-order single-wire sheathed thermocouples can be obtained that are reliable and accurate with diameters as small as 0.25 mm. However, all samples of 0.25-mm-diameter sheathed commercial-grade two-wire and single-wire thermocouples that were tested showed unacceptable drift rates for long-duration engine testing programs. The drift rates were about 1 percent in 10 hr. A thermocouple drift test is recommended in addition to the normal acceptance tests in order to select reliable miniature sheathed thermocouples for turbine blade applications.
Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate
NASA Astrophysics Data System (ADS)
Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri
2014-05-01
This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.
Flexible Cryogenic Heat Pipe Development Program
NASA Technical Reports Server (NTRS)
1976-01-01
A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poore, J.I.
1963-09-01
The psychrometer measures percentage of relative humidity and temperature. The relative humidity can be measured to an accuracy better than 1 per cent over the range from 5 to 98 percent in a temperature range of 35 deg F through 140 deg F. A test report on this psychrometer by the National Bureau of Standards is given. The psychrometer will measure temperature with an accuracy within 0.05 deg F over the range 32 deg F through 212 deg F. The operation theory, general description, and operating procedures are included. (auth)
Elevated temperature mechanical properties of line pipe steels
NASA Astrophysics Data System (ADS)
Jacobs, Taylor Roth
The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.
Superficial Velocity Effects on HZ-PAN and AgZ-PAN for Kr/Xe Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, Amy Keil; Garn, Troy Gerry; Greenhalgh, Mitchell Randy
2016-04-01
Nearly all previous testing of HZ-PAN and AgZ-PAN was conducted at the same flow rate in order to maintain consistency among tests. This testing was sufficient for sorbent capacity determinations, but did not ensure that sorbents were capable of functioning under a range of flow regimes. Tests were conducted on both HZ-PAN and AgZ-PAN at superficial velocities between 20 and 700 cm/min. For HZ-PAN, Kr capacity increased from 60 mmol/kg to 110 mmol/kg as superficial velocity increased from 21 to 679 cm/min. Results for AgZ-PAN were similar, with capacity ranging from 72 to 124 mmol/kg over the same range ofmore » superficial. These results are promising for scaling up to process flows, demonstrating flexibility to operate in a broad range of superficial velocities while maintaining sorbent capacity. While preparing for superficial velocity testing it was also discovered that AgZ-PAN Xe capacity, previously observed to diminish over time, could be recovered with increased desorption temperature. Further, a substantial Xe capacity increase was observed. Previous room temperature capacities in the range of 22-25 mmol Xe/kg AgZ-PAN were increased to over 60 mmol Xe/kg AgZ-PAN. While this finding has not yet been fully explored to optimize activation and desorption temperatures, it is encouraging.« less
Thin film diamond temperature sensor array for harsh aerospace environment
NASA Technical Reports Server (NTRS)
Aslam, M.; Masood, A.; Fredricks, R. J.; Tamor, M. A.
1992-01-01
The feasibility of using polycrystalline CVD diamond films as temperature sensors in harsh aerospace environment associated with hypersonic flights was tested using patterned diamond resistors, fabricated on flat or curved oxidized Si surfaces, as temperature sensors at temperatures between 20 and 1000 C. In this temperature range, the measured resistance was found to vary over 3 orders of magnitude and the temperature coefficient of resistance to change from 0.017/K to 0.003/K. After an annealing treatment, the resistance change was reproducible within 1 percent on the entire temperature range for short measuring times.
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.
2014-01-01
In support of an effort on damage prognosis, the viscoelastic behavior of Ti-6Al-4V (Ti-6-4) was investigated. This report documents the experimental characterization of this titanium alloy. Various uniaxial tests were conducted to low load levels over the temperature range of 20 to 538 C to define tensile, creep, and relaxation behavior. A range of strain rates (6x10(exp -7) to 0.001/s) were used to document rate effects. All tests were designed to include an unloading portion, followed by a hold time at temperature to allow recovery to occur either at zero stress or strain. The titanium alloy was found to exhibit viscoelastic behavior below the "yield" point and over the entire range of temperatures (although at lower temperatures the magnitude is extremely small). These experimental data will be used for future characterization of a viscoelastic model.
Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona
LeCain, G.D.
1995-01-01
Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.
Upper thermal tolerances of early life stages of freshwater mussels
Pandolfo, Tamara J.; Cope, W. Gregory; Arellano, Consuelo; Bringolf, Robert B.; Barnhart, M. Christopher; Hammer, E
2010-01-01
Freshwater mussels (order Unioniformes) fulfill an essential role in benthic aquatic communities, but also are among the most sensitive and rapidly declining faunal groups in North America. Rising water temperatures, caused by global climate change, industrial discharges, drought, or land development, could further challenge imperiled unionid communities. The aim of our study was to determine the upper thermal tolerances of the larval (glochidia) and juvenile life stages of freshwater mussels. Glochidia of 8 species of mussels were tested: Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata,Lasmigona complanata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis. Seven of these species also were tested as juveniles. Survival trends were monitored while mussels held at 3 acclimation temperatures (17, 22, and 27°C) were exposed to a range of common and extreme water temperatures (20–42°C) in standard acute laboratory tests. The average median lethal temperature (LT50) among species in 24-h tests with glochidia was 31.6°C and ranged from 21.4 to 42.7°C. The mean LT50 in 96-h juvenile tests was 34.7°C and ranged from 32.5 to 38.8°C. Based on comparisons of LT50s, thermal tolerances differed among species for glochidia, but not for juveniles. Acclimation temperature did not affect thermal tolerance for either life stage. Our results indicate that freshwater mussels already might be living close to their upper thermal tolerances in some systems and, thus, might be at risk from rising environmental temperatures.
2012-03-01
temperature ranges, as well as with and without hot dwell periods. Table 4. Specimens chosen for SEM fractography . Samples ID Temperature variation...intersecting with crystallographic facet. Comparison with the fractography of the specimen (19776A) tested to %25.0 mechanical strain at the 800 F Figure... fractography of the specimen (19777B) tested to %4.0 mechanical strain (see Table 2). Large mechanical strain range generates large stresses around the hole
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Largo hot water system long range thermal performance test report, addendum
NASA Technical Reports Server (NTRS)
1978-01-01
The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.
Thermal Insulation Test Apparatuses
NASA Technical Reports Server (NTRS)
Berman, Brion
2005-01-01
The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.
Impact Properties of Irradiated HT9 from the Fuel Duct of FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Maloy, S; Toloczko, M
2012-01-01
This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3 148 dpa and irradiation temperatures in the range of 378 504 oC. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 4 27 mm at an impact speed of 3.2 m/s in a 25J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of transition temperatures was greater after relatively low temperaturemore » irradiation. The USE values were in the range of 5.5 6.7 J before irradiation and decreased to the range of 2 5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. For the irradiated specimens, the dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. The size effect was also discussed to clarify the differences in the impact data of subsize and standard specimens.« less
NASA Astrophysics Data System (ADS)
Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.
2016-08-01
In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.
Strain and Temperature Sensing Properties of Multiwalled Carbon Nanotube Yarn Composites
NASA Technical Reports Server (NTRS)
Kahng, Seun K.; Gates, Thomas S.; Jefferson, Gail D.
2008-01-01
Strain and temperature response of Multiwalled Carbon Nanotube (MWCNT/CNT) yarns on a stainless steel test beam has been studied. The carbon nanotube yarns are spun from a multiwalled carbon nanotube forest grown on a silicon substrate to a 4-ply yarn with a diameter of about 15-20 microns. Four of the 4-ply CNT yarns are arranged in a Wheatstone bridge configuration on the stainless steel test beam using a thin layer of polyurethane resin that insulates and protects the yarns from the test beam. Strain sensitivities of the CNT yarn sensors range from 1.39 to 1.75 mV/V/1000 microstrain at room temperature, and temperature sensitivity of the CNT yarn bridge is 91 microA/degC. Resistance of the yarns range from 215 to 270 ohms for CNT yarn length of approximately 5 mm. Processes used in attaching the CNT yarns on the test beam and experimental procedures used for the measurements are described. Conventional metallic foil strain gages are attached to the test beam to compare with the CNT sensors. The study demonstrates multifunctional capability of the sensor for strain and temperature measurements and shows its applicability where engineering strain is less than 3%.
An evaporative and engine-cycle model for fuel octane sensitivity prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, D.P.; Taylor, A.B.
The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with realmore » Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.« less
Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2016-01-01
A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumina package with platinum conductor for 500 C low-power silicon carbide (SiC) integrated circuits. The design and electrical performance of this package including parasitic capacitance and parallel conductance of neighboring I/Os from 100 Hz to 1 MHz in a temperature range from room temperature to 550 C are discussed in detail. The parasitic capacitance and parallel conductance of this package in the entire frequency and temperature ranges measured does not exceed 1.5 pF and 0.05 microsiemens, respectively. SiC integrated circuits using this package and compatible printed circuit board have been successfully tested at 500 C for over 3736 hours continuously, and at 700 C for over 140 hours. Some test examples of SiC integrated circuits with this packaging system are presented. This package is the key to prolonged T greater than or equal to 500 C operational testing of the new generation of SiC high temperature integrated circuits and other devices currently under development at NASA Glenn Research Center.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Hinkley, Jeffrey A.; Whitley, Karen S.; Gates, Thomas S.
2004-01-01
Mechanical testing of an advanced polymer resin with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The elastic properties, inelastic elongation behavior, and notched tensile strength all as a function of molecular weight and test temperature were determined. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature.
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
Low cycle fatigue properties of type 316 stainless steel in vacuum
NASA Astrophysics Data System (ADS)
Furuya, Kazuo; Nagata, Norio; Watanabe, Ryoji
1980-04-01
Low cycle fatigue tests in vacuum were carried out on Type 316 stainless steel under the push-pull type, strain-controlled, continuous cycling mode in the temperature range from room temperature to 1073 K and strain rate from 5 × 10 -3 to 5 × 10 -5/s . Little temperature dependence of the fatigue life at a given plastic strain range is observed. The fatigue life decreases with decreasing strain rate at room temperature and 823 K, but shows little change at 973 and 1073 K. The fracture mode is transgranular in most cases, but an indication of intergranular cracking is observed in the specimens tested at 1073 K and at the lowest strain rate. The results are treated by the general adsorption model.
Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.
Rowe, R Kerry; Islam, M Z
2009-10-01
The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.
NASA Astrophysics Data System (ADS)
Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.
2012-05-01
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, Scott; Sheffield, Stephen
2005-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.
SIXTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.
2011-08-31
A series of experiments to monitor the aging performance of Viton{reg_sign} GLT O-rings used in the Model 9975 package has been ongoing for seven years at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues formore » 33 GLT O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 F and higher temperatures, and in 7 fixtures aging at 300 F. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 41-60 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 F will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging within the past year at an intermediate temperature of 270 F, with hopes that they may leak before the 200 F fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200-300 F for up to 26 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the Orings displayed a compression set ranging from 51-96%. This is greater than seen to date for packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350-400 F). However, at 300 F, the room temperature leak test failures to date experienced longer aging times than predicted by the CSR-based model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 F will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.« less
Advanced high frequency partial discharge measuring system
NASA Technical Reports Server (NTRS)
Karady, George G.
1994-01-01
This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.
Poletto, Jamilynn B.; Cocherell, Dennis E.; Baird, Sarah E.; Nguyen, Trinh X.; Cabrera-Stagno, Valentina; Farrell, Anthony P.; Fangue, Nann A.
2017-01-01
Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed. PMID:28078086
Fernandez Santos, S; Bertemes-Filho, P
2017-07-01
The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.
NASA Astrophysics Data System (ADS)
Fernandez Santos, S.; Bertemes-Filho, P.
2017-07-01
The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.
An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B
NASA Astrophysics Data System (ADS)
Piao, Kun
Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.
SEVENTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.
2012-08-30
A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23more » GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 54-72 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 30 - 36 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51 – 96%. This is greater than seen to date for any packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350 – 400 ºF). However, at 300 ºF, the room temperature leak test failures to date experienced longer aging times than predicted by the CSRbased model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 ºF will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining PCV O-ring fixtures.« less
NASA Astrophysics Data System (ADS)
Dai, Jingmin; Wang, Xinbei; Yuan, Guibin
2005-01-01
A new spectral emissivity measurement system has been developed at Harbin Institute of Technology (HIT) by using a Fourier transform infrared (FTIR) spectrometer. The spectral range between 0.6 and 25 µm was covered by a photovoltaic HgCdTe and a silicon photodiode detector. A SiC heater with a black hole was employed for heating the sample. The temperature of the sample can be controlled in a range between 60 and 1500°C with an error of less than 1°C. The system was calibrated against two high quality reference blackbodies: a low temperature heat-pipe blackbody operated in the temperature range between 60°C and 300°C and a high temperature blackbody with SiC heater operated in the temperature range between 300°C and 1500°C. Several tests were done for this new system. The estimated uncertainty of emissivity measurement is better than 3%.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test. 2. Carbon adsorber (regenerative) to which puncture sealant application spray booth emissions are ducted a. Maintain the total regeneration mass, volumetric flow, and carbon bed temperature at the operating range established during the performance test.b. Reestablish the carbon bed temperature...
Investigating comfort temperatures and heat transfer in sleeping bags
NASA Astrophysics Data System (ADS)
Hill, Trevor; Hill, Lara
2017-07-01
After many years of confusion, thermal performance of sleeping bags has now been quantified and unified using expensive test techniques. Based on Newton’s law of cooling, we present a simple inexpensive test and model to check manufacturers’ claims on the temperature performance of a range of modern sleeping bags.
Investigating Comfort Temperatures and Heat Transfer in Sleeping Bags
ERIC Educational Resources Information Center
Hill, Trevor; Hill, Lara
2017-01-01
After many years of confusion, thermal performance of sleeping bags has now been quantified and unified using expensive test techniques. Based on Newton's law of cooling, we present a simple inexpensive test and model to check manufacturers' claims on the temperature performance of a range of modern sleeping bags.
NASA Technical Reports Server (NTRS)
Johnson, S.
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.
Impact properties of irradiated HT9 from the fuel duct of FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Lewis, W. Daniel; Toloczko, Mychailo B.
2012-02-01
This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3– 148 dpa and irradiation temperatures in the range of 378–504 *C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 * 4 * 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile–brittle transition temperatures (DDBTT) was greatermore » after relatively low temperature irradiation. The USE values were in the range of 5.5–6.7 J before irradiation and decreased to the range of 2–5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and DDBTT data from different studies were compared.« less
Impact properties of irradiated HT9 from the fuel duct of FFTF
NASA Astrophysics Data System (ADS)
Byun, Thak Sang; Daniel Lewis, W.; Toloczko, Mychailo B.; Maloy, Stuart A.
2012-02-01
This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3-148 dpa and irradiation temperatures in the range of 378-504 °C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 × 4 × 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile-brittle transition temperatures (ΔDBTT) was greater after relatively low temperature irradiation. The USE values were in the range of 5.5-6.7 J before irradiation and decreased to the range of 2-5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and ΔDBTT data from different studies were compared.
Rodrigues, Juliana DE O; Lorenzo, Marcelo G; Martins-Filho, Olindo A; Elliot, Simon L; Guarneri, Alessandra A
2016-09-01
Trypanosoma rangeli is a protozoan parasite, which does not cause disease in humans, although it can produce different levels of pathogenicity to triatomines, their invertebrate hosts. We tested whether infection imposed a temperature-dependent cost on triatomine fitness using T. rangeli with different life histories. Parasites cultured only in liver infusion tryptose medium (cultured) and parasites exposed to cyclical passages through mice and triatomines (passaged) were used. We held infected insects at four temperatures between 21 and 30 °C and measured T. rangeli growth in vitro at the same temperatures in parallel. Overall, T. rangeli infection induced negative effects on insect fitness. In the case of cultured infection, parasite effects were temperature-dependent. Intermoult period, mortality rates and ecdysis success were affected in those insects exposed to lower temperatures (21 and 24 °C). For passaged-infected insects, the effects were independent of temperature, intermoult period being prolonged in all infected groups. Trypanosoma rangeli seem to be less tolerant to higher temperatures since cultured-infected insects showed a reduction in the infection rates and passaged-infected insects decreased the salivary gland infection rates in those insects submitted to 30 °C. In vitro growth of T. rangeli was consistent with these results.
Carnley, Mark V.
2016-09-30
The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.
Stolworthy, Dean K; Zirbel, Shannon A; Howell, Larry L; Samuels, Marina; Bowden, Anton E
2014-05-01
The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified temperature, and a scaling parameter. A Bland-Altman analysis showed high coefficients of determination for the predictive model. The present work demonstrates significant changes in spine segment flexibility as a result of loading rate and testing temperature. Loading rate effects can be accounted for using the predictive model, which accurately estimated ROM, neutral zone, stiffness, and hysteresis within the range of voluntary motion. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi
2018-04-01
In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.
Cryogenic optical tests of a lightweight HIP beryllium mirror
NASA Technical Reports Server (NTRS)
Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark
1989-01-01
Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.
Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl
NASA Technical Reports Server (NTRS)
Yaney, D. L.; Nix, W. D.
1988-01-01
A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.
Astable Oscillator Circuits using Silicon-on-Insulator Timer Chip for Wide Range Temperature Sensing
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Culley, Dennis; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Two astable oscillator circuits were constructed using a new silicon-on-insulator (SOI) 555 timer chip for potential use as a temperature sensor in harsh environments encompassing jet engine and space mission applications. The two circuits, which differed slightly in configuration, were evaluated between -190 and 200 C. The output of each circuit was made to produce a stream of rectangular pulses whose frequency was proportional to the sensed temperature. The preliminary results indicated that both circuits performed relatively well over the entire test temperature range. In addition, after the circuits were subjected to limited thermal cycling over the temperature range of -190 to 200 C, the performance of either circuit did not experience any significant change.
Thermal tolerance in bottlenose dolphins (Tursiops truncatus).
Yeates, Laura C; Houser, Dorian S
2008-10-01
Water and air temperature are potentially limiting factors to the pole-ward distributions of coastal bottlenose dolphins. This study assessed the lower critical temperature of captive bottlenose dolphins to air temperature (LCT(a)) and water temperature (LCT(w)) through the use of open flow respirometry. Five dolphins, ranging from 14 to 33 years of age and acclimated to the waters of the southern California coast (14.2-22.5 degrees C), were subjected to water temperatures ranging from 0.2 to 18.0 degrees C. Two of the animals were additionally subjected to air temperatures ranging from -2.4 to 17.8 degrees C while maintaining water temperature approximately 3 degrees C above their individual LCT(w). The LCT(w) ranged from 5.5 to 10.6 degrees C and generally decreased with increasing animal mass; for dolphins in excess of 187 kg, the LCT(w) ranged from 5.5 to 5.7 degrees C. No LCT(a) could be determined across the range of air temperatures tested. Core body temperature remained within the limits of normal body temperatures reported for dolphins but demonstrated a direct relationship to water temperature in three subjects and varied across a range of 1.5 degrees C. Air and water temperature had a minimal synergistic effect on dolphin thermoregulation, i.e. water temperature exerted the predominant impact on thermoregulation. For dolphins in excess of 187 kg, water temperature alone would appear to be insufficient to limit the use of habitat north of current bottlenose dolphin ranges along the coastal United States. However, thermal impacts to smaller dolphins, in particular adolescents, neonates and accompanying females, may work in concert with other factors (e.g. prey distribution, predator avoidance, social interactions) to influence coastal residency patterns and population structure.
Xu, Xue-Feng; Ji, Xiang
2006-01-01
We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.
Eleventh interim status report: Model 9975 O-Ring fixture long-term leak performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.
2016-08-01
A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determinemore » if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF.« less
Tenth interim status report: Model 9975 O-ring fixture long-term leak performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
2015-08-26
A series of experiments to monitor the aging performance of Viton ® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperatures. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 °F. They were leak-tested initially and have been tested periodically tomore » determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 °F.« less
Influence of thermal aging on AC leakage current in XLPE insulation
NASA Astrophysics Data System (ADS)
Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun
2018-02-01
Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.
Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)
NASA Astrophysics Data System (ADS)
Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.
1982-04-01
The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.
NASA Technical Reports Server (NTRS)
Barclay, J. A.; Overton, W. C., Jr.; Stewart, W. F.; Sarangi, S.
1984-01-01
Studies related to the development of magnetic refrigeration and heat pump systems in temperature ranges from 4 K to ambient temperature and above have been conducted, taking into account the testing of the properties of packed-particle beds and regenerators at cryogenic temperatures as low as 4 K as an essential part of these studies. The present paper provides a description of the developed experimental apparatus and presents the results of recent measurements on packed-particle beds in the liquid helium and liquid nitrogen temperature ranges. Attention is given to a schematic of the apparatus and the data acquisition system, the various modes of gas flow, a schematic of a typical test bed with thermocouple positions, the calculation of transient heat transfer rates at different positions in the bed, the governing equations, and the procedures used for solving these equations.
Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.
NASA Technical Reports Server (NTRS)
Huron, Eric S.
1986-01-01
Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Astrophysics Data System (ADS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-06-01
The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-01-01
The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Effect of thermal profile on cyclic flaw growth in aluminum
NASA Technical Reports Server (NTRS)
Engstrom, W. L.
1975-01-01
Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.
Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom
NASA Technical Reports Server (NTRS)
Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)
2002-01-01
Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.
Laser thermal shock and fatigue testing system
NASA Astrophysics Data System (ADS)
Fantini, Vincenzo; Serri, Laura; Bianchi, P.
1997-08-01
Thermal fatigue consists in repeatedly cycling the temperature of a specimen under test without any other constraint and stopping the test when predefined damage aspects. The result is a lifetime in terms of number of cycles. The parameters of the thermal cycle are the following: minimum and maximum temperature, time of heating, of cooling and time at high or at low temperature. When the temperature jump is very big and fast, phenomena of thermal shock can be induced. Among the numerous techniques used to perform these tests, the laser thermal fatigue cycling is very effective when fast heating of small and localized zones is required. That's the case of test performed to compare new and repaired blades of turbogas machines or components of combustion chambers of energy power plants. In order to perform these tests a thermal fatigue system, based on 1 kW Nd-YAG laser as source of heating, has been developed. The diameter of the heated zone of the specimen irradiated by the laser is in the range 0.5 - 20 mm. The temperatures can be chosen between 200 degree(s)C and 1500 degree(s)C and the piece can be maintained at high and/or low temperature from 0 s to 300 s. Temperature are measured by two sensors: a pyrometer for the high range (550 - 1500 degree(s)C) and a contactless thermocouple for the low range (200 - 550 degree(s)C). Two different gases can be blown on the specimen in the irradiated spot or in sample backside to speed up cooling phase. A PC-based control unit with a specially developed software performs PID control of the temperature cycle by fast laser power modulation. A high resolution vision system of suitable magnification is connected to the control unit to detect surface damages on the specimen, allowing real time monitoring of the tested zone as well as recording and reviewing the images of the sample during the test. Preliminary thermal fatigue tests on flat specimens of INCONEL 738 and HAYNES 230 are presented. IN738 samples, laser cladded by powder of the same material to simulate the refurbishing of a damaged turbine blade after long-term operation, are compared to the parents. Lifetimes are decreasing when high temperature of the cycle is increased and shorter lifetimes of repaired pieces have been found. Laser and TIG welding on HY230 specimens are compared to the parent. Parent and repaired samples have no evidence of cracks after 1500 thermal cycles between 650 and 1000 degree(s)C.
Investigation of air solubility in jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Rupprecht, S. D.; Faeth, G. M.
1981-01-01
The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.
Frost Growth and Densification in Laminar Flow Over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.
NASA Astrophysics Data System (ADS)
Evci, C.; Uyandıran, I.
2017-02-01
Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.
Creep-fatigue of low cobalt superalloys
NASA Technical Reports Server (NTRS)
Halford, G. R.
1982-01-01
Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.
NASA Technical Reports Server (NTRS)
Szanca, E. M.; Behning, F. P.; Schum, H. J.
1974-01-01
A 25.4-cm (10-in) tip diameter turbine was tested to determine the effect of rotor radial tip clearance on turbine overall performance. The test turbine was a half-scale model of a 50.8-cm-(20-in.-) diameter research turbine designed for high-temperature core engine application. The test turbine was fabricated with solid vanes and blades with no provision for cooling air and tested at much reduced inlet conditions. The tests were run at design speed over a range of pressure ratios for three different rotor clearances ranging from 2.3 to 6.7 percent of the annular blade passage height. The results obtained are compared to the results obtained with three other turbines of varying amounts of reaction.
Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel
NASA Astrophysics Data System (ADS)
Lee, Byung Ho; Kim, In Sup
1995-10-01
The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.
NASA Technical Reports Server (NTRS)
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
NASA Technical Reports Server (NTRS)
2000-01-01
This test report presents the test data of the EOS AMSU-A Flight Model No.1 (FM-1) receiver subsystem. The tests are performed per the Acceptance Test Procedure for the AMSU-A Reseiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level test are conducted at ambient temperature only.
Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eldridge, Jeffrey I.; Setlock, John A.; Gyekenyesi, John Z.
1997-01-01
Zirconia coated sapphire reinforced alumina matrix composites have been tested both after heat treatment to 1400 C and at temperatures ranging from 800 C to 1200 C in. air. Interfacial shear stress has also been measured with fiber pushout tests performed in air at room temperature, 800 C and 1OOO C. Matrix crack spacing was measured for the tensile tested composites and used to estimate interfacial shear stress up to 1200 C. Electron microscopy was used to determine the source of fiber fracture and to study interfacial failure within the composite.
Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.
2018-03-01
Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.
[Climatic factors influencing the performance of cattle and buffalos in Egypt].
Legel, S
1979-01-01
Previous analogous investigations of climatic factors influencing the performance of cattle in Syria were continued for Egypt between August 1975 and July 1977. Temperature and humidity data were recorded and related to standard physiological compatibility ranges for cattle and buffalos, respectively. The values found for the two test years largely agreed. 23.3% of the average temperatures of the two years were above the 0 to 24 degrees C temperature range, which is physiologically compatible. Only 28.8% of the total hours were within the optimum temperature range for cattle and buffalos. The values of the relative humidity in the first year were up to 38.5% within the optimum compatibility range, whereas 11.0% were within the too dry and 50.5% within the too moist range. The percentage increased when the animals were in direct sunshine, which reduced their performance.
Experimental Study of Heat Transfer to Small Cylinders in a Subsonic, High-temperature Gas Stream
NASA Technical Reports Server (NTRS)
Glawe, George E; Johnson, Robert C
1957-01-01
A Nusselt-Reynolds number relation for cylindrical thermocouple wires in crossflow was obtained from the experimental determination of time constants. Tests were conducted in exhaust gas over a temperature range of 2000 to 3400 R, a Mach number range of 0.3 to 0.8, and a static-pressure range from 2/3 to 1-1/3 atmospheres, yielding a Reynolds number range of 450 to 3000. The correlation obtained is Nu=(0.428 plus or minus 0.003) times the square root of Re* with average deviations of a single observation of 8.5 percent. This relation is the same as one previously reported for room-temperature conditions.
NASA Astrophysics Data System (ADS)
Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.
2017-07-01
Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.
Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Johnson, R D; Young, A P; Schwope, A D
1956-01-01
This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.
Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression
NASA Astrophysics Data System (ADS)
Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming
2018-05-01
High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.
Kwok, K W H; Leung, K M Y
2005-01-01
Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 degrees C; three salinities: 15.0 per thousand, 34.5 per thousand and 45.0 per thousand; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96 h-LC50s of Cu and TBT were 1024 and 0.149 microg l(-1) respectively (at 25 degrees C; 34.5 per thousand) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.
3D digital image correlation investigation of PLC effect in a new Ni-Co base superalloy
NASA Astrophysics Data System (ADS)
Gao, Y.; Fu, S. H.; Cheng, T.; Huo, X.; Zhang, Q. C.
2013-06-01
Repeated plastic instability accompanying serrated yielding in stress-strain curves and localization of deformation is observed during plastic deformation of many metallic alloys when tensile specimens are deformed under certain experimental conditions of temperature, strain rate, and pre-deformation. This phenomenon is referred to as the Portevin- Le Chatelier (PLC) effect. TMW alloy, a newly developed Ni-Co base superalloy for aircraft engine application, also exhibit PLC effect during tensile test at temperatures ranging from 300 ° to 600 °, which are also the temperature range for engine working. In this paper, a 3D digital image correlation (3D DIC) measurement system was established to observe the localization of deformation (PLC band) in a tensile test performed on TMW alloy specimen at temperature of 400 °. The 3D DIC system, with displacement measurement accuracy up to 0.01 pixels and strain measurement accuracy up to 100 μɛ, has a high performance in displacement field calculation with more than 10000 points every second on a 3.1G Hz CPU computer. The test result shows that, the PLC bands are inclined at an angle of about 60° to the tensile axis. Unlike tensile test performed on aluminums alloy, the widths of PLC bands of TMW alloy specimen, ranging from 4 mm to 4.5 mm, are much greater than the specimen thickness (0.25 mm).
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
High Temperature - Thin Film Strain Gages Based on Alloys of Indium Tin Oxide
NASA Technical Reports Server (NTRS)
Gregory, Otto J.; Cooke, James D.; Bienkiewicz, Joseph M.
1998-01-01
A stable, high temperature strain gage based on reactively sputtered indium tin oxide (ITO) was demonstrated at temperatures up to 1050 C. These strain sensors exhibited relatively large, negative gage factors at room temperature and their piezoresistive response was both linear and reproducible when strained up to 700 micro-in/in. When cycled between compression and tension, these sensors also showed very little hysteresis, indicating excellent mechanical stability. Thin film strain gages based on selected ITO alloys withstood more than 50,000 strain cycles of +/- 500 micro-in/in during 180 hours of testing in air at 1000 C, with minimal drift at temperature. Drift rates as low as 0.0009%/hr at 1000 C were observed for ITO films that were annealed in nitrogen at 700 C prior to strain testing. These results compare favorably with state of the art 10 micro-m thick PdCr films deposited by NASA, where drift rates of 0.047%/hr at 1050 C were observed. Nitrogen annealing not only produced the lowest drift rates to date, but also produce the largest dynamic gage factors (G = 23.5). These wide bandgap, semiconductor strain sensors also exhibited moderately low temperature coefficients of resistance (TCR) at temperatures up to 1100 C, when tested in a nitrogen ambient. A TCR of +230 ppm/C over the temperature range 200 C < T < 500 C and a TCR of -469 ppm/C over the temperature range 600 C < T < 1100 C was observed for the films tested in nitrogen. However, the resistivity behavior changed considerably when the same films were tested in oxygen ambients. A TCR of -1560 ppm/C was obtained over the temperature range of 200 C < T < 1100 C. When similar films were protected with an overcoat or when ITO films were prepared with higher oxygen contents in the plasma, two distinct TCR's were observed. At T < 800 C, a linear TCR of -210 ppm/C was observed and at T > 800 C, a linear TCR of -2170 DDm/C was observed. The combination of a moderately low TCR and a relatively large gage factor make these semiconducting oxide films promising candidates for the active strain elements in high temperature thin film strain gages, particularly in applications where static strain measurement is desired.
EIGHTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
2013-09-03
A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23more » GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 61 - 85 months, which is still bounding to O-ring temperatures during storage in KArea Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leaktight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 41 - 45 months. Aging and periodic leak testing will continue for the remaining PCV fixtures.« less
Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium
NASA Astrophysics Data System (ADS)
Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan
2017-12-01
A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.
NASA Technical Reports Server (NTRS)
Powell, A. H.; Amos, J. C.; Ehde, C. L.; Gahan, J. W.
1972-01-01
A three-phase helical induction electromagnetic pump, designed for the boiler-feed pump of a potassium Rankine-cycle space power system, was built and tested. The pump was tested over a range of potassium temperatures from 900 to 1400 F, flow rates from 0.75 to 4.85 lb/sec, developed pressures up to 340 psi, net positive suction heads (NPSH) from 1 to 22 psi, and NaK coolant temperatures from 800 to 950 F. The maximum efficiency at the pump design point of 3.25 lb/sec flow rate, 240 psi developed pressure, 1000 F potassium inlet temperature, and 800 F NaK coolant temperature was 16.3 percent. The tests also showed successful operation of the pump at an NPSH as low as 1.5 psi without cavitating.
Test well DO-CE 88 at Cambridge, Dorchester County, Maryland
Trapp, Henry; Knobel, LeRoy L.; Meisler, Harold; Leahy, P. Patrick
1984-01-01
Test well DO-CE 88 at Cambridge, Maryland, penetrated 3,299 feet of unconsolidated Quaternary, Tertiary and Cretaceous sediments and bottomed in quartz-monzonite gneiss. The well was drilled to provide data for a study of the aquifer system of the northern Atlantic Coastal Plain. Twenty-one core samples were collected. Six sand zones were tested for aquifer properties and sampled for ground-water chemistry. Point-water heads were measured at seven depths. Environmental heads (which ranged from - 18.33 to + 44.16 feet relative to sea level)indicate an upward component of flow. A temperature log showed a maximum temperature of 41.9 degrees Celsius and a mean temperature gradient of 0.00838 degrees Celsius per foot. The water analyses delineated the freshwater-saltwater transition zone between 2,650 and 3,100 feet. The ground water changes progressively downward from a sodium bicarbonate to a sodium chloride character. Clays in the analyzed core samples belong to the montmorillonite and kaolinite groups, and mean cation exchange capacity ranged from 8.3 to 38.9 milliequivalents per 100 grams. Vertical and horizontal hydraulic conductivities measured in cores ranged from 1.5 x 10 6 to 1.3 feet per day and from 7.3 x 10 -6 to 1.3 feet per day, respectively, but the most permeable sands were not cored. Porosity was 1.5 percent in the quartz monzonite bedrock and ranged from 22.4 to 41 percent in the overlying sediments. Transmissivities from aquifer tests ranged from 25 to 850 feet squared per day; horizontal hydraulic conductivities ranged from.2.5 to 85 feet squared per day, and intrinsic permeabilities ranged from 0.8 to 23 micrometers squared. Fossils identified in core samples include palynomorphs, dinoflagellates, and foraminifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell K Meyer
Blister–threshold testing of fuel plates is a standard method through which the safety margin for operation of plate-type in research and test reactors is assessed. The blister-threshold temperature is indicative of the ability of fuel to operate at high temperatures for short periods of time (transient conditions) without failure. This method of testing was applied to the newly developed U-Mo monolithic fuel system. Blister annealing studies on the U-Mo monolithic fuel plates began in 2007, with the Reduced Enrichment for Research and Test Reactors (RERTR)-6 experiment, and they have continued as the U-Mo fuel system has evolved through the researchmore » and development process. Blister anneal threshold temperatures from early irradiation experiments (RERTR-6 through RERTR-10) ranged from 400 to 500°C. These temperatures were projected to be acceptable for NRC-licensed research reactors and the high-power Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) based on current safety-analysis reports (SARs). Initial blister testing results from the RERTR-12 experiment capsules X1 and X2 showed a decrease in the blister-threshold temperatures. Blister threshold temperatures from this experiment ranged from 300 to 400°C. Selected plates from the AFIP-4 experiment, which was fabricated using a process similar to that used to fabricate the RERTR-12 experiment, also underwent blister testing to determine whether results would be similar. The measured blister-threshold temperatures from the AFIP-4 plates fell within the same blister-threshold temperature range measured in the RERTR-12 plates. Investigation of the cause of this decrease in bister threshold temperature is being conducted under the guidance of Idaho National Laboratory PLN-4155, “Analysis of Low Blister Threshold Temperatures in the RERTR-12 and AFIP-4 Experiments,” and is driven by hypotheses. The main focus of the investigation is in the following areas: 1. Fabrication variables 2. Pre-irradiation characterization 3. Irradiation conditions 4. Post-irradiation examination 5. Additional blister testing 6. Mechanical modeling This report documents the preliminary results of this investigation. Several hypotheses can be dismissed as a result of this investigation. Two primary categories of causes remain. The most prominent theory, supported by the data, is that low blister-threshold temperature is the result of mechanical energy imparted on the samples during the fabrication process (hot and cold rolling) without adequate post processing (annealing). The mechanisms are not clearly understood and require further investigation, but can be divided into two categories: • Residual Stress • Undesirable interaction boundary and/or U-Mo microstructure change A secondary theory that cannot be dismissed with the information that is currently available is that a change in the test conditions has resulted in a statistically significant downward shift of measured blister temperature. This report outlines the results of the forensic investigations conducted to date. The data and conclusions presented in this report are preliminary. Definitive cause and effect relationships will be established by future experimental programs.« less
Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens
NASA Technical Reports Server (NTRS)
Krause, David L.
2000-01-01
A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.
Strain characteristics of the silica-based fiber Bragg gratings for 30-273 K
NASA Astrophysics Data System (ADS)
Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie; Tan, Lu
2018-06-01
This work studied the strain coefficient of silica-based fiber Bragg grating (FBG) at cryogenic temperatures. A dynamic temperature test with an oxygen-free copper specimen in the temperature range of 30-273 K was designed. The relationship between the strain coefficient and temperature could be characterized by three-order polynomial. A static tensile test was carried out in liquid nitrogen environment verified the effectiveness of the dynamic results. Good correlation was obtained from the two experiment results. Finally, the factors affecting the measurement error were discussed.
NASA Technical Reports Server (NTRS)
Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.
1972-01-01
A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.
NASA Technical Reports Server (NTRS)
Clark, E. C.
1975-01-01
Thruster valve assemblies (T/VA's) were subjected to the development test program for the combined JPL Low-Cost Standardized Spacecraft Equipment (LCSSE) and Mariner Jupiter/Saturn '77 spacecraft (MJS) programs. The development test program was designed to achieve the following program goals: (1) demonstrate T/VA design compliance with JPL Specifications, (2) to conduct a complete performance Cf map of the T/VA over the full operating range of environment, (3) demonstrate T/VA life capability and characteristics of life margin for steady-state limit cycle and momentum wheel desaturation duty cycles, (4) verification of structural design capability, and (5) generate a computerized performance model capable of predicting T/VA operation over pressures ranging from 420 to 70 psia, propellant temperatures ranging from 140 F to 40 F, pulse widths of 0.008 to steady-state operation with unlimited duty cycle capability, and finally predict the transient performance associated with reactor heatup during any given duty cycle, start temperature, feed pressure, and propellant temperature conditions.
Reserve Li/SOC12 Battery Safety Testing
NASA Technical Reports Server (NTRS)
Dils, C. T.; Garoutte, K. F.
1984-01-01
A reserve Lithium/Thionyl Chloride Battery concept is developed and undergoing feasibility testing in terms of performance, safety and abusive conditions. The feasibility of employing a battery of this type to replace thermal batteries in certain applications is demonstrated. Excellent performance of a Li/SOCl2 reserve battery is obtained across the temperature range from 0 C to +44 C. Performance improvement over the thermal battery usage is greater by a factor of 3 when discharge time and energy density are compared. Performance over an expanded temperature range is also possible. Safety and abusive testing is accomplished successfully on a series of five units. Further performance improvements can be achieved with regard to battery weight and volume reductions.
An environmental chamber for investigating the evaporation of volatile chemicals.
Dillon, H K; Rumph, P F
1998-03-01
An inexpensive test chamber has been constructed that provides an environment appropriate for testing the effects of temperature and chemical interactions on gaseous emissions from test solutions. Temperature, relative humidity, and ventilation rate can be controlled and a well-mixed atmosphere can be maintained. The system is relatively simple and relies on heated tap water or ice to adjust the temperature. Temperatures ranging from 9 to 21 degrees C have been maintained. At an average temperature of 15.1 degrees C, temperatures at any location within the chamber vary by no more than 0.5 degree C, and the temperature of the test solution within the chamber varies by no more than 0.1 degree C. The temperatures within the chamber are stable enough to generate precise steady-state concentrations. The wind velocities within the chamber are reproducible from run to run. Consequently, the effect of velocity on the rate of evaporation of a test chemical is expected to be uniform from run to run. Steady-state concentrations can be attained in less than 1 hour at an air exchange rate of about 5 per hour.
Efficacy of benzocaine as an anesthetic for salmonid fishes
Gilderhus, P.A.
1989-01-01
Benzocaine was tested in the laboratory to determine the effective concentrations for anesthetizing juvenile chinook salmon Oncorhynchus tshawytscha an rainbow trout O. mykiss (formerly Salmo gairdneri ). Tests were conducted at three water temperatures, in waters ranging from very soft to very hard, and with groups of rainbow trout from 5 to 47 cm long and chinook salmon 20 cm long. Effective concentrations were defined as those that rendered the fish fully handleable in 3 min or less, allowed recovery of most fish within 10 min, and caused no mortality after 15-min exposures. Concentrations of 25-45 mg/L anesthetized both species over the entire range of conditions tested. Although efficacy was essentially unrelated to species or water quality, it was related to water temperature and size of fish; the concentrations of benzocaine required were highest at the lowest water temperature and for the largest fish.
Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior
NASA Technical Reports Server (NTRS)
Tewari, S.N.
1995-01-01
Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.
Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications
NASA Astrophysics Data System (ADS)
Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.
2014-01-01
In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.
Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring
Hsu, Hsiang-Chang; Hsieh, Tso-Sheng; Chen, Yi-Chian; Chen, Hung-En; Tsai, Liren
2017-01-01
The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN)-coated fiber Bragg grating (FBG) sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA). The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400–500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures. PMID:29137131
Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys
Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; ...
2016-01-22
A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti 2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less
The variability of atmospheric equivalent temperature for radar altimeter range correction
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Mock, Donald
1990-01-01
Two sets of data were used to test the validity of the presently used approximation for radar altimeter range correction due to atmospheric water vapor. The approximation includes an assumption of constant atmospheric equivalent temperature. The first data set includes monthly, three-dimensional, gridded temperature and humidity fields over global oceans for a 10-year period, and the second is comprised of daily or semidaily rawinsonde data at 17 island stations for a 7-year period. It is found that the standard method underestimates the variability of the equivalent temperature, and the approximation could introduce errors of 2 cm for monthly means. The equivalent temperature is found to have a strong meridional gradient, and the highest temporal variabilities are found over western boundary currents. The study affirms that the atmospheric water vapor is a good predictor for both the equivalent temperature and the range correction. A relation is proposed to reduce the error.
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang
2001-01-01
Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.
Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.
Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul
2017-08-31
In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.
A primary standard for the calibration of sniffer test leak devices
NASA Astrophysics Data System (ADS)
Jousten, Karl; Becker, Ute
2009-10-01
Test leaks with a gas flow to atmospheric pressure are often called sniffer test leaks. They are used to calibrate leak detectors for sniffing applications. Sniffer test leaks need calibration against a standard. A primary standard for the calibration of sniffer test leaks with relatively low measurement uncertainties is described. It is assured that the measurement result is traceable to the relevant SI units and that there is a well-known and complete measurement uncertainty budget. The measurement range of the system is from 4 × 10-11 mol s-1 (corresponding to 10-4 Pa l s-1 at 23 °C) to 4 × 10-9 mol s-1 (10-2 Pa l s-1 at 23 °C), which is the most often needed range in industry of around 1 g loss per year of the cooling agent R134a. The temperature where the calibration can be carried out may vary from 18 °C to 30 °C. The flow rate of any test gas not condensing in this temperature range can be measured.
Solar Array at Very High Temperatures: Ground Tests
NASA Technical Reports Server (NTRS)
Vayner, Boris
2016-01-01
Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 V) or to operate at higher voltages with encapsulated of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between coverglass and conductive spacecraft body in a kilovolt range. In such a case, weakly conductive layer over coverglass (ITO) is one of possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of -150 C +110 C. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to Sun. Conductive layer over coverglass causes sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating material (RTV), radiative heating of coupon in vacuum chamber becomes practically impossible above 150 C, conductivities of glass and adhesive go up with temperature that decrease array efficiency, and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 200 C. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over ITO layer.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.
2008-01-01
Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.
High temperature ceramic interface study
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1984-01-01
Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh
2008-09-01
An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a small amount of heat is added to the processed solution by the mechanical energy of the contactors. The temperature profiles match the ambient temperature of the laboratory but are nearly 10° C higher toward the middle of the cascade. Heated input solution testing provides temperature profiles with smaller temperature gradients and are more influenced by the temperature of the inlet solutions than the ambient laboratory temperature. The temperature effects of solution mixing, even at 4000 rpm, were insignificant in any of the studies conducted on lamp oil and water.« less
Cold startup and low temperature performance of the Brayton cycle electrical subsystem
NASA Technical Reports Server (NTRS)
Vrancik, J. E.; Bainbridge, R. C.
1971-01-01
Cold performance tests and startup tests were conducted on the Brayton-cycle inverter, motor-driven pump, dc supply, speed control with parasitic load resistor and the Brayton control system. These tests were performed with the components in a vacuum and mounted on coldplates. A temperature range of ?25 to -50 C was used for the tests. No failures occurred, and component performance gave no indication that there would be any problem with the safe operation of the Brayton power generating system.
New Technique for Cryogenically Cooling Small Test Articles
NASA Technical Reports Server (NTRS)
Rodriquez, Karen M.; Henderson, Donald J.
2011-01-01
Convective heat removal techniques to rapidly cool small test articles to Earth-Moon L2 temperatures of 77 K were accomplished through the use of liquid nitrogen (LN2). By maintaining a selected pressure range on the saturation curve, test articles were cooled below the LN2 boiling point at ambient pressure in less than 30 min. Difficulties in achieving test pressures while maintaining the temperature tolerance necessitated a modification to the original system to include a closed loop conductive cold plate and cryogenic shroud
Nickel-titanium alloys: stress-related temperature transitional range.
Santoro, M; Beshers, D N
2000-12-01
The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.
NASA Technical Reports Server (NTRS)
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range
NASA Astrophysics Data System (ADS)
Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.
2017-02-01
Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.
NASA Astrophysics Data System (ADS)
Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.
Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be inferred. The flow stress increases from 700 MPa at 8 × 10-4/s to 950 MPa at 1450/s and then to 1000 MPa at 2100/s at a strain of 0.1. Optical microscopy is used to understand evolution of microstructure in the post-test samples at the various test temperatures employed in the present study.
Effect of strain rate and temperature on mechanical properties of selected building Polish steels
NASA Astrophysics Data System (ADS)
Moćko, Wojciech; Kruszka, Leopold
2015-09-01
Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.
Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.
Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less
Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range
NASA Astrophysics Data System (ADS)
Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.
2018-03-01
The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.
Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C
NASA Astrophysics Data System (ADS)
Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun
2018-04-01
In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.
Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range
Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; ...
2018-01-31
Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less
HALT to qualify electronic packages: a proof of concept
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2014-03-01
A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.
Long Term Degradation of Resin for High Temperature Composites
NASA Technical Reports Server (NTRS)
Patekar, Kaustubh A.
2000-01-01
The durability of polymer matrix composites exposed to harsh environments is a major concern. Surface degradation and damage are observed in polyimide composites used in air at 125 to 300 C. It is believed that diffusion of oxygen into the material and oxidative chemical reactions in the matrix are responsible. Previous work has characterized and modeled diffusion behavior, and thermogravimetric analyses (TGAs) have been carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. However, the model developed using these data was not able to capture behavior seen in isothermal tests, especially those of long duration. A test program that focuses on lower temperatures and makes use of isothermal tests was undertaken to achieve a better understanding of the degradation reactions under use conditions. A new low-cost technique was developed to collect chemical degradation data for isothermal tests lasting over 200 hr in the temperature range 125 to 300 C. Results indicate complex behavior not captured by the previous TGA tests, including the presence of weight-adding reactions. Weight gain reactions dominated in the 125 to 225 C temperature range, while weight loss reactions dominated beyond 225 C. The data obtained from isothermal tests was used to develop a new model of the material behavior. This model was able to fully capture the behavior seen in the tests up to 275 C. Correlation of the current model with both isothermal data at 300 C and high rate TGA test data is mediocre. At 300 C and above, the reaction mechanisms appear to change. Attempts (which failed) to measure non-oxidative degradation indicate that oxidative reactions dominate the degradation at low temperatures. Based on this work, long term isothermal testing in an oxidative atmosphere is recommended for studying the degradation behavior of this class of materials.
Fisher, Leah R; Godfrey, Matthew H; Owens, David W
2014-01-01
Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.
Accelerated Strength Testing of Thermoplastic Composites
NASA Technical Reports Server (NTRS)
Reeder, J. R.; Allen, D. H.; Bradley, W. L.
1998-01-01
Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.
NASA Technical Reports Server (NTRS)
Lund, G. F.; Westbrook, R. M.; Fryer, T. B.
1980-01-01
The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.
Structural characterization of high temperature composites
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.
1991-01-01
Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.
A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong
2017-03-01
In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.
Heat transfer direction dependence of heat transfer coefficients in annuli
NASA Astrophysics Data System (ADS)
Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.
2018-04-01
In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.
Combustion characteristics of gas turbine alternative fuels
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James
1987-01-01
An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.
Tensile test of pressureless-sintered silicon nitride at elevated temperature
NASA Technical Reports Server (NTRS)
Matsusue, K.; Fujisawa, Y.; Takahara, K.
1985-01-01
Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.
Barwart, O; Rollinger, J M; Burger, A
1999-10-01
Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.
Experience with advanced instrumentation in a hot section cascade
NASA Technical Reports Server (NTRS)
Yeh, Frederick C.; Gladden, Herbert J.
1989-01-01
The Lewis Research Center gas turbine Hot Section Test Facility was developed to provide a real engine environment with known boundary conditions for the aerothermal performance evaluation and verification of computer design codes. This verification process requires experimental measurements in a hostile environment. The research instruments used in this facility are presented, and their characteristics and how they perform in this environment are discussed. The research instrumentation consisted of conventional pressure and temperature sensors, as well as thin-film thermocouples and heat flux gages. The hot gas temperature was measured by an aspirated temperature probe and by a dual-element, fast-response temperature probe. The data acquisition mode was both steady state and time dependent. These experiments were conducted over a wide range of gas Reynolds numbers, exit gas Mach numbers, and heat flux levels. This facility was capable of testing at temperatures up to 1600 K, and at pressures up to 18 atm. These corresponded to an airfoil exit Reynolds number range of 0.5 x 10(6) to 2.5 x 10(6) based on the airfoil chord of 5.55 cm. The results characterize the performance capability and the durability of the instrumentation. The challenge of making measurements in hostile environments is also discussed. The instruments exhibited more than adequate durability to achieve the measurement profile. About 70 percent of the thin-film thermocouples and the dual-element temperature probe survived several hundred thermal cycles and more than 35 hr at gas temperatures up to 1600 K. Within the experimental uncertainty, the steady-state and transient heat flux measurements were comparable and consistent over the range of Reynolds numbers tested.
Experience with advanced instrumentation in a hot section cascade
NASA Astrophysics Data System (ADS)
Yeh, Frederick C.; Gladden, Herbert J.
The Lewis Research Center gas turbine Hot Section Test Facility was developed to provide a real engine environment with known boundary conditions for the aerothermal performance evaluation and verification of computer design codes. This verification process requires experimental measurements in a hostile environment. The research instruments used in this facility are presented, and their characteristics and how they perform in this environment are discussed. The research instrumentation consisted of conventional pressure and temperature sensors, as well as thin-film thermocouples and heat flux gages. The hot gas temperature was measured by an aspirated temperature probe and by a dual-element, fast-response temperature probe. The data acquisition mode was both steady state and time dependent. These experiments were conducted over a wide range of gas Reynolds numbers, exit gas Mach numbers, and heat flux levels. This facility was capable of testing at temperatures up to 1600 K, and at pressures up to 18 atm. These corresponded to an airfoil exit Reynolds number range of 0.5 x 10(6) to 2.5 x 10(6) based on the airfoil chord of 5.55 cm. The results characterize the performance capability and the durability of the instrumentation. The challenge of making measurements in hostile environments is also discussed. The instruments exhibited more than adequate durability to achieve the measurement profile. About 70 percent of the thin-film thermocouples and the dual-element temperature probe survived several hundred thermal cycles and more than 35 hr at gas temperatures up to 1600 K. Within the experimental uncertainty, the steady-state and transient heat flux measurements were comparable and consistent over the range of Reynolds numbers tested.
Determination of mechanical properties of polymer film materials
NASA Technical Reports Server (NTRS)
Hughes, E. J.; Rutherford, J. L.
1975-01-01
Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.
Thermal Vacuum Testing of a Novel Loop Heat Pipe Design for the Swift BAT Instrument
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; Ku, Jentung; Feenan, David
2003-01-01
An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.
NASA Technical Reports Server (NTRS)
1995-01-01
An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.
Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H
2017-01-01
-Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistently decrease interlaboratory variation in proficiency testing. -Proficiency testing data for antibody titration between 2009 and 2013 were obtained from the College of American Pathologists. Each laboratory was supplied plasma and red cells to determine anti-A and anti-D antibody titers by their standard method: gel or tube by uniform or other methods at different testing phases (immediate spin and/or room temperature [anti-A], and/or anti-human globulin [AHG: anti-A and anti-D]) with different additives. Interlaboratory variations were compared by analyzing the distribution of titer results by method and phase. -A median of 574 and 1100 responses were reported for anti-A and anti-D antibody titers, respectively, during a 5-year period. The 3 most frequent (median) methods performed for anti-A antibody were uniform tube room temperature (147.5; range, 119-159), uniform tube AHG (143.5; range, 134-150), and other tube AHG (97; range, 82-116); for anti-D antibody, the methods were other tube (451; range, 431-465), uniform tube (404; range, 382-462), and uniform gel (137; range, 121-153). Of the larger reported methods, uniform gel AHG phase for anti-A and anti-D antibodies had the most participants with the same result (mode). For anti-A antibody, 0 of 8 (uniform versus other tube room temperature) and 1 of 8 (uniform versus other tube AHG), and for anti-D antibody, 0 of 8 (uniform versus other tube) and 0 of 8 (uniform versus other gel) proficiency tests showed significant titer variability reduction. -Uniform methods harmonize laboratory techniques but rarely reduce interlaboratory titer variance in comparison with other methods.
40 CFR 1065.530 - Emission test sequence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to verify that it remains within the pre-test temperature range as specified in § 1065.520(b): (1... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...
40 CFR 1065.530 - Emission test sequence.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to verify that it remains within the pre-test temperature range as specified in § 1065.520(b): (1... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...
Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelloux, R.M.; Ballinger, R.; Lucas, G.
1979-01-01
An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less
The structure-property relationships of powder processed Fe-Al-Si alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, Paul D.
1998-02-23
Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) processmore » to obtain a high fraction of metal injection molding (MIM) quality powder (D 84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO 3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.« less
Corrosion and Durability Research | Concentrating Solar Power | NREL
-change techniques. Controlled testing can be performed under a range of conditions, such as: different atmospheres, different temperatures (from room temperature up to 1,400°C), thermal cycling, and different
Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity
NASA Technical Reports Server (NTRS)
Kandula, M.
2012-01-01
Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.
A cryogenic multichannel electronically scanned pressure module
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.
1992-01-01
Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.
MTF measurement of IR optics in different temperature ranges
NASA Astrophysics Data System (ADS)
Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen
2017-10-01
Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1979-01-01
The Vee-Trough/Vacuum Tube Collector (VTVTC) aimed to improve the efficiency and reduce the cost of collectors assembled from evacuated tube receivers. The VTVTC was analyzed rigorously and a mathematical model was developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized GEB Teflon. Tests were run at temperatures ranging from 95 to 180 C during the months of April, May, June, July and August 1977. Vee-trough collector efficiencies of 35-40 per cent were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Test data covering a complete day are presented for selected dates throughout the test season. Predicted daily useful heat collection and efficiency values are presented for a year's duration at operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with an economic evaluation.
Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li
2018-02-01
The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.
NASA Technical Reports Server (NTRS)
Burbach, T.
1985-01-01
The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.
Combined Loads Test Fixture for Thermal-Structural Testing Aerospace Vehicle Panel Concepts
NASA Technical Reports Server (NTRS)
Fields, Roger A.; Richards, W. Lance; DeAngelis, Michael V.
2004-01-01
A structural test requirement of the National Aero-Space Plane (NASP) program has resulted in the design, fabrication, and implementation of a combined loads test fixture. Principal requirements for the fixture are testing a 4- by 4-ft hat-stiffened panel with combined axial (either tension or compression) and shear load at temperatures ranging from room temperature to 915 F, keeping the test panel stresses caused by the mechanical loads uniform, and thermal stresses caused by non-uniform panel temperatures minimized. The panel represents the side fuselage skin of an experimental aerospace vehicle, and was produced for the NASP program. A comprehensive mechanical loads test program using the new test fixture has been conducted on this panel from room temperature to 500 F. Measured data have been compared with finite-element analyses predictions, verifying that uniform load distributions were achieved by the fixture. The overall correlation of test data with analysis is excellent. The panel stress distributions and temperature distributions are very uniform and fulfill program requirements. This report provides details of an analytical and experimental validation of the combined loads test fixture. Because of its simple design, this unique test fixture can accommodate panels from a variety of aerospace vehicle designs.
Park, Haejun; Rangwala, Ali S; Dembsey, Nicholas A
2009-08-30
A method to estimate thermal and kinetic parameters of Pittsburgh seam coal subject to thermal runaway is presented using the standard ASTM E 2021 hot surface ignition test apparatus. Parameters include thermal conductivity (k), activation energy (E), coupled term (QA) of heat of reaction (Q) and pre-exponential factor (A) which are required, but rarely known input values to determine the thermal runaway propensity of a dust material. Four different dust layer thicknesses: 6.4, 12.7, 19.1 and 25.4mm, are tested, and among them, a single steady state dust layer temperature profile of 12.7 mm thick dust layer is used to estimate k, E and QA. k is calculated by equating heat flux from the hot surface layer and heat loss rate on the boundary assuming negligible heat generation in the coal dust layer at a low hot surface temperature. E and QA are calculated by optimizing a numerically estimated steady state dust layer temperature distribution to the experimentally obtained temperature profile of a 12.7 mm thick dust layer. Two unknowns, E and QA, are reduced to one from the correlation of E and QA obtained at criticality of thermal runaway. The estimated k is 0.1 W/mK matching the previously reported value. E ranges from 61.7 to 83.1 kJ/mol, and the corresponding QA ranges from 1.7 x 10(9) to 4.8 x 10(11)J/kg s. The mean values of E (72.4 kJ/mol) and QA (2.8 x 10(10)J/kg s) are used to predict the critical hot surface temperatures for other thicknesses, and good agreement is observed between measured and experimental values. Also, the estimated E and QA ranges match the corresponding ranges calculated from the multiple tests method and values reported in previous research.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.
1987-01-01
A model to be used in the flow studies and curved Thermal Protection System (TPS) evaluations was tested in the Langley 8 Foot High-Temperature Tunnel at a nominal Mach number of 6.8. The purpose of the study was to define the surface pressure and heating rates at high angles of attack (in support of curved metallic TPS studies) and to determine the conditions for which the model would be suitable as a test bed for aerothermal load studies. The present study was conducted at a nominal total temperature of 2400 and 3300 R, dynamic pressures from 2.3 to 10.9 psia, and free-stream Reynolds numbers from 4000,000 to 1,700,000/ft. The measurements consisted primarily of surface pressure and cold-wall (530 R) heating rates. Qualitative comparisons between predictions and data show that for this configuration, aerothermal tests should be limited to angles of attack between 10 and -10 degrees. Outside this range, the effects of free-stream flow nonuniformity appear in the data, as a result of the long length of the model. However, for TPS testing, this is not a concern and tests can be performed at angles of attack ranging from 20 to -20 degrees. Laminar and naturally turbulent boundary layers are available over limited ranges of conditions.
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.
2006-05-01
The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].« less
Apparent-Strain Correction for Combined Thermal and Mechanical Testing
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; O'Neil, Teresa L.
2007-01-01
Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve.
High-temperature effects on the light transmission through sapphire optical fiber
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
2018-03-13
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
High-temperature effects on the light transmission through sapphire optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
30 CFR 7.47 - Deflection temperature test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65 °F−80 °F (18.3 °C−26.7 °C). The heat transfer medium must be a liquid which will not chemically affect the... an accuracy of 1% into the heat transfer medium within 1/8 inch of, but not touching, the sample. (4...
Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite
NASA Astrophysics Data System (ADS)
Dasappa, Prasad
The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model, which is the reduced form of the Schapery non-linear viscoelastic model, was found to be sufficient to model the viscoelastic behaviour. The viscoplastic strains were modeled using the Zapas and Crissman viscoplastic model. A parameter estimation method which isolates the viscoelastic component from the viscoplastic part of the non-linear model has been developed. The non-linear parameters in the Findley's non-linear viscoelastic model have been found to be dependent on both stress and temperature and have been modeled as a product of functions of stress and temperature. The viscoplastic behaviour for temperatures up to 40°C was similar indicating similar damage mechanisms. Moreover, the development of viscoplastic strains at 20 and 30 MPa were similar over all the entire temperature range considered implying similar damage mechanisms. It is further recommended that the material should not be used at temperature greater than 60°C at stresses over 50 MPa. To further study the viscoplastic behaviour of continuous fibre glass mat thermoplastic composite at room temperature, multiple creep-recovery experiments of increasing durations between 1 and 24 hours have been conducted on a single specimen. The purpose of these tests was to experimentally and numerically decouple the viscoplastic strains from total creep response. This enabled the characterization of the evolution of viscoplastic strains as a function of time, stress and loading cycles and also to co-relate the development of viscoplastic strains with progression of failure mechanisms such as interfacial debonding and matrix cracking which were captured in-situ. A viscoplastic model developed from partial data analysis, as proposed by Nordin, had excellent agreement with experimental results for all stresses and times considered. Furthermore, the viscoplastic strain development is accelerated with increasing number of cycles at higher stress levels. These tests further validate the technique proposed for numerical separation of viscoplastic strains employed in obtaining the non-linear viscoelastic viscoplastic model parameters. These tests also indicate that the viscoelastic strains during creep are affected by the previous viscoplastic strain history. (Abstract shortened by UMI.)
Assessment of geothermal resources at Newcastle, Utah
Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.
1989-01-01
Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.
Seal coat binder performance specifications.
DOT National Transportation Integrated Search
2013-11-01
Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...
49 CFR 572.11 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., December 1971, with channel classes as follows: (1) Head acceleration—Class 1000. (2) Pendulum acceleration... exceed 2g throughout the range of limb motion. (h) Performance tests are conducted at any temperature...
Modeling of biomass to hydrogen via the supercritical water pyrolysis process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divilio, R.J.
1998-08-01
A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonablemore » prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.« less
NASA Technical Reports Server (NTRS)
Marchionna, N. R.
1974-01-01
An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.
Edwards, Tara D; Bain, Erich D; Cole, Shawn T; Freeney, Reygan M; Halls, Virginia A; Ivancik, Juliana; Lenhart, Joseph L; Napadensky, Eugene; Yu, Jian H; Zheng, James Q; Mrozek, Randy A
2018-04-01
This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity. Published by Elsevier B.V.
Solar Array at Very High Temperatures: Ground Tests
NASA Technical Reports Server (NTRS)
Vayner, Boris
2016-01-01
Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees Centigrade. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over the indium tin oxide (ITO) layer.
NASA Technical Reports Server (NTRS)
Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.
1992-01-01
The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.
Cryogenic experiences during W7-X HTS-current lead tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Thomas; Lietzow, Ralph
2014-01-29
The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three mainmore » parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.« less
Evaluation of present-day thermal barrier coatings for industrial/utility applications
NASA Technical Reports Server (NTRS)
Bratton, R. J.; Lau, S. K.; Lee, S. Y.
1980-01-01
Atmospheric burner rig tests have been conducted to evaluate the corrosion resistance of present-day thermal barrier coatings. The coatings are primarily plasma-sprayed and zirconia-based. Both duplex and graded coating systems were tested at a gas temperature of 2100 F and metal temperatures that range from 1475 F to 1650 F. The fuels ranged from clean GT No. 2 to that doped with impurity levels which simulate water-washed residual fuels. Results to date suggest that liquid sulfate condensates play an important role in the coating degradation mechanisms, whereas the role of vanadium and its salts is less clear.
Shock tube measurements of the optical absorption of triatomic carbon, C3
NASA Technical Reports Server (NTRS)
Jones, J. J.
1977-01-01
The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.
Extended Temperature Solar Cell Technology Development
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne
2004-01-01
Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.
Scholefield, R.J.; Bergstedt, R.A.; Bills, T.D.
2003-01-01
The efficacy of 2’, 5-dichloro-4’-nitrosalicylanilide (niclosamide) at various concentrations and exposure times was tested against free-swimming larval sea lampreys (Petromyzon marinus) at 12°C and 17°C in Lake Huron water. Concentrations of niclosamide in test solutions ranged from 0.46 to 4.7 mg/L with pH 7.8 to 8.3, total alkalinity 78 to 88 mg/L as CaCO3, and total hardness 95 to 105 mg/L as CaCO3. In each test, six groups of larvae were exposed to a single concentration of niclosamide for times ranging from 30 s to 30 min. Exposure time was treated as the dose and, for each concentration tested, the exposure time necessary to kill 50 and 99.9% of larvae (ET50 and ET99.9) was determined. Linear regressions of the log10-transformed ET50 and ET99.9 on the log10-transformed niclosamide concentrations were significant at both temperatures with r2ranging from 0.94 to 0.98. The predicted ET50 ranged from 58 sec to 21.7 min and the ET99.9 ranged from 2.5 to 43.5 min across the concentrations and temperatures tested. Niclosamide required a significantly longer time to kill larvae at 12°C than at 17°C.
NASA Astrophysics Data System (ADS)
Sarkar, A.; Chakravartty, J. K.
2013-10-01
A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.
NASA Astrophysics Data System (ADS)
Hwang, Byoungchul; Kim, Young Min; Lee, Sunghak; Kim, Nack J.; Yoo, Jang Yong
2005-07-01
Correlation of rolling conditions, microstructure, and low-temperature toughness of high-toughness X70 pipeline steels was investigated in this study. Twelve kinds of steel specimens were fabricated by vacuum-induction melting and hot rolling, and their microstructures were varied by rolling conditions. Charpy V-notch (CVN) impact test and drop-weight tear test (DWTT) were conducted on the rolled steel specimens in order to analyze low-temperature fracture properties. Charpy impact test results indicated that the energy transition temperature (ETT) was below -100 °C when the finish cooling temperature range was 350 °C to 500 °C, showing excellent low-temperature toughness. The ETT increased because of the formation of bainitic ferrite and martensite at low finish cooling temperatures and because of the increase in effective grain size due to the formation of coarse ferrites at high finish cooling temperatures. Most of the specimens also showed excellent DWTT properties as the percent shear area well exceeded 85 pct, irrespective of finish rolling temperatures or finish cooling temperatures, although a large amount of inverse fracture occurred at some finish cooling temperatures.
Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A
Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less
The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel
NASA Astrophysics Data System (ADS)
Odabas, D.
2018-01-01
In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.
Cardoso, Márcio Zikán
2010-01-01
While butterfly responses to climate change are well studied, detailed analyses of the seasonal dynamics of range expansion are few. Therefore, the seasonal range expansion of the butterfly Heliconius charithonia L. (Lepidoptera: Nymphalidae) was analyzed using a database of sightings and collection records dating from 1884 to 1992 from Texas. First and last sightings for each year were noted, and residency time calculated, for each collection locality. To test whether sighting dates were a consequence of distance from source (defined as the southernmost location of permanent residence), the distance between source and other locations was calculated. Additionally, consistent directional change over time of arrival dates was tested in a well-sampled area (San Antonio). Also, correlations between temperature, rainfall, and butterfly distribution were tested to determine whether butterfly sightings were influenced by climate. Both arrival date and residency interval were influenced by distance from source: butterflies arrived later and residency time was shorter at more distant locations. Butterfly occurrence was correlated with temperature but not rainfall. Residency time was also correlated with temperature but not rainfall. Since temperature follows a north-south gradient this may explain the inverse relationship between residency and distance from entry point. No long-term directional change in arrival dates was found in San Antonio. The biological meaning of these findings is discussed suggesting that naturalist notes can be a useful tool in reconstructing spatial dynamics. PMID:20672989
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.
2002-01-01
Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.
Cryogenic Insulation Standard Data and Methodologies Project
NASA Technical Reports Server (NTRS)
Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam
2015-01-01
Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.
Long-term trends in daily temperature extremes in Iraq
NASA Astrophysics Data System (ADS)
Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.
2017-12-01
The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staunton, R. H.; Ayers, C. W.; Marlino, L. D.
2006-05-01
The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less
NASA Technical Reports Server (NTRS)
Mosher, Don R; Lad, Robert A
1954-01-01
An investigation was conducted using static capsules fabricated from "L" nickel tubing to determine the effect of temperature level, temperature gradient, and test duration on corrosion and mass transfer by molten sodium hydroxide under free-convection conditions. A base temperature range from 1000 degrees to 1600 degrees F with temperature differences to 500 degrees was studied. The rate of mass transfer was found to be strongly dependent on both temperature level and gradient. The rate shows little tendency to decrease for test durations up to 200 hours, although the concentration of nickel in the melt approaches a limited value after 100 hours.
Global surface temperature/heat transfer measurements using infrared imaging
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
1992-01-01
A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.
Two-Phase Working Fluids for the Temperature Range 50 to 350 C
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Owzarski, P. C.
1977-01-01
The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.
Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.
2007-01-01
Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.
49 CFR 572.21 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Recommended Practice J211a, December 1971, with channel classes as follows: (1) Head acceleration—Class 1000... exceed 2g throughout the range of limb motion. (g) Performance tests are conducted at any temperature...
Central and rear-edge populations can be equally vulnerable to warming
NASA Astrophysics Data System (ADS)
Bennett, Scott; Wernberg, Thomas; Arackal Joy, Bijo; de Bettignies, Thibaut; Campbell, Alexandra H.
2015-12-01
Rear (warm) edge populations are often considered more susceptible to warming than central (cool) populations because of the warmer ambient temperatures they experience, but this overlooks the potential for local variation in thermal tolerances. Here we provide conceptual models illustrating how sensitivity to warming is affected throughout a species' geographical range for locally adapted and non-adapted populations. We test these models for a range-contracting seaweed using observations from a marine heatwave and a 12-month experiment, translocating seaweeds among central, present and historic range edge locations. Growth, reproductive development and survivorship display different temperature thresholds among central and rear-edge populations, but share a 2.5 °C anomaly threshold. Range contraction, therefore, reflects variation in local anomalies rather than differences in absolute temperatures. This demonstrates that warming sensitivity can be similar throughout a species geographical range and highlights the importance of incorporating local adaptation and acclimatization into climate change vulnerability assessments.
Fisher, Leah R.; Godfrey, Matthew H.; Owens, David W.
2014-01-01
Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects. PMID:25517114
Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.
DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D
2013-07-01
Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.
Effect of Elevated Temperature and Loading Rate on Delamination Fracture Toughness
NASA Technical Reports Server (NTRS)
Reeder, J. R.; Allen, D. H.; Bradley, W. L.
2003-01-01
The effects of temperature and loading rate on delamination growth were studied. The delamination fracture toughness of IM7/K3B was measured at 149 C, 177 C, and 204 C. At each temperature the tests were performed with a variety of loading rates so that the delamination initiated over the range of time from 0.5 sec to 24 hrs. The double cantilever beam (DCB) test was used to measure fracture toughness. The results showed that the delamination resistance is a complicated function of both time and temperature with the effect of temperature either increasing or decreasing the fracture toughness depending on the time scale. The results also showed that the fracture toughness changed by as much as a factor of three as the time scale changed over the five orders of magnitude tested.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.
2000-01-01
A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.
Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1982-01-01
One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.
Space infrared telescope facility wide field and diffraction limited array camera (IRAC)
NASA Technical Reports Server (NTRS)
Fazio, Giovanni G.
1988-01-01
The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.
High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz
NASA Technical Reports Server (NTRS)
Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)
2003-01-01
A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.
NASA Technical Reports Server (NTRS)
Smith, Robert W.; Smith, Gordon T.
1960-01-01
Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.
The design of remote temperature monitoring system
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao; Wei, Liuren
2017-08-01
This design is made on the basis of the single-chip microcomputer remote temperature monitoring system. STC89C51RC is the main core part, this design use the sensor DHT11 of temperature or humidity and wireless transceiver NRF24L01 the temperature of the test site for long-range wireless measurement and monitoring. The design contains the main system and the small system, of which the main system can show the actual test site temperature and humidity values, voice broadcast, out of control and receive data alarm function; The small system has the function of temperature and humidity, temperature monitoring and sending data. After debugging, the user customizable alarm upper and lower temperature, when the temperature exceeds limit value, the main system of buzzer alarm immediately. The system has simple structure, complete functions and can alarm in time, it can be widely used remote temperature acquisition and monitoring of the site.
Phenol-Formaldehyde Resin for Optical-Chemical Temperature Sensing.
Claucherty, Steven; Sakaue, Hirotaka
2018-05-30
The application of phenol-formaldehyde (PF) resin as an optical temperature sensor is investigated. Recent developments in optical luminescent sensors allow for global measurements to be made over the surface of a test article, extending beyond conventional point measurements. Global temperature distributions are particularly helpful when validating computational models or when mapping temperature over complex geometries, and can be used to calculate surface heat flux values. Temperature-sensitive paint (TSP) is a novel chemical approach to obtaining these global temperature measurements, but there are still challenges to overcome to make it a reliable tool. A sensor with a wide range of temperature sensitivity is desired to provide the maximum amount of utility, especially for tests spanning large temperature gradients. Naturally luminescent materials such as PF resin provide an attractive alternative to chemical sensor coatings, and PF resin is studied for this reason. Static tests of different PF resin samples are conducted using two binder materials to strengthen the material: cloth and paper. The material shows temperature sensitivities up to -0.8%/K, demonstrating the usefulness of PF resin as a temperature sensor.
NASA Astrophysics Data System (ADS)
Li, H.; Farooq, A.; Jeffries, J. B.; Hanson, R. K.
2007-11-01
A fast-response (100 kHz) tunable diode laser absorption sensor is developed for measurements of temperature and H2O concentration in shock tubes, e.g. for studies of combustion chemistry. Gas temperature is determined from the ratio of fixed-wavelength laser absorption of two H2O transitions near 7185.60 cm-1 and 7154.35 cm-1, which are selected using design rules for the target temperature range of 1000-2000 K and pressure range of 1-2 atm. Wavelength modulation spectroscopy is employed with second-harmonic detection (WMS-2f) to improve the sensor sensitivity and accuracy. Normalization of the second-harmonic signal by the first-harmonic signal is used to remove the need for calibration and minimize interference from emission, scattering, beam steering, and window fouling. The laser modulation depth for each H2O transition is optimized to maximize the WMS-2f signal for the target test conditions. The WMS-2f sensor is first validated in mixtures of H2O and Ar in a heated cell for the temperature range of 500-1200 K (P=1 atm), yielding an accuracy of 1.9% for temperature and 1.4% for H2O concentration measurements. Shock wave tests with non-reactive H2O-Ar mixtures are then conducted to demonstrate the sensor accuracy (1.5% for temperature and 1.4% for H2O concentration) and response time at higher temperatures (1200-1700 K, P=1.3-1.6 atm).
Investigating Low Temperature Properties of Rubber Seals - 13020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaunich, M.; Wolff, D.; Stark, W.
To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glassmore » transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)« less
A high temperature testing system for ceramic composites
NASA Technical Reports Server (NTRS)
Hemann, John
1994-01-01
Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.
NASA Astrophysics Data System (ADS)
Ganimedov, V. L.; Shumsky, V. V.; Yaroslavtsev, M. I.
2009-06-01
An analysis of the losses of heat into the walls of settling chamber in a hypersonic hot-shot tube has been performed. Tests without diaphragm rupture showed that the fall of settling-chamber pressure during the operating flow regime in the tube was the consequence of the transfer of heat from working body to wall; this has allowed us to evaluate the heat-transfer coefficient α and the inner-surface temperature of the wall T w. An empirical formula relating the coefficient α with the pressure and working-body temperature in the settling chamber in the range of pressures and temperatures 160 to 540 bar and 700 to 3400 K was obtained. Using the gained dependences of α and T w on pressure and temperature, we have developed a physical model for calculating the working-body characteristics in the tube with allowance for enthalpy losses. We found that by the hundredth millisecond of the operating regime the disregard, in such calculations, of the wall heat flux in the first settling chamber resulted in overestimation of the stagnation temperature in the test section in comparison with similar calculations made without allowance for the heat losses by 6-18 % in terms of the full-scale temperature for aircraft flight in Mach number range 5 to 8. The developed calculation procedure has been tested in experiments without diaphragm rupture.
Cicenaite, Aurelija; Huckins, James N.; Alvarez, David A.; Cranor, Walter L.; Gale, Robert W.; Kauneliene, Violeta; Bergqvist, Per-Anders
2007-01-01
Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD–air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (−16, −4, 22 and 40 °C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the −16 °C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration.
NASA Astrophysics Data System (ADS)
Heatwole, Harold; Lillywhite, Harvey; Grech, Alana
2016-09-01
Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.
Suburban heat island effect in groundwater energy utilisation in Nordic climate - case study
NASA Astrophysics Data System (ADS)
Arola, Teppo
2017-04-01
We present the preliminary results from the initial thermogeological characterization of Finland's first-ever planned large-scale aquifer thermal energy storage (ATES) facility. The site is located in the Asko area (Lahti), at a latitude of 60°59'N. In particular, emphasis is put on the results from an aquifer's pumping test performed in July / August 2016 to investigate the potential implication of suburban heat island (SUHI) effect to ATES system on the naturally cold groundwater area. The site has been under geological investigation since July 2015. At a regional scale, the groundwater's natural temperature is about 5.8- 6°C. However, preliminary measurements during the investigations revealed that local groundwater temperature ranged between 7.5 to 8.7 °C in Asko area. The highest temperature was observed underneath buildings, suggesting that higher-than-average temperature is most likely influenced due to anthropogenic heat flux into the ground. The pumping test was performed for 39 days, of which 28 days with groundwater withdrawal and 11 days of heads recovery. The pumped volumes range from 350 to 540 m3/d leading the total volume of 10400 m3 of groundwater. Groundwater temperatures were continuously measured from pumping test well and two observation piezometers during the entire test. The results indicated that aquifer's temperature remained nearly constant being between 7.4 to 7.9 °C during the test period. Heat pulses with temperature variation of 0.1 to 0.3 °C were observed in the pumping well and nearest monitoring well (19 meters from pumping well) during the pumping test and recovery phase. We estimate that the pulses were due to rapidly changed groundwater flowing conditions and pulse indicate "new groundwater" flow to the well. Overall, the preliminary test suggests that groundwater temperature are expected to remain elevated during the ATES system operation. Elevated temperature due the SUHI effect increases groundwater heating potential significantly. Similarly groundwater cooling potential decrease but groundwater still constitutes an effective cooling energy reservoir because groundwater temperatures remain below air temperatures during the summer and the COP for cooling is extremely high. In Asko site SUHI effect has been recognised from the beginning of the project. Energy and economical calculations are based on anthropogenic influence to ground temperatures. More research, i.e. detailed groundwater thermogeological modelling, is needed to design the multi well ATES system based on elevated groundwater temperatures.
Measuring Thermal Conductivity at LH2 Temperatures
NASA Technical Reports Server (NTRS)
Selvidge, Shawn; Watwood, Michael C.
2004-01-01
For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.
Rapid developing of Ektaspeed dental film by increase of temperature.
Fredholm, U; Julin, P
1987-01-01
Three rapid developing solutions and one standard solution were tested for contrast and fog with Ektaspeed film at temperatures ranging from 15 degrees to 30 degrees C. Temperatures below 18 degrees C were found to give extremely long developing times, more than 3 minutes with rapid developers, and were not recommended. In the interval between 21 degrees C and 24 degrees C the standard developer needed 3.5-2.5 minutes to get optimum contrast. Two rapid developers needed 1.5 minutes and the fastest 1 minute to get satisfactory contrast throughout this temperature range. A further increase of the temperature gave only a marginal time saving with the rapid solutions and was not considered worthwhile. The relation between developing time and temperature for the rapid developers had a very steep gradient below 21 degrees C, while it levelled out at room temperature. For the standard developer the time/temperature function had a more even gradient from 7.5 minutes at 15 degrees C to 1.5 minutes at 27 degrees C, i.e. an average reduction of 0.5 minute per degree. Between 27 degrees C and 30 degrees C the gradient levelled out. The fog did not increase significantly until at 30 degrees C or at more than double the optimal developing time at room temperature. Recommendations of optimal developing time of Ektaspeed film at different temperatures are given for the four tested developing solutions.
Ester oxidation on an aluminum surface using chemiluminescence
NASA Technical Reports Server (NTRS)
Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo
1986-01-01
The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.
Constitutive response of Rene 80 under thermal mechanical loads
NASA Technical Reports Server (NTRS)
Kim, K. S.; Cook, T. S.; Mcknight, R. L.
1988-01-01
The applicability of a classical constitutive model for stress-strain analysis of a nickel base superalloy, Rene' 80, in the gas turbine thermomechanical fatigue (TMF) environment is examined. A variety of tests were conducted to generate basic material data and to investigate the material response under cyclic thermomechanical loading. Isothermal stress-strain data were acquired at a variety of strain rates over the TMF temperature range. Creep curves were examined at 2 temperature ranges, 871 to 982 C and 760 to 871 C. The results provide optimism on the ability of the classical constitutive model for high temperature applications.
Glove and mitten protection in extreme cold weather: an Antarctic study.
Iserson, Kenneth V
2016-01-01
Background Myths, misconceptions and a general lack of information surround the use of gloves and mittens in extreme cold environments. Objective This study assessed how well an assortment of gloves and mittens performed in a very cold environment. Methods A convenience sample of gloves and mittens were tested in Antarctica during the winter of 2016 using a calibrated thermometer (range: -148°F to +158°F/-100°C to +70°C) three times over a 0.5-mile distance (~20 minutes). A small sensor on a 10-foot-long cable was taped to the radial surface of the distal small finger on the non-dominant hand. The tested clothing was donned over the probe, the maximum temperature inside the glove/mitten was established near a building exit (ambient temperature approximately 54°F/12°C), and the building was exited, initiating the test. The hand was kept immobile during the test. Some non-heated gloves were tested with chemical heat warmers placed over the volar or dorsal wrist. Results The highest starting (96°F/36°C) and ending (82°F/28°C) temperatures were with electrically heated gloves. The lowest starting temperature was with electrically heated gloves with the power off (63°F/17°C). Non-heated gloves with an inserted chemical hand warmer had the lowest minimum temperature (33°F/1°C). Maximum temperatures for gloves/mittens did not correlate well with their minimum temperature. Conclusions Coverings that maintained finger temperatures within a comfortable and safe range (at or above 59°F/15°C) included the heated gloves and mittens (including some with the power off) and mittens with liners. Mittens without liners (shell) generally performed better than unheated gloves. Better results generally paralleled the item's cost. Inserting chemical heat warmers at the wrist increased heat loss, possibly through the exposed area around the warmer.
Glove and mitten protection in extreme cold weather: an Antarctic study.
Iserson, Kenneth V
2016-01-01
Myths, misconceptions and a general lack of information surround the use of gloves and mittens in extreme cold environments. This study assessed how well an assortment of gloves and mittens performed in a very cold environment. A convenience sample of gloves and mittens were tested in Antarctica during the winter of 2016 using a calibrated thermometer (range: -148°F to +158°F/-100°C to +70°C) three times over a 0.5-mile distance (~20 minutes). A small sensor on a 10-foot-long cable was taped to the radial surface of the distal small finger on the non-dominant hand. The tested clothing was donned over the probe, the maximum temperature inside the glove/mitten was established near a building exit (ambient temperature approximately 54°F/12°C), and the building was exited, initiating the test. The hand was kept immobile during the test. Some non-heated gloves were tested with chemical heat warmers placed over the volar or dorsal wrist. The highest starting (96°F/36°C) and ending (82°F/28°C) temperatures were with electrically heated gloves. The lowest starting temperature was with electrically heated gloves with the power off (63°F/17°C). Non-heated gloves with an inserted chemical hand warmer had the lowest minimum temperature (33°F/1°C). Maximum temperatures for gloves/mittens did not correlate well with their minimum temperature. Coverings that maintained finger temperatures within a comfortable and safe range (at or above 59°F/15°C) included the heated gloves and mittens (including some with the power off) and mittens with liners. Mittens without liners (shell) generally performed better than unheated gloves. Better results generally paralleled the item's cost. Inserting chemical heat warmers at the wrist increased heat loss, possibly through the exposed area around the warmer.
Rapid-Rate Compression Testing of Sheet Materials at High Temperatures
NASA Technical Reports Server (NTRS)
Bernett, E. C.; Gerberich, W. W.
1961-01-01
This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2011-01-01
A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.
Initial Test Results from a 6 K-10 K Turbo-Brayton Cryocooler for Space Applications
NASA Astrophysics Data System (ADS)
Swift, W. L.; Zagarola, M. V.; Breedlove, J. J.; McCormick, J. A.; Sixsmith, H.
2004-06-01
In March 2002, a single-stage turbo-Brayton cryocooler was installed on the Hubble Space Telescope (HST) to re-establish cooling to the detectors in the Near Infrared Camera and Multi-Object Spectrograph (NICMOS). The system has maintained the detectors at their operating temperature near 77 K since that time. Future NASA space missions require comparable low-vibration cooling for periods of five to ten years in the 6 K-10 K temperature range. Creare is extending the NICMOS cryocooler technology to meet these lower temperatures. The primary activities address the need for smaller turbomachines. Two helium compressors for a 6 K turbo-Brayton cycle have been developed and tested in a cryogenic test facility. They have met performance goals at design speeds of about 9,500 rev/s. A miniature, dual-temperature high specific speed turboalternator has been installed in this test facility and has been used to obtain extended operational life data during low temperature cryogenic tests. A smaller, low specific speed turboalternator using advanced gas bearings is under development to replace the original dual-temperature design. This machine should provide improvements in the thermodynamic performance of the cycle. This paper presents life test results for the low temperature system and discusses the development of the smaller turboalternator.
Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Jetter, Robert I.; Baird, Seth T.
For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use ofmore » Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the viability of the Alloy 617 Code Case, the use of the current elastic analysis based rules in Subsection NH for the evaluation of strain limits (a precursor for the creep-fatigue rules) and the creep-fatigue rules themselves have been deemed inappropriate for Alloy 617 at temperatures above 650C (Corum and Brass, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650C, is well below the temperature range of interest for this material for the High Temperature Gas Cooled Reactor (HTGR) as well as the VHTR. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have not yet been formulated and verified. To address the prohibition on the use of current methods at very high temperatures, proposed Code rules have been developed which are based on the use of elastic-perfectly plastic (E-PP) analysis methods and which are expected to be applicable to very high temperatures. To provide data to implement the proposed rules and to verify their application, a series of tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen. The correlation parameter between test and design is the elastically calculated strain, and the dependent test variable is the observed cycles to failure. Although the initial priority for the SMT approach is to generate data to support validation of the E-PP Code Case for evaluation of creep-fatigue damage, the broader goal of the SMT approach is to develop a methodology for evaluation of creep fatigue damage which is simpler to implement than the current complex rules and applicable to the full temperature range from ambient conditions to the very high temperature creep regime of 900-950C. Also, guidance has been received from ASME Code committees that the proposed EPP methodology for evaluation of creep-fatigue damage should be extended to the other Subsection NH materials to the extent feasible. Thus, the scope of testing has been expanded to include SS304H and SS316H. This report describes the SMT approach and the development of testing capability to conduct SMT experiments on Alloy 617 and 304H and 316H and stainless steels. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed elastic-perfectly plastic Code Cases. Results from the SMT tests on both Alloy 617 and SS316H were compared to the predictions from the EPP Creep-Fatigue Code Case. Two different comparisons were made; one based on design life equal to the test duration and the other with an acceptable design life determined from the EPP Code Case procedure. The latter approach permits the determination of...« less
Adsorption of cesium on cement mortar from aqueous solutions.
Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan
2011-10-30
The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Barker, C.E.; Goldstein, R.H.
1990-01-01
The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors
High-temperature elastic-plastic and creep properties for SA533 Grade B Class I and SA508 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, G.B.; Ayres, D.J.
1982-12-01
High temperature elastic-plastic and creep properties are presented for SA533 Grade B Class I and SA508 Class II materials. These properties are derived from tests conducted at Combustion Engineering Material and Metallurgical Laboratories and cover the temperature range of 70/sup 0/F to 1200/sup 0/F.
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.
Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.
Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon
2011-01-15
Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.
Kanji, Z A; Abbatt, J P D
2010-01-21
The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.
Standard High Solids Vessel Design De-inventory Simulant Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Burns, Carolyn A.M.; Gauglitz, Phillip A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant be developed that would represent the de-inventory (residual high-density tank solids cleanout) process. Its basis and target characteristics are defined in 24590-WTP-ES-ENG-16-021 and implemented through PNNL Test Plan TP-WTPSP-132 Rev. 1.0. This document describes the de-inventory Newtonian carrier fluid (DNCF) simulant composition that will satisfy the basis requirement to mimic the density (1.18 g/mL ± 0.1 g/mL) and viscosity (2.8 cP ± 0.5more » cP) of 5 M NaOH at 25 °C.1 The simulant viscosity changes significantly with temperature. Therefore, various solution compositions may be required, dependent on the test stand process temperature range, to meet these requirements. Table ES.1 provides DNCF compositions at selected temperatures that will meet the density and viscosity specifications as well as the temperature range at which the solution will meet the acceptable viscosity tolerance.« less
Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC
NASA Astrophysics Data System (ADS)
Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi
Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.
Two-phase working fluids for the temperature range 100-350 C. [in heat pipes for solar applications
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Tower, L.
1977-01-01
The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular, bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 to 350 C have been identified, and reflux heat pipe tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.
Characteristics of the local cutaneous sensory thermoneutral zone
Zhang, Hui; Arens, Edward A.
2017-01-01
Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm’s glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors’ activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5–34.9°C (Pearson r = 0.94; P < 0.001). It falls within the cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology. NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32–34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature integration. Also, we have developed from vision research a new quantitative test addressing the balance in activity of cutaneous cold and warm thermoreceptors. This could have important clinical (assessment of somatosensory abnormalities in neurological disease) and applied (design of personal comfort systems) implications. PMID:28148644
Carbon fiber composites for cryogenic filament-wound vessels
NASA Technical Reports Server (NTRS)
Larsen, J. V.; Simon, R. A.
1972-01-01
Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola
2017-10-01
The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.
NASA Technical Reports Server (NTRS)
Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.
1974-01-01
An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.
Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy
NASA Astrophysics Data System (ADS)
McGhee, Paul
The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.
Broadband, high-resolution investigation of advanced absorption line shapes at high temperature
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2017-08-01
Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.
Design and Implementation of High Precision Temperature Measurement Unit
NASA Astrophysics Data System (ADS)
Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng
2018-03-01
Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...
Behavior of reinforcement SCC beams under elevated temperatures
NASA Astrophysics Data System (ADS)
Fathi, Hamoon; Farhang, Kianoosh
2015-09-01
This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.
NASA Technical Reports Server (NTRS)
Wagner, R. C.
1985-01-01
An experimental apparatus and test procedure was developed to compare the performance of two solid lubricant coatings for air lubricated compliant foil gas bearings in the temperature range of 25 to 315 C. Polyimide bonded additive (SBGC) were tested extensively for durability and frictional characteristics. A partial arc bearing constructed of Inconel X-750 was coated on the bore with one of these coatings. The foil was subjected to repeated start/stop cycles. Performance comparisons reveal that although both coatings survive thousands of start/stop cycles, only the PBGF coated bearing achieves the specified 9000 start/stops. There is enough wear on the SBGC coated bearing to warrant termination of the test prior to 9000 start/stop cycles due to coating failure. The frictional characteristics of the PBGF are better at the elevated temperatures than at lower temperatures; a marked increase in sliding friction occurs as the temperature decreases. The SBGC maintains relatively constant frictional characteristics independent of operating temperature.
Refractory Wear Mechanisms in the Nonferrous Metal Industry: Testing and Modeling Results
NASA Astrophysics Data System (ADS)
Gregurek, D.; Ressler, A.; Reiter, V.; Franzkowiak, A.; Spanring, A.; Prietl, T.
2013-11-01
Nonferrous pyrometallurgical processes today operate at a high intensity requiring the best standards for the furnace refractory systems. From one plant to another, there is a range of process conditions such as temperature, slag chemistry, and feed types, and each of these parameters can influence refractory life. It is generally understood that process changes at plants can impact refractory life. The ability to test and understand refractory responses to a wide range of furnace operating conditions is therefore important. The RHI Technology Centre in Leoben, Austria is well equipped with laboratory and pilot plant facilities to evaluate refractory suitability over the range of conditions encountered in modern nonferrous pyrometallurgical systems. This article describes refractory testing at the RHI Technology Centre of the impact of two metallurgical slags on a number of different RHI test bricks. The slags were a fayalite slag and a calcium ferrite slag supplied by two smelter plants. High-temperature corrosion tests were carried out in a 250-mm-diameter induction furnace and a 165-mm-diameter short rotary kiln; each unit was lined with a number of refractory bricks and tested against attack by the particular slag. After testing, the refractory bricks were subjected to several laboratory tests to determine the extent of corrosion. Optimal refractory choices for the customers' plants were developed based on the test results.
Kunkle, Gerald A.
2016-01-07
The Sutron 8310-N-S (8310) data collection platform (DCP) manufactured by Sutron Corporation was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s specifications for recording and transmitting data. The 8310-N-S is a National Electrical Manufacturers Association (NEMA)-enclosed DCP with a built-in Geostationary Operational Environmental Satellite transmitter that operates over a temperature range of −40 to 60 degrees Celsius (°C). The evaluation procedures followed and the results obtained are described in this report for bench, temperature chamber, and outdoor deployment testing. The three units tested met the manufacturer’s stated specifications for the tested conditions, but two of the units had transmission errors either during temperature chamber or deployment testing. During outdoor deployment testing, 6.72 percent of transmissions by serial number 1206109 contained errors, resulting in missing data. Transmission errors were also observed during temperature chamber testing with serial number 1208283, at an error rate of 3.22 percent. Overall, the 8310 has good logging capabilities, but the transmission errors are a concern for users who require reliable telemetered data.
Manufacturing Technology Study on Radio Frequency Power Modules Packaging Techniques.
1981-01-01
compromised; in most cases, it was found to be higher than our original process. An accelerated high 125 I temperature aging test was performed to attain...sealing glasses without some oxynen. Alternatively, there are many high temperature amorphous type glasses which satisfactorily fire in nitrogen but...achieve some degree of crystalization when fired at high temperature . In using the high temperatures (900°C range) the effect on the previously printed
Correlation of Toughness between H-Plate and Charpy Impact Tests
1959-09-01
thermal cycles having peak temperatures in or near the range of critical transformation temperatures. Notch sensitivity in these regions has been...21- In their recent work the transition temperatures of heat-affected-zone struc- tures produced by thermal cycles having peak temperatures in the...gradient of thermal cycles associated with welding is too complex to have been included in the scope of this report. The superior toughness of the Ni
NASA Astrophysics Data System (ADS)
Wang, Huan; Boehlert, Carl J.; Wang, Qudong; Yin, Dongdi; Ding, Wenjiang
2016-05-01
The tension and tension-creep deformation behavior at elevated temperatures of a cast Mg-10Gd-3Y-0.5Zr (wt pct, GW103) alloy was investigated using in situ scanning electron microscopy. The tests were performed at temperatures ranging from 473 K to 598 K (200 °C to 325 °C). The active slip systems were identified using an EBSD-based slip trace analysis methodology. The results showed that for all of the tests, basal slip was the most likely system to be activated, and non-basal slip was activated to some extent depending on the temperature. No twinning was observed. For the tension tests, non-basal slip consisted of ~35 pct of the deformation modes at low temperatures (473 K and 523 K (200 °C and 250 °C)), while non-basal slip accounted for 12 and 7 pct of the deformation modes at high temperatures (573 K and 598 K (300 °C and 325 °C)), respectively. For the tension-creep tests, non-basal slip accounted for 31 pct of the total slip systems at low temperatures, while this value decreased to 10 to 16 pct at high temperatures. For a given temperature, the relative activity for prismatic slip in the tension-creep tests was slightly greater than that for the tension tests, while the activity for pyramidal slip was lower. Slip-transfer in neighboring grains was observed for the low-temperature tests. Intergranular cracking was the main cracking mode, while some intragranular cracks were observed for the tension-creep tests at high temperature and low stress. Grain boundary ledges were prevalently observed for both the tension and tension-creep tests at high temperatures, which suggests that besides dislocation slip, grain boundary sliding also contributed to the deformation.
Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.
1991-01-01
Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.
Temperature distortion generator for turboshaft engine testing
NASA Technical Reports Server (NTRS)
Klann, G. A.; Barth, R. L.; Biesiadny, T. J.
1984-01-01
The procedures and unique hardware used to conduct an experimental investigation into the response of a small-turboshaft-engine compression system to various hot gas ingestion patterns are presented. The temperature distortion generator described herein uses gaseous hydrogen to create both steady-state and time-variant, or transient, temperature distortion at the engine inlet. The range of transient temperature ramps produced by the distortion generator during the engine tests was from less than 111 deg K/sec (200 deg R/sec) to above 611 deg K/sec (1100 deg R/sec); instantaneous temperatures to 422 deg K (760 deg R) above ambient were generated. The distortion generator was used to document the maximum inlet temperatures and temperature rise rates that the compression system could tolerate before the onset of stall for various circumferential distortions as well as the compressor system response during stall.
In-reactor oxidation of zircaloy-4 under low water vapor pressures
NASA Astrophysics Data System (ADS)
Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.
2015-01-01
Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.
FY2017 status report: Model 9975 O-ring fixture long-term leak performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
A series of experiments to monitor the aging performance of Viton® GLT and GLT-S O-rings used in the Model 9975 shipping package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups with GLT O-rings were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially andmore » have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, a smaller test matrix with fourteen additional tests was initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. Leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The 300 °F GLT O-ring fixtures failed after 2.8 to 5.7 years at temperature. The remaining GLT O-ring fixtures aging at 300 ºF were retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 9 to 10.5 years, or in GLT O-ring fixtures aging at 270 ºF for 5.7 years. These aging temperatures bound O-ring temperatures anticipated during normal storage in K-Area Complex (KAC). Leak test failures have been experienced in all of the GLT-S O-ring fixtures aging at 300 ºF and above. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 and 250 ºF for 6.9 to 7.5 years. Data from the O-ring fixtures are generally consistent with results from compression stress relaxation testing, and provide confidence in the predictive models based on those results. However, uncertainty still exists in extrapolating these elevated temperature results to the lower temperatures of interest for normal storage in KAC. Measurement of compression set in O-rings removed from failed fixtures, compared to that from KAC surveillance O-rings, indicates margin remains for O-rings still in service. Aging and periodic leak testing will continue for the remaining PCV fixtures.« less
NASA Technical Reports Server (NTRS)
Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen
2010-01-01
The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.
Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, John
This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.
A temperature characteristic research and compensation design for micro-machined gyroscope
NASA Astrophysics Data System (ADS)
Fu, Qiang; di, Xin-Peng; Chen, Wei-Ping; Yin, Liang; Liu, Xiao-Wei
2017-02-01
The all temperature range stability is the most important technology of MEMS angular velocity sensor according to the principle of capacity detecting. The correlation between driven force and zero-point of sensor is summarized according to the temperature characteristic of the air-damping and resonant frequency of sensor header. A constant trans-conductance high-linearity amplifier is designed to realize the low phase-drift and low amplitude-drift interface circuit at all-temperature range. The chip is fabricated in a standard 0.5 μm CMOS process. Compensation achieved by driven force to zero-point drift caused by the stiffness of physical construction and air-damping is adopted. Moreover, the driven force can be obtained from the drive-circuit to avoid the complex sampling. The test result shows that the zero-point drift is lower than 30∘/h (1-sigma) at the temperature range from -40∘C to 60∘C after three-order compensation made by driven force.
Schenning, Katie J.; Casson, Henry; Click, Sarah V.; Brambrink, Lucas; Chatkupt, Thomas T.; Alkayed, Nabil J.; Hutchens, Michael P.
2016-01-01
At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below zero, but the vapor pressure-temperature relationship is unknown below zero. Secondarily, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent thereby identifying the saturated vapor concentration of each agent at any temperature below zero. To test our hypothesis, we measured the saturated vapor concentration at 1 atmosphere of pressure for temperatures between -60°C and 0°C thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all three agents. To test the empiric data we constructed a digitally-controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype based on this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures. PMID:27632346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinkle, S.J.; Eatherly, W.S.
1997-04-01
The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination ofmore » high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.« less
Schenning, Katie J; Casson, Henry; Click, Sarah V; Brambrink, Lucas; Chatkupt, Thomas T; Alkayed, Nabil J; Hutchens, Michael P
2017-02-01
At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below 0°C, but the vapor pressure-temperature relationship is unknown below 0. Second, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent, thereby identifying the saturated vapor concentration of each agent at any temperature below 0°C. To test our hypothesis, we measured the saturated vapor concentration at 1 atm of pressure for temperatures between -60 and 0°C, thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all 3 agents. To test the empiric data, we constructed a digitally controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype on the basis of this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures.
Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler
NASA Technical Reports Server (NTRS)
Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.
1992-01-01
A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.
Low-Noise Amplifier for 100 to 180 GHz
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William
2009-01-01
A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.
Temperature dependence of ice-on-rock friction at realistic glacier conditions
Savage, H.; Nettles, M.
2017-01-01
Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297
Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenske, George
2017-01-04
Under the Argonne/Pixelligent cooperative research and development agreement (CRADA – C1200801), Argonne performed labscale tribological tests on proprietary nano-sized ZrO 2 material developed by Pixelligent. Pixelligent utilized their proprietary process to prepare variants with different surfactants at different loadings in different carrier fluids for testing and evaluation at Argonne. Argonne applied a range of benchtop tribological test rigs to evaluate friction and wear under a range of conditions (contact geometry, loads, speeds, and temperature) that simulated a broad range of conditions experienced in engines and driveline components. Post-test analysis of worn surfaces provided information on the structure and chemistry ofmore » the tribofilms produced during the tests.« less
NASA Technical Reports Server (NTRS)
Conway, J. B.; Stentz, R. H.; Berling, J. T.
1976-01-01
Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.
NASA Technical Reports Server (NTRS)
Lovrich, T. N.; Schwartz, S. H.
1975-01-01
The dimensionless parameters associated with the thermal stratification and pressure history of a heated container of liquid and its vapor were examined. The Modified Grashof number, the Fourier number, and an Interface number were parameterized using a single test liquid, Freon 113. Cylindrical test tanks with spherical dome end caps were built. Blanket heaters covered the tanks and thermocouples monitored the temperatures of the liquid, the ullage, the tank walls, and the foam insulation encapsulating the tank. A centrifuge was used for the 6 inch tank to preserve the same scaling parameter values between it and the larger tanks. Tests were conducted over a range of Gr* values and the degree of scaling was checked by comparing the dimensionless pressures and temperatures for each scaled pair of tests. Results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters. Some deviation was, however, found in the detailed temperature profiles between the scaled pairs of tests.
NASA Astrophysics Data System (ADS)
Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun
2018-02-01
SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.
Bio-syngas production from agro-industrial biomass residues by steam gasification.
Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge
2016-12-01
This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-03-01
This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.
Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel
Hietala, S. K.; Crossley, B. M.
2006-01-01
In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950
NASA Technical Reports Server (NTRS)
Rennak, Robert M; Messing, Wesley E; Morgan, James E
1946-01-01
The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)
Mechanical degradation temperature of waste storage materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, M.C.; Meyer, M.L.
1993-05-13
Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90{degrees}C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66{degrees}C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-densitymore » polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185{degrees}C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110{degrees}C; (2) polyvinyl chloride -- 130{degrees}C; (3) high-density polyethylene -- 140{degrees}C; (4) sealing tape -- 140{degrees}C. Testing with LDPE and PVC at temperatures ranging from 110 to 130{degrees}C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185{degrees}C) is not anticipated.« less
Variable area radial turbine fabrication and test program
NASA Technical Reports Server (NTRS)
Rogo, C.
1986-01-01
A variable area radial turbine with a moveable nozzle sidewall was experimentally evaluated. The turbine was designed for an advanced variable capacity gas turbine rotorcraft engine. The turbine has a mass flow rate of 2.27 kg/sec (5.0 lbs/sec), and a rotor inlet temperature of 1477K (2200 F). Testing was conducted at a reduced inlet temperature, but the aerodynamic parameters and Reynolds numbers were duplicated. Overall performance was obtained for a range of nozzle areas from 50% to 100% of the maximum area. The test program determined the effect on performance of: (1) Moving the hub or shroud sidewall; (2) Sidewall-vane clearance leakage; (3) Vaneless space geometry change; and (4) Nozzle cooling flows. Data were obtained for a range of pressure ratios and speeds and are presented in a number of performance maps.
Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler
NASA Technical Reports Server (NTRS)
Nast, T. C.; Hsu, I. C.
1984-01-01
Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.
Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
1999-01-01
Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).
NASA Astrophysics Data System (ADS)
Opiela, M.
2014-09-01
The paper presents the results of thermomechanical treatment via forging on the microstructure and mechanical properties of newly obtained microalloyed steel containing 0.28% C, 1.41% Mn, 0.027% Nb, 0.028% Ti, and 0.019% V. The investigated steel is assigned to the production of forged elements for the automotive industry. Conditions of forging using the thermomechanical processing method were developed based on plastometric tests. Continuous and double-hit compression tests were conducted using the Gleeble 3800 thermomechanical simulator. The samples were investigated in a temperature range from 900 to 1100 °C and a strain rate of 1 and 10 s-1. To determine the recrystallization kinetics of plastically deformed austenite, discontinuous compression tests of samples using the applied deformation were conducted in a temperature range from 900 to 1100 °C with isothermal holding of the specimens between successive deformations for 2-100 s. Observations of the microstructures of thin foils were conducted using a TITAN80-300 FEI transmission electron microscope. The applied thermomechanical treatment allows to obtain a fine-grained microstructure of the austenite during hot-working and production of forged parts. These acquire advantageous mechanical properties and guaranteed crack resistance after controlled cooling from the end plastic deformation temperature and successive tempering. Forgings produced using the thermomechanical treatment method, consecutively subjected to tempering in a temperature range from 550 to 650 °C, reveal values of YS0.2 which equal from 994 to 892 MPa, UTS from 1084 to 958 MPa, KV from 69 to 109 J, KV-40 from 55 to 83 J, and a hardness ranging from 360 to 300 HBW.
NASA Technical Reports Server (NTRS)
Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.
1995-01-01
Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.
Time - Temperature Relationships of Test Head Fired and Backfires
Lawrence S. Davis; Robert E. Martin
1960-01-01
Time-temperature relations were measured during the course of a preliminary investigation of the thermal characteristics of forest fires. Observations on 5 head fires and 5 backfires in 8-year-old gallberry-palmetto roughs on the Alapaha Experimental Range near Tifton, Georgia, are the basis for this report.
Waltz Mill testing of 345-kV PPP cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghardt, R.R.
1991-09-01
A 345-kV PPP-insulated cable was subjected to a two-year accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in November 1985 and was successfully completed in September 1988. The program included conductor temperatures ranging from 85{degrees}C to 105{degrees}C and line-to-line voltages from 362 kV to 474 kV. Cyclic testing was performed during 17 of the 24 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program. 2 refs., 24 figs.
Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghardt, R.R.
1992-06-01
A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.
Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghardt, R.R.
1992-06-01
A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.
2014-01-01
This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.
NASA Technical Reports Server (NTRS)
Hall, R. M.
1976-01-01
The minimum operating temperature which avoids adverse low temperature effects, such as condensation, has been determined at a free stream Mach number of 0.85 for flow over a 0.137 meter airfoil mounted at zero incidence in the Langley 1/3 meter transonic cryogenic tunnel. The onset of low temperature effects is established by comparing the pressure coefficient measured at a given orifice for a particular temperature with those measured at temperatures sufficiently above where low temperature effects might be expected to occur. The pressure distributions over the airfoil are presented in tabular form. In addition, the comparisons of the pressure coefficient as a function of total temperature are presented graphically for chord locations of 0, 25, 50, and 75 percent. Over the 1.2 to 4.5 atmosphere total pressure range investigated, low temperature effects are not detected until total temperatures are 2 K, or more, below free stream saturation temperatures.
Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2
NASA Technical Reports Server (NTRS)
Stockemer, F. J.; Deane, R. L.
1982-01-01
An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1988-01-01
The requirements for a nonintrusive optical diagnostic facility for Space Station are assessed by examining the needs of current and future combustion experiments to be flown aboard the Space Station. Requirements for test section geometry and size, spatial and temporal resolution, species type and concentration range, and temperature range are reviewed. The feasibility of the development of this system is also addressed. The suitability of this facility to non-combustion experiments in gases and liquids is also considered.
Fiber-Optic/Photoelastic Flow Sensors
NASA Technical Reports Server (NTRS)
Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.
1995-01-01
Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1979-11-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.
Stress relaxation and mechanical properties of RL-1973 and PD-200-16 silicone resin sponge materials
NASA Technical Reports Server (NTRS)
Saylak, D.; Noel, J. S.; Ham, J. S.; Mccoy, R.
1975-01-01
Stress relaxation tests were conducted by loading specimens in double-lap shear to a preselected strain level and monitoring the decay of stress with time. The stress relaxation response characteristics were measured over a temperature range of 100 to 300 K and four strain levels. It is concluded that only a slight amount of stress relaxation was observed, and the stiffness increased approximately two orders of magnitude over the range of temperatures.
A presently available energy supply for high temperature environment (550-1000 deg F)
NASA Technical Reports Server (NTRS)
Jacquelin, J.; Vic, R. L.
1981-01-01
Sodium-sulfur cells attractive electric energy storage device for long service, are discussed. The state of art is given. More than 200 Wh/kg cells were tested. The known range of working temperature is 550 to 750 F. Self-discharge is quite nonexistent for months in operation. The technical basis for expecting an operating range up to 1,000 F under a high pressure atmosphere is given. Possibilities to adapt size and characteristics to particular interplanetary missions are discussed.
Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.
Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F
2014-06-01
Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.
2015-08-13
NASA’s Global Hawk aircraft deploys a dropsonde during a test flight over the Dryden Aeronautical Test Range in August 2015. The small, tube-shaped sensor will transmit data on temperature, humidity, and wind speed, which will be used to help improve weather model forecasts
Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.
George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W
2015-11-03
Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.
NASA Technical Reports Server (NTRS)
Faith, T. J.; Obenschain, A. F.
1974-01-01
Empirical equations have been derived from measurements of solar cell photovoltaic characteristics relating light-generated current and open circuit voltage to cell temperature, intensity of illumination and 1-MeV electron fluence. Both 2-ohm-cm and 10-ohm-cm cells were tested over the temperature range from 120 to 470 K, the illumination intensity range from 5 to 1830 mW/sq cm, and the electron fluence range from 1 x 10 to the 13th to 1 x 10 to the 16th electrons/sq cm. The normalized temperature coefficient of the light generated current varies as the 0.18 power of the fluence for temperatures above approximately 273 K and is independent of fluence at lower temperatures. At 140 mW/sq cm, a power law expression was derived which shows that the light-generated current decreases at a rate proportional to the 0.153 power of the fluence for both resistivities. The coefficient of the expression is larger for 2-ohm-cm cells; consequently, the advantage for 10-ohm-cm cells increased with increasing fluence.
NASA Technical Reports Server (NTRS)
Hook, Simon J.
2008-01-01
The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryner, Elliott; Brun, Klaus; Coogan, Shane
The objective of this project is to increase Concentrated Solar Power (CSP) tower air receiver and gas turbine temperature capabilities to 1,000ºC by the development of a novel gas turbine combustor, which can be integrated on a megawatt-scale gas turbine, such as the Solar Turbines Mercury 50™. No combustor technology currently available is compatible with the CSP application target inlet air temperature of 1,000°C. Autoignition and flashback at this temperature prevent the use of conventional lean pre-mix injectors that are currently employed to manage NOx emissions. Additional challenges are introduced by the variability of the high-temperature heat source provided bymore » the field of solar collectors, the heliostat in CSP plants. For optimum energy generation from the power turbine, the turbine rotor inlet temperature (TRIT) should remain constant. As a result of changing heat load provided to the solar collector from the heliostat, the amount of energy input required from the combustion system must be adjusted to compensate. A novel multi-bank lean micro-mix injector has been designed and built to address the challenges of high-temperature combustion found in CSP applications. The multi-bank arrangement of the micro-mix injector selectively injects fuel to meet the heat addition requirements to maintain constant TRIT with changing solar load. To validate the design, operation, and performance of the multi-bank lean micro-mix injector, a novel combustion test facility has been designed and built at Southwest Research Institute® (SwRI®) in San Antonio, TX. This facility, located in the Turbomachinery Research Facility, provides in excess of two kilograms per second of compressed air at nearly eight bar pressure. A two-megawatt electric heater raises the inlet temperature to 800°C while a secondary gas-fired heater extends the operational temperature range of the facility to 1,000°C. A combustor test rig connected to the heater has been designed and built to test the multi-bank lean micro-mix injector over the range of CSP operating conditions. The fuel is controlled and selectively delivered to the banks of the injector based on combustor inlet conditions that correspond to turbine operating points. The combustor rig is equipped with a data acquisition system and a suite of instrumentation for measuring temperature, pressure, and species concentration. This unique test facility has been built and commissioned and a prototype of the multi-bank lean micro-mix injector design has been tested. Operation of the combustor and injector has been demonstrated over the full range of CSP inlet conditions and for the range of turbine load conditions specified. The multi-bank operation of the injector has been proven to be an effective design for managing the variable flow rates of air and fuel due to changing inlet conditions from the solar field and turbine loads.« less
NASA Astrophysics Data System (ADS)
Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.
2012-05-01
Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.
Thermal-mechanical fatigue behavior of nickel-base superalloys
NASA Technical Reports Server (NTRS)
Pelloux, R. M.; Marchand, N.
1986-01-01
The main achievements of a 36-month research program are presented. The main objective was to gain more insight into the problem of crack growth under thermal mechanical fatigue (TMF) conditions. This program was conducted at M.I.T. for the period of September 1982 to September 1985. The program was arranged into five technical tasks. Under Task I, the literature of TMF data was reviewed. The goal was to identify the crack propagation conditions in aircraft engines (hot section) and to assess the validity of conventional fracture mechanics parameters to address TMF crack growth. The second task defined the test facilities, test specimen and the testing conditions needed to establish the effectiveness of data correlation parameters identified in Task I. Three materials (Inconel X-750, Hastelloy-X, and B-1900) were chosen for the program. Task II was accomplished in collaboration with Pratt & Whitney Aircraft engineers. Under Task III, a computerized testing system to measure the TMF behavior (LCF and CG behaviors) of various alloys systems was built. The software used to run isothermal and TMF tests was also developed. Built around a conventional servohydraulic machine, the system is capable of push-pull tests under stress or strain and temperature controlled conditions in the temperature range of 25C to 1050C. A crack propagation test program was defined and conducted under Task IV. The test variables included strain range, strain rate (frequency) and temperature. Task V correlated and generalized the Task IV data for isothermal and variable temperature conditions so that several crack propagation parameters could be compared and evaluated. The structural damage (mode of cracking and dislocation substructure) under TMF cycling was identified and contrasted with the isothermal damage to achieve a sound fundamental mechanistic understanding of TMF.
Some composite bearing and seal materials for gas turbine applications: A review
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1989-01-01
A review is made of the selection and tribological testing of materials for high-temperature bearings and seals. The goal is to achieve good tribological properties over a wide range of temperatures because bearings and seals must be functional from low temperature start-up conditions on up to the maximum temperatures encountered during engine operation. Plasma sprayed composite coatings with favorable tribological properties from 25 to 900 C are discussed. The performance of these coatings in simple tribological bench tests is described. Examples are also given of their performance in high-speed sliding contact seals and as Stirling cylinder liner materials, and as back up lubricants for compliant foil gas bearings.
Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun
2015-10-01
It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.
A DAPHNIA MAGNA SHORT-TERM SURVIVAL AND GROWTH TEST
With the change in acceptable test temperatures for invertebrate toxicity tests from <20oC to 25oC, it is now possible to use Daphnia magna for short-term chronic testing. When cultured at 25oC the dry weight of <24 hr old D. magna ranges from 7 to 15 g depending upon nutrition,...
Characterization of the Vectron PX-570 Crystal Oscillator for Use in Harsh Environments
NASA Technical Reports Server (NTRS)
Li, Jacob; Patterson, Richard L.; Hammoud, Ahmad
2012-01-01
Computing hardware, data-acquisition systems, communications systems, and many electronic control systems require well-controlled timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that employ crystal oscillators due to availability, cost, ease of operation, and accuracy. In some cases, the electronic systems are expected to survive and operate under harsh conditions that include exposure to extreme temperatures. These applications exist in terrestrial systems as well as in aerospace products. Well-logging, geothermal systems, and industrial process control are examples of ground-based applications, while distributed jet engine control in aircraft, space-based observatories (such as the James Webb Space Telescope), satellites, and lunar and planetary landers are typical environments where electronics are exposed to harsh operating conditions. To ensure these devices produce reliable results, the digital heartbeat from the oscillator must deliver a stable signal that is not affected by external temperature or other conditions. One such solution is a recently introduced commercial-off-the-shelf (COTS) oscillator, the PX-570 series from Vectron International. The oscillator was designed for high-temperature applications and as proof, the crystal oscillator was subjected to a wide suite of tests to determine its ruggedness for operation in harsh environments. The tests performed by Vectron included electrical characterization under wide range of temperature, accelerated life test/aging, shock and vibration, internal moisture analysis, ESD threshold, and latch-up testing. The parametric evaluation was performed on the oscillator's frequency, output signal rise and fall times, duty cycle, and supply current over the temperature range of -125 C to +230 C. The evaluations also determined the effects of thermal cycling and the oscillator's re-start capability at extreme hot and cold temperatures. These thermal cycling and restart tests were performed at the NASA Glenn Research Center. Overall, the crystal oscillator performed well and demonstrated very good frequency stability. This paper will discuss the test procedures and present details of the performance results.
Catalytic combustion of residual fuels
NASA Technical Reports Server (NTRS)
Bulzan, D. L.; Tacina, R. R.
1981-01-01
A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Mikhail A
2010-01-01
A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Famore » values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.« less
Bovesecchi, G; Coppa, P; Pistacchio, S
2018-05-01
A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO 3 , 52% KNO 3 , and 30% LiNO 3 ) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec ® salt (53% KNO 3 , 7% NaNO 3 , 40% NaNO 2 ). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.
A new thermal conductivity probe for high temperature tests for the characterization of molten salts
NASA Astrophysics Data System (ADS)
Bovesecchi, G.; Coppa, P.; Pistacchio, S.
2018-05-01
A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.
Using Mason number to predict MR damper performance from limited test data
NASA Astrophysics Data System (ADS)
Becnel, Andrew C.; Wereley, Norman M.
2017-05-01
The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.
Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Brick, V. E.; Brauer, D. P.
1978-01-01
A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.
Fiber-optic sensor demonstrator (FSD) preliminary test results on PROBA-2
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Zou, Jing; Haddad, Emile; Jamroz, Wes; Ricci, Francesco; Edwards, Eric; McKenzie, Iain; Vuilleumier, Pierrik
2017-11-01
Fiber Sensor Demonstrator (FSD) developed by MPB Communications (MPBC) is the first demonstration of a full fiber-optic sensor network in the space environment on a satellite. FSD has been launched on ESA's Proba-2 satellite in November 2009. FSD contains twelve temperature sensors to measure the temperature at different locations in the satellite, and one High-Temperature sensor to measure the transient high temperature in the thruster, as well as one pressure sensor to measure the xenon tank pressure. First set of on-orbit test data were obtained in January 2010. The FSD unit successfully established the communication with Proba-2. The temperature of FSD unit was also acquired through a AD590 sensor inside the unit. The measurements of all the optical fiber sensor lines will be evaluated after the testing results obtained. The FSD contains twelve specially-packaged FBG temperature sensors to measure the temperature at different locations in the propulsion system and the spacecraft over the range of -60°C to +120°C. A high-temperature sensor is provided to measure the transient temperature response of the thruster to beyond 350°C. There is also an innovative P/T sensor that provides both temperature and pressure measurements of the Xe propellant tank. The preliminary data of on-orbit functional testing and temperature measurements are provided mainly in Section 6.
Clogging of Joule-Thomson Devices in Liquid Hydrogen Handling
NASA Technical Reports Server (NTRS)
Jurns, John M.; Lekki, John D.
2009-01-01
Experiments conducted at the NASA Glenn Research Center indicate that Joule-Thomson devices become clogged when transferring liquid hydrogen (LH2), operating at a temperature range from 20.5 to 24.4 K. Blockage does not exist under all test conditions but is found to be sensitive to the inlet temperature of the LH2. At a subcooled inlet temperature of 20.5 K blockage consistently appears but is dissipated when the fluid temperature is raised above 24.5 K. Clogging steadily reduced flow rate through the orifices, eventually resulting in complete blockage. This tendency poses a threat to spacecraft cryogenic propulsion systems that would utilize passive thermal control systems. We propose that this clogging is due to trace amounts of neon in the regular LH2 supply. Neon freezes at 24.5 K at one atmosphere pressure. It is postulated that between 20.5 and 24.5 K, neon remains in a meta-stable, supercooled liquid state. When impacting the face of an orifice, liquid neon droplets solidify and accumulate, blocking flow over time. The purpose of this test program was to definitively quantify the phenomena experimentally by obtaining direct visual evidence of orifice clogging by accretion from neon contaminates in the LH2 flow stream, utilizing state of the art imaging technology. Tests were conducted with LH2 flowing in the temperature range of 20.5 to 24.4 K. Additional imaging was also done at LH2 temperatures with no flow to verify clear view through the orifice.
Mechanism of Dynamic Strain Aging in a Niobium-Stabilized Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zhou, Hongwei; Bai, Fengmei; Yang, Lei; Wei, Hailian; Chen, Yan; Peng, Guosheng; He, Yizhu
2018-04-01
Dynamic strain aging (DSA) behavior of a niobium (Nb)-stabilized austenitic stainless steel (TP347H) was studied from room temperature (RT) to 973 K via tensile testing, transmission electron microscopy (TEM), and internal friction (IF) measurements. The DSA effect is nearly negligible from 573 K to 673 K, and it becomes significant at temperatures between 773 K and 873 K with strain rates of 3 × 10-3 s-1, 8 × 10-4 s-1, and 8 × 10-5 s-1, respectively. The results indicate that a dislocation planar slip is dominant in the strong DSA regime. The Snoek-like peak located at 625 K is highly sensitive to the diffusion of free carbon (C) atoms in solid solution. C-Nb octahedrons are formed by C chemical affinity to substitutional Nb solute atoms. Octahedron structure is very stable and captures most free C atoms and inhibits DSA at low tensile test temperatures of 573 K to 673 K. At high test temperatures in the range from 773 K to 873 K, C-Nb octahedrons break up and release free C and Nb atoms, resulting in the stronger Snoek-like peak. The interaction between C atoms and dislocations is responsible for DSA at low temperatures ranging from 573 K to 673 K. At higher temperature of 773 K to 873 K, the Cr and Nb atoms lock the dislocations, and this formation contributes to DSA.
Development of a Flexible Seal for a 60 psi Cryogenic Pressure Box
NASA Technical Reports Server (NTRS)
Glass, David E.
1998-01-01
A cryogenic pressure box test facility has been designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 5 ft x 6 ft curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20 K) with 54 psig maximum pressure. The key challenge in the design and fabrication of the pressure box was the development of a seal that could remain flexible at -423 F and contain 60 psi gaseous helium as the pressurization gas. A C-shaped seal was developed using a Gore-tex woven fabric. Mechanical testing of the fabric at room and elevated temperature, liquid nitrogen temperature, and liquid helium temperature demonstrated the strength and creep resistance of the material over the desired operating range. A small scale cryogenic pressure box was used to test prototype seals at cryogenic temperatures up to 60 psi. Preliminary tests indicated that excessive leakage was present through the seal. As a result, an aluminized mylar liner was placed inside the Gore-tex seal to reduce leakage through the seal. The final seal configuration resulted in minimal pressure loss during seal testing.
Ehlinger, Gretchen S; Tankersley, Richard A
2004-04-01
The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.
Heat Transfer in High-Temperature Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2002-01-01
The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating conditions.
Characterization of a Compact Water Vapor Radiometer
NASA Astrophysics Data System (ADS)
Gill, Ajay; Selina, Rob
2018-01-01
We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.
Material Problems in Using High-Temperature Thermocouples
NASA Astrophysics Data System (ADS)
Edler, F.
2011-08-01
The material compatibility and thermal stability of ceramic-composite coatings of different oxide ceramics deposited on alumina tubes to prevent the reduction of the alumina were investigated in the high-temperature range between 1750 °C and 1850 °C. It turned out that the coatings were thermally unstable and did not provide adequate protection against the reduction of the alumina tubes. The oxide ceramics formed eutectic compositions with low melting temperatures and were also prone to reduction to elementary metals by carbon. A new type of high-temperature thermocouple on the basis of refractory and noble metals was tested in the temperature range between 1325 °C and 1800 °C. Two metal-sheathed prototypes were constructed. The thermoelectric behavior of the tungsten5%rhenium/iridium thermocouples (W5%Re/Ir) was investigated by different high-temperature exposures, and the thermoelectric stability was checked by repeated measurements at the ice point.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
The usefulness of vee-trough concentrators in improving the efficiency and reducing the cost of collectors assembled from evacuated tube receivers was studied in the vee-trough/vacuum tube collector (VTVTC) project. The VTVTC was analyzed rigorously and various mathematical models were developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized FEP Teflon. Tests were run at temperatures ranging from 95 to 180 C. Vee-trough collector efficiencies of 35 to 40% were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Predicted daily useful heat collection and efficiency values are presented for a year's duration of operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with a complete economic evaluation.
Langille, B L; Crisp, B
1980-09-01
The temperature dependence of the viscosity of blood from frogs and turtles has been assessed for temperatures between 5 and 40 degrees C. Viscosity of turtles' blood was, on average, reduced from 3.50 +/- 0.16 to 2.13 +/- 0.10 cP between 10 and 30 degrees C, a decline of 39%. Even larger changes in viscosity were observed for frogs' blood with viscosity falling from 4.55 +/- 0.32 to 2.55 +/- 0.25 cP over the same temperature range, a change of 44%. Blood viscosity was highly correlated with hematocrit in both species at all temperatures. Viscosity of blood from both frogs and turtles showed a large standard deviation at all temperatures and this was attributed to large individual-to-individual variations in hematocrit. Turtles heat faster than they cool, regardless of whether tests are performed at temperatures above or below the range of thermal preference. The effect of temperature dependence of blood viscosity on heating and cooling rates is demonstrated.
Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test
NASA Astrophysics Data System (ADS)
Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.
2017-11-01
Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical strain transducer to generate strain via a dedicated feed through in the chamber. Thermocouples are used to log the temperature for comparison to the temperature FBG sensor. Extreme temperature ranges from -150°C and +70°C at a pressure down to 10-4 Pa (10-6 mbar) are covered as well as testing under ambient conditions. In total five thermal cycles during a week test are performed. The FBG temperature sensor test results performed in the ESA/ESTEC TV chamber reveal high reproducibility (within 1 °C) within the test temperature range without any evidence of hysteresis. Differences are detected to the previous calibration curve. Investigation is performed to find the cause of the discrepancy. Differences between the test set-ups are identified. Equipment of the TNO test is checked and excluded to be the cause. Additional experiments are performed. The discrepancy is most likely caused by a 'thermal shock' due to rapid cooling down to LN2 temperature, which results in a wavelength shift. Test data of the FBG strain sensor is analysed. The read-out of the FBG strain sensor varies with the temperature during the test. This can be caused by temperature induced changes in the mechanical setup (fastening of the mechanical parts) or impact of temperature to the mechanical strain transfer to the FBG. Improvements are identified and recommendations given for future activities.
Solar thermal vacuum tests of Magellan spacecraft
NASA Technical Reports Server (NTRS)
Neuman, James C.
1990-01-01
The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.
Parabolic trough receiver heat loss and optical efficiency round robin 2015/2016
NASA Astrophysics Data System (ADS)
Pernpeintner, Johannes; Schiricke, Björn; Sallaberry, Fabienne; de Jalón, Alberto García; López-Martín, Rafael; Valenzuela, Loreto; de Luca, Antonio; Georg, Andreas
2017-06-01
A round robin for parabolic trough receiver heat loss and optical efficiency in the laboratory was performed between five institutions using five receivers in 2015/2016. Heat loss testing was performed at three cartridge heater test benches and one Joule heating test bench in the temperature range between 100 °C and 550 °C. Optical efficiency testing was performed with two spectrometric test bench and one calorimetric test bench. Heat loss testing results showed standard deviations at the order of 6% to 12 % for most temperatures and receivers and a standard deviation of 17 % for one receiver at 100 °C. Optical efficiency is presented normalized for laboratories showing standard deviations of 0.3 % to 1.3 % depending on the receiver.
Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments
Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F
2014-01-01
Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481
Kunkle, Gerald A.
2018-01-31
Two identical Radar Stage Sensors from Forest Technology Systems were evaluated to determine if they are suitable for U.S. Geological Survey (USGS) hydrologic data collection. The sensors were evaluated in laboratory conditions to evaluate the distance accuracy of the sensor over the manufacturer’s specified operating temperatures and distance to water ranges. Laboratory results were compared to the manufacturer’s accuracy specification of ±0.007 foot (ft) and the USGS Office of Surface Water (OSW) policy requirement that water-level sensors have a measurement uncertainty of no more than 0.01 ft or 0.20 percent of the indicated reading. Both of the sensors tested were within the OSW policy requirement in both laboratory tests and within the manufacturer’s specification in the distance to water test over tested distances from 3 to 15 ft. In the temperature chamber test, both sensors were within the manufacturer’s specification for more than 90 percent of the data points collected over a temperature range of –40 to +60 degrees Celsius at a fixed distance of 8 ft. One sensor was subjected to an SDI-12 communication test, which it passed. A field test was conducted on one sensor at a USGS field site near Landon, Mississippi, from February 5 to March 29, 2016. Water-level measurements made by the radar during the field test were in agreement with those made by the Sutron Accubar Constant Flow Bubble Gauge.Upon the manufacturer’s release of updated firmware version 1.09, additional SDI-12 and temperature testing was performed to evaluate added SDI-12 functions and verify that performance was unaffected by the update. At this time, an Axiom data logger is required to perform a firmware update on this sensor. The data confirmed the results of the original test. Based on the test results, the Radar Stage Sensor is a suitable choice for USGS hydrologic data collection.
Report on FY17 testing in support of integrated EPP-SMT design methods development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli .; Jetter, Robert I.; Sham, T. -L.
The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The purpose of this methodology is to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, thermomechanical tests continued in FY17. Thismore » report presents the recent test results for Type 1 SMT specimens on Alloy 617 with long hold times, pressurization SMT on Alloy 617, and two-bar thermal ratcheting test results on SS316H at the temperature range of 405 °C to 705 °C. Preliminary EPP strain range analysis on the two-bar tests are critically evaluated and compared with the experimental results.« less
Transition temperature range of thermally activated nickel-titanium archwires
SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim
2014-01-01
Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581
Functional Characterization of a Novel Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.
2014-07-01
A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.
Investigation of critical burning of fuel droplets
NASA Technical Reports Server (NTRS)
Allison, C. B.; Canada, G. S.
1972-01-01
Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.
Heat flux microsensor measurements and calibrations
NASA Technical Reports Server (NTRS)
Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.
1992-01-01
A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.
Evaluation of electrical test conditions in MIL-M-38510 slash sheets
NASA Astrophysics Data System (ADS)
Sandgren, K.
1980-08-01
Adequacy of MIL-M-38510 slash sheet requirements for electrical test conditions in an automated test environment were evaluated. Military temperature range commercial devices of 13 types from 6 manufacturers were purchased. Software for testing these devices and for varying the test conditions was written for the Tektronix S-3260 test system. The devices were tested to evaluate the effects of pin-condition settling time, measurement sequence of the same and different D-C parameters, temperature sequence, differently defined temperature ambients, variable measurement conditions, sequence of time measurements, pin-application sequence, and undesignated pin condition ambiguity. An alternative to current tri-state enable and disable time measurements is proposed; S-3260 'open' and 'ground' conditions are characterized; and suggestions for changes in MIL-M-38510 slash sheet specifications and MIL-STD-883 test methods are proposed, both to correct errors and ambiguities and to facilitate the gathering of repeatable data on automated test equipment. Data obtained showed no sensitivity to measurement or temperature sequence nor to temperature ambient, provided that test times were not excessive. V sub ICP tests and some low current measurements required allowance for a pin condition settling time because of the test system speed. Some pin condition application sequences yielded incorrect measurements. Undefined terminal conditions of output pins were found to affect I sub OS and propagation delay time measurements. Truth table test results varied with test frequency and V sub IL for low-power Schottky devices.
Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.
2004-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the higher temperatures and higher frequencies.
A computerized test system for thermal-mechanical fatigue crack growth
NASA Technical Reports Server (NTRS)
Marchand, N.; Pelloux, R. M.
1986-01-01
A computerized testing system to measure fatigue crack growth under thermal-mechanical fatigue conditions is described. Built around a servohydraulic machine, the system is capable of a push-pull test under stress-controlled or strain-controlled conditions in the temperature range of 25 to 1050 C. Temperature and mechanical strain are independently controlled by the closed-loop system to simulate the complex inservice strain-temperature relationship. A d-c electrical potential method is used to measure crack growth rates. The correction procedure of the potential signal to take into account powerline and RF-induced noises and thermal changes is described. It is shown that the potential drop technique can be used for physical mechanism studies and for modelling crack tip processes.
Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.
2000-01-01
Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.
Tests of the Rockwell Si:As Back-Illuminated Blocked-Impurity Band (BIBIB) detectors
NASA Technical Reports Server (NTRS)
Wolf, J.; Groezinger, U.; Burgdorf, M.; Salama, A.
1989-01-01
Two arrays of Rockwell's Si:As back-illuminated blocked-impurity-band detectors were tested at the Max-Planck-Institute for Astronomy (MPIA) at low background and low temperature for possible use in the astronomical space experiment ISOPHOT. For these measurements special test equipment was put together. A cryostat was mechanically modified to accommodate the arrays and special peripheral electronics was added to a microprocessor system to drive the cold multiplexer and to acquire the output data. The first device, a 16x50 element array on a fan-out board was used to test individual pixels with a trans-impedance-amplifier at a photon background of 10(exp 8) Ph s(-1)cm(-2) and at temperatures of 2.7 to 4.4 K. The noise-equivalent-power NEP is in the range 5 - 7 x 10(exp -18) WHz(exp -1/2), the responsivity is less than or equal to 100 AW(exp -1)(f = 10 Hz). The second device was a 10x50 array including a cold readout electronics of switched FETs (SWIFET). Measurements of this array were done in a background range of 5 x 10(exp 5) to 5 x 10(exp 11) Ph s(exp-1)cm(exp-2) and at operating temperatures between 3.0 and 4.8 K. The NEP ranges from less than 10(exp -18) at the lowest background to 2 x 10(exp -16) WHz(exp -1/2) at the highest flux.
Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
NASA Astrophysics Data System (ADS)
Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan
2017-02-01
The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Miner, R. V.
1986-01-01
The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.
Effect of time, temperature, and slicing on respiration rate of mushrooms.
Iqbal, T; Rodrigues, F A S; Mahajan, P V; Kerry, J P
2009-08-01
Respiration rate measurement considering the effects of cutting, temperature, and storage time are important for the shelf life study and modified atmosphere-packaging design of fresh-cut produce. This study investigates in the respiration rate of fresh whole and sliced mushrooms at 0, 4, 8, 12, 16, and 20 degrees C under ambient atmosphere and different storage times. The O(2) consumption rate increased with temperature and ranged from 22.13 to 102.41 mL/(kg.h) and 28.87 to 143.22 mL/(kg.h) for whole and sliced mushrooms, respectively, in the temperature range tested. Similar trend was observed for CO(2) production rate. Slicing of mushrooms increased the respiration rate by 30% at 0 degrees C and 40% at 20 degrees C indicating that the mushrooms are not as sensitive to the stress caused by cutting as other fresh produce. Storage time affected both respiration rate of whole and sliced mushrooms and this effect was prominent at higher temperatures. The respiration rates increased initially for some time, then decreased and reached steady state value at 12, 16, and 20 degrees C. A 2nd-order polynomial equation was used to fit the respiration rate data as a function of time at each temperature tested.
Safety testing of lithium cells
NASA Astrophysics Data System (ADS)
Bene, J.
1981-03-01
The testing consisted of a forced discharge to zero volts constant current under isothermal conditions. The temperature range was -40 to 65 C. Short circuit tests, drop tests, and puncture tests were run to determine how a cell might behave if it developed a leak. Once the sulfur dioxide is exhausted, a lithium acetontirile reaction occurs. An excess of sulfur dioxide must be maintained in order to avoid chemical explosions.
Safety testing of lithium cells
NASA Technical Reports Server (NTRS)
Bene, J.
1981-01-01
The testing consisted of a forced discharge to zero volts constant current under isothermal conditions. The temperature range was -40 to 65 C. Short circuit tests, drop tests, and puncture tests were run to determine how a cell might behave if it developed a leak. Once the sulfur dioxide is exhausted, a lithium acetontirile reaction occurs. An excess of sulfur dioxide must be maintained in order to avoid chemical explosions.
NASA Technical Reports Server (NTRS)
Nowak, R. J.; Albertson, C. W.; Hunt, L. R.
1984-01-01
The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness.
Effect of nitrogen on high temperature low cycle fatigue behaviors in type 316L stainless steel
NASA Astrophysics Data System (ADS)
Kim, Dae Whan; Ryu, Woo-Seog; Hong, Jun Hwa; Choi, Si-Kyung
1998-04-01
Strain-controlled low cycle fatigue (LCF) tests were conducted in the temperature range of RT-600°C and air atmosphere to investigate the nitrogen effect on LCF behavior of type 316L stainless steels with different nitrogen contents (0.04-0.15%). The waveform of LCF was a symmetrical triangle with a strain amplitude of ±0.5% and a constant strain rate of 2×10 -3/s was employed for most tests. Cyclic stress response of the alloys exhibited a gradual cyclic softening at RT, but a cyclic hardening at an early stage of fatigue life at 300-600°C. The hardening at high temperature was attributed to dynamic strain aging (DSA). Nitrogen addition decreased hardening magnitude (maximum cyclic stress — first cyclic stress) because nitrogen retarded DSA for these conditions. The dislocation structures were changed from cell to planar structure with increasing temperature and nitrogen addition by DSA and short range order (SRO). Fatigue life was a maximum at 0.1% nitrogen content, which was attributed to the balance between DSA and SRO.
Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature
NASA Astrophysics Data System (ADS)
Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang
2018-01-01
The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.
Solid lubrication design methodology, phase 2
NASA Technical Reports Server (NTRS)
Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.
1986-01-01
The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.
NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.
1997-01-01
This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.
Extended temperature range ACPS thruster investigation
NASA Technical Reports Server (NTRS)
Blubaugh, A. L.; Schoenman, L.
1974-01-01
The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.
Thermal sensing of cryogenic wind tunnel model surfaces Evaluation of silicon diodes
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.; Dillon-Townes, L. A.
1986-01-01
Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.
Thermal sensing of cryogenic wind tunnel model surfaces - Evaluation of silicon diodes
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Ash, Robert L.; Dillon-Townes, Lawrence A.
1986-01-01
Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.
Apparatus for precise regulation and chilling of water temperatures in laboratory studies
Burger, C.; ,
1991-01-01
Laboratory simulation of water temperature regimes that occur in subarctic rivers through winter necessitates the ability to maintain near-freezing conditions. A heat-exchangeing apparatus is described that provided a convenient means of simulating the range of temperatures (0.5-12 degrees C) that incubating eggs of salmon (Oncorhynchus spp.) typically experience in south-central Alaska watersheds. The system was reliable, easily maintained precise temperatures at our coldest test levels, and was used over several years with few mechanical complications.
The sublimation kinetics of GeSe single crystals
NASA Technical Reports Server (NTRS)
Irene, E. A.; Wiedemeier, H.
1975-01-01
The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.
NASA Astrophysics Data System (ADS)
Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang
2017-03-01
Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.
Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K
NASA Astrophysics Data System (ADS)
van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.-A.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fontalva, A.; Gao, P.; Goldacker, W.; ten Kate, H.; Kario, A.; Lahtinen, V.; Lorin, C.; Markelov, A.; Mazet, J.; Molodyk, A.; Murtomäki, J.; Long, N.; Perez, J.; Petrone, C.; Pincot, F.; de Rijk, G.; Rossi, L.; Russenschuck, S.; Ruuskanen, J.; Schmitz, K.; Stenvall, A.; Usoskin, A.; Willering, G.; Yang, Y.
2018-06-01
This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.
NASA Astrophysics Data System (ADS)
Frövel, Malte; Carrión, Gabriel; Gutiérrez, César; Moravec, Carolina; Pintado, José María
2009-03-01
Fiber Bragg Grating Sensors, FBGSs, are very promising for Structural Health Monitoring, SHM, of aerospace vehicles due to their capacity to measure strain and temperature, their lightweight harnesses, their multiplexing capacities and their immunity to electromagnetic interferences, within others. They can be embedded in composite materials that are increasingly forming an important part of aerospace structures. The use of embedded FBGSs for SHM purposes is advantageous, but their response under all operative environmental conditions of an aerospace structure must be well understood for the necessary flight certification of these sensors. This paper describes the first steps ahead for a possible in future flight certification of FBGSs embedded in carbon fiber reinforced plastics, CFRP. The investigation work was focused on the validation of the dependence of the FBGS's strain sensitivity in tensile and compression load, in dry and humid condition and in a temperature range from -150°C to 120°C. The test conditions try to simulate the in service temperature and humidity range and static load condition of military aircraft. FBGSs with acrylic and with polyimide coating have been tested. The FBGSs are embedded in both, unidirectional and quasi isotropic carbon/epoxy composite material namely M21/T800 and also MTM-45-1/IM7. Conventional extensometers and strain gages have been used as reference strain sensors. The performed tests show an influence of the testing temperatures, the dry or wet specimen condition, the load direction and the coating material on the sensor strain sensitivity that should be taken into account when using these sensors.
Active control of bearing preload using piezoelectric translators
NASA Technical Reports Server (NTRS)
Nye, Ted W.
1990-01-01
In many spacecraft applications, mechanisms are required to perform precision pointing operations or to sometimes dither about or track a moving object. These mechanisms perform in a predictable and repeatable manner in benign temperature environments. Severe thermal gradients experienced in actual space applications however, cause assemblies to expand and contract around their bearings. This results in unpredictable changes in bearing preload, and hence bearing friction. This becomes a limitation for servos controlling pointing accuracy. Likewise, uncontrollable vibrations may couple into fixed preload (hence, fixed stiffness) mechanisms and limit pointing accuracy. Consequently, a complex problem faced today is how to design mechanisms that remain insensitive to changing thermal and vibrational spacecraft environments. Research presented involves the simplified modeling and test results of an actuator module that used piezoelectrically preload controlled bearings. The feasibility of actively controlling bearing preload was demonstrated. Because bearing friction is related to preload, a thermally active system designed with aluminum components and a 440 C bearing, was friction tested at temperatures ranging from 0 to 70 C (32 to 158 F). Effectiveness of the translators were demonstrated by mapping a controllable friction range throughout tested temperatures. It was learned that constant preload for this system could be maintained over an approximate 44 C (79 F) temperature span. From testing, it was also discovered that at the more deviate temperatures, expansions were so large that radial clearances were taken up and the duplex bearing became radially preloaded. Thus, active control of bearing preload is feasible but may be limited by inherent geometry constraints and materials used in the system.
A preliminary study of ester oxidation on an aluminum surface using chemiluminescence
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Meador, M. A.; Morales, W.
1986-01-01
The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing 10 to the minus 3 power M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.
A preliminary study of ester oxidation on an aluminum surface using chemiluminescence
NASA Technical Reports Server (NTRS)
Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo
1987-01-01
The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing 10 to the minus 3rd power M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.
New Primary Dew-Point Generators at HMI/FSB-LPM in the Range from -70 °C to +60 °C
NASA Astrophysics Data System (ADS)
Zvizdic, Davor; Heinonen, Martti; Sestan, Danijel
2012-09-01
To extend the dew-point range and to improve the uncertainties of the humidity scale realization at HMI/FSB-LPM, new primary low- and high-range dew-point generators were developed and implemented in cooperation with MIKES, in 2009 through EUROMET Project No. 912. The low-range saturator is designed for primary realization of the dew-point temperature scale from -70 °C to + 5 °C, while the high-range saturator covers the range from 1 °C to 60 °C. The system is designed as a single-pressure, single-pass dew-point generator. MIKES designed and constructed both the saturators to be implemented in dew-point calibration systems at LPM. The LPM took care of purchasing and adapting liquid baths, of implementing the temperature and pressure measurement equipment appropriate for use in the systems, and development of gas preparation and flow control systems as well as of the computer-based automated data acquisition. The principle and the design of the generator are described in detail and schematically depicted. The tests were performed at MIKES to investigate how close both the saturators are to an ideal saturator. Results of the tests show that both the saturators are efficient enough for a primary realization of the dew-point temperature scale from -70 °C to + 60 °C, in the specified flow-rate ranges. The estimated standard uncertainties due to the non-ideal saturation efficiency are between 0.02 °C and 0.05 °C.
Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Bjorklund, R. A.
1973-01-01
The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications.
Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures
NASA Technical Reports Server (NTRS)
Heimerl, George J; Hughes, Philip J
1953-01-01
Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.
Solar array synthesis computer program
NASA Technical Reports Server (NTRS)
Faith, T. J.
1973-01-01
Photovoltaic characteristics have been measured on solar cells irradiated by 1 MeV electrons to fluences ranging from 1 x 10 to the 13th power e/sq cm to 1 x 10 to the 16th power e/sq cm, for cell temperatures ranging from 123 K to 473 K and for illumination intensities ranging from 5m W/sq cm to 1830m W/sq cm. Empirical equations have been derived from these measurements to describe the behavior of light generated current, open circuit voltage and I-V curve shape over various portions of these temperature/illumination ranges. Both 10 ohms/cm and 17 ohms/cm n-p silicon solar cells were tested, and similar analytical expressions were formulated for easy comparison between the two resistivities.
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
SCD1 thermal design and test result analysis
NASA Technical Reports Server (NTRS)
Cardoso, Humberto Pontes; Muraoka, Issamu; Mantelli, Marcia Barbosa Henriques; Leite, Rosangela M. G.
1990-01-01
The SCD 01 (Satelite de Coleta de Dados 01) is a spin stabilized low Earth orbit satellite dedicated to the collection and distribution of environmental data. It was completely developed at the Brazilian Institute for Space Research (INPE) and is scheduled to be launched in 1992. The SCD 01 passive thermal control design configuration is presented and the thermal analysis results are compared with the temperatures obtained from a Thermal Balance Test. The correlation between the analytical and experimental results is considered very good. Numerical flight simulations show that the thermal control design can keep all the subsystem temperatures within their specified temperature range.
Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G
2002-03-01
To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
Unified high-temperature behavior of thin-gauge superalloys
NASA Astrophysics Data System (ADS)
England, Raymond Oliver
This research proposes a methodology for accelerated testing in the area of high-temperature creep and oxidation resistance for thin-gauge superalloy materials. Traditional long-term creep (stress-relaxation) and oxidation tests are completed to establish a baseline. The temperature range used in this study is between 1200 and 1700°F. The alloys investigated are Incoloy MA 956, Waspaloy, Haynes 214, Haynes 242, Haynes 230, and Incoloy 718. The traditional creep test involves loading the specimens to a constant test mandrel radius of curvature, and measuring the retained radius of curvature as a function of time. The accelerated creep test uses a servohydraulic test machine to conduct single specimen, variable strain-rate load relaxation experiments. Standard metallographic evaluations are used to determine extent and morphology of attack in the traditional oxidation tests, while the accelerated oxidation test utilizes thermogravimetric analysis to obtain oxidation rate data. The traditional long-term creep testing indicates that the mechanically-alloyed material Incoloy MA 956 and Haynes alloy 214 may be suitable for long-term, high-temperature (above 1400°F) structural applications. The accelerated creep test produced a continuous linear function of log stress versus strain rate which can be used to calculate creep rate. The long-term and traditional oxidation tests indicate that Al2O3 scale formers such as Incoloy MA 956 and Haynes 214 are much more resistant to high-temperature oxidation than Cr2O3 scale formers such as Waspaloy. Both accelerated tests can be completed within roughly one day, and can evaluate multiple test temperatures using standardized single specimens. These simple experiments can be correlated with traditional long-term tests which require years to complete.
Research on the time-temperature-damage superposition principle of NEPE propellant
NASA Astrophysics Data System (ADS)
Han, Long; Chen, Xiong; Xu, Jin-sheng; Zhou, Chang-sheng; Yu, Jia-quan
2015-11-01
To describe the relaxation behavior of NEPE (Nitrate Ester Plasticized Polyether) propellant, we analyzed the equivalent relationships between time, temperature, and damage. We conducted a series of uniaxial tensile tests and employed a cumulative damage model to calculate the damage values for relaxation tests at different strain levels. The damage evolution curve of the tensile test at 100 mm/min was obtained through numerical analysis. Relaxation tests were conducted over a range of temperature and strain levels, and the equivalent relationship between time, temperature, and damage was deduced based on free volume theory. The equivalent relationship was then used to generate predictions of the long-term relaxation behavior of the NEPE propellant. Subsequently, the equivalent relationship between time and damage was introduced into the linear viscoelastic model to establish a nonlinear model which is capable of describing the mechanical behavior of composite propellants under a uniaxial tensile load. The comparison between model prediction and experimental data shows that the presented model provides a reliable forecast of the mechanical behavior of propellants.
Promoted Metals Combustion at Ambient and Elevated Temperatures
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie
2005-01-01
Promoted combustion testing of materials, Test 17 of NASA STD-6001, has been used to assess metal propensity to burn in oxygen rich environments. An igniter is used at the bottom end of a rod to promote ignition, and if combustion is sustained, the burning progresses from the bottom to the top of the rod. The physical mechanisms are very similar to the upward flammability test, Test 1 of NASA STD-6001. The differences are in the normal environmental range of pressures, oxygen content, and sample geometry. Upward flammability testing of organic materials can exhibit a significant transitional region between no burning to complete quasi-state burning. In this transitional region, the burn process exhibits a probabilistic nature. This transitional region has been identified for metals using the promoted combustion testing method at ambient initial temperatures. The work given here is focused on examining the transitional region and the quasi-steady burning region both at conventional ambient testing conditions and at elevated temperatures. A new heated promoted combustion facility and equipment at Marshall Space Flight Center have just been completed to provide the basic data regarding the metals operating temperature limits in contact with oxygen rich atmospheres at high pressures. Initial data have been obtained for Stainless Steel 304L, Stainless Steel 321, Haynes 214, and Inconel 718 at elevated temperatures in 100-percent oxygen atmospheres. These data along with an extended data set at ambient initial temperature test conditions are examined. The pressure boundaries of acceptable, non-burning usage is found to be lowered at elevated temperature.
NASA Technical Reports Server (NTRS)
Walton, Thomas E., Jr.; Rashis, Bernard
1961-01-01
Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
Test results of low NO(x) catalytic combustors for gas turbines
NASA Astrophysics Data System (ADS)
Ozawa, Y.; Hirano, J.; Sato, M.; Saiga, M.; Watanabe, S.
1994-07-01
Catalytic combustion is an ultralow NO(x) combustion method, so it is expected that this method will be applied to a gas turbine combustor. However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, we designed a catalytic combust gas at a combustion temperature of 1300 C while keeping the catalytic temperature below 1000 C. After performing preliminary tests using LPG, we designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NO(x) and high combustion efficiency in the range from 1000 C to 1300 C of the combustor exit gas temperature.
Kleinhesselink, Andrew R; Adler, Peter B
2018-05-01
Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Grohs, Jacob R.; Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.
Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select ® series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material.
Effect of grain size on the high temperature properties of B2 aluminides
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
1987-01-01
Measurements of the slow plastic flow behavior of cobalt, iron and nickel B2 crystal structure aluminides were conducted on materials fabricated by metallurical techniques. Due to this processing, the aluminides invariably had small equiaxed grains, ranging in size from about 3 to 60 microns in diameter. Grain size was dependent on the extrusion temperature used for powder consolidation, and it proved to be remarkably stable at elevated temperatures. Mechanical properties of all three aluminides were determined via constant velocity compression testing in air between 1000 and 1400 K at strain rates ranging from approx. 10 to the minus 3 power to 10 to the minus 7 power s (-1).
A Fiber Bragg grating based tilt sensor suitable for constant temperature room
NASA Astrophysics Data System (ADS)
Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng
2015-07-01
Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10-5 ° (that is, 0.08% of the measuring range).
Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements
Pérez-Prieto, Sandra; López-Cardona, Juan D.; Blanco, Enrique; Moreno-López, Jorge
2018-01-01
We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point. PMID:29415477
Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.
Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C
2018-02-06
We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.
Metal-coated Bragg grating reflecting fibre
NASA Astrophysics Data System (ADS)
Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.
2017-03-01
High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.
Autoignition characteristics of aircraft-type fuels
NASA Technical Reports Server (NTRS)
Spadaccini, L. J.; Tevelde, J. A.
1980-01-01
The ignition delay characteristics of Jet A, JP 4, no. 2 diesel, cetane and an experimental referee broad specification (ERBS) fuel in air at inlet temperatures up to 1000 K, pressures of 10, 15, 20, 25 and 30 atm, and fuel air equivalence ratios of 0.3, 0.5, 0.7 and 1.0 were mapped. Ignition delay times in the range of 1 to 50 msec at freestream flow velocities ranging from 20 to 100 m/sec were obtained using a continuous flow test apparatus which permitted independent variation and evaluation of the effect of temperature, pressure, flow rate, and fuel/air ratio. The ignition delay times for all fuels tested appeared to correlate with the inverse of pressure and the inverse exponent of temperature. With the exception of pure cetane, which had the shortest ignition delay times, the differences between the fuels tested did not appear to be significant. The apparent global activation energies for the typical gas turbine fuels ranged from 38 to 40 kcal/mole, while the activation energy determined for cetane was 50 kcal/mole. In addition, the data indicate that for lean mixtures, ignition delay times decrease with increasing equivalence ratio. It was also noted that physical (apparatus dependent) phenomena, such as mixing (i.e., length and number of injection sites) and airstream cooling (due to fuel heating, vaporization and convective heat loss) can have an important effect on the ignition delay.
Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
1999-01-01
Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.
The Effect of Piston-Head Temperature on Knock-Limited Power
NASA Technical Reports Server (NTRS)
Imming, Harry S.
1944-01-01
To determine the effect of piston-head temperature on knock-limited power. Tests were made in a supercharged CFR engine over a range of fuel-air ratios from 0.055 to 0.120, using S-3 reference fuel, AN-F-28, Amendment-2, aviation gasoline, and AN-F-28 plus 2 percent xylidines by weight. Tests were run at a compression ratio of 7.0 with inlet-air temperatures of 150 F and 250 F and at a compression ratio of 8.0 with an inlet-air temperature of 250 F. All other engine conditions were held constant. The piston-head temperature was varied by circulation of oil through passages in the crown of a liquid-cooled piston. This method of piston cooling decreased the piston-head temperature about 80 F. The data are not intended to constitute a recommendation as to the advisability of piston cooling in practice.
Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing.
Idrissi, Hosni; Bollinger, Caroline; Boioli, Francesca; Schryvers, Dominique; Cordier, Patrick
2016-03-01
The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.
Techniques for improving the accuracy of cyrogenic temperature measurement in ground test programs
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Fabik, Richard H.
1993-01-01
The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.
Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun
2018-05-03
This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.
Compact Analyzer/Controller For Oxygen-Enrichment System
NASA Technical Reports Server (NTRS)
Puster, Richard L.; Singh, Jag J.; Sprinkle, Danny R.
1990-01-01
System controls hypersonic air-breathing engine tests. Compact analyzer/controller developed, built, and tested in small-scale wind tunnel prototype of the 8' HTT (High-Temperature Tunnel). Monitors level of oxygen and controls addition of liquid oxygen to enrich atmosphere for combustion. Ensures meaningful ground tests of hypersonic engines in range of speeds from mach 4 to mach 7.
Transition from disordered to long-range ordered nanoparticles on Al2O3/Ni3Al(111)
NASA Astrophysics Data System (ADS)
Alyabyeva, N.; Ouvrard, A.; Zakaria, A.-M.; Charra, F.; Bourguignon, B.
2018-06-01
Application of preparation recipes of the literature failed to produce an ordered array of NPs on our particular Ni3Al sample. This has motivated a systematic survey of Pd NP nucleation as a function of experimental parameters. We have shown that the increase of oxidation temperature during the preparation of Al2O3 ultra-thin film on Ni3Al(111) leads to a transition from disordered to long-range ordered Pd nanoparticle (NP) nucleation. Alumina films were prepared at different temperatures ranging from 990 to 1140 K. Crystallinity, electronic structure of the alumina film and Pd nucleation and growth have been investigated using Low Energy Electron Diffraction and Scanning Tunnelling Microscopy. NP density and long-range order nucleation along the so-called "dot structure" of 4.2 nm periodicity, strongly increase for temperatures higher than a threshold value of 1070 ± 20 K. This transition relies on the alumina film improvement and suggests that the modulation of Pd adsorption energy at nucleation centres which is necessary to nucleate NPs at ordered sites, requires higher preparation temperature. Long-range ordered NPs with a high density were obtained 140 K above reported recipes in the literature. This optimized temperature has been tested on a fresh sample (issued from the same supplier) for which just a few cleanings were enough to obtain long-range ordered NPs. Presumably the variability of the optimal oxidation temperature for our samples with respect to the literature is related to fluctuations of the stoichiometry from sample to sample.
A unique high heat flux facility for testing hypersonic engine components
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Gladden, Herbert J.
1990-01-01
This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.
Test verification of LOX/RP-1 high-pressure fuel/oxidizer-rich preburner designs
NASA Technical Reports Server (NTRS)
Lawver, B. R.
1982-01-01
Two fuel-rich and two oxidizer-rich preburner injectors are tested with LOX/RP-1 in an investigation of performance, stability and gas temperature uniformity over a chamber pressure range from 1292 to 2540 psia. Fuel-rich mixture ratios range from 0.238 to 0.367 and oxidizer-rich mixture ratios range from 27 to 48, and carbon deposition data are collected by measuring the pressure drop across a turbine simulator flow device. The oxidizer-rich testing demonstrates the feasibility of oxidizer-rich preburners, indicating equilibrium combustion as predicted, and the measured fuel-rich gas composition and C-asterisk performance are in excellent agreement with kinetic model predictions indicating kinetically-limited combustion.
In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha.
Weller, R N; Koch, K A
1995-03-01
In vitro temperatures produced in the root canal and on the root surface were measured simultaneously as heated gutta-percha was injected into the prepared canal. The canals were obturated with the Obtura II heated gutta-percha system with temperature settings of 160, 185, and 200 degrees C. The mean intracanal temperatures ranged from 40.21 to 57.24 degrees C, whereas the mean root surface temperatures were recorded from 37.22 to 41.90 degrees C for all three temperatures tested. The rise in temperature on the root surface was below the critical level of 10 degrees C and should not cause damage to the periodontal ligament.
Design and experimental investigation of a cryogenic system for environmental test applications
NASA Astrophysics Data System (ADS)
Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei
2015-04-01
This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.
NASA Astrophysics Data System (ADS)
Rauh, A.; Hinterhölzl, R.; Drechsler, K.
2012-05-01
In the automotive industry, finite element simulation is widely used to ensure crashworthiness. Mechanical material data over wide strain rate and temperature ranges are required as a basis. This work proposes a method reducing the cost of mechanical material characterization by using the time-temperature superposition principle on elastomeric adhesives. The method is based on the time and temperature interdependence which is characteristic for mechanical properties of polymers. Based on the assumption that polymers behave similarly at high strain rates and at low temperatures, a temperature-dominated test program is suggested, which can be used to deduce strain rate dependent material behavior at different reference temperatures. The temperature shift factor is found by means of dynamic mechanical analysis according to the WLF-equation, named after Williams, Landel and Ferry. The principle is applied to the viscoelastic properties as well as to the failure properties of the polymer. The applicability is validated with high strain rate tests.
Commercial Absorption Heat Pump Water Heater: Beta Prototype Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geoghegan, Patrick; Ally, Moonis; Sharma, Vishaldeep
2016-10-14
The Beta version of the Commercial Absorption Heat Pump (CAHP) water heater was evaluated in the environmental chambers at Oak Ridge National Laboratory. Ambient air conditions ranged from 17 to 75 oF and inlet water temperatures ranged from 100 to 120oF in order to capture trends in performance. The unit was operated under full fire (100%) and partial fire (55%). The unit was found to perform at 90% of the project goal at the design conditions of 47oF ambient and 100oF water temperatures. The trends across the full range of environmental conditions were as expected for ambient air temperatures abovemore » 32oF. Below this temperature and for the full fire condition, frost accumulated on the evaporator coil. In future work a defrost strategy will be enabled, the unit will be thoroughly cleaned of an oil contamination and the rectifier will be reconfigured in order to meet the design goals and have a field test unit ready in early 2017.« less
Modeling demographic response to constant temperature in Hypera postica (Coleoptera: Curculionidae).
Zahiri, Babak; Fathipour, Yaghoub; Khanjani, Mohammad; Moharramipour, Saeid; Zalucki, Myron P
2010-04-01
Alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), is among the most destructive pests of alfalfa, Medicago sativa L., in the world. Survivorship and fecundity schedules of H. postica were investigated to characterize the population growth potential of the weevil at six constant temperatures: 11.5, 14.0, 19.0, 24.0, 29.0, and 31.5 degrees C. Preoviposition period, oviposition period and female longevity significantly decreased with rising temperature within the temperature range tested. At the respective temperatures adult female lived an average of 294.2, 230.2, 163.6, 141.0, 84.10, and 32.9 d, with average lifetime progeny production of 470, 814, 2209, 3619, 2656, and 338 eggs per female. The net reproductive rates (R0) were 86.9, 288.0, 869.7, 1,479.7, 989.8, and 107.8 females per female, respectively. Mean daily fecundity (Mx) was modeled as a function of time by using both Enkegaard and Analytis models. Survivorship data (l(x)) of adult females were summarized and compared using the shape and scale parameters of the Weibull frequency distribution model across the temperature range tested. Life table entropy values within the range 14.0-31.5 degrees C (H < 0.5) indicates Slobodkin's type I survivorship curve; however, the value of 0.806 at 11.5 degrees C (H > 0.5) corresponds to type III. As temperature increased, the r(m) exhibited an asymmetrical dome-shaped pattern, with a maximum value of 0.114 females per female per d at 29.0 degrees C. The r(m)-temperature relation of weevils was modeled and critical temperatures (T(Min), T(Opt), and T(Max)) for intrinsic rate of increase of the weevil were computed as 8.83, 30.61, and 32.14 degrees C and 5.72, 29.94, and 32.12 degrees C by using Analytis/Allahyari and Analytis/Briere-2 models, respectively.
NASA Technical Reports Server (NTRS)
Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.
2017-01-01
N2O molecular tagging velocimetry (N2O-MTV) is developed for use in very-high-temperature reactor environments. Tests were carried out to determine the optimum excitation wavelength, tracer concentration, and timing parameters for the laser system. Using NO tracers obtained from photo-dissociation of N2O, velocity profiles are successfully obtained in air, nitrogen, and helium for a large range of parameters: temperature from 295 to 781 K, pressure from 1 to 3 bars, with a velocity precision of 0.01 m/s. Furthermore, by using two read pulses at adjustable time delays, the velocity dynamic range can be increased. An unprecedented dynamic range of 5,000 has been obtained to successfully resolve the flow during a helium blowdown from 1000 m/s down to 0.2 m/s. This technique is also applied to the high-temperature test facility (HTTF) at Oregon State University (OSU) during a depressurized condition cooldown (DCC) event. Details of these measurements are presented in a companion paper. This technique shows a strong potential for fundamental understanding of gas flows in nuclear reactors and to provide benchmark experimental data to validate numerical simulations.
Bury, R. Bruce; Nebeker, A.B.; Adams, Michael J.
2000-01-01
In laboratory tests, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperatures (Tbs) of C. serpentina were lower than T. scripta, but the difference was insignificant. Relatively low Tbs could allow greater activity range and reduced metabolic maintenance cost for C. serpentina, which seldom leaves water.
Temperature prediction of space flight experiments by computer thermal analysis
NASA Technical Reports Server (NTRS)
Birdsong, M. B.; Luttges, M. W.
1994-01-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Temperature prediction of space flight experiments by computer thermal analysis.
Birdsong, M B; Luttges, M W
1995-02-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Small solar electric system components demonstration. [thermal storage modules for Brayton systems
NASA Technical Reports Server (NTRS)
1980-01-01
The design and testing of high temperature thermal storage modules (TSM) are reported. The test goals were to demonstrate the thermocline propagation in the TSM, to measure the steepness of the thermocline, and to measure the effectiveness of the TSM when used in a Brayton system. In addition, a high temperature valve suitable for switching the TSM at temperatures to 1700 F is described and tested. Test results confirm the existence of a sharp thermocline under design conditions. The thermal profile was steeper than expected and was insensitive to air density over the range of the test conditions. Experiments were performed which simulated the airflow of a small Brayton engine, 20 KWe, having a pair of thermal storage modules acting as efficient recuperators. Low pressure losses, averaging 12 inches of water, and high effectiveness, 93% for a 15 minute switching cycle, were measured. The insulation surrounding the ceramic core limited thermal losses to approximately 1 KWt. The hot valve was operated over 100 cycles and performed well at temperatures up to 1700 F.
Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1991-01-01
To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray
1992-01-01
Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.
Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1976-01-01
A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.
Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)
NASA Technical Reports Server (NTRS)
Dillon-Townes, L. A.; Averill, R. D.
1984-01-01
A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.
NASA Astrophysics Data System (ADS)
Jurns, J. M.; Hartwig, J. W.
2012-04-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.
NASA Technical Reports Server (NTRS)
Jurns, John M.; Hartwig, Jason W.
2011-01-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.
NASA Astrophysics Data System (ADS)
Ono, Fumiei; Tamura, Hiroshi; Sakamoto, Hiroshi; Sasaki, Masaki
1991-09-01
The combustion characteristics of Liquid Oxygen (LO2)/Gaseous Methane (GCH4) fuel rich preburners were experimentally studied using subscale hardware. Three types of preburners with coaxial type propellant injection elements were designed and fabricated, and were used for hot fire testing. LO2 was used as oxidizer, and GCH4 at room temperature was used as fuel. The tests were conducted at chamber pressures ranging from 6.7 to 11.9 M Pa, and oxidizer to fuel ratios ranged from 0.16 to 0.42. The test results, which include combustion gas temperature T(sub c), characteristic velocity C(sup *) and soot adhesion data, are presented. The T(sub c) efficiency and the C(sup *) efficiency were found to be a function of oxidizer to fuel ratio and chamber pressure. These efficiencies are correlated by an empirical correlation parameter which accounts for the effects of oxidizer to fuel ratio and chamber pressure. The exhaust plumes were colorless and transparent under all tests conditions. There was some soot adhesion to the chamber wall, but no soot adhesion was observed on the main injector simulator orifices. Higher temperature igniter gas was required to ignite the main propellants of the preburner compared with that of the LO2/Gaseous Hydrogen (GH2) propellants combination.
Constitutive law for thermally-activated plasticity of recrystallized tungsten
NASA Astrophysics Data System (ADS)
Zinovev, Aleksandr; Terentyev, Dmitry; Dubinko, Andrii; Delannay, Laurent
2017-12-01
A physically-based constitutive law relevant for ITER-specification tungsten grade in as-recrystallized state is proposed. The material demonstrates stages III and IV of the plastic deformation, in which hardening rate does not drop to zero with the increase of applied stress. Despite the classical Kocks-Mecking model, valid at stage III, the strain hardening asymptotically decreases resembling a hyperbolic function. The material parameters are fitted by relying on tensile test data and by requiring that the strain and stress at the onset of diffuse necking (uniform elongation and ultimate tensile strength correspondingly) as well as the yield stress be reproduced. The model is then validated in the temperature range 300-600 °C with the help of finite element analysis of tensile tests which confirms the reproducibility of the experimental engineering curves up to the onset of diffuse necking, beyond which the development of ductile damage accelerates the material failure. This temperature range represents the low temperature application window for tungsten as divertor material in fusion reactor ITER.
Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator
NASA Technical Reports Server (NTRS)
Milos, F. S.; Chen, Y.-K.
2009-01-01
Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.
NASA Astrophysics Data System (ADS)
Gentzbittel, J. M.; Chu, I.; Burlet, H.
2002-12-01
The production of reduced activation ferritic/martensitic (RAFM) steel by powder metallurgy and high isostatic pressing (HIP) offers numerous advantages for different nuclear applications. The objective of this work is to optimise the Eurofer powder HIP process in order to obtain RAFM solid HIPed steel with similar mechanical properties to those of a forged material. Starting from the forged solid Eurofer steel batch, the material is atomized and the Eurofer powder is characterized in terms of granulometry, chemical composition, surface oxides, etc. Different compaction HIP cycle parameters in the temperature range (950-1100 °C) are tested. The chemical composition of the HIPed material is comparable to the initial forged Eurofer. All the obtained materials are fully dense and the microstructure of the compacted material is well martensitic. The prior austenite grain size seems to be constant in this temperature range. The mechanical tests performed at room temperature reveal acceptable hardness, tensile and Charpy impact properties regarding the ITER specification.
Species-energy relationship in the deep sea: A test using the Quaternary fossil record
Hunt, G.; Cronin, T. M.; Roy, K.
2005-01-01
Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.
Proportional and Integral Thermal Control System for Large Scale Heating Tests
NASA Technical Reports Server (NTRS)
Fleischer, Van Tran
2015-01-01
The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.
Automated Heat-Flux-Calibration Facility
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.
Dew-point measurements at high water vapour pressure
NASA Astrophysics Data System (ADS)
Lomperski, S.; Dreier, J.
1996-05-01
A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
NASA Astrophysics Data System (ADS)
Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng
2018-01-01
Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.
Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants
Corsi, Steven R.; Mericas, Dean; Bowman, George
2012-01-01
Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piotr A. Domanski; W. Vance Payne
2002-10-31
The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-tonmore » R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.« less
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions
NASA Technical Reports Server (NTRS)
Cucullu, Gordy C., III; Mikhaylov, Rebecca; Rajeshuni, Ramesham; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg
2013-01-01
Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through a change in construction such that the manufacturer significantly restricts the minimum temperature. However, significant subsequent testing was performed with this new version of the part to show that it indeed is still robust to at least Mars minimum temperatures of -135(sup o)C. The additional completed testing will be described. This work has resulted in a successful sensor package qualification and a reliable bonding method suitable for use over large temperature extremes.
Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions
NASA Technical Reports Server (NTRS)
Cucullu, Gordy C. III; Mikhaylov, Rebecca; Ramesham, Rajeshuni; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg
2013-01-01
Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through a change in construction such that the manufacturer significantly restricts the minimum temperature. However, significant subsequent testing was performed with this new version of the part to show that it indeed is still robust to at least Mars minimum temperatures of -135 degrees Centigrade. The additional completed testing will be described. This work has resulted in a successful sensor package qualification and a reliable bonding method suitable for use over large temperature extremes
Flow-induced vibration testing of replacement thermowell designs
NASA Astrophysics Data System (ADS)
Haslinger, K. H.
2003-09-01
Inconel 600 Primary Water Stress Corrosion Cracking (PWSCC) in Nuclear Pressurized Water Reactors (PWRs) has necessitated the repair/replacement of various small bore nozzles. These repairs/replacements must be designed to avoid unwanted vibrations. So, to this end, new RTD-Thermowell-Nozzle replacement designs were developed and subjected to flow testing over a velocity range from 9.14 to 33.53m/s (30-110ft/s), and temperatures ranging from 121°C to 316°C (250-600°F). The replacement nozzles are welded on the pipe OD, rather than on the pipe ID. A split, tapered ferrule is used to support the nozzle tip inside the pipe bore. This maintains high thermowell tip-resonance frequencies with the objective of avoiding self-excitation from vortex shedding that is believed to have caused failures in an earlier design during initial, precritical plant startup testing. The flow testing was complicated by the small size of the thermowell tips (5.08mm or 0.2in ID), which necessitated use of a complement of low temperature and high temperature instrumentation. Since the high temperature device had an internal resonance (750Hz) within the frequency range of interest (0-2500Hz), adequate sensor correlations had to be derived from low temperature tests. The current nozzle/thermowell design was tested concurrently with two slight variations of the replacement design. The acceleration signals were acquired during incremental and continuous flow sweeps, nominally at 5kHz sampling rates and for time domain processing as high as 25kHz. Whereas vortex-shedding frequencies were predicted to prevail between 400 and 1500Hz, no such response was observed at these frequencies. Rather, the thermowell tips responded due to turbulent buffeting with a peak response that was related directly to flow velocity. Lift direction response was always larger than drag direction response. The thermowell tips also responded at their natural tip frequencies in a narrow band random fashion. At the higher flow rates, one replacement design experienced an instability mode leading to high tip stresses. Although this instability did not repeat, this particular design was eliminated from consideration. The second replacement design performed almost identically to the current in-plant design. The experimental data were used to extract forcing functions and thermowell responses that were used as input into the design calculations.
Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2009-01-01
Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.
Alza, Carissa M; Donnelly, Maureen A; Whitfield, Steven M
2016-12-01
Amphibian populations are declining globally, and multiple anthropogenic stressors, including contamination by pesticides and shifting climates, are driving these declines. Climate change may increase average temperatures or increase temperature variability, either of which may affect the susceptibility of nontarget organisms to contaminants. Eight-day ecotoxicological assays were conducted with red-eyed treefrog (Agalychnis callidryas) larvae to test for additive and interactive effects of exposure to the fungicide chlorothalonil, average temperature, and temperature variability on tadpole growth and survival. Egg masses were collected from seasonal ponds at La Selva Biological Station in Costa Rica, and tadpoles were exposed to a series of chlorothalonil concentrations across a range of ecologically relevant mean temperatures (23.4-27.3 °C) and daily temperature fluctuations (1.1-9.9 °C). Survival was measured each day, and tadpole growth was measured at the end of each trial. Concentrations of chlorothalonil ≥60 µg/L reduced survival, although survival was not affected by mean temperature or daily temperature range, and there were no synergistic interactions between chlorothalonil and temperature regime on survival. Chlorothalonil suppressed tadpole growth at relatively low concentrations (∼15 µg/L). There were impacts of both average temperature and daily temperature range on tadpole growth, although there were no synergistic interactions between temperature regimes and chlorothalonil. The results should inform efforts to manage ecosystems impacted by multiple large-scale anthropogenic stressors as well as methods for the design of ecologically appropriate toxicology trials. Environ Toxicol Chem 2016;35:2998-3004. © 2016 SETAC. © 2016 SETAC.
Electrical and thermal behavior of unsaturated soils: experimental results
NASA Astrophysics Data System (ADS)
Nouveau, Marie; Grandjean, Gilles; Leroy, Philippe; Philippe, Mickael; Hedri, Estelle; Boukcim, Hassan
2016-05-01
When soil is affected by a heat source, some of its properties are modified, and in particular, the electrical resistivity due to changes in water content. As a result, these changes affect the thermal properties of soil, i.e., its thermal conductivity and diffusivity. We experimentally examine the changes in electrical resistivity and thermal conductivity for four soils with different grain size distributions and clay content over a wide range of temperatures, from 20 to 100 °C. This temperature range corresponds to the thermal conditions in the vicinity of a buried high voltage cable or a geothermal system. Experiments were conducted at the field scale, at a geothermal test facility, and in the laboratory using geophysical devices and probing systems. The results show that the electrical resistivity decreases and the thermal conductivity increases with temperature up to a critical temperature depending on soil types. At this critical temperature, the air volume in the pore space increases with temperature, and the resulting electrical resistivity also increases. For higher temperatures , the thermal conductivity increases sharply with temperature up to a second temperature limit. Beyond it, the thermal conductivity drops drastically. This limit corresponds to the temperature at which most of the water evaporates from the soil pore space. Once the evaporation is completed, the thermal conductivity stabilizes. To explain these experimental results, we modeled the electrical resistivity variations with temperature and water content in the temperature range 20 - 100°C, showing that two critical temperatures influence the main processes occurring during heating at temperatures below 100 °C.
NASA Astrophysics Data System (ADS)
Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui
2017-10-01
Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.
NORTHWARD EXPANSION OF A MARINE PARASITE: TESTING THE ROLE OF TEMPERATURE ADAPTATION
The known range of the eastern oyster (Crassostrea virginica) parasite, Perkinsus marinus, expanded into the northeastern United States in the early 1990s. We used both in vitro and in vivo data to test the hypothesis that the northward expansion was associated with a low-tempera...
Diatomite based ceramics macro- and microscopic characterization
NASA Astrophysics Data System (ADS)
Aderdour, H.; Bentayeb, A.; Nadiri, A.; Ouammou, A.; Sangleboeuf, J.-C.; Lucas-Girot, A.; Carel, C.
2005-03-01
A Moroccan diatomite is characterized chemically and physically. Mechanical properties of ceramics prepared by sintering at different temperatures ranging from 1050 to 1350° C are studied. Compressive strength and Young modulus are determined by compression tests. Densification and evolution of the microstructure are followed by SEM and other tests.
Miller, Robert T.; Delin, G.N.
2002-01-01
In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated water (150 degrees Celsius) in the Franconia-Ironton Galesville aquifer (183 to 245 meters below land surface) and later recovering it for space heating. The University's steam-generation facilities supplied high-temperature water for injection. The Aquifer Thermal-Energy Storage system is a doublet-well design in which the injection-withdrawal wells are spaced approximately 250 meters apart. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. This water was then injected back into the aquifer through the other well. Four short-term test cycles were completed. Each cycle consisted of approximately equal durations of injection and withdrawal ranging from 5.25 to 8.01 days. Equal rates of injection and withdrawal, ranging from 17.4 to 18.6 liters per second, were maintained for each short-term test cycle. Average injection temperatures ranged from 88.5 to 117.9 degrees Celsius. Temperature graphs for selected depths at individual observation wells indicate that the Ironton and Galesville Sandstones received and stored more thermal energy than the upper part of the Franconia Formation. Clogging of the Ironton Sandstone was possibly due to precipitation of calcium carbonate or movement of fine-grain material or both. Vertical-profile plots indicate that the effects of buoyancy flow were small within the aquifer. A three-dimensional, anisotropic, nonisothermal, ground-water-flow, and thermal-energy-transport model was constructed to simulate the four short-term test cycles. The model was used to simulate the entire short-term testing period of approximately 400 days. The only model properties varied during model calibration were longitudinal and transverse thermal dispersivities, which, for final calibration, were simulated as 3.3 and 0.33 meters, respectively. The model was calibrated by comparing model-computed results to (1) measured temperatures at selected altitudes in four observation wells, (2) measured temperatures at the production well, and (3) calculated thermal efficiencies of the aquifer. Model-computed withdrawal-water temperatures were within an average of about 3 percent of measured values and model-computed aquifer-thermal efficiencies were within an average of about 5 percent of calculated values for the short-term test cycles. These data indicate that the model accurately simulated thermal-energy storage within the Franconia-Ironton-Galesville aquifer.
Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce
1994-01-01
A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.
Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.
2018-01-01
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.
Effect of wall heat transfer on shock-tube test temperature at long times
NASA Astrophysics Data System (ADS)
Frazier, C.; Lamnaouer, M.; Divo, E.; Kassab, A.; Petersen, E.
2011-02-01
When performing chemical kinetics experiments behind reflected shock waves at conditions of lower temperature (<1,000 K), longer test times on the order of 10-20 ms may be required. The integrity of the test temperature during such experiments may be in question, because heat loss to the tube walls may play a larger role than is generally seen in shock-tube kinetics experiments that are over within a millisecond or two. A series of detailed calculations was performed to estimate the effect of longer test times on the temperature uniformity of the post-shock test gas. Assuming the main mode of heat transfer is conduction between the high-temperature gas and the colder shock-tube walls, a comprehensive set of calculations covering a range of conditions including test temperatures between 800 and 1,800 K, pressures between 1 and 50 atm, driven-tube inner diameters between 3 and 16.2 cm, and test gases of N2 and Ar was performed. Based on the results, heat loss to the tube walls does not significantly reduce the area-averaged temperature behind the reflected shock wave for test conditions that are likely to be used in shock-tube studies for test times up to 20 ms (and higher), provided the shock-tube inner diameter is sufficiently large (>8cm). Smaller diameters on the order of 3 cm or less can experience significant temperature loss near the reflected-shock region. Although the area-averaged gas temperature decreases due to the heat loss, the main core region remains spatially uniform so that the zone of temperature change is limited to only the thermal layer adjacent to the walls. Although the heat conduction model assumes the gas and wall to behave as solid bodies, resulting in a core gas temperature that remains constant at the initial temperature, a two-zone gas model that accounts for density loss from the core to the colder thermal layer indicates that the core temperature and gas pressure both decrease slightly with time. A full CFD solution of the shock-tube flow field and heat transfer at long test times was also performed for one typical condition (800 K, 1 atm, Ar), the results of which indicate that the simpler analytical conduction model is realistic but somewhat conservative in that it over predicts the mean temperature loss by a few Kelvins. This paper presents the first comprehensive study on the effects of long test times on the average test gas temperature behind the reflected shock wave for conditions representative of chemical kinetics experiments.
Stressed Oxidation of C/SiC Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.
1997-01-01
Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.
Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188
NASA Technical Reports Server (NTRS)
Halford, G. R.; Verrilli, M. J.; Kalluri, S.; Ritzert, F. J.; Duckert, R. E.; Holland, F. A.
1992-01-01
A thermomechanical fatigue (TMF) high-temperature life prediction method has been evaluated using the experimental data. Bithermal fatigue (BTF), bithermal creep-fatigue (BTC-F), and TMF experiments were performed using two aerospace structural alloys, cast B1900 + Hf and wrought Haynes 188. The method which is based on the total strain version of strain range partitioning and unified cyclic constitutive modeling requires, as an input, information on the flow and failure behavior of the material of interest. Bithermal temperatures of 483 and 871 C were used for the cast B1900 + Hf nickel-base alloy and 316 and 760 C for the wrought Haynes 188 cobalt-base alloy. Maximum and minimum temperatures were also used in both TMF and BTF tests. Comparisons were made between the results of these tests and isothermal tensile and fatigue test data obtained previously. Qualitative correlations were observed between tensile and isothermal fatigue tests.
NASA Technical Reports Server (NTRS)
Almansour, Amjad; Kiser, Doug; Smith, Craig; Bhatt, Ram; Gorican, Dan; Phillips, Ron; McCue, Terry R.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature structural applications in the aerospace and nuclear industries. Under high stresses and temperatures, creep degradation is the dominant damage mechanism in CMCs. Consequently, chemical vapor infiltration (CVI) SiCf/SiC ceramic matrix composites (CMC) incorporating SylramicTM-iBN SiC fibers coated with boron nitride (BN) interphase and CVI-SiC matrix were tested to examine creep behavior in air at a range of elevated temperatures of (2200 - 2700 F). Samples that survived creep tests were evaluated via RT fast fracture tensile tests to determine residual properties, with the use of acoustic emission (AE) to assess stress dependent damage initiation and progression. Microscopy of regions within the gage section of the tested specimens was performed. Observed material degradation mechanisms are discussed.
... to general physical examination procedures such as blood pres- sure, pulse, respiration, and temperature, the examina- tion will include specific orthopedic and neurological tests to assess: • Range of motion of the affected ...
Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P
2009-07-31
In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be equivalent to the bacterial growth occurring at the product's surface or centre when convection heat transfer is taken into account. Our results indicate that combining food engineering and predictive microbiology models is an interesting approach providing very useful tools for food safety and process optimisation.
Thermal design of composite material high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.
Donoso-Bravo, A; Retamal, C; Carballa, M; Ruiz-Filippi, G; Chamy, R
2009-01-01
The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45 degrees C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.
High Temperature Permeability of Carbon Cloth Phenolic Composite
NASA Technical Reports Server (NTRS)
Park, O. Y.; Lawrence, T. W.
2003-01-01
The carbon fiber phenolic resin composite material used for the RSRM nozzle insulator occasionally experiences problems during operation from pocketing or spalling-like erosion and lifting of plies into the char layer. This phenomenon can be better understood if the permeability of the material at elevated temperatures is well defined. This paper describes an experimental approach to determining high temperature permeability of the carbon phenolic material used as the RSRM nozzle liner material. Two different approaches were conducted independently using disk and bar type specimens with the designed permeability apparatus. The principle of the apparatus was to subject a test specimen to a high pressure differential and a heat supply and to monitor both the pressure and temperature variations resulting from gas penetration through the permeable wall between the two chambers. The bar types, especially designed to eliminate sealing difficulties at a high temperature environment, were directly exposed to real time temperature elevation from 22 C to 260 C during the test period. The disk types were pre-heat treated up to 300 C for 8 hours and cooled to room temperature before testing. Nonlinear variation of downstream pressure at a certain temperature range implied moisture release and matrix pyrolysis. Permeability was calculated using a semi-numerical model of quasi-steady state. The test results and the numerical model are discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Gopa, E-mail: gopa_mjs@igcar.gov.in; Das, C.R.; Albert, S.K.
Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-raymore » diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with temperature of tempering. • Mostly iron rich Fe{sub 2}C carbides are present in the embrittlement temperature range. • With the precipitation of M{sub 23}C{sub 6} carbides, recovery from the embrittlement begins.« less